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Abstract

Permutation-based Indexing (PBI) approaches have been proven to be particularly effective for conducting
large-scale approximate metric searching. These methods rely on the idea of transforming the original
metric objects into permutation representations, which can be efficiently indexed using data structures such
as inverted files.
The standard conceptualization of permutation associated with a metric object involves only the use of

object distances and their relative orders from a set of anchors called pivots. In this paper, we generalized
this definition in order to enlarge the class of permutation representations that can be used by PBI ap-
proaches. In particular, we introduced the concept of permutation induced by a space transformation and
a sorting function, and we investigated which properties these transformations should possess to produce
permutations that are effective for metric search. Furthermore, as a practical outcome, we defined a new
type of permutation representation that is calculated using distances from pairs of pivots. This proposed
technique allowed us to produce longer permutations than traditional ones for the same number of object-
pivot distance calculations. The advantage lies in the fact that when longer permutations are employed, the
use of inverted files built on permutation prefixes leads to greater efficiency in the search phase.

Keywords: Permutation-Based Indexing, Metric Space, Metric Search, Similarity Search, Approximate
search, Planar projection.

1. Introduction

The paradigm of metric spaces offers an elegant
way to approach the problem of similarity search.
The clear advantage of this approach is its flexi-
bility, as it is not tied to a particular data type
and thus encompasses a wide variety of applications
such as multimedia information retrieval, pattern
recognition, data mining, and computational biol-
ogy. To this end, the Metric Search framework [1]
allows one to develop index structures by employ-
ing only the knowledge of a predefined black-box
distance between objects.
A metric space is defined as a pair (D, d), where

D represent the domain and d : D×D → R is a dis-
tance function that satisfies the metric postulates of
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non-negativity, identity of indiscernibles, symmetry,
and triangle inequality [1]. The downside of this
paradigm is the inability to use any algebraic op-
erations, such as sum, mean, or scalar product of
two objects, but we are constrained to use only the
distance between pairs of objects. Therefore, it is
often desirable to map a metric object o ∈ D to
another (more tractable) space, such as a vector
space. This mapping must rely only on algorithms
that use the distances of the object o from other
metric objects, typically a fixed set of selected ref-
erence objects within the space.

Beyond rare exceptions, exact metric search suf-
fers from the problem of the curse of dimensional-
ity [2], which causes objects in the space to tend
to have the same distance as the dimension grows
making any attempt to organize them into indexes
useless since their performance may be no better
than a sequential scan for spaces with high intrin-
sic dimensionality [3, 4].

To mitigate this problem, researchers have turned
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their attention to the study of approximate indexes.
Successful examples of approximate methods are
the Permutation-based Indexing (PBI) techniques
that transform the metric data into permutations of
a set of integers {1, . . . , N}. The advantage of work-
ing with permutations arises from the fact that per-
mutations can be efficiently indexed and searched
using data structures such as prefix trees [5, 6] and
inverted files [7, 8]. The similarity search is then
performed in the permutation space and no longer
in the original space. Therefore, the effectiveness
of a permutation-based access method depends not
only on its particular indexing and searching algo-
rithm, but also on the “quality” of the permuta-
tions used to represent the objects. In other words,
similar objects should be mapped to similar permu-
tations and, vice versa, similar permutations should
correspond to similar objects.
The original definition of permutation-based rep-

resentation of a metric object was derived by com-
puting the distances of the object to a set of piv-
ots (reference objects) and then by reordering the
pivot identifiers according to these distances. The
initial introduction of this idea can be attributed
to [9] and it has since been further developed
by [10, 11]. Then this characterization has been
adopted in several research papers that further in-
vestigated the properties of these data represen-
tations and ways to efficiently index them, e.g.
[3, 5, 6, 12, 13, 14, 15, 16, 17]. Moreover, some
alternative permutation-based representations were
defined in the literature [18, 19], but only for rep-
resenting objects of specific metric spaces.
In this work, we generalize the definition of per-

mutation associated with a metric object. We in-
troduce the concept of permutations induced by a
space transformation f : (D, d) → RN , where f
is a function that projects the metric objects of D
into an N -dimensional vector space. This function
typically relies only on some distance calculations
to transform the objects, such as the distances to
a set of pivots as done in traditional permutation.
However, the way these distances are combined and
exploited to represent objects may be different from
what is done in the traditional approach. We be-
lieve that this generalization can open up new lines
of research, on the one hand, to understand theo-
retically what properties the function f should have
in order to generate permutations that have good
performance for the approximate search, and on
the other hand, to define alternative permutation-
based representations. In this paper, whose pre-

liminary version appeared in [20], we start investi-
gating both these aspects. We show that a funda-
mental property of the function f is producing co-
ordinate values with nearly identical distribution.
Moreover, we define a permutation-representation
that is derived using both the distances of each
object to a set of pivots as well as the distances
between pivot pairs. In this way, for a fixed set
of n pivots, we can generate permutations from a
larger set N > n of permutants, with respect to
the traditional permutation-based approach where
permutants were n. An expanded set of permu-
tants enhances efficiency during search operations,
especially when using an inverted index built upon
permutation prefixes (e.g., MI-File [7]). In fact, the
inverted index contains as many posting lists as the
number N of permutants (i.e., the length of the full
permutation) and so, for a fixed permutation prefix
length λ, the higher N , the shorter the posting lists,
and hence the smaller the fraction of the database
accessed to answer a query.

The remainder of this paper is structured as
follows: Section 2 provides an overview of ba-
sic concepts and related work concerning permu-
tations used in approximate metric search. Sec-
tion 3 presents our generalization of the concept
of permutation-based representation associated to
a metric object, namely, permutation induced by a
space transformation. Section 4 investigates, both
theoretically and experimentally, the properties a
space transformation should possess to induce per-
mutations suitable for metric search. Section 5
presents a novel permutation representation, called
Pivot Pair permutation, which is built using both
object-pivot and pivot-pivot distances. It also re-
ports experiments on both real-world and synthetic
datasets. Finally, Section 6 draws the conclusions.

The notations used throughout this manuscript
are summarized in Table 1.

2. Background and Related Work

The original definition of a permutation-based
representation of a metric object, introduced by
Chávez et al . [9, 11] and further adopted by Amato
et al. [10, 7], relies on ordering the identifiers of a
fixed set of pivots, used as representative data ob-
jects, according to their distances to the object to
be represented. Formally, these permutations1 can
be defined as follows

1In this work, we use the term ”permutation” to refer
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Table 1: Notation used throughout this paper

Symbol Definition

| · | size of a set

(D, d) metric space, where D is a data domain
and d : D ×D → R is a metric

(SN , d̃) permutation metric space, where SN is the
symmetric group on the set {1, . . . , N},
and d̃ is a distance function on SN

ℓp, ℓ2, ℓ∞ Minkowski distance, Euclidean distance,
and Chebyshev distance

d̃ρ, d̃ρ,λ Spearman’s rho and Spearman’s rho with
location parameter λ

{p1, . . . , pn} set of pivots, pi ∈ D

n number of pivots

m number of pivot pairs

N length of permutations (number of permu-
tants)

λ permutation prefix length (location pa-
rameter)

o, oi, q data objects, o, oi, q ∈ D

x,x′,v real-valued vectors

f = [f1, . . . , fn] space transformation f : (D, d) → RN ,
f(o) = [f1(o), . . . , fN (o)] with fi :
(D, d) → R and fi(o) = (f(o))i

ξ generic sorting function on N-dimensional
vectors

ξ↑, ξ↓ sorting functions in ascending and de-
scending order

ϕpi,pj planar projection ϕpi,pj : (D, d) →
(R2, ℓ2) given the pivots pi, pj [21]

Πo, Π
−1
o permutation and inverted permutation of

a metric object o ∈ D

Πf,ξ
o , (Πf,ξ

o )−1 permutation and inverted permutation of
o ∈ D induced by a space transformation
f and a sorting function ξ

Πf
o , (Πf

o )
−1 permutation and inverted permutation of

o ∈ D induced by a space transformation
f and the sorting in ascending order

Πo,λ, Π
−1
o,λ permutation prefix of length λ, and its in-

verse

Πf
o,λ, (Π

f
o,λ)

−1 prefix of length λ of the permutation in-
duced by f , and its inverse

X ,Xi multivariate and univariate continuous
random variables

N (µ, σ) Gaussian distribution with mean µ and
variance σ2

k, k′ number of results of a nearest neighbour
search

Definition 1 (Permutation of a metric object given
a set of pivots). For a metric space (D, d), the
permutation-based representation Πo (briefly per-
mutation) of an object o ∈ D with respect to the
pivot set {p1, . . . , pn} ⊂ D is the sequence Πo =
[π1, . . . , πN ], where N = n, that lists the pivot iden-
tifiers {1, . . . , n} (called permutants) in an order
such that ∀ i ∈ {1, . . . , n− 1}

d(o, pπi
) < d(o, pπi+1

) (1)

or [
d(o, pπi

) = d(o, pπi+1
)
]
∧ [πi < πi+1] . (2)

This representation is also referred to as the full-
length permutation to distinguish it from the per-
mutation prefix adopted in several PBI methods [7,
5, 6]. In fact, based on the intuition that the most
relevant information in the permutation is present
in its very first elements, i.e., the identifiers of the
closest pivots to an object, several researchers pro-
posed to represent the data by using a fixed-length
prefix of the permutation: Πo,λ = [π1, . . . , πλ] with
λ < N , usually referred to as permutation prefix
or truncated permutation of length λ. The use
of permutation prefixes may be dictated by either
the employed data structure (e.g., prefix tree [5]),
efficiency issues (more compact data encoding and
better performance when using inverted files [7]),
or even by effectiveness reasons (in certain cases,
using prefixes yields superior results compared to
full-length permutations [12, 7]).

Several metric functions have been proposed in
the literature to assess the similarity of two permu-
tations. Notable examples include Kendall’s tau,
Spearman’s rho, and the Spearman’s Footrule dis-
tances [22, 23]. The permutation prefixes are usu-
ally compared using top-λ distances proposed by
Fagin et al. [24], including the Spearman’s rho and
the Spearman’s Footrule with location parameter
λ. Most of these distances can be easily computed
as distances between Cartesian points obtained by
considering the so-called inverted permutations.
The inverse of a full-length permutation Πo

is another permutation denoted as Π−1
o =

briefly to a permutation-based representation of a data ob-
ject. It is essential to clarify that mathematically, a per-
mutation is merely an arrangement or ordering of elements
within a finite set. Therefore, when we mention a “new” or
“different” permutation of a metric object, we are referring
to the methodology employed to derive the final permutation
representation.
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Π𝒐𝟏 = 5,2,1,3,4 Π𝒐𝟐 = 4,3,5,1,2

𝑝𝑒𝑟𝑚𝑢𝑛𝑡𝑎𝑛𝑡𝑠: 1 2 3 4 5

Π𝒐𝟏,𝜆
−1 = 3, 2, 4, 5, 1

1 2 3 4 5

Π𝒐𝟐,𝜆
−1 = 4, 5, 2, 1, 3

p1
p2

p4
p3

p5

o2

o1

Π𝒐𝟏,𝝀 = 5,2,1 Π𝒐𝟐,𝝀 = 4,3,5

1 2 3 4 5

Π𝒐𝟏,𝜆
−1 = 3, 2, 4, 4, 1

1 2 3 4 5

Π𝒐𝟐,𝜆
−1 = 4, 4, 2, 1, 3

Full-lengh permutations and their inverse 

Permutation prefix of length λ=3 and their inverse 

Figure 1: Example of traditional full-length and prefix per-
mutations, along with their inverses, associated to two data
objects given five pivots. (Best view in color)

[Π−1
o (1), . . . ,Π−1

o (N)] where Π−1
o (i) represents the

position of the permutant i in the permutation
Πo. For example, if Πo = [5, 2, 1, 3, 4] then Π−1

o =
[3, 2, 4, 5, 1] because the permutant “1” is in third
position in the permutation Πo, the permutant “2”
is in the second position, the permutant “3” is in
the fourth position, and so on. Note that the value
at the i-th coordinate in Πo corresponds to the per-
mutant identifier at rank i, while the value at the
j-th coordinate in the inverted permutation Π−1

o

represents the rank of the permutant “j” in the
permutation Πo.
A unique definition of the inverse of a permuta-

tion prefix does not exist because it is impossible
to determine the exact rank of the permutants that
are not appearing in the given permutation prefix.
For instance, the inverse of Πo,λ = [5, 2, 1] should
have the form [3, 2, ∗, ∗, 1] where the values “∗” can-
not be uniquely determined. To address this, we
follow the convention of assigning the rank λ + 1
to those permutants. Therefore, we denote the in-
verted permutation prefix Π−1

o,λ as the integer vector

[Π−1
o,λ(1), . . . ,Π

−1
o,λ(N)] where

Π−1
o,λ(i) =

{
Π−1

o (i) if Π−1
o (i) ≤ λ

λ+ 1 otherwise
(3)

An example of permutations, inverted permuta-
tions, and permutation prefixes for two data objects
and five pivots is illustrated in Figure 1.
By using the inverted permutations we can easily

compute the Spearman’s rho (d̃ρ) and the Spear-

man’s rho with location parameter λ (d̃ρ,λ) as the
Euclidean distances between two vectors:

d̃ρ(Πo1 ,Πo2) = ℓ2(Π
−1
o1 ,Π

−1
o2 ) (4)

d̃ρ,λ(Πo1 ,Πo2) = ℓ2(Π
−1
o1,λ

,Π−1
o2,λ

). (5)

Note that if λ = N then d̃ρ,λ = d̃ρ.

Other permutation-based representations. In the
literature, some alternative permutation-based rep-
resentations were defined for specific metric spaces.
For example, the Deep Permutations [18, 25] are
computed by reordering the dimensions of a vec-
tor according to the corresponding element values.
This approach is limited to vector spaces and has
so far only been tested on deep features, i.e., Eu-
clidean data descriptors obtained as the output of
an intermediate layer of a deep neural network. The
SPLX-Perms [19] approach uses the n-Simplex pro-
jection [26] to transform a metric object into a Eu-
clidean vector and then computes the permutation
by reordering the components of the vector as done
in the Deep Permutations. As a difference with
respect to the Deep Permutations technique, the
SPLX-Perms approach also uses a random rotation
to distribute the variance before performing the re-
ordering of the vector components. This method
can be used on the large class of spaces meeting
the n-point property [26], but it is not applicable
to general metric spaces.

It is worth noting that the permutation prefixes
and the inverted permutations can be computed as
described above for these alternative permutation-
based representations as well.

3. Permutations Induced by a Space Trans-
formation

In the previous section, we summarized the
permutation-based representations that have been
proposed so far in the literature in the context of
metric search. Figure 2 provides an overview of
the steps involved in calculating each of these rep-
resentations. Our observation is that all these ap-
proaches belong to the same family of transforma-
tions, as explained hereafter. As a result, the tra-
ditional definition of permutation associated with
a metric object (Def. 1) could be generalized to
be more inclusive. In this context, the first trivial
but useful observation to make is that any sorting
function defined on a finite-dimensional Coordinate
space implicitly produces a permutation represen-
tation of the data. Suppose that ξ : RN → RN

is a function that sorts the coordinate elements of
a N -dimensional real vector with respect to a pre-
defined criterion (e.g., ascending order). For any
vector x ∈ RN , the sorting function ξ is described
by the permutation Πξ

x of the indices {1, . . . , N}
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Figure 2: Illustration of the steps needed to compute the traditional permutations (top) [11], the SPLX-Perms (middle) [19],
and the Deep Permutations (bottom) [18]. (Best view in color)

that specifies the arrangement of the elements of
x into x′ = ξ(x). Specifically, if x = [x1, . . . , xN ]
and ξ(x) = [xi1 , . . . , xiN ] then Πξ

x = [i1, . . . , iN ]. In
other words, the j-th element of the permutation
Πξ

x corresponds to the index i ∈ {1, . . . , N} such
that the i-th element of x is equal to the j-th el-
ement of ξ(x). For example, if x = [8, 10, 6] and
ξ(x) = [6, 8, 10] then Πξ

x = [3, 1, 2] because (i) the
first element of ξ(x) is 6 which is at the third co-
ordinate position in the vector x; (ii) the second
element of ξ(x) is equal to the first element of the
vector x; (iii) the third element of ξ(x) is equal to
the second element of the vector x. However, note
that this characterization is not well defined when
the vector x contains duplicate values. Therefore,
we give the following definition:

Definition 2 (Permutation of a real vector induced
by a sorting function ξ). A permutation represen-
tation of a vector x = [x1, . . . , xN ] ∈ RN induced by
a given sorting function ξ : RN → RN is the per-
mutation Πξ

x = [π1, . . . , πN ] of the index identifiers
{1, . . . , N} such that for any j = 1, . . . , N the ele-
ment πj is the smallest index for which xπj

equals
the j-th element of ξ(x).

The Deep Permutations can be formalized by
using the above definition employing a descend-
ing order sort, although this characterization can-
not be applied to describe the SPLX-perms or the
traditional permutations. Nevertheless, these ap-
proaches share a common idea, which is using the
distance to a set of pivots to first transform the
metric object into a Cartesian coordinate space and

then obtain the permutation by ordering the com-
ponents of the resulting vectors. Therefore, for any
function f : (D, d) → RN and a given sorting func-
tion we define a permutation representation of met-
ric objects as follows:

Definition 3 (Permutation of a metric object in-
duced by a space transformation f and a sorting
function ξ). Let f : (D, d) → RN a space trans-
formation, and ξ : RN → RN a function that
sorts the components of a N -dimensional vector
according to some predefined criteria. We define
the permutation representation of a metric object
o ∈ D induced by the functions f and ξ as the
permutation Πf,ξ

o = [π1, . . . , πN ] that lists the in-
dex identifiers {1, . . . , N} in an order such that for
any j = 1, . . . , N the permutant πj is the small-
est index for which the πj-th element of the vec-
tor f(o) is equals to the j-th element of ξ(f(o)),
i.e., f(o)πj

= ξ(f(o))j.

Figure 3 schematizes the idea behind this class of
permutations and gives an example using the sort-
ing in ascending order. Please note that the effect
of using a different sorting function in most cases
could be reproduced by changing the function f .
For example, for a given f and object o the permu-
tation obtained by sorting f(o) in descending order
is equal to the permutation obtained by applying
the function −f to the object o and then sorting
the elements in ascending order. More generally,
let ξ↑ and ξ↓ sorting functions in ascending and de-
scending order, respectively, it can be easily proved
that
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• if g : RN → RN is a monotonic increasing func-
tion then

Π
(g◦f),ξ↑
o = Π

f,ξ↑
o

Π
(g◦f),ξ↓
o = Π

f,ξ↓
o

for any o ∈ D;

• if g : RN → RN is a monotonic decreasing
function then

Π
(g◦f),ξ↑
o = Π

f,ξ↓
o

Π
(g◦f),ξ↓
o = Π

f,ξ↑
o

for any o ∈ D.

For the sake of simplicity, in the following, we
assume to use the sorting in ascending order and
we omit the dependency of the sorting function ξ
in the definition of the permutation. Therefore, we
use the following characterization:

Definition 4 (Permutation of a metric object in-
duced by a space transformation f). The permu-
tation representation of a metric object o ∈ (D, d)
with respect to the transformation f : (D, d) → RN

is the sequence Πf
o = [π1, . . . , πN ] that lists the

permutants {1, . . . , N} in an order such that ∀ i ∈
{1, . . . , N − 1},

f(o)πi
< f(o)πi+1

(6)

or [
f(o)πi

= f(o)πi+1

]
∧ [πi < πi+1] (7)

where f(o)j indicates the j-th coordinate value of
the vector f(o).

Note that, according to this definition, the
traditional permutation is induced by the trans-
formation f(o) = [d(o, p1), . . . , d(o, pN )], where
{p1, . . . , pN} is a fixed set of pivots. The Deep
Permutation is induced by f = −Id, where Id is
the identity function. The SPLX-Perm, instead,

is induced by the composition of the n-Simplex
projection and a random rotation. Moreover, this
generalization suggests that new permutation rep-
resentations of generic metric objects can be de-
fined but assuming that we use a transformation
f : (D, d) → RN that relies only on distance com-
putations and metric postulates to transform the
objects. In some cases, the function f can also
be generated using machine learning techniques, as
in [27]. Nevertheless, for particular metric spaces,
e.g., vector spaces, other operations or properties of
the space can be employed when defining the trans-
formation f . However, as discussed in the next
section, not all the transformations may produce
permutations that are suitable for metric search, as
we would like similar objects to be projected into
similar permutations.

4. Desired Properties of the Space Transfor-
mation f

In this section, we aim at investigating the prop-
erties that the function f : (D, d) → RN should
possess in order to induce permutations suitable for
approximate metric search. For simplicity, we de-
note the vector-valued function f by means of its
coordinate functions fi : D → R, i ∈ {1, . . . , N},
such that

f(o) = [f1(o), . . . , fN (o)]. (8)

To make a parallel with the notation used in pre-
vious sections, note that each fi is a real-valued
function such that fi(o) is equal to the i-th compo-
nent of the vector f(o), i.e., fi(o) = f(o)i, for all
o ∈ D and i ∈ {1, . . . , N}.

For the analysis, we assume that the metric used
to assess the similarity of two permutations does
not involve cross-correlation coefficients between
different permutants. Specifically, we consider met-
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rics of the form

d̃p(Πo1 ,Πo2) =

 N∑
j=1

|Π−1
o1 (j)−Π−1

o2 (j)|
p

1/p

(9)

where p = 1 and p = 2 correspond to the com-
monly used Spearman’s Footrule and Spearman’s
rho distances, respectively. This choice guarantees
that the distances are preserved if we “re-label”
(i.e., permute) the coordinate functions of f , that
is

d̃p(Π
f
o1 ,Π

f
o2) = d̃p(Π

f̂
o1 ,Π

f̂
o2) (10)

for any vector-valued function f̂ such that f̂(o) =
[fi1(o), . . . , fiN (o)] where [i1, . . . , iN ] is a permuta-
tion of [1, . . . , N ]. With this assumption, we can
infer that the permutations Πf

o1 and Πf
o2 will be

more similar when the vectors f(o1), f(o2) ∈ RN

exhibit a similar ranking of their values across the
different dimensions. In other words, if the largest
and smallest values of the vectors are located in
the same dimensional components, the permuta-
tions will be more similar. Clearly, as discussed
in Sect. 4.2, the function f should also somehow
provide an approximation of the original distance
so that f(o1), f(o2) ∈ RN are more similar when
the metric objects o1, o2 ∈ D are closer according
to the distance function d.

4.1. On the distribution of the values of the func-
tion f

When considering permutations generated
by sorting the components of the vectors
[f1(o), . . . , fN (o)], o ∈ D, the various dimen-
sional components of these vectors should ideally
have the same distribution in order to obtain
distinctive permutations that are representative
of the data objects. In particular, we show that
the ideal case involves having coordinate functions
fi whose values are independent and identically
distributed (iid).
Suppose X = [X1, . . . ,XN ] be a random vari-

able representing all possible outcomes f(o) =
[f1(o), . . . , fN (o)], where o ∈ D. If the mean of dis-
tributions {fi(o), o ∈ D} varies by i and E [Xi] <<
E [Xj ], we would expect index “i” to precede in-
dex “j” in the permutations of almost all the data
objects 2. More generally, the differences in the dis-

2We assume the ascending order is used to generate the
permutation of o by reordering the coordinates of f(o) In
this case, the i-th and j-th components of f alone provide
minimal information to distinguish different objects.

(a)

(b)

Figure 4: (a) Probability density function of two Gaussians
X1 ∼ N (µ1, σ1) and X2 ∼ N (µi, σi) (b) Probability density
function of the difference X1 − X2, which is the density of
a Gaussian with mean µ1 − µ2. P (X1 < X2) is the shaded
area under the PDF curve of X1 −X2. (Best view in color)

tribution of the variables Xi affect the probability
distribution of the permutation representations.

This concept can be illustrated with a case in
which all variables Xi follow a normal distribution
with Xi ∼ N (µi, σi) for i = 1, . . . , N . In this case,
the probability that index “1” precedes index “2”
in the permutation is given by

P (X1 < X2) = P (X1 −X2 < 0),

where X1 − X2 follows a Gaussian distribution3.
Figure 4 shows an example of this case, where the
shaded area under the PDF curve of X1−X2 corre-
sponds to the probability P (X1 < X2). When the
mean values µ1 and µ2 are equal, the probability
P (X1 < X2) is 0.5, resulting in balanced rankings of
indices “1” and “2” in the permutations of all data
objects. If µ1 << µ2 or µ2 << µ1, the probability
P (X1 < X2) will be close to 1 or 0, respectively.
This means that index “1” will almost always pre-
cede index “2” in the permutations, or vice versa.

Although not directly evident in the case of two
Gaussian variables, the variance also plays a crucial

3X1−X2 follows a Gaussian distribution because it is the
difference of two Gaussian variables. Specifically, if X1 ∼
N (µ1, σ2

1) and X2 ∼ N (µ2, σ2
2), then X1 − X2 ∼ N (µ, σ2),

where µ = µ1 − µ2 and σ2 = σ2
1 + σ2

2 − 2ρ12σ1σ2. Here, ρ12
represents the correlation between X1 and X2.
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role in determining the distribution of the permuta-
tions. For example, when considering independent
normal variables Xi, if all the Xi have the same
distribution, all permutations have the same prob-
ability of occurring. However, if the variables Xi

have the same mean but different variances, a non-
uniform distribution of induced permutations arises
(proof in Appendix A).

These observations extend to non-Gaussian dis-
tributions, where different statistics for the Xi re-
sult in a non-uniform distribution of probabilities
for induced permutations. The Gaussian case pro-
vides a tangible example of the effects of having
different means and variances.

The statement that all permutations are
equiprobable if the components of the vectors are
iid random variables can be formalized as follows:

Proposition 1. The induced permutations are uni-
formly distributed (i.e., every permutation occurs
with probability 1/n!) if and only if the continuous
random variables X1, . . . ,Xn are independent and
identically distributed.

Proof. We first observe that having X1, . . . ,Xn iid is
a necessary condition. In fact, if the variables were
not iid, it is possible to construct counterexamples
where the induced permutations are not uniformly
distributed. The case of Gaussians with different
variances studied in the Appendix A, in fact, pro-
vides a counterexample (Equation A.1 when σ1 ≥
· · · ≥ σN ).

Let us now prove the sufficiency. Let h(x) the
probability density function of the considered iid
variables and J·K the Iverson bracket, which equals
one if the argument is true, and zero otherwise. For
any permutation [π1, . . . πn] of [1, . . . , N ], we have
P (Xπ1

< · · · < Xπn
) = P (X1 < · · · < Xn) := p,

which can be seen from the following steps:

∫
· · ·

∫
Jxπ1 < · · · < πxnK

N∏
i=1

f(πxi)dxπ1 . . . dxπn

=
yi=xπi

∫
· · ·

∫
Jy1 < · · · < ynK

N∏
i=1

f(yi)dy1 . . . dyn

Furthermore, since Xi are continuous random vari-
ables, we have P (Xi = Xj) = 0 for all i ̸= j. There-
fore, the event A = {∃i, j with i ̸= j s.t. Xi = Xj}
has probability zero since P (A) ≤

∑
i̸=j P (Xi =

Xj) = 0. This implies that the complementary
event {∀i ̸= j,Xi ̸= Xj} has probability one. As

a result, we can write:

1 =P (∀i ̸= j,Xi ̸= Xj)

=
∑

π∈SN

P (Xπ1
< · · · < Xπn

)

=
∑

π∈SN

p = n!p

(11)

which proves that p = 1/n!. Thus, the in-
duced permutations are uniformly distributed when
X1, . . . ,Xn are iid.

Our interest in the probability distribution of the
induced permutations stems from the understand-
ing that this probability significantly affects our
ability to distinguish different data objects when
transformed into the permutation space, and it
may highly influence the performance of a given
permutation-based index as well. For example,
when using inverted files, if some permutation pre-
fixes are much more frequent than others, some
posting lists will be much longer than others. In
the worst case, a posting list may contain the entire
dataset and thus search performance may degener-
ate to a sequential scan.

While it may not always be feasible, the opti-
mal scenario is to achieve a uniform distribution
of induced permutations. However, it is worth
noting that in practical cases the coordinate func-
tions fi may not be independent or identically dis-
tributed. For example, the distributions of the
functions fi(o) = d(o, pi) used by the traditional
permutation approach cannot be independent due
to constraints derived by the triangle inequality.

4.1.1. Geometrical interpretation

All these aspects can also be viewed from a
geometric perspective using high-order Euclidean
Voronoi diagrams. The main intuition here is to
observe that there is an equivalence between the
permutation induced by a function f , i.e., Πf

o , and
the “traditional” permutations Πf(o) (i.e., the one
based on the object-pivot distances as in Def 1)
computed after transforming the original metric ob-
jects through the function f and using a specific set
of N pivots of a N -dimensional Euclidean space:

Proposition 2. Let (D, d) a metric space, f :
(D, d) → RN a space transformation, and Πf

o the
permutation of o ∈ D induced by f using the sort-
ing in ascending order.
For any real number c > 0, the traditional per-
mutation Πf(o) associated to the vector f(o) ∈ RN
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with respect to the pivots p̂1 = [−c, 0, . . . , 0], p̂2 =
[0,−c, . . . , 0], . . . , p̂N = [0, . . . , 0,−c] ∈ RN and the
Euclidean distance is equal to Πf

o :

Πf
o = Πf(o) (12)

Proof. For the given pivots {p̂1, . . . , p̂N} and the
Euclidean distance, by definition, we have that
Πf(o) is obtained by sorting the element of the vec-
tor [ℓ2(f(o), p̂1), . . . , ℓ2(f(o), p̂N )] in ascending or-
der. For any i = 1, . . . , N we have that

ℓ2(f(o), p̂i) =
√
∥f(o)∥2 + ∥p̂i∥2 − 2f(o)T p̂i

=
√

K + 2cfi(o)
(13)

where K = ∥f(o)∥2 + c2 is a constant that do not
depend from the index i. It follows that

[ℓ2(f(o), p̂1), . . . , ℓ2(f(o), p̂N )]

= [g(f1(o)), . . . , g(fN (o))]
(14)

where g(x) =
√
K + 2cx. Since g is a monotonic in-

creasing function we have that g (fi(o)) < g (fj(o))
if and only if fi(o) < fj(o), and thus the permu-
tation induced by ranking the elements in Eq. 14
in ascending order equals the permutation Πf

o in-
duced by ranking the element in [f1(o), . . . , fN (o)].
In other words, Πf(o) = Πg◦f

o = Πf
o .

If we divide the entire space (RN , ℓ2) using the
(N − 1)-order Voronoi Partitioning [28, 29] asso-
ciated to the specific pivots p̂1, . . . , p̂N we obtain
exactly N ! cells corresponding to all the possible
permutation of p̂1, . . . , p̂N . This is due to the spe-
cific choice of these pivots.4. The boundaries of
these cells are determined by the intersection of the
bisectors between pivots pairs, which in our case
are simply the hyperplanes of the form

Hi,j = {[x1, . . . , xN ] ∈ RN : xi = xj}, ∀i ̸= j

Therefore. any point with constant values γ ∗
[1, . . . , 1] is in the intersection of all these hyper-
planes, which means that even for very small values
ϵ1 < ϵ2 < · · · < ϵN , any permutation [π1, . . . , πN ]

4Note that as proved by Skala [30] for k pivots in a d di-
mensional Euclidean space the number of cells that occur in
generalized Voronoi diagram on Lp spaces (i.e., the number
of distinct distance permutations that can be generated) may
be less than k!. However, if k ≤ d+1, as in our case, k pivots
can be chosen such that all k! distinct distance permutations
exist.

can be generated by considering the permutation
Πx associated to the vector x = [γ, . . . , γ] +
[ϵπ1

, . . . , ϵπN
], for any γ ∈ R.

However, in our study, we are interested only in
the permutation associated with the subset f(D) ⊂
RN . So if the codomain of f is uniformly dis-
tributed around a constant point [γ, . . . , γ] then its
convex hull will intersect all the boundaries of the
Voronoi cells, and thus all the possible distance per-
mutations could, in theory, be generated. In a real
scenario, it is difficult to have a perfect uniform dis-
tribution of f(D) around a constant value. Never-
theless, it is important to keep in mind that the
expressiveness of the generated permutations (in
terms of equal probability to generate every possible
permutation) is related to how much the expected
value E [f(o)] deviates from a constant vector of the
form γ ∗ [1, . . . , 1] and how much all other statistics
of the variables representing the values fi(o) differs
across the coordinate index i.

4.1.2. Experimental evaluation

Let us now examine some experimental results
which, in line with the observations made so far,
will show the importance of having coordinates in
f with an identical (or nearly identical) distribution
to induce permutations that are effective for metric
search.

To avoid introducing any approximation from the
choice of a particular function f , we consider the
case in which the starting space is already an Eu-
clidean space. As a first base case, we analyze the
choice of f as the identity function. The objective is
to confirm that when the vector coordinates exhibit
differing statistical properties, the permutations in-
duced by just sorting the coordinates (i.e., using
f = Identity) will perform worse than the permu-
tations induced by a function that generates output
components with similar distributions.

Setup and Evaluation Protocol. For this set of ex-
periments, we used the SISAP Colors [31] bench-
mark, a real-world and publicly available dataset
comprising approximately 113K feature vectors of
dimensions 112. Each vector is a color histogram of
a medical image. We compared these vectors using
the Euclidean distance and we built a ground-truth
for the exact k-nearest neighbors (k-NN) search
related to 1,000 randomly selected queries5. The

5The query objects were removed from the ground-truth.
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Figure 5: Illustration of how the permutations are typically used to compute an approximate result set to a k-NN query. In
(a) the approximate result set is computed by performing a k-NN directly in the permutation space. In (b) the approximate
result set is computed using a filter-and-refine approach. (Best view in color)

ground-truth was used to evaluate the quality of
the approximate results obtained by performing a
nearest neighbor search in the permutation space.

As quality measure, we used the recall@k, defined
as |R ∩ RA|/k, where R is the result set of the ex-
act k-NN search in the original metric space and
RA is the approximate result set obtained in the
permutation space. We also evaluate a filter-and-
refine approach in which, for each query object, a
candidate result set is selected by performing a k′-
NN search in the permutation space (filter step).
Then the candidate results are re-ranked using the
actual distance d and the top-k objects are selected
to form the approximate answer to the query (re-
fine step). Figure 5 illustrates these two searching
approaches. We consider k = 10 and k′ = 100,
thus in the base case the approximate result set
RA is computed by performing a 10-NN search in
the permutation space; in the filter-and-refine case,
the candidate result set is computed by performing
a 100-NN search in the permutation space and then
it is refined using the actual distance d to form the
final result set RA.

We evaluate the performance of both full-length
permutations and permutation prefixes for vari-
ous prefix lengths. We employed the Spearman’s
rho to compare the full-length permutations, while
the permutation prefixes were compared using the
Spearman’s rho with location parameter.

Results. We denote by X = {x(j)}|X|
j=1 the original

SISAP color data, where each element is a vector of

the form x(j) = [x
(j)
1 , . . . , x

(j)
N ], with N = 112. Let

µ = [µ1, . . . , µN ] and σ = [σ1, . . . , σN ] the vectors
with the mean and standard deviation values for

each coordinate index i, that is

µi = mean({x(j)
i : j = 1 . . . |X|})

σi = std({x(j)
i : j = 1 . . . |X|}).

In Figure 6a, we reported the box-plots depicting
the distribution of the means µi, standard devia-
tions σi and the quartiles of the original dataset X
varying the coordinate index i, i = 1, . . . , N . It can
be observed that the box-plots contain many out-
liers and thus the statistics are not uniform along
the various dimensions. This further assures us that
the SISAP data provides an excellent example for
our analysis as it is already a Euclidean dataset
whose vectors have components not identically dis-
tributed.

To analyze the effect of the uniformity of vector
component distributions on the quality of the per-
mutations, we computed the permutations induced
by sorting the elements of the vectors f(x), x ∈ X,
for various choices of f :

• fId(x) = x (identity function), so the trans-
formed data is X itself;

• fc(x) = x− µ, so that E [f(X)] = 0. We refer
this case to as X centred;

• fs(x) =
[
x1−µi

σ1
, . . . , xN−µN

σN

]
that standardizes

each component by removing the mean and
scaling to unit variance. We refer this case to
as X standardized;

• fR(x) = R(x − µ) where R is a ran-
dom rotation. We refer this case to as
X centred and randomly rotated;
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(a) X (b) X centred (c) X standardized

(d) X centred and randomly rotated (e) PCA(X)

Figure 6: SISAP Colors: box-plots showing the distribution of various statistics (mean, standard deviation, quartiles)

• fPCA(x) = PCA(x) that centered the data
and rotate it with the Principal component
analysis (PCA) matrix (the full matrix is con-
sidered so that no dimensionality reduction is
performed). We refer this case to as X PCA.

Please note that fc is a data translation
that preserves the original Euclidean distances,
i.e., ℓ2(x,y) = ℓ2(fc(x), fc(y)). The other func-
tions fs, fR and fPCA can be defined as the com-
position of fc with other linear operations (i.e., a
matrix multiplication):

fs(x) = Dfc(x)

fR(x) = Rfc(x)

fPCA(x) = Pfc(x)

where D = D = diag[1/σ1, . . . , 1/σN ], R is a ran-
dom orthogonal matrix, and P is is the PCA or-
thogonal matrix Since orthogonal matrices pre-
serve the Euclidean distance, also fR and fPCA

exactly preserve the distance between original data
points. The function fs preserve the distance if and
only if all σi are equal to 1, that is the case in which
the vector components of the original data already
have unit variance. Moreover, fR and fPCA have in
common the idea of rotating the centered data but
with opposite effects. The PCA produces vectors
whose first dimensional components have the high-
est variances. The random rotation, instead, helps

in distributing the variance along all the dimen-
sions. Figure 6 shows the box-plots of the distri-
bution of mean, standard deviation, and quartiles
of fc(X)i, fs(X)i, fR(X)i, and fPCA(X)i varying
the dimensional index i. Note that, according to
the considered statistics, centering and randomly
rotating the data is the transformation that pro-
duces the best results in terms of uniformity of the
distributions along the various vector components
(compact box-plots concentrated in their median
values, and few outliers).

We computed the permutations induced by all
the space transformations considered above. The
total length of each permutation is N = 112, there-
fore we evaluated the performance of permutation
prefixes with length 10 ≤ λ ≤ 112. Figure 7 shows
the recall@10 for the various approaches both in
the case in which the result set is directly selected
in the permutation space (Figure 7a) and when the
actual distance is used to refine the results (Figure
7b). For reference, in the graphs, we also report the
recalls obtained using the traditional permutations
(Def. 1) for N = 112 randomly selected pivots. We
observe that the permutations obtained by simply
reordering the original vector components have ex-
tremely poor results and thus are not suitable for
approximate metric search. Centring or standardiz-
ing each component of the data helps to slightly im-
prove recall, which nevertheless remains low. Com-
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Figure 7: SISAP Colors: Recall@10 for different induced permutation approaches varying the prefix lengths. Each induced
permutation’s length is equal to the original vector’s dimensionality, i.e., N = 112. For reference the graphs report also the
recall achieved using the traditional permutations computed using 112 pivots. (Best view in color)

pared with these transformations, PCA allows mod-
est improvement in performance with small λ pre-
fixes, but again the recall does not exceed 0.2 with-
out re-ranking and 0.5 with the re-ranking. Cen-
tering and randomly rotating the data components,
instead, gives much better results even better than
the traditional permutations. For example, using a
prefix length λ = 70 it reaches a recall of 0.48 (no re-
ranking) and 0.93 (with re-ranking). For the same
prefix length, the traditional permutations achieved
a recall of 0.36 (no re-ranking) and 0.76 (with re-
ranking).

4.2. Other desired properties of f

The experiments reported in the previous sec-
tion were performed on a Euclidean space in or-
der to show how different distributions of vector
components influence the performance of the in-
duced permutations. However, in the general case
the starting space is not Euclidean but any metric
space (D, d). The observations made so far sug-
gest that the function f used to map the original

data objects into a vector space ideally should pro-
duce coordinates with nearly identical distribution.
However, this is not sufficient to have good permu-
tations. Clearly the mapping f should preserve as
much as possible object proximity relations. For ex-
ample, suppose that f is a metric transformation of
the form f : (D, d) → (Rn, ℓp) for some 1 ≤ p ≤ ∞.
We expect that f is suitable to compute induced
permutations if it provides an approximation of the
actual distance (e.g., ℓp(f(o1), f(o2)) ≈ d(o1, o2))
or if it is ranking preserving, i.e., ℓp(f(o1), f(o2)) <
ℓp(f(o3), f(o4)) if d(o1, o2) < d(o3, o4). For exam-
ple, the traditional permutations are generated us-
ing a function f : (D, d) → (Rn, ℓ∞) for which the
ℓ∞ ◦ f is a lower-bound of the actual distance. The
SPLX-perms use a function f : (D, d) → (Rn, ℓ2)
that when composed with the Euclidean distance
also provides a lower-bound of the actual distance,
moreover, it uses a random rotation that preserves
the Euclidean distance while helping in distributing
the variance over all the dimensions of the vectors.
The identity operator, which is of course ranking
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Figure 8: Planar Projection of two pivots p1, p2 and a data
point o. (best view in color)

preserving, is used to generate the Deep Permuta-
tions.

Note that, on the one hand, it may be possible
to simply compose the function f with other func-
tions so that the components have similar distribu-
tion (e.g., by re-centering the vectors and applying
a random orthogonal rotation, as shown in the ℓ2
case). On the other hand, the condition of having
an approximation of the original distance is more
difficult to satisfy and cannot be theorized a priori.
Therefore, the definition of a new function f that is
good for inducing permutations is not a trivial task
and may require specific theoretical investigations
or machine learning procedures.

5. Pivot Pairs Permutations

In this section, we define a permutation-based
representation that uses a transformation f , which
not only depends on the distance of the objects to
a predetermined set of pivots but also leverages in-
formation derived from the distances between pairs
of pivots. The core idea is using the fact that any
three points of a metric space can be isometrically
embedded in a two-dimensional Euclidean space.

Specifically, let p1, p2 ∈ D two fixed pivots and
o ∈ D an arbitrarily metric object. Without loss of
generality, we could consider an isometric embed-
ding that maps the points p1, p2, o to the vectors
vp1 ,vp2 ,vo ∈ (R2, ℓ2), such that

(i) vp1
and vp2

lie in the X-axis, e.g., vp1
= [− δ

2 , 0]

and vp2
= [ δ2 , 0] where δ = d(p1, p2);

(ii) vo is above the X-axis and its coordinates are
given by the intersection of the ball centered on
p1 with radius d(p1, o) and the ball centered on
p2 with radius d(p2, o) (this intersection exists
thanks to the triangle inequality).

Figure 8 depicts this situation in a 2D coordinate
space where the two pivots are mapped in the X-
axis symmetrically with respect to the origin and a
single data object o is projected above the X-axis
to the point vo = (xo, yo) given by

xo =
d(o, p1)

2 − d(o, p2)
2

2 · d(p1, p2)
(15)

yo =

√
d(o, p1)2 −

(
xo +

d(p1, p2)

2

)2

(16)

Note that the only information used in the pro-
jection is the distances of the object o to the two
pivots and the inter-pivot distance. Moreover, this
projection preserves all the three distances between
the points, i.e.,

ℓ2(vp1
,vp2

) = d(p1, p2)

ℓ2(vp1
,vo) = d(p1, o)

ℓ2(vp2
,vo) = d(p2, o)

This projection, called planar projection [32, 21],
could be repeated for all the data points o ∈ D
while fixing the two pivots p1, p2. So we have
a projection ϕp1,p2 : (D, d) → (R2, ℓ2) that pre-
serves the distances of data objects to the two piv-
ots. In [21] it was proved that if the space (D, d)
has the four-point property then the planar projec-
tion6 provides a lower-bound for the original dis-
tance, that is ℓ2(ϕp1,p2(o1), ϕp1,p2(o2)) ≤ d(o1, o2),
for all o1, o2 ∈ D. Nevertheless, even if the space
does not meet the four-point property the projec-
tion above can always be calculated. Moreover,
since the distance to the pivots is preserved for each
data point, it can be easily proved that all the ob-
jects in the hyperplane separating the two pivots in
the original space are projected in the hyperplane
Hvp1

,vp2
= {v ∈ R2 | ℓ2(v,vp1

) = ℓ2(v,vp2
)} sepa-

rating the pivots in the 2D projection.
The Euclidean norm of a projected object (ρo =

∥vo∥) could be interpreted as the distance of the
point o to a synthetic pivot that is equidistant to the
two original pivots, i.e., a sorting of midpoint which
may not exist in the original metric space. Its cal-
culation is immediate if we already know d(p1, p2),

6Actually the planar projection used in [21] is a transla-
tion of the projection used here, as it projects the first pivot
in the origin and the second pivots to the point [d(p1, p2), 0].
However, as the translation is an isometry the two projec-
tions are equivalent for our scopes.
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d(o, p1), and d(o, p2) as it is equals to

ρo =
√
(xo)2 + (yo)2

=
1

2

√
2 d(o, p1)2 + 2 d(o, p2)2 − d(p1, p2)2

(17)

We can repeat this procedure for several pairs of
pivots to characterize a metric object based on
the distribution of its distance from the synthetic
midpoints between the original pivots. Formally,
given a set {p1, . . . , pn} ⊂ D of n pivots, we se-
lect m <

(
n
2

)
pivot pairs that we enumerate us-

ing an index i, so that (pi1 , pi2) indicates the i-
th pivot pair. For each object o ∈ D and for
each selected pair of pivots (pi1 , pi2) we use Eq. 17

to compute the norm ρ
(i)
o of the projected point

ϕi(o) = (x
(i)
o , y

(i)
o ). Then we generate a permuta-

tion Πf ′

o of length m by reordering the components

of f ′(o) =
(
ρ
(1)
o , . . . , ρ

(m)
o

)
. Moreover, since we can

interpret the values ρi as the distance to some syn-
thetic pivots, we may combine this information with
the distances to the actual pivots by computing the
permutations induced by the function

f ′′ : D → Rn+m

o →
(
d(o, p1), . . . , d(o, pn), ρ

(1)
o , . . . , ρ(m)

o

)
(18)

In the following, we refer to the permutations
Πf ′

o and Πf ′′

o as Pairs Permutation (P-Perms), and
Pivot-Pairs Permutation (PP-Perms), respectively.

5.1. Experiments

In our experiments, we compared the per-
formance of three different permutation-based
representations for approximate k-NN search:
P-Perms, PP-Perms, and the traditional per-
mutations (Perms). We conducted the experi-
ments both on real-world and publicly available
datasets (CoPhIR and ANN-SIFT) and on syn-
thetic datasets. In the following, we first introduce
the measures used for the evaluation and then we
present the experimental results.

Evaluation Protocol. For each dataset, we build a
ground-truth for the exact k-NN search related to
1, 000 randomly selected queries. These ground-
truths were used to evaluate the quality of the ap-
proximate results obtained either by performing a
k-NN search in the permutation space or using the
actual distance to re-rank a candidate result set of

size k′ ≥ k that was selected using a k′-NN search
in the permutation space. The latter approach is a
filter-and-refine approach that requires storing the
original dataset and accessing to it at query time to
refine the permutation-based candidate results. In
the experiments, we used k = 10 and k′ = 100.

The quality of the approximate results was eval-
uated using the recall@k.
As done by many PBI approaches [5, 7, 6], we

index and search the data using fixed-length per-
mutation prefixes instead of the full-length permu-
tations. The metric d̃ρ,λ is used to compare permu-
tation prefixes.

For indexing the permutation prefixes we used in-
verted files [7]. If N is the length of the full permu-
tations (i.e., we have N different permutants that
may appear in a permutation prefix), we have that

• The inverted index is composed of N posting
lists, one for each permutant.

• Each object is stored in exactly λ posting lists,
corresponding to the permutants appearing in
its permutation prefix. Thus, the i-th post-
ing list contains ti entries related only to the
data objects whose permutations prefixes con-
tain the permutant i.

• Each entry of the i-th posting list is of the form
(IDo, poso(i)), where IDo is the identifier of a
data object, poso(i) is the position of the per-
mutant i in the permutation prefix associated
to the object o.

• At query time, we access only the λ posting
lists corresponding to the permutants in the
query permutation prefix. For each object o in
those selected posting lists, we use the stored
poso(i) to compute the d̃ρ,λ distance to the
query permutation prefix.

In this setting, the size in bits of the inverted index
is a function of the number of permutants N , the
prefix length λ, and the number of data objects |X|:

Size(Inverted Index) = N ⌈log2 N⌉︸ ︷︷ ︸
posting list identifiers

+λ |X| (⌈log2 |X|⌉+ ⌈log2 λ⌉)︸ ︷︷ ︸
posting list entries

(19)

The cost at query time includes 1) the cost of
transforming the query into the permutation rep-
resentation; 2) the search cost; 3) the cost of re-
ranking the candidate set using the actual distance
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(only for the filter-and-refine approach). The cost
for computing the permutations (Table 2) varies
with the employed permutation-based representa-
tion and the specific metric of the space. For a
given set of n pivots the traditional permutation has
N = n permutants and requires the calculation of
n object-pivot distances. For the same set of pivots
and m selected pivot pairs, P-Perms and PP-Perms

have N = m and N = n + m permutants, respec-
tively. They require n object-pivot distance calcu-
lations plus m 2D Euclidean distances to calculate
the ρo values (Eq. 17), which in most cases is a
negligible cost with respect to object-pivot distance
calculations. Additionally, P-Perms and PP-Perms

require min[m,n(n − 1)/2] pivot-pivot distances,
which can be computed and stored once at index-
ing time and then reused for calculating all the ob-
jects/query permutations.
The search cost (SC), calculated as the number

of bits accessed per query, is given by

SC = C(pEntry)

N∑
i=1

δiti (20)

where ti is the number of objects stored in the
i-th posting list, δi is the fraction of samples in
the database having the permutant i in their per-
mutation prefixes (i.e., δi = ti/|X|). The term
C(pEntry) = ⌈log2 |X|⌉ + ⌈log2 λ⌉ denotes the size
in bits of a single entry of a posting list. Given a
query q, we access the i-th posting list only if the
index i is in the permutation prefix associated with
the query. This is true with probability δi since
query and database objects share the same distri-
bution. Consequently, the number of elements ac-
cessed per query is

∑N
i=1 δiti as the i-th posting list

contains ti entries, and we access it with δi probabil-
ity. It is worth noting that for a fixed N , the larger
the prefix λ, the greater ti, resulting in a higher
search cost. Moreover, for the filter-and-refine ap-
proach, the bytes accessed per query include those
needed to select the k′ candidate results (given by
Eq 20) and those needed to re-rank the candidate
results using the actual distance, i.e., k′ ∗ C(Obj),
where C(Obj) is the size in bits of one original data
object.

5.1.1. Experiments on Synthetic Data

The first question that may arise when consid-
ering the P-Perms representation as an alternative
to the traditional permutations (Perms) is whether
using the distances to the synthetic midpoint pivots

instead of the actual pivots still helps in distinguish-
ing similar data points from dissimilar ones in an
approximate search scenario. Moreover, since the
P-Perms and the PP-Perms allow producing per-
mutations that are longer than the number of the
employed pivots, it would be also interesting to an-
alyze the performance of these permutations when
the number m of pairs is increased while fixing the
number n of pivots (i.e., fixing the number of actual
distance computation needed to generate the per-
mutations). To this end, we performed experiments
on two representatives types of synthetic data: clus-
tered and non-clustered Euclidean vectors. This
choice was motivated by the observation that it was
already proven in the literature [7] that the tradi-
tional permutations exhibit different behaviours on
these two data types when varying the number n of
pivots and the prefix length λ.

Specifically, we considered two datasets, each
containing 100K vectors in a 30-dimensional Eu-
clidean space. The first dataset, named Gaus-
sian Euclid30, contains vectors whose coordinates
are generated using a Gaussian distribution cen-
tered at the origin and with a standard deviation
σ = 0.1. The second dataset, named Clustered
Euclid30, contains vectors arranged in 20 clusters.
The cluster centers were randomly selected in the
hypercube [0, 1]30. For each cluster, we generated
5K vectors using a Gaussian distribution with a
small standard deviation (σ = 0.01).
Figures 9a and 9b show, for the two datasets,

the recall@10 achieved by the traditional permu-
tation when varying the number n of pivots and
the prefix length λ. It is important to note the
different behaviors of the permutations on these
two types of data. On Gaussian Euclid30, the
recall increases when increasing both n and λ,
but for a fixed λ the recall is almost unchanged
when when only n is increased (Fig. 9a). For the
clustered data, instead, the performance of the
full-length permutations (i.e., the cases λ = n) is
not improved when increasing the number of pivots
beyond n = 500. However, for a fixed n, there
exists an optimal prefix length λ < n for which the
recall achieves a maximum. Amato el al. [7] noted
that this maximum is systematically achieved
around the prefix length λ = n/cl, where cl is the
number of clusters. Note that n/cl represents the
average number of pivots taken from each cluster
since we use n random pivots. This suggests that
an object of a cluster is well represented by the
pivots that belong to its same cluster, but when
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Figure 9: Synthetic Datasets: Recall@10 for the traditional permutations (graphs (a) and (b)) and the P-Perms (graphs (c)
and (d)) varying the number of pivots and the prefix lengths. Graphs (e) and (f) show the recall for increasing prefix lengths
as function of the Search Cost for Perms and PP-Perms. For each method, the points in the graphs correspond to the prefix
lengths λ = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500. (Best view in color)
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Table 2: Distance computations needed for generating various permutation-based representations given the same set of n pivots.
m is the number of pairs used in the Pairs and Pivot-Pair Permutations. N is the number of permutants.

Approach N
Number of Distance Calculations

computed for each object/query computed once at indexing time

Perms n n actual distances

P-Perms m n actual distances
+

m 2D Euclidean distances

min(m,n(n− 1)/2) actual distances
PP-Perms n+m

we increase the length of the permutation prefixes
we also include pivots taken from other clusters
which seems to introduce noisy information. In
facts, when we fix n the recall begins to decrease
sharply for λ > n/cl (Fig. 9b).

Regarding our initial question, that is, whether
P-Perms represent a valid alternative to classical
permutations in distinguishing objects, for a pre-
liminary analysis, we selected a number m of ran-
dom pivot pairs equal to n, so that the Pair per-
mutations have the same length of the traditional
permutations (i.e., N = n = m). For this set-
tings, we discovered that on Gaussian Euclid30 the
P-Perms has similar behavior and slightly lower ef-
fectiveness than the classical Perms when varying
n and λ (Fig. 9c vs Fig. 9a), thus confirming us
that the synthetic pivots computed from the pivot
pairs could be used as alternative pivots for gen-
erating permutations. However, on the clustered
data, the P-Perms seems to be completely inef-
fective (Fig. 9d), except for the case λ = n, for
which the full-length P-Perms slightly outperforms
the traditional full-length Perms (nevertheless, both
the approaches achieved very low recall when us-
ing their full-length representations). One possible
reason for the poor performance of the P-Perms on
clustered data is that we are using as reference ob-
jects the synthetic midpoints of just m = n random
pivot pairs out of n(n − 1)/2 possible pairs. In
fact, since the data is uniformly distributed over
the cl clusters, the synthetic midpoint of a pair
(pi1 , pi2) is representative of a cluster C if both
pi1 and pi2 belong to the same cluster C, which
happen with probability (n− cl)/cl(n− 1). Con-
versely, with probability n(cl − 1)/cl(n− 1) the two
pivots belong to different clusters. For example, if
cl = 20 and n = 5K the probability of picking a
pair of pivots of different clusters is about 95%, so
when we use only m = n = 5K random pairs we

have on average 4, 750 pairs of pivots form differ-
ent clusters and just about 12-13 pairs represen-
tative of each cluster. To mitigate this inconve-
nience we may try to use m ≫ n or, as proposed
in the following, use the PP-Perms representation
that employs both traditional and synthetic piv-
ots. The latter approach guarantees to have a per-
centage of pivots that are still representative of the
original data distribution which seems to be funda-
mental for clustered data. Note that for n pivots
and m pairs the PP-Perms produces permutations
of length N = m+ n. For some prefix lengths, the
effectiveness of the PP-Perms may decrease when
considering m ≫ n as the percentage of synthetic
pivots will be much larger than the percentage of
actual pivots, which may be an issue for clustered
data. Anyway, the loss in effectiveness is com-
pensated by the more efficiency at searching time
since the Search Cost (number of bits accessed per
query) typically increases proportionally to λ2/N .
Therefore, since PP-Perms and Perms have different
lengths N , in the rest of this paper, we report the
recall values as a function of the Search Cost.

In Figures 9e and 9f, we compared the perfor-
mance of the traditional Perms using n = 500 piv-
ots (N = 500), the PP-Perms using n = 500 pivots
and m = 4, 500 pairs (N = 5, 000), the P-Perms

using m = 5, 000 pairs selected from n = 500 piv-
ots (N = 5, 000), and the traditional Perms using
n = 5, 000 pivots (N = 5, 000). The latter approach
is plotted for reference as it has the same length as
the tested PP-Perms and P-Perms, but note that it
requires 5, 000 object-pivot distance computations,
while the other approaches use an order of mag-
nitude fewer object-pivot distances computations.
For all the approaches we plot the recall versus the
search cost when increasing the prefix length λ from
10 to 500. It is worth noting we also evaluated the
percentage of actual pivots appearing in the per-
mutation prefix of the PP-Perms when the prefix
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λ varies from 10 to 500. We found that for Gaus-
sian Euclid30, on average, it is about 1.55% (with
a very small standard deviation), and for Clustered
Euclid30, it is about 8.14% (with the maximum
percentage achieved for λ = 200, where approxi-
mately 9.54% are actual pivots). Specifically, for
λ = 200, the permutation prefix on average con-
tains distances to 3 real pivots and 197 synthetic
pivots in the case of Gaussian data, and 19 real
pivots and 181 synthetic pivots on average in the
case of clustered data. As expected, the P-Perms,
which rely only on synthetic pivots, has poor per-
formance on the clustered data. However, on the
clustered dataset, the PP-Perms approach, which
uses both actual and synthetic pivots, not only out-
performs the Perms techniques that use the same
set of actual pivots (n = 500) but also reaches the
performance of the traditional permutations built
upon the larger set of pivots (n = 5, 000). Thus
we observed a great advantage in combining syn-
thetic and real pivots to represent clustered data.
In fact, the PP-Perms shows the best trade-off be-
tween recall, search cost, and the cost for comput-
ing the permutations (i.e., the actual object-pivot
distance computations). On Gaussian data, both
the P-Perms and the PP-Perms still outperform the
traditional permutation built on the same pivot set
(we are not interested in the recalls when the search
costs are greater than the sequential scan). More-
over, for small search cost values, it achieves recalls
in line with the more expensive traditional permu-
tation built upon the larger pivot set. Given these
outcomes, in the following, we focus our attention
only on the PP-Perms and Perms approaches, omit-
ting the PP-Perms technique.

5.1.2. Experiments on Real-World Data

For the experiments on real-world data, we used
two sets of 1M objects from the CoPhIR [33] and
ANN-SIFT [34] datasets, for which we used differ-
ent kinds of image features compared with distinct
metrics. On the CoPhIR data we used as metric
the linear combination of the five distance functions
(Manhattan, Euclidean, and other special metrics)
for the five MPEG-7 descriptors that have been ex-
tracted from each image. We adopted the weights
proposed in [35, Table 1]. The ANN-SIFT contains
SIFT local features (128-dimensional vectors) com-
pared with the Euclidean distance. Note that the
SIFT data contains some clusters as the distance
distribution is a mixture of Gaussians (see [36, Fig.
1]). On both the datasets, we tested the traditional

Perms using n = 1, 000 pivots (N = 1, 000), the
PP-Perms using n = 1, 000 pivots and m = 9, 000
pairs (N = 10, 000), and the traditional Perms us-
ing n = 10, 000 pivots (N = 10, 000). For each
approach, we varied the prefix length λ from 10
to 1, 000. We observed that, for the tested λ,
the percentage of actual pivot appearing in the
permutation prefixes of the PP-Perms is, on av-
erage, 3.4% for CoPhIR data and 5.5% for SIFT
data. The results in terms of recall and search cost
are depicted in Figures 10a and 10b for CoPhIR
and SIFT data, respectively. For reference, we
also reported the cost of the sequential scan for
searching the original data descriptors using the
actual distance. Moreover, we include the results
when the actual distance is used to refine (re-rank)
the candidate results selected in the permutation
space. We observed that on both the datasets the
PP-Perms outperforms the traditional permutations
build upon the same set of pivots. Moreover, for
λ > 100 it achieves recall values in line with that of
the more expensive permutation built upon the 10
times larger set of pivots. Therefore, the PP-Perms
can be profitably used as an alternative to the tra-
ditional permutation to generate long permutations
while limiting the number of actual distance compu-
tations. For example, to search 1M SIFT data with
a query cost of about 8 MB, the PP-Perms achieves
a recall@10 of 0.29 (0.69 when using the re-ranking)
while the Perms that uses the same set of pivots has
a recall of 0.24 (0.56 with the re-ranking). On the
CoPhIR data, the improvement is even more evi-
dent: for a search cost of about 4 MB the PP-Perms
reaches a recall of 0.24 (0.61 when using the re-
ranking) while the traditional permutations have a
recall of 0.16 (0.47 when using the re-ranking).

6. Conclusions

This paper introduced the concept of permuta-
tion representations induced by a metric transfor-
mation f , which generalizes the traditional defi-
nition of permutations associated with metric ob-
jects. As a practical example, we defined permuta-
tions induced by a combination of pivots and several
planar projections related to some pivot pairs. In
our experiments, this novel representation, called
PP-Perms, achieved the best trade-off between ef-
fectiveness (recall) and efficiency (search cost and
data distance computations) with respect to the
traditional permutations.
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Figure 10: Recall@10 as function of the Search Cost (with and without re-rank based on the actual distance), for in-
creasing permutation prefix lengths. For each method, the points plotted in the graphs correspond to the prefix lengths
λ = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. (Best view in color)

We also investigated both theoretically and ex-
perimentally some properties that the function f
may have to produce permutations that are effec-
tive for approximate metric search. Nevertheless,
the definition of novel functions f inducing good
permutation representations of metric objects re-
mains a challenging and open research problem. We
believe that our generalization could pave the way
for innovative research directions that go beyond
the traditional use of distances between objects and
pivots alone to calculate permutations. As future
work, we aim to investigate the use of artificial in-
telligence techniques to automatically learn optimal
functions f for the metric dataset of interest, which
also goes in the new challenging research direction
of defining learned metric indexes.
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Appendix A.

In this appendix, we provide the detailed math-
ematical derivations that support the concepts dis-
cussed in Section 4.1. In particular, we demon-
strate that having the random variables X1, . . . ,XN

representing all possible f1(o), . . . , fN (o) as inde-
pendent and identically distributed (iid) is a nec-
essary condition for the induced permutations by
the transformation f to be uniformly distributed in
the permutation space. To facilitate the derivation,
we present a counterexample using a multivariate
Gaussian distribution.
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Suppose all the variable Xi follow a normal dis-
tribution with Xi ∼ N (µi, σi) for i = 1, . . . , N .
The probability that a generic permutation π =
[π1, . . . , πN ] occurs is given by p(π) = P (Xπ1

<
Xπ2

< · · · < XπN
). This probability, in the case of

independent Gaussian variables, is given by∫ ∞

−∞

∫ xπN

−∞
· · ·

∫ xπ2

−∞

N∏
i=1

gi(xi)dxπN
dxπN−1

· · · dxπ1

where

gi(xi) =
1

σπi

ϕ

(
xπi

− µπi

σπi

)
and

ϕ(x) =
1√
2π

e−
x2

2 .

Using the changing of variables

zπi
=

xπi
− µπi

σπi

,

for all i = 1, . . . , N − 1, we have get

∫ xπi+1

−∞
gi(xi)dxπi =

∫ zπi+1

σπi+1
σπi

+
µπi+1

−µπi
σπi

−∞
ϕ (zπi) dzπi .

Therefore, by indicating with δ
(π)
i+1,i the constants

µπi+1
−µπi

σπi
we have

p(π) =

∫ ∞

−∞

∫ zπN

σπN
σπN−1

+δ
(π)
N,N−1

−∞
· · ·

∫ zπ2

σπ2
σπ1

+δ
(π)
2,1

−∞
N∏
i=1

ϕ (zπi) dzπN dzπN−1 · · · dzπ1

(A.1)

From the above derivation, for the example of
independent normal variables Xi, we can observe
that

• if all the Xi have the same distribution, i.e.,
Xi ∼ N (µ, σ), then all the permutations
have the same probability to occur. In this
case, the probability of any permutation π =
[π1, . . . , πN ] is equal to:∫ ∞

−∞

∫ zN

−∞
· · ·

∫ z2

−∞

N∏
i=1

ϕ (zi) dzNdzN−1 · · · dz1;

• if the variables Xi have the same mean but
different variances, i.e, Xi ∼ N (µ, σi), then we
have a non-uniform distribution of the induced

permutations. In particular, the probability of
the permutation π = [π1, . . . , πN ] is given by∫ ∞

−∞

∫ zπN

σπN
σπN−1

−∞
· · ·

∫ zπ2

σπ2
σπ1

−∞
N∏
i=1

ϕ (zπi
) dzπN

dzπN−1
· · · dzπ1

which depends on the ratios σπi/σπi+1 . The
higher these ratios are, the higher the probabil-
ity p(π). Therefore if i1, . . . , iN are the indexes
such that σi1 ≥ · · · ≥ σiN then the probability
of πA = [i1, . . . , iN ] will be greater than the
probability of πB = [iN , . . . , i1].
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