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ABSTRACT 

 

The particle-tracking method for transporting radionuclides in multicomponent ocean medium (water and 

multifractional suspended and deposited sediments) is considered using a probabilistic approach for simulating 

interaction processes between several states of radioactivity. The state transformations as a result of reactions of the 

first order were described using the master equation for the probability of the particle being in the given state. 

Transition probabilities between all possible states can be obtained from the numerical solution of the matrix master 

equation that is derived in the paper. In the first approximation, the Euler method was used to obtain a solution for the 

next time step. This approach can be applied to any linear system of equations describing phase transitions with any 

number of states, but it requires small values of the transition probabilities to ensure only a single-phase change during 

one time step.  The paper also focuses on deriving the Lagrangian interface conditions between the water column and 

bottom deposition. To apply the probabilistic approach, the boundary conditions were considered as the reaction terms 

in a thin near-bottom interface layer in which boundary conditions were converted into source terms. For this layer, 

the corresponding master equation was derived to obtain transitional probabilities for particle states. The developed 

approaches were tested on numerical and analytical solutions of two test cases. It was found that the optimal thickness 

of the interface layer must be larger than the maximum vertical displacement of the particle during the one-time step, 

but it must be small enough to approximate the condition of uniform distribution of concentration in this layer.   
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1. Introduction 

Lagrangian models or particle tracking models are widely used to simulate pollution transport in the marine 

environment (Lynch et al., 2014; van Sebille et al., 2018; Periáñez et al., 2019). In these models, the released amount 

of pollutant is represented by an ensemble of particles, each one equivalent to a given amount of pollutants being in 

different phases (e.g., in dissolved and particulate states). The Lagrangian approach leads to the integration of particle 

trajectories including random diffusion processes and particle phase changes. The particle methods may be much 

faster in comparison with the Eulerian models. Their usage can be simpler, being mass conservative, and enabling 

trajectory analysis. Methods of high-order trajectory integration are efficient and easy to use. However, the application 

of particle-tracking models becomes more complex in reactive environments, when there is a transfer between 

dissolved and particulate states and/or transfer of pollutants from one chemical form to another. These substances 

include many organic (e.g., PCB) and inorganic toxicants such as radionuclides and heavy metals (Chapra, 1997). 

Here we restrict ourselves to reactions of first order considering radionuclides, many of which are 

significantly adsorbed by sediment particles (Periáñez et al., 2018) being, in turn, an important source of contamination 

in shallow seas (Brovchenko et al., 2022). Sorption processes can take place in two stages: a fast sorption during 

exclusively surface-level contact, and a slow sorption during the penetration of ions into the pores of sediment particles 

(Maderich et al., 2017; Periáñez et al., 2018). Radionuclides such as plutonium can exist in various chemical forms 

depending on the properties of the surrounding aquatic environment. The transport of radioactivity in the ocean is 

described by the Eulerian and Lagrangian models. The 3D generalized Euler model developed by (Maderich et al., 

2017) describes the transport processes in the dissolved and multifraction solid phases in the water column and bottom 

sediments.  

A Lagrangian method for the simulation of the dispersion of particle-reactive radionuclides in marine 

environment has been developed in a pioneering paper by Periáñez and Elliot (2002). A systematic comparison of the 

Eulerian and Lagrangian approaches is given by Periáñez et al. (2019) and Periáñez (2020). Computational aspects of 

Lagrangian modelling of the radionuclide transport were discussed by Periáñez et al. (2023). However, the general 

particle tracking approach describing the interaction of radionuclides in different states in the multifractional sediment 

has not been developed yet.  

In this paper, the particle-tracking method for the transport of radionuclides in the marine environment is 

considered using a probabilistic approach for simulating processes of interaction between several states of activity. In 
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particular, we focus on the derivation of the interface conditions between the water column and bottom deposition. 

This paper is organized as follows: the equations of radionuclide transport are given in Section 2.  The Lagrangian 

method is described in Section 3. Two test cases are considered in Section 4. Our findings are summarized in Section 

5. 

 

2. Methodology 

Following Maderich et al. (2017), the Eulerian equations for concentration of the dissolved phase of radionuclides in 

the water column 
w

dC  [Bq m-3], and the concentration on suspended sediments phase of radionuclides ,

w

p iC  [Bq m-3] 

for sediment size class i are written in Cartesian coordinates ( , , )x y z  as 

( ) ( ), ,0

w
nw w w w wd

d ds d p i d i p d diff di

C
U C a C S K C C F C

t


=


+  = − − − +


  (1) 

( ) ( ), ,

, , , , , , ,

w w

p i p iw w w w w w w

p i p i ds d p i d i p i p i p idiff

C C
U C W a C S K C C C

t z
F

 
+  = + − − +

 
 (2) 

Here t is time [s];, z is vertical coordinate directed upward [m]; ( , , )U U V W=  are the meridional, zonal and vertical 

velocity vectors [m s-1];   is the 3D vector operator; i  is a sediment size class index;  1n +  is the total number of 

sediment fractions; 
,p i

S  is the concentration of i-th class of suspended sediment [kg m-3];  
,p i

W   is directed downward 

settling velocity of sediment class i [m s-1]; 
ds

a  is the desorption rate [s-1]; 
,d i

K  is the distribution coefficient [m3 kg-

1];   is the radionuclide decay rate [s-1]. Note that for simplicity, equations (1)-(2) do not take into account the slow 

processes of exchange between particulate matter and water (Maderich et al., 2017; Periáñez et al., 2018) and the 

presence of various chemical forms of the element (Maderich et al., 2022). 

The distribution of radionuclides in the bottom is described within the simplified framework of a single well-

mixed layer proposed by Maderich et al. (2017). The equations for the layer averaged concentration of particulate 

phase of radionuclide 
,

b

s i
C  [Bq kg-1 of sediments] for sediment size class i in the bottom layer, and for the layer 

averaged concentration of radionuclide in the pore water  
b

d
C  [Bq m-3] are 
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( ) ,* , , ,

* , , * , * ,

, , ,

ˆ ,
ˆ

wb b

i p ii s i d i i s iw b b b b

bds d i d s i rs s s i s ib

s i p i s id

D CZ C K E C
a Z K C C a Z C C Z C

t SK




 


= − + − + − −



 
 
 

 (3) 

*

*

,

ˆ( )

ˆ

w b

pw d ds sb

d b

pw ds d

W C H a Z C
C

W a Z K

 

 

− +
=

+
 (4) 

where 

*

,
ˆ

ds pw

bds b

pw ds d

a W
a

W a Z K



 
=

+
  

2 2

*

*

ˆ
.

ˆ

b

d

rs b

p

d

ds d

s

w

a Z K
a

W a Z K

 

 
=

+
  

Here 
i

D and Ei are sediment deposition and erosion rates, respectively [kg m-2s-1]; 
*

Z  is the thickness of the single 

layer of sediment [m]; 
i


 
is the fraction of particles of i-th class in the bottom sediment (

0
1

n

ii


=
= );   is a constant 

porosity in the layer; 
,s i

  is the density of the sediments of i-th class [kg m-3];   is a correction factor that takes into 

account that part of the sediment particle surface may be hidden by other sediment particles; ( )w

dC H−  is a near-bottom 

value of  
w

dC  at z H= − ; 
pw

W  is an exchange rate between bottom and water column [m s-1], 

0.2 0.604

*
0.1778 Re Sc

pw
W u

− −
=  (Boudreau, 1997);

* *
Re /

D
u =  is the Reynolds number; *  is an average height of the 

roughness elements; Sc /
M D

 =  is the Schmidt number; 
M

  is kinematic viscosity [m2s-1]; 
D

 is molecular 

diffusivity [m2s-1]. The friction velocity 
*

u  is calculated using the near-bottom horizontal velocity at a distance h   

from the bottom, as   

2 2

*

0

,
ln( / )

u U V
h z


= +


  

where 
0

z is the roughness parameter, 0.4 =  is the von Kármán constant.  

The total concentration of the particulate phase of radionuclide 
w

p
C  in suspended sediments and bed sediments 

ˆ b

s
С  are, respectively 
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,0
,

nw w

p p ii
C C

=
= , ,0

ˆ ,
nb b

s s i i s ii
С С 

=
=   

whereas the weighted nondimensional distribution coefficient is 

, ,0

ˆ ,
nb

d s i i d ii
K K 

=
=   

The turbulent diffusion terms are written as 

( )
( ) ( ),

V H H Hdiff

x
x K K x

z z
F

 
= +  
 

  

where 
VK  and 

HK are vertical and horizontal eddy diffusivity, respectively [m2 s-1], 
H

  is the horizontal vector 

operator.  Following Periáñez et al. (2018), the dependence 
,d i

K on sediment particle diameter 
i

d  [m] and the 

exchange velocity    [m s-1]   is 

,

6
.

d i

ds i

K
a d


=  (5) 

At the ocean surface the boundary conditions for (1)-(2) are: 

,
w

wd

V d d

C
K WC q

z


− = −


 (6) 

,

, , ,
( ) ,

w

p i w

V p i p i p i

C
K W W C q

z


+ − = −


 (7) 

where 
d

q  and 
,p i

q  are atmospheric deposition fluxes [Bq m-2 s-1]. The boundary conditions on the bottom at 

0
z H z= − + are 

( ),
w

w bd

V pw d d

C
K W C C

z


= −


 (8) 

,

, , , ,

,

.

w

p iw b wi

p i p i V s i i p i

p i

C D
W C K C E C

z S


+ = +


 (9) 

The Exner equation for changes in bed layer thickness due to erosion and deposition of sediments and equations for 

variations of sediment fractions have been supplemented to the system of equations following Maderich et al. (2017). 

The deposition and erosion rates for a mixture of non-cohesive and cohesive sediments are described by relations 

given by Maderich et al. (2017). The settling velocity 
,p iW  for non-cohesive fractions of sediments is calculated 
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according to van Rijn (1984). For cohesive fraction, settling velocity is corrected for flocculation following 

(Winterwerp, van Kesteren, 2004).  

 

3. Lagrangian algorithm 

3.1. Transport equations 

In Lagrangian radionuclide transport models, the released activity is represented by many particles with an equal 

amount of activity (Bq). These particles can possess several states: dissolved in the water column, adsorbed on 

suspended sediment of a particular size, dissolved in the pore water, and adsorbed on the bed sediments of a particular 

size. Note that in this model, the concentration of radionuclides in the pore water is in equilibrium with the 

concentration in the bottom sediments. If there are 1n+  sediment size classes then we have 1 2( 1)N n= + +  the total 

states of the dissolved and particulate radionuclides.  

In general form equations (1)-(3) can be rewritten as 

,

1

, 1, ,
N

k

kl

k k l

u CC C
K r C N

t x x x

   
 




=

 
= − + + =

   
  (10) 

where C  (Bq m-3) is the concentration of material in the state  , and r  are the kinetic coefficients of the first-

order reaction terms in the  - th state, ,ku  includes settling velocity for sediment particles, 

0 0

0 0 .

0 0

H

kl H

V

K

K K

K



 



 
 

=  
 
 

 (11) 

Eq. (10) can be considered as the Fokker-Planck equation for the particle location probability density function p  

[m-3] in the state  : 

( ) 2
,

1

, 1, ,

drift N
k kl

k k l

u pp K p
r p N

t x x x


  

 



=

 
= − + + =

   
  (12) 

where 
( )

,, /drift
k kl lku u K x = +  .  At initial time moment the concentration in particle location can be represented as 

delta-function. Then equation (12) can be derived using the relation 

( , , , ),C mp x y z t =  (13) 
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where m  is the amount of radioactivity [Bq] in  the particle. For the ensemble of particles, the total concentration is 

derived by summing the contributions into the concentration from every particle.  

The probability distribution of the initial particle location is also the delta function. Evolution in time of the 

probability ( )P t
of the particle being in the th state can be described using the master equation  

1

, 1, .
NP

r P N
t


 




=


= =


  (14) 

where 

( ) ( , , , ) .P t p x y z t dxdydz 



=   (15) 

It was obtained by integrating (12) by volume of a plume of probability density. It was assumed that kinetic 

coefficients slowly vary in space comparatively with the size of the plume of probability at the time step t . In the 

general case, a system of equations (14) for N states can be solved numerically. Equations (14) can be also written in 

the matrix form as 

,
d

dt
=

P
RP  (16) 

where 
1 2( , , ) , ( 1, , 1, )T

NP P P r N N  = = = =P R . A vector of initial conditions is 

0 1 2(0) ( (0), (0), (0))T

NP P P= =P P . If the initial state of the particle is   then 1, 0,P P = = ( 1, , )N  =  . 

Using the first-order numerical approximation for the solution of the equations (14) or (16) and assuming that  

1r t   . we obtain the solution as  

0( ) ,t t = RPP  (17) 

( ) 1 , ( ) at .P t r t P t r t      = +   =    (18) 

The approach (17)-(18) can be applied to any linear system of equations describing phase transitions with any number 

of states.  Generally, a particle can change its state several times during a finite period.  A requirement of small r t  

is used to ensure only a single phase change occurs during one time step (Kinzelbach, 1987). In the case of fast kinetic 

reactions, solving (14) or (16) may require higher-order numerical schemes or smaller time steps. The particle tracking 

method, based on the method of moments (Maderich et al., 2021), has lower time step limitations. In this approach, 

the system of equations for the first three moments includes an equation for the zero-order moment, extending the 
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master equation (14), first and second-order moment equations. However, the numerical solution of the full system of 

equations for multiple states in the 3D domain requires large computational load comparatively with simple method 

proposed in this study. 

Evolution of the particle position in the state   during the time step t consists of deterministic displacement 

due to currents, inhomogeneity of diffusion coefficient, and displacement by an uncorrelated random walk:  

( ) ( ) 2 ,

( ) ( ) 2 ,

( ) ( ) 2 ,

H
x H

H
y H

V
z V

K
x t t x t U t K t

x

K
y t t y t V t K t

y

K
z t t z t W t K t

z




  




  




  







 
+  = + +  +  

 

 
+  = + +  +  

 

 
+  = + +  +  

 

 (19) 

where U
, V

 and W
 are velocity components on coordinate axis (𝑥, 𝑦, 𝑧) for state 𝛼; 

x , 
y ,

z are the normally 

distributed random variables with zero mean value and unit variance (0,1)i N = .  

The particle tracking process for passive tracers does not depend on the rest of the particles. Therefore, the 

computation can be parallelized using the MPI library when tracking for a given number of particles is performed 

independently, whereas the outputs of all processes are summarized to get the total results. This approach works well 

when Eulerian data necessary for particle tracking (velocity, diffusivity, etc.) can be placed in processor memory. 

Otherwise, I/O-enhancing techniques are needed to accelerate computations (Kehl et al., 2023).    

If the number of particles in the bed layer grid element is much greater than the number of particles suspended in 

the water grid element, the particle-tracking algorithm may be inefficient. Most of the particles are in the bottom 

sediment layer, they do not move, they have the same properties, and they are placed in the same grid element, but  

they all require using an algorithm for calculating probabilities at each time step for each particle. Such a situation 

may arise, for example, in the problem of secondary contamination of a water column from a previously contaminated 

bottom. As will be shown in section 4.2, in this case, the number of particles in the water column may be 100 times 

smaller than in the bed layer, and almost the entire computational resource will be spent on motionless bottom 

particles. Therefore, for such a case, the algorithm was optimized. We did not store all bottom particles in memory 

but treated them as one, storing only the total number of particles in a grid element instead of a large array. The 

transitional probabilities were calculated once for all bottom particles in the grid element and then the number of 

particles that should appear in other states is calculated. For the problem considered in section 4.2, this approach made 
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it possible to speed up the runtime of the numerical solution of the problem up to 100 times exploiting the fact that 

the majority of particles are not moving inside the bottom layer and therefore were excluded from calculation. 

3.2. Bottom boundary conditions 

To satisfy bottom boundary conditions (8)-(9) written in the form of fluxes we need to adapt the Lagrangian algorithm 

for this aim. Fluxes through the bed surface in terms of Lagrangian particles correspond to changing of a particle state 

from ‘dissolved in the water column’ to ‘dissolved in pore water’ and from the ‘adsorbed on suspended sediment state’ 

to the ‘state of adsorbed on settled sediment on the bed’ or vice versa. Therefore, boundary conditions were considered 

as reaction terms in transport equations. To satisfy them the correct probabilities should be estimated. For this purpose, 

we introduced a thin near-bottom interface layer of thickness Z  where boundary conditions (8)-(9) are converted 

into source terms which are uniformly distributed in the interface layer of thickness Z . Then equations (1)-(2) take 

the form: 

( )

( )

, ,0

* ˆˆ( ) ( ) ,

w
nw w w wd

d ds d p i d i p di

w
b w bd

V bds d d d

C
U C a C S K C C

t

C Z
K H z a K C H C

z z Z





=


+  = − − −



  
+ − − −    


 (20) 

( ), ,

, , , , , ,

, , , ,
( )

( ) ,

w w

p i p iw w w w w w

p i p i ds d p i d i p i p i

w w b

p i p i p i i s i

V

C C
U C W a C S K C C

t z

C W C H E C
K H z

z z Z Z


 

+  = + − −
 

  −
+ − − 
     

 (21) 

where the Heaviside function is ( ) 1H z =  in the interface layer of thickness Z , and ( ) 0H z =  outside this layer.  

By introducing the source terms in (20)-(21) we change the bottom boundary conditions (8)-(9) to a zero flux 

conditions: 

0
w

d
V

C
K

z




= ,  

,

, , 0.

w

p iw

p i p i V

C
W C K

z


+ =


 (22) 

In the particle random walk algorithm, particles of any state reflect from the bottom surface if they cross it during 

the time step. 

To obtain the master equation for the state probabilities in the interface layer, we integrated the equations (20)-

(21) over the thickness of the interface layer and used (3) for the bed layer which yields 
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( ) *
, , , ,0 0 0

ˆ ,
n n nbW

ds W p i d i P i bds d W B i Wi i i

P Z
a P S K P a K P P P

t Z
 

= = =

  
= − − − − − 

  
    (23) 

( ) , ,, ,

, , , ,

*

,
p i P iP i i B iw w

ds W p i d i P i P i

i s

W PP E P
a P S K P P

t Z Z


  


= − − + −

 
 (24) 

. ,, , ,*
, , , , ,0

*

.
ˆ

b
n p i P iB i d i i B ib

bds s i d i W B i rs s i B i B i B ib i
i sd

W PP K E PZ
a K P P a P P P

t Z Z ZK
    

  =

   
= − + − + − −         

  (25) 

Here 
WP  is a probability for a particle to be in a dissolved state in the near bottom layer, 

,P iP  is a probability for a 

particle to be absorbed on suspended sediments of class i in the interface layer, 
,B iP  is a probability for a particle to be 

in absorbed on bed sediments of class i in the bed layer. When deriving the equations (24)-(25), it is assumed that 
i  

slowly changes in time, so that 
i  can be considered constant per time step. 

We set the initial probability vector of the current particle state on each time step. For the particle state  we set 

(0) 1P =  , whereas other probabilities set to 0. Here   represents the possible state of the particle: W for dissolved 

state, Si for particulate state, and Bi for the bottom. Then according to (16) a new vector of probability distribution 

( )tP
 
on the next time step is calculated. This vector defines the transition probabilities from the previous state   

to other possible states (including  ) on the next time step. Applying this algorithm to equations (23)-(25) we can 

calculate the transition probabilities for all particle states as shown in Fig.1: 

 

 
 

Figure 1: Scheme of transitional probabilities in interface layer for particle states: dissolved state (W), and two 

particulate states of suspended sediment (Si) and bed layer (Bi). 
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• A particle in the dissolved state (W) in the interface layer may go to the bed sediments with 

probability 
*

ˆ( / ) b

W B bds dp Z Z a K t→ =     or go in adsorbed on suspended sediments state with probability 

, ,0

n

W S ds p i d ii
p a S K t→ =

=   or stay dissolved with probability 1W W W B W Sp p p→ → →= − − . 

• A particle in the adsorbed on suspended sediments of class i state (Si) in the near bottom layer 

particle may settle down to the bed sediments with probability 
,( / )Si Bi p ip W Z t→ =     or go to the 

dissolved in the water column state with probability , ,Si W ds p i d ip a S K t→ =   or stay in the current state with 

probability 
, ,1Si Si Si W Si Bip p p→ = − − .  

• A particle in the adsorbed on bed sediments of class i state (Bi )in the bed layer may be eroded to 

the suspended sediments with probability 
*( ) / ( )Bi Si i i sp E t Z  → =    or to go to the dissolved state in the 

interface layer with probability 
B W bdsp a t→ =   or to go to other fraction j of bed sediments with probability 

,
ˆ( / )b

Bi Bj rs s i d j dp a K K t → =   or to stay in the current state with probability 

0
1

n

Bi Bi Bi Si B W Bi Bjj
p p p p→ → → →=

= − − − . 

After the calculation of all possible transition probabilities p →
 from the current state  , we generate the 

uniformly distributed random number r to select the new state  for the particle on the next time step. For this, the 

probability distribution ( )F  →  was calculated from the density distribution ( )p t →  as  

1
( ) ,F P   




→ →=

=  (25) 

where 1 1F P → →=  and 1i NF→ = . Then we generate the random number r  in the interval [0,1] and define the 

index of the new state from the inequality 

1 .rF F   → − →   (26) 

The consequent steps of the algorithm for the interface layer are shown in Fig. 2: 
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Figure 2: Flowchart of particle transitions and displacement in the interface layer.  

The interface layer's minimum thickness is chosen to be greater than the characteristic displacement of the particle 

and much less than the characteristic thickness of the bottom boundary layer. An example of such an analysis is given 

in section 4.2. 

4. Particular cases 

4.1. Adsorption on multifraction suspended sediments 

Consider the cubic box filled with water contaminated by 134Cs in the presence of uniformly mixed suspended 

sediments of three non-cohesive fractions with uniform concentration ,p iS . The initial concentration is assumed to be 

(0) 1w
dC = Bq m-3. Initially suspended sediments are clean of radioactive material: , (0) 0p iC = . There is no exchange 

with the bed. The system of equations for spatially uniform concentrations in dissolved and particulate forms is  
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( )

. ,

1

,
. , , , , 1,

,

.

nw
w w wd

ds d p i d i p d

i

w
p i w w w

ds d p i d i p i p i

C
a C S K C C

t

C
a C S K C C i n

t





=

  
 = − − − 

   



= − − =



 (27) 

The corresponding system of ordinary differential equations for the probabilities P is 

0

1

2,
21, 1

3
1

1
11 1 12 2 13

0

22 2 23 2

33 2

, 1,

,

,

i

n

i

i

i
i

i

n

i

i

r
P

P r P
t

P
P r P r P i n

t

P
r P

t

r P

r

P

=

=


= − + −





= − − =


  
 = + 

   





 (28) 

where , , 21, , , 12 22 13 2311 1
, ,,ds p i d i i ds p i d i ds

n

i
r a S K r a S K r r a r r 

=
= = = = = = . The state indices of   reflect the 

following correspondence: 1 = are particles in the dissolved state, 2 = are particles interacting with the sediment 

fraction of fraction i, and 3 =  are particles in the decayed state.. Initial conditions at t=0 are 

1 00 2 0(0) , (0) ,i iP P PP= =  013 0(0) 0,
n

i si
P P P

=
= = . The analytical solution of (28) is 
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t
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 (29) 

The approximate first-order solutions of equations (28) are  

1 2, , 3( ) , ( ) , ( ) .w
ds i ds i d iP t t P ta a S K t P t t =   =   =   (30) 

The simulations are carried out for 3 fractions of sediments (d1=0.03 mm; d2=0.125 mm;  d3=0.5 mm) with an equal 

concentration of each fraction 
, 0.2p iS = kg m-3. The radionuclide was 134Cs for which decay constant 

81.02 10 −=  s-1. The parameters of 134Cs are 83.8 10 −=   m s-1, 
51.16 10dsa −=  s-1 (Periáñez et al., 2018). The 

values of Kd are calculated using (5) for each fraction as 1 7,dK =  2 1.7,dK =  2 0.5dK = m3kg-1. In this simulation, 
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we use 10 000 particles. The dependence of the probability P2 on the non-dimensional time step ,
w

ds i d ia S K t  according 

to the solution (29) is compared with the first-order solution (30) in Fig. 3a. As seen in the figure, if the product 

, , 1ds p i d ia S K t  then the first-order solution of (28) describes the exact solution well. In the simulation, 120t = s 

results in the value of , , 0.0017ds p i d ia S K t = . The accuracy and therefore time step can be increased by using higher-

order schemes to solve the system of equations (28). System (27) is a system of linear ordinary differential equations 

which can be solved analytically in the same way as (28). Figure 3b compares the results of calculations using 

analytical formulas with calculations in the probabilistic approach. A comparison of simulation using first-order 

approximation (30) and analytical solutions for system equations (27) showed good agreement. 

 

 

Figure 3: The dependence of the probability P2 on the non-dimensional time step ,
w

ds i d ia S K t  according to the 

solution (27) vs the first-order solution (a); Analytical solution of system equations for concentrations (27) vs 

numerical Lagrangian solution (b). 

 

4.2. Bottom boundary layer formation due to the scavenging process  

In the ocean, the scavenging of particle-reactive element results in the removal of this element from the water 

(Maderich et al., 2021). A well-known example is the scavenging of plutonium isotopes 239,240Pu deposited on the 
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ocean surface as a result of nuclear tests (Livingstone et al., 2001). One of the observed phenomena was the formation 

of a long-lived layer of water with an increased concentration near the bottom.  This was interpreted as a result of the 

tropospheric fallout from the Marshall Islands nuclear tests, for which contamination was more rapidly removed from 

surface waters into the bottom than from global fallout (Buesseler, 1997). Therefore, consider a special case of initially 

contaminated bottom sediment layer under the clean water column with sinking suspended sediment.  The near-bottom 

layer of water is contaminated as a result of the diffusion from the bed sediments. Adsorption on suspended particles 

leads to the settling of radioactivity towards the bottom. Finally, the quasi-equilibrium concentration in water, 

suspended sediments, and bed sediments is established (Fig. 4).  

 

Figure 4: Sketch of contaminated bottom boundary layer. The colour intensity corresponds to the concentration 

of radionuclide. 

 

For simplicity, consider the formation of a contaminated layer over the bottom for a single class of sinking non-

cohesive sediment and a constant diffusivity. The deposition rate is , , ( )
i p i p iS HD W −= . The decay of radioactivity 

and the bed layer’s thickness change due to the particulate matter settling are ignored. The corresponding equilibrium 

equations (1)-(3)  at t →  for ,w

dC  w

pC  and b

sC  are 

( )
2

2
0 ,

w
w w d

ds d p d p V

C
a C S K C K

z


= − − +


 (31) 

( )
2

2
0 ,

w w

p pw w w w

p ds d p d p V

C C
W a C S K C K

z z

 
= + − +

 
 (32) 
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( )*

( )
0 ( ) .
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−
= − − +

−
 (33) 

The equations (31)-(33) can be rewritten as single equation for w

dC
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4 3 2
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 (34) 

where z z H= + , 1 2,ds p d dsk a S K k a= = . Boundary conditions at 0z = can be rewritten as 

2

2 1 2
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w w
wd d

V p d V

C C
k K W k C K

z z
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 (35) 
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 (36) 

At a great distance from the bottom, the concentration of contamination decay 

2 3

2 3
: , , , 0.

w w w

w d d d

d

С С С
z С

z z z

  
→ →

  
 (37) 

The equations (31)-(33) are completed by integral conservation law 

* * 0

0 0

ˆ(1 ) ,w w b b

d p d sC d C d C Z C Z I   
 

+ + + − =   (38) 

where I0 [Bq m-2] is the initial value of bed layer contamination. 

Define non-dimensional variables as 

* *

0 0

, ,
w

d oC z z
C z

I l
= =   

where 

1 2
0

1

( )
.V

p

K k k
l

k W

+
=   

Then equation (34) in non-dimensional form can be rewritten as  
4 3 2

* * * *

4 3 2

* * * *

0,
d C d C d C dC

dz dz dz dz
 + − − =  (39) 

where 

2 2 2

1 1

3 2

1 2 1 2

, .
( ) ( )

p p

V V

k W k W

K k k K k k
 = =

+ +
  

The characteristic values of the parameters for 239,240Pu were 100dK = m3 kg-1,
 

51.16 10dsa −=   s-1 (Periáñez et al., 

2018) whereas the parameters of the marine environment following Maderich et al. (2021) were 410VK −=  m2 s-1,
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0.00025pS = kg m-3, 4000H =  m,  
55 10pW −=  m s-1, 

510pwW −= m s-1, 0.6 = , 
* 0.05Z =  m. The corresponding 

values of parameters are 
0 82l = m, 31.25 10 −=  , 0.051 = .  As 0 →

 
the solution of the reduced equation which 

satisfies the asymptotic conditions (37) is 

* *exp( ).C A z= −  (40) 

To satisfy boundary conditions (35)-(36) the thin boundary sublayer of thickness 1/2( )O  and amplitude 1/2( )O   

should be added. In the first approximation, the terms 1/2( )O   can be ignored. Then the constant A can be found using 

conservation law. It is given in Appendix A. This solution can be compared with the numerical solution of the 1D 

version of equations (1)-(3) at t →  obtained using the Lagrangian approach and Eulerian Lax-Wendroff method 

(Fletcher, 1991). The initial amount of 239,240Pu was I0=0.5 Bq m-2, the rest of the parameters are the same as given for 

the analytic solution. The Eulerian spatial and time steps were 2z = m and 500t = s, respectively. The comparison 

of analytic stationary solutions for dissolved and particulate concentration with corresponding profiles obtained at 

large times by using the Eulerian and Lagrangian numerical methods is given in Fig. 5. The concentration in the 

Lagrangian approach was calculated by the box-counting method using the box of 2 m length. This length was chosen 

for visualization purpose to be small enough to reproduce the structure of the solution and not too small to be noisy.  

 As can be seen in the figure, the results of numerical simulation of the nonstationary problem at large times by both 

methods are in good agreement with the analytical solution. Both numerical methods resolve the bottom boundary 

sublayer. Note that out of the total number of particles (1 million), only 1.5% were in the water. This example 

illustrates the usefulness of the approach proposed in Section 3.3, which made it possible to reduce the calculation 

time by two orders of magnitude.  
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Figure 5: Equilibrium dissolved (a) and particulate (b) concentration profiles of 239,240Pu. Dashed lines show 

Lagrangian model results after one and three years of simulation. 

 

The thickness of the interface layer was chosen from the analysis of the root mean square error (RMSE) of the 

Lagrangian numerical solution from the analytic solution. We varied Z , the number of particles, and time step to 

estimate the optimal value Z . As seen in Fig. 6 at any time steps and number of particles, the RMSE first decreases 

with increasing thickness Z , reaching a minimum at 5Z  m, and then increasing again. An increase in the 

number of particles and a decrease in the time step significantly reduces RMSE only at relatively small values Z . 

This behaviour of RMSE can be explained by the fact that, at a small thickness of the transition layer Z , a significant 

part of the particles are reflected from the bottom boundary, while at large thicknesses, the condition of the uniform 

distribution of concentration in this layer is significantly violated. 

The optimal range of Z  can be estimated using numerical parameters. The Z must be greater than the 

maximum vertical displacement of the particle during the one time step to satisfy the condition that the particle cannot 

jump over this layer during the one time step.  On the other hand, Z  must be small enough to approximate uniform 

distribution of concentration in this layer. Therefore, the optimal range is defined from the relation 

,max 6 ,p V cW t K t Z l +      (41) 
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where 
,maxpW  is maximal settling velocity, / /w w

c d dl C C z=    is the characteristic length scale of the averaged in 

the interface layer concentration profile. 

 

 

Figure 6: Dependence of root-mean standard error (RMSE) of concentration on the thickness of the interface layer 

Z , number of particles, and time step t .  

 

The studies of the accuracy of particle methods (Büyükçelebi et al., 2021; Graham, Moyeed, 2002) help 

choosing the appropriate number of particles to achieve the required accuracy, whereas effects of grid spacing, number 

of particles, and interpolation were considered by Perianez et al. (2023). Our study showed that choosing the 

appropriate time step and thickness of the near-bottom water layer for particular problems can be more significant for 

the resulting accuracy of the simulation than the number of particles.Results of simulations shown in Fig 5 and Fig 6 

were obtained using MPI-based parallel computing on 20 cores of Intel(R) Xeon(R) Platinum 8268 CPU 2.90GHz 

power station. During the heaviest scenario with 25M particles, it used 140MB RAM and the calculation time was 

around 3 hours. Each independent MPI process was initialized with different random seeds for the random generator 

and calculated concentrations were summarized over all processed before every output record. 

5. Conclusions 



Brovchenko, Kim, Maderich, Jung, Kovalets: Preprint submitted to Elsevier   21 

In the study, the particle-tracking method for the transport of radionuclides in multicomponent ocean medium (water 

and multifractional suspended and deposited sediments) is considered using a probabilistic approach for simulating 

processes of interaction between several states of radioactivity. Three novel approaches were developed and 

implemented in code. Firstly, the state transformations in the result of reactions of the first order were described using 

the master equation for the probability of the particle being in the given state. Expanding the solution of this matrix 

equation in a series of powers r t

  and restricting ourselves to first-order terms (Euler approximation), we obtained 

the solution at the next time step. This approach can be applied to any linear system of equations describing phase 

transitions with any number of states. However, it requires small values of the transition probabilities to ensure only 

a single phase change during the time step. The evolution of the particle position in the state   during the time step 

consists of deterministic displacement, and displacement by uncorrelated random walk. Secondly, we developed a 

new approach to the interface conditions between the water column and bottom sediment.  Fluxes through the bed 

surface in terms of Lagrangian particles correspond to a particle state change. Therefore, bottom boundary conditions 

can be considered as the reaction terms in transport equations. For this purpose, we introduced a thin near-bottom 

interface layer of thickness Z  where boundary conditions are converted into source terms. The corresponding 

master equation for the transition probabilities was derived for this layer. It was shown that the proposed approach 

can efficiently reproduce the correct boundary conditions which was evaluated by comparison with an analytical and 

numerical solution for the scavenging particular case. Thirdly, we showed that the optimal thickness of the interface 

layer must be greater than the maximum vertical displacement of the particle during the one-time step, but it must be 

small enough to satisfy the condition of uniform distribution of concentration in this layer.   

The proposed probabilistic approach for simulating processes of interaction between states of contaminant is 

simple and effective for any number of states. It has already been used to simulate the hypothetical releases of  137Cs 

from four nuclear power plants placed in the Bohai, Yellow, and East China Seas (Brovchenko et al., 2022) where 

the bottom component was about 40% of dissolved   137Cs. 

 

6. Appendix A. Constant A 

( ) ( )2 2 3 2

2 1 22 ) 1 1 4 ,V pwA K k k k W Denom   = + − + +
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Code availability section 

Name of the code: LagrRadBC 

Contact: ibrovchenko@gmail.com 

Hardware requirements: laptop for small, synthetic examples; workstation or cluster for realistic scenarios with MPI 

support 

Program language: Fortran 90 

Software required: Intel Fortran Compiler v12, MSMPI 

Program size: 20KB 

The source codes are available for download at the link:  https://github.com/IBrovchenko/LagrProb/ 
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