
Linguistic Linked Open Data for Humanists

Anas Fahad Khan, Giulia Pedonese, Michele Mallia

Image: Di Galak76 - Opera propria, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1206973

Lisbon Summer School in Linguistics, July 1-5, 2024

Exploring the
Semantic Web
Stack

"W3c semantic web stack" is licensed under CC BY 2.5.

https://commons.wikimedia.org/w/index.php?curid=721386
https://creativecommons.org/licenses/by/2.5/?ref=openverse

The Semantics in the Semantic Web:

An Interlude on Semantic Artifacts

The Semantics of the Semantic Web

• One of the main motivations behind the Semantic Web is

to publish data on the World Wide Web in a way that

makes its meaning as explicit as possible: making it

easier for machines to carry out tasks on the basis of this

meaning (machine actionability).

• One way this is done is via the use of formal languages,

RDF, RDFS, and OWL which have a precise mathematical

semantics to describe data

• Such languages offer us a means of representing

knowledge in a way that is less ambiguous than natural

language (as we have seen with RDF(S)) and that we can

reason about in a fairly efficient way using automated

reasoning algorithms (without having to use LLMs!).

"The New Improve Semantic Web: now with added meaning!" by liako is licensed under CC BY-SA 2.0.

https://www.flickr.com/photos/87956460@N00/3145601849
https://www.flickr.com/photos/87956460@N00
https://creativecommons.org/licenses/by-sa/2.0/?ref=openverse

The Semantics of the Semantic Web

• We can use these formal languages to describe the

most important concepts in a domain, via reference

models/conceptualisations, these machine

actionable descriptions can then be published on

the Semantic Web and used by others

• We group these models/conceptualisations under

the umbrella term of semantic artifacts

• Classes and properties from these semantic

artifacts can then be re-used via Semantic Web

standards

• These semantic artifacts are especially useful for

resource metadata

Semantic Artifacts

● Term introduced in the FAIRsFAIR project

○ “Machine actionable formalisation (represented using appropriate formats and

serialisations, including RDF and non-RDF standards) of a conceptualisation,

enabling sharing and reuse by humans and machines” (Corcho et al)

● In other words SA’s represent the conceptual model(s) used to organise a (structured)

dataset, but in a form that’s shareable and accessible both to computers and to human

beings

○ Related term used in the past: Knowledge Organisation System (the last part of the

name of SKOS!)

● SA’s can range from simple fixed lists of terms (with definitions), to thesauri, taxonomies

and ontologies

Kinds of Semantic Artifacts

Ontology

Thesaurus

Taxonomy
(folksonomy & personomy)

List/Glossary

Weak Semantics

Strong Semantics

We can rank SA’s in terms of

how complex their organisation

is, in terms of the ‘strength’ of

their semantics

Kinds of Semantic Artifacts

Ontology

Thesaurus

Taxonomy
(folksonomy & personomy)

List/Glossary

Weak Semantics

Strong Semantics

Let’s go through

some of these

Taxonomies, Folksonomies, Personomies and Thesauri

• Taxonomy: tends to refer to the hierarchical
arrangements of concepts in a domain, usually on
the basis of hypernym/hyponym (X is a Y) relations

○ The classic example here are biological
taxonomies such as those of Linneaus

• Folksonomy: result from asking users to
annotate/categorise/tag the elements in datasets
usually consist of online content such as photos,
forum threads, blog posts.

○ Usually much more bottom-up than
taxonomies, as consequence they tend to be
messier and to lack the rigour of classification
schemes conceived as top down.

Taxonomies, Folksonomies, Personomies and Thesauri

• Personomy: A folksonomy that’s restricted to the
annotations made by a single user.

• Thesauri: Are like taxonomies but they also
include equivalence relationships, hierarchical
relationships and associative relationships

○ Most well known such (paper based)
resource is Roget’s Thesaurus

○ WordNets can also be seen as thesauri

Useful Semantic Web Taxonomies and Thesauri

● Taxonomy of Digital Research Activities in the Humanities (TaDiRAH)

provides concepts for DH research activities, and is intended to assist

community-driven sites and projects organise DH content

● The European Language Social Science Thesaurus (ELSST) is a broad-

based, multilingual thesaurus for the social sciences.

● The Getty Archive Art & Architecture Thesaurus® Online, used for the

description of art items, architecture, and material culture

● We will look at SKOS, a model for representing such resources (a semantic

artifact for representing semantic artifacts(!)) in later slides

Focus on: Princeton WordNet

● “WordNet® is a large lexical database of English. Nouns, verbs, adjectives and adverbs are

grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets

are interlinked by means of conceptual-semantic and lexical relations.

● WordNet superficially resembles a thesaurus, in that it groups words together based on their

meanings. However, there are some important distinctions. First, WordNet interlinks not just

word forms—strings of letters—but specific senses of words. As a result, words that are

found in close proximity to one another in the network are semantically disambiguated.

Second, WordNet labels the semantic relations among words, whereas the groupings of

words in a thesaurus does not follow any explicit pattern other than meaning similarity.”

Source: https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

Synsets

● The main relation among words in WordNet is synonymy. Synonyms are defined as words that

denote the same concept and are interchangeable in many contexts and are grouped into

unordered sets (synsets). Each of WordNet’s 117 000 synsets is linked to other synsets by means of

“conceptual relations.”

● A synset contains a brief definition (“gloss”) and, in most cases, one or more short sentences

illustrating the use of the synset members. Word forms with several distinct meanings are

represented in as many distinct synsets. Thus, each form-meaning pair in WordNet is unique.

● The most frequently encoded relation among synsets is the super-subordinate relation (also called

hyperonymy, hyponymy or ISA relation), but we can also have:

○ Meronymy

○ Antonymy (for adjectives)

○ Cross-PoS relations, e.g. morpho-semantic links

Source: https://wordnet.princeton.edu/. See also: Fellbaum, Christiane (2005). WordNet and wordnets. In: Brown, Keith

et al. (eds.), Encyclopedia of Language and Linguistics, Second Edition, Oxford: Elsevier, 665-670.

https://wordnet.princeton.edu/

Beyond English: the Open Multilingual WordNet project

● It aims at interlinking WordNets in multiple languages, creating a shared format. There are

currently two ways of connecting WordNets together: via the Princeton WordNet or using the

Collaborative Interlingual Index.

● There are two approaches for creating a new WordNet: the expand method and the merge

method: the expand method starts from the structure of the Princeton WordNet and

translates the synsets into the target language, creating additional synsets for specific senses.

The merge method creates the WordNet from scratch and then adds links it to the Princeton

WordNet with cross-lingual links

Source: https://omwn.org/index.html

https://omwn.org/index.html

WordNets in Linked (Open) Data

Cimiano, Chiarcos, McCrae, Gracia 2020, Linguistic Linked Data
Alla p. 215: Applying Linked Data Principles to Linking Multilingual Wordnets

● Wordnets are the most widely used lexical resources in natural language
processing and computational lexicography

● LOD principles have been applied to the development of the Global
WordNet Grid (GWG) in order to form a catalogue of interlingual contexts
that extends beyond the Princeton WordNet. Linked Data technologies are
used to create a Collaborative Interlingual Index (CILI) that builds on
standard Linked Data vocabularies and the RDF data model

What are Ontologies?

• Ontologies are absolutely central to the Semantic Web, but what are they?

• One of the most popular definitions of the term* goes as follows:

■ “An ontology is a formal, explicit specification of a shared
conceptualization” (Studer et. al.)

• The ‘formal’ part refers to the fact that ontologies are usually written in a
formal language with a mathematically defined syntax and semantics

• The ‘shared conceptualisation’ part emphasises the fact that ontologies deal
with knowledge that is shared by a community but that is often implicit and/or
taken for granted.

• Ontologies make this implicit knowledge more accessible (explicit)

*We are of course using the term ontology in the informatics and not philosophical sense here

What are Ontologies?

• More specifically ontologies allow us to model the classes and
individuals of interest in a domain, the properties that pertain to them and
the relationships that hold between them.

• They enable the description of more complex concepts and
relationships in terms of simpler concepts and relationships. In this
way we can represent their meanings.

• Ontologies are often written in languages such as OWL (which we’ll look
at later), for which there exist semantic reasoners/inference engines
which allow us to automatically check constraints have been adhere to in
our data as well as to derive new knowledge from them.

What are Ontologies Used for?

• Ontologies have many different uses. One of the main ways that they’re used
is to define terms in a controlled vocabulary in a machine actionable way.
These are lists of terms belonging to some specific domain that have been
organised in a meaningful way and which can be used to index and retrieve
texts.

• There are other ways of doing this (for example SKOS which we will look at
later), but ontologies allow us a lot of expressivity and flexibility

• The concepts in an ontology can be given a unique identifier which means that
they can be used to annotate lots of different datasets allowing us to integrate
them and query them at the same time

• OWL is the Semantic Web ontology language which allows us to make use of
the technologies and standards in the stack, e.g., URIs to identify concepts, as
well as building on top of RDF and RDFS

What are Ontologies Used for?

• Ontologies have had the most success in the biomedical domain where they have

been used for the following

○ Annotation with standard identifiers, in order to integrate together and query

multiple datasets (e.g., Gene Ontology)

○ As vocabularies for applications relying on domain-specific terms (e.g., text

mining using ontology labels)

○ Reasoning over ontology annotated datasets (e.g., determining which

protein family a protein belongs to)

○ Data Mining and Analysis, using ontologies as background knowledge (e.g.,

Gene Set Enrichment Analysis)

• Many of these tasks can also be carried over to other domains…but in the humanities

there tends to be less agreement than in the hard sciences on basic definitions on

the basis of which we can built ontologies

What are Ontologies Made Out Of?

• Abstracting away from technical particulars, ontologies are used to describe three

kinds of entity:

■ Classes/concepts, Person, Country, Sheep, Author, Word etc

■ Properties (or relations) X child of Y, X lives in Y, X is located in Y, X

loves B, S isSenseOf W

■ Individuals Fahad Khan, Giulia Pedonese, Michele Mallia, Portugal,

Europe, Euro 2034, number 23, the word saudade

• This is echoed in the division of ontologies into a TBox (Terminological Box) and an

ABox (Assertion Box) and sometimes a separate RBox (Role/relation Box) too.

• These 3 kinds of entity become the primitive components out of which formal ontology

languages such as OWL are constructed.

Excursus: Differences between Ontologies/Taxonomies

• In practice the term taxonomy is often used to refer to ontologies which use

only the subsumption and (often) equivalence relations to organise

concepts.

• The subsumption relation in taxonomies and ontologies (⊑) corresponds to

hyponymy in lexical semantics, an area where we also describe taxonomies

• However as argued in (Cruse 86) a well formed (lexical) taxonomical

hierarchy shouldn’t include statements like Ewe⊑ Sheep but only those like

Sheep ⊑ Animal and Horse ⊑ Animal. The former division isn’t like the latter

two.

• Well formed taxonomies should classify things into kinds; therefore we should
use restricted criteria such as for instance:

● X ⊑ Y in a taxonomy if an X is a kind/type of Y

Excursus: Differences between Ontologies/Taxonomies

• So we can say:

○ A spaniel is a kind of dog

○ A rose is a type of flower

○ A mango is a kind of fruit

• But the following seem less acceptable:

○ ?A kitten is a type of cat

○ ?A queen is a type of monarch

○ ?A waiter is a kind of woman

• Cruse defines this new restricted version of the hyponymy relation taxonomy

(not to be confused with taxonomy as a kind of resource, semantic artifact).

• His reasoning seems to apply not just to taxonomies in lexical semantics

• Can help us to clear up how to structure (well) Semantic Web taxonomies

Excursus: Differences between Ontologies/Taxonomies

• Interestingly the well known ontology design

methodology Ontoclean makes very similar

points (though using a much more

sophisticated analysis) and views the
ontological subsumption (IS A) relation

similarly to Cruse’s taxonomy relation.

• In fact we can see a well-defined taxonomy

as the backbone of an well-defined

ontology.

• This is one way of understand how

taxonomies and ontologies can be related

together

Top-Level Ontologies

• A lot of the vocabularies, we will look at for creating our own linked data language

resources should be viewed as ontologies -- or at least semantic artifacts. One

very useful class of ontologies are Top-Level Ontologies, also known as

Foundational Ontologies or Upper Ontologies

• These are ontologies which describe the most general concepts which might be

referred to in any individual ontology, e.g.,., Event, Individual, Agent,...

• Usually these are concepts which aren’t specific to any one domain and can be

re-used by other ontologies in different domains;

○ Although in some cases they tend to be more associated with particular domains or sets of domains,

e.g., CIDOC-CRM for the humanities

• Using a Top-level Ontology we affirm the most fundamental ontological

commitments made by a domain specific ontology.

Top-Level Ontologies Semantic Artifacts

• Means we don’t need to reinvent the wheel. Also help to ensure a basic level

of interoperability among other more specific ontologies based on the same

top level ontology, because of explicitly shared ontological commitments

• Top-level ontologies can often just be a series of useful classes and

properties (in fact many would be better called top level semantic artifacts)
or they can be much more extensive and incorporate sophisticated

metaphysical reasoning (e.g., DOLCE and BFO)

• We can also have ontologies which describe general concepts in a domain;

these are Mid Level Ontologies, mid way between a top level ontology and a

more specific domain ontology

Some Useful Top Level SAs

• Well known Top-Level Ontologies (Semantic Artifacts) include:

○ Dublin Core

○ Friend of a Friend (FOAF)

○ Schema.org

○ DOLCE

○ BFO

○ SUMO

• These are listed in A Survey of Top Level Ontologies by the UK’s Digital
Twin Initiative:

○ https://www.cdbb.cam.ac.uk/files/a_survey_of_top-level_ontologies_lowres.pdf

https://www.cdbb.cam.ac.uk/files/a_survey_of_top-level_ontologies_lowres.pdf

Some Useful Top Level SAs

• We will look at the first three of these top level ontologies in the following

slides, i.e., Dublin Core, FOAF, Schema.org

• We will also look at DCAT & CIDOC-CRM the latter of which is regularly used

in the Digital Humanities

• These ontologies will likely be useful if you are defining your own ontology (or
in fact for many other Semantic Web related use cases!)

• They are also important for creating metadata for e.g., language resources.

• Let’s start with the Dublin Core!

Dublin Core

● A set of vocabulary terms used to describe web resources (such as video,

images, web pages), and physical resources such as books or artworks.

● Developed in 1995 during a workshop in Dublin, Ohio.

● Intended to facilitate the discovery of electronic resources by providing a

simple and standardised set of conventions for resource description.

● Helped standardise metadata descriptions on the Semantic web

● Used commonly for metadata in all categories of Semantic Web resources,

including for LLOD cloud resources

Dublin Core Categories

Contributor: “An entity responsible for making contributions to the resource.”

Coverage: “The spatial or temporal topic of the resource, the spatial applicability

of the resource, or the jurisdiction under which the resource is relevant.”

: “An entity primarily responsible for making the resource.”

“A point or period of time associated with an event in the lifecycle of the

resource.”

Description: “An account of the resource.”

Dublin Core Categories Ctd

● Format: “The file format, physical medium, or dimensions of the resource.”

● Identifier: “An unambiguous reference to the resource within a given context.”

● Language: “A language of the resource.”

● Publisher: “An entity responsible for making the resource available.”

● Relation: “A related resource.”

Dublin Core Categories Ctd

● Rights: “Information about rights held in and over the

resource.”

● Source: “A related resource from which the described

resource is derived.”

● Subject: “The topic of the resource.”

● Title: “A name given to the resource.”

● Type: “The nature or genre of the resource.”

Dublin Core

Dublin Core - Your Turn

● Create a DC dataset using the DC Template

○ http://metadataetc.org/dctemplate.html

http://metadataetc.org/dctemplate.html

Friend of a Friend (FOAF)

• An ontology describing persons, their activities, and their relations to other

people and objects.

• Origin: Developed by Dan Brickley and Libby Miller in 2000.

• Enables the creation of a web of machine-readable pages describing people,

groups, the links between them, and the things they create and do.

• Useful in describing authors, contributors, etc, to a resource

Friend of a Friend (FOAF)

Friend of a Friend (FOAF)

Create a DC dataset using FOAF-a-matic:
○ http://ldodds.com/foaf/foaf-a-matic.html

http://ldodds.com/foaf/foaf-a-matic.html

Schema.org

• Schema.org is a collaborative, community activity with a mission to create,

maintain, and promote schemas for structured data on the Internet, on web

pages, in email messages, and beyond

• Proposed as a selection of schemas for adding metadata annotations to

HTML pages.

• Recently started to become a very popular ontology.

Schema.org

DCAT

● Data Catalog Vocabulary (DCAT) developed by the World Wide Web

Consortium (W3C), is a vocabulary & designed to facilitate interoperability

between data catalogs published on the web, providing a way to describe

datasets in catalogs to make them more discoverable and accessible.

● Key components of DCAT include:
○ Dataset: Represents a collection of data, which could be in various formats.

○ Distribution: Represents an accessible form of a dataset, such as a downloadable file.

○ Catalog: Represents a collection of datasets.

CIDOC CRM

• We have looked at generic top level ontologies/SAs, let’s look at those

associated with different domains

• CIDOC CRM is a Top-Level Ontology (CRM= Conceptual Reference Model)

originally created for the cultural heritage domain

• Published as an ISO Standard in 2006

• Intended to mediate between cultural heritage datasets in order to enable

information exchange and data integration

• CIDOC CRM has proven itself an important tool in establishing

interoperability between individual resources through making descriptions

of objects semantically transparent via ontological concepts and properties,
that is by rendering implicit knowledge explicit using CIDOC concepts

CIDOC CRM

• The CIDOC CRM ontology consists of a number of real world concepts linked

together using properties to which data is aligned

• CIDOC CRM is very much event-centric and organised in terms of Things,

that persist through time, and Events which ‘happen’ rather than ‘are’

CIDOC CRM

From https://isl.ics.forth.gr/mapping_technology/page/cidoc-crm

CIDOC CRM

CIDOC CRM

CIDOC CRM

• Used in a number of very successful projects and initiatives, to render the

information coming from various catelogues interopeable, including Map the

Manuscript Migrations

• CIDOC CRM has several other modules that build on the success of the

original model including a provenance model, a spatiotemporal model, a
model for archeology and buildings

• FRBRoo (Version 0.2 released in 2013) an attempt to create an ontology that

harmonises both CIDOC CRM and the Functional Requirements for

Bibliographic Records (FRBR), data model; this changed name to become

LRM.

○ Khan and Salgado propose the integration of OntoLex with FRBRoo (LRM) to model lexicons

and dictionaries as both physical, visual and informational objects.

VIAF, DBpedia, and Wikidata

• Now, we will focus on three important general purpose Semantic Web

ontological resources which should come up useful in all kinds of tasks:

○ VIAF

○ DBpedia

○ Wikidata

• These resources are useful for adding references in dictionary citations to
proper names (geographical locations, names of authors, works)

• Shows the potential for representing extra-linguistic information in language

resources in a standardised and highly machine actionable way (something

which the Semantic Web facilitates)

VIAF

• Virtual International Authority File

• Authority File: Assigns a unique identifier to

people, topics, organisations, etc

• VIAF offers URIs for use in Linked Data datasets

• Luís de Camões

○ https://viaf.org/viaf/186297237/

• Universidade nova de Lisboa:

○ https://viaf.org/viaf/124928771/

https://viaf.org/viaf/186297237/
https://viaf.org/viaf/124928771/

DBpedia and Wikidata

• Both DBpedia and Wikidata are based on Wikipedia

• Differences:

○ DBpedia: An RDF ontology that is generated from Wikipedia infoboxes

○ Wikidata: An ontology created to enrich Wikipedia

Wikidata

• Can be edited directly by users

• Consists of items with an Q-prefix id and properties with a P-prefix id

• Every item is the subject of a number of claims/triples

○ These claims can be qualified with qualifiers and annotated with references

• Wikidata page for Luís de Camões:

○ https://www.wikidata.org/wiki/Q590

• Wikidata page for Taiwan:

○ https://www.wikidata.org/wiki/Q865

Wikidata

• Wikidata is becoming popular in the humanities

• Used as a data source as well as for storing data

• Map of residences of accused witches based on wikidata:

○ https://witches.is.ed.ac.uk/

• Use of Wikidata to document a local music scene:

○ https://www.bpl.org/blogs/post/boston-rock-city-explore-wikidata-and-learn-about-local-music/

• We will look at the lexicographic data hosted in Wikidata in tomorrow’s lesson

https://www.bpl.org/blogs/post/boston-rock-city-explore-wikidata-and-learn-about-local-music/

Useful Semantic Artifacts on the LLOD Cloud

Lexvo

● A linked data SA that provides information about languages, words, and other linguistic entities

● Each language in lexvo is assigned a unique URI, which can be used to unambiguously refer to that
language.

○ For example, the URI for the English language is http://lexvo.org/id/iso639-3/eng.

● Lexical Entries: Lexvo includes lexical entries that provide information about words and phrases in
various languages. These entries can include definitions, translations, and phonetic

transcriptions.
● Language Relationships:The service provides information about the relationships between

languages, such as which languages are dialects of others or belong to the same language family.
● Cultural and Geographic Data: Lexvo links languages to the regions where they are spoken and

to the cultures that use them, providing a contextual understanding of each language

Useful Semantic Artifacts on the LLOD Cloud

Lexinfo:

● “[A]n ontology that was defined during the Monnet Project to provide data

categories for the Lemon model [predecessor]. It has since since been

updated with the new OntoLex-Lemon model of the OntoLex community

group.”

● It provides e.g., part of speech values, other relevant morpho-grammatical

properties, for OntoLex lexicons, as we will see….

● Based on the Old ISOCat registry, since discontinued

● Difficult to navigate, a real hodgepodge

● Shows that ontologies aren’t always well thought out (even if they are useful)

http://lemon-model.net/
http://www.w3.org/community/ontolex
http://www.w3.org/community/ontolex

Search Engines/Repositories

● Linked Open Vocabularies:

○ https://lov.linkeddata.es/dataset/lov

● Another RDF vocabulary search engine

○ http://vocab.cc/

● Specialised ontology repositories:

○ Archivio: http://vocab.cc/

https://lov.linkeddata.es/dataset/lov
http://vocab.cc/
http://vocab.cc/

Exploring the
Semantic Web
Stack
A second tutorial on

SPARQL (with Wikidata)

"W3c semantic web stack" is licensed under CC BY 2.5.

https://commons.wikimedia.org/w/index.php?curid=721386
https://creativecommons.org/licenses/by/2.5/?ref=openverse

Returning to SPARQL

● We return to SPARQL this time using the Wikidata SPARQL endpoint

● Recall in Wikidata (differently from DBpedia) the IDs are arbitary (and not

human readable), e.g., https://www.wikidata.org/wiki/Q311145,

https://www.wikidata.org/wiki/Property:P800

● With the Q prefix used for items and the P prefix for properties

● We will look at a few queries from the Wikidata Query point

https://query.wikidata.org/

● We take these from the Wikidata tutorial

https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

https://www.wikidata.org/wiki/Q311145
https://www.wikidata.org/wiki/Property:P800
https://query.wikidata.org/
https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

First Wikidata Query

Who were the sons of Johann Sebastian Bach (Q1339), where the relevant property

(father of) has the ID P:P22:

SELECT ?child

WHERE

{

?child father Bach

?child wdt:P22 wd:Q1339.

}

Material from https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

SERVICE

● The SERVICE keyword in SPARQL is used to query a remote SPARQL

endpoint from within a SPARQL query. This allows federated querying,

where data from different SPARQL endpoints can be combined in a single

query.

● In Wikidata the SERVICE keyword can be used to access a specific service

provided by the Wikidata SPARQL endpoint to fetch labels for the queried

entities in the desired language.

Updated Wikidata Query

SELECT ?child ?childLabel

WHERE

{

?child father Bach

?child wdt:P22 wd:Q1339.

SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE]". }

}

● wikibase:label is a predefined service in Wikidata that helps in fetching the human-readable labels (names) for the
entities.

● bd:serviceParam wikibase:language "[AUTO_LANGUAGE]" specifies the language parameter.
[AUTO_LANGUAGE] is a placeholder that automatically selects the language based on the user's preferences or the

default language of the endpoint.

Material from https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

Property Paths

Property paths in SPARQL are a powerful feature that allows querying of complex relationships
between RDF resources by specifying patterns of predicates (properties) in the query. Property paths can
be used to navigate through RDF graphs, allowing more flexible and expressive queries.

A simple path specifies a direct relationship between two nodes. However the sequence path/allows
chaining multiple predicates,

E.g., ?item wdt:P31/wdt:P279/wdt:P279 ?class.

The zero-or-more path * matches zero or more occurrences of a predicate.

E.g., ?item wdt:P31/wdt:P279* ?class.

The one-or-more path + matches one or more occurrences of a predicate.

E.g., ?item wdt:P31/wdt:P279+ ?class.

Material from https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

Exercise

How can I modify the following query to find all the descendants of Bach where P40 is the child

relation?

SELECT ?d ?dLabel

WHERE

{

wd:Q1339 wdt:P40 ?d.

SERVICE wikibase:label { bd:serviceParam wikibase:language
"[AUTO_LANGUAGE]". }

}

Material from https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

Exercise

Answer

SELECT ?d ?dLabel

WHERE

{

wd:Q1339 wdt:P40+ ?d.

SERVICE wikibase:label { bd:serviceParam wikibase:language

"[AUTO_LANGUAGE]". }

}

Material from https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

An Alternative

SELECT ?descendant ?descendantLabel

WHERE

{

?descendant (wdt:P22|wdt:P25)+ wd:Q1339.

SERVICE wikibase:label { bd:serviceParam wikibase:language

"[AUTO_LANGUAGE]". }

}

Material from https://www.wikidata.org/wiki/Wikidata:SPARQL_tutorial

BIND, BOUND, IF

Recall: We can use BIND(expression AS ?variable) to assign the result of an

expression to a variable; BOUND(?variable) to test if a variable has been bound

to a value (useful for variables introduced in an OPTIONAL clause); we can

additionally add conditionals to SPARQL queries via

IF(condition,thenExpression,elseExpression)

Query

We would like to write a query that shows the name of all French writers born in

the second half of the 18th century, but instead of just showing their label, it

shows their pseudonym (P742) if they have one, and only the label if a

pseudonym doesn’t exist.

First Part

French writers from the second half of the 18th century

SELECT ?writer

WHERE

{

?writer wdt:P31 wd:Q5; # An instance of (P31) human (Q5)

wdt:P27 wd:Q142; # a citizen (P27) of France (Q142)

wdt:P106 wd:Q36180; # with occupation (106) writer (Q36180)

wdt:P569 ?dob. # and dob (P569)

FILTER("1751-01-01"^^xsd:dateTime <= ?dob && ?dob < "1801-01-01"^^xsd:dateTime).

}

Second Part

French writers from the second half of the 18th century with their English label, get the pseudonym if it exists

SELECT ?writer ?writerLabel WHERE

{ ?writer wdt:P31 wd:Q5;

wdt:P27 wd:Q142;

wdt:P106 wd:Q36180;

wdt:P569 ?dob.

FILTER("1751-01-01"^^xsd:dateTime <= ?dob && ?dob < "1801-01-01"^^xsd:dateTime).

get the English label

?writer rdfs:label ?writerLabel.

FILTER(LANG(?writerLabel) = "en").

get the pseudonym, if it exists

OPTIONAL { ?writer wdt:P742 ?pseudonym. }

}

QUERY

Full query

SELECT ?writer ?label

WHERE

{....

?writer rdfs:label ?writerLabel.

FILTER(LANG(?writerLabel) = "en").

get the pseudonym, if it exists

OPTIONAL { ?writer wdt:P742 ?pseudonym. }
BIND(IF(BOUND(?pseudonym),?pseudonym,?writerLabel) AS ?label).

}

QUERY

Full query

SELECT ?writer ?label

WHERE

{....

?writer rdfs:label ?writerLabel.

FILTER(LANG(?writerLabel) = "en").

get the pseudonym, if it exists

OPTIONAL { ?writer wdt:P742 ?pseudonym. }
BIND(IF(BOUND(?pseudonym),?pseudonym,?writerLabel) AS ?label).

}

This conditional

choose between
the two options

Exploring the
Semantic Web
Stack

"W3c semantic web stack" is licensed under CC BY 2.5.

https://commons.wikimedia.org/w/index.php?curid=721386
https://creativecommons.org/licenses/by/2.5/?ref=openverse

SKOS

● We have looked at Semantic Artifacts in theory but how can we actually build them

ourselves, what languages should we use (in addition to RDF(S)?

● SKOS (Simple Knowledge Organisation System) is a Semantic Web model for building RDF

taxonomies/thesaurui; it is a nice, lightweight alternative to OWL in cases where we don’t

need to create an ontology, but is more flexible than RDFS

● SKOS is concept-centric model in which terms are attached as labels to concepts, and

concepts can be arranged in hierarchies using the broader and narrower properties, or

associated together using the related property

● There exist many tools for editing or managing SKOS datasets, including several of those

which are also used for working with OWL ontologies

SKOS

● SKOS is based around the core SKOS class Concept
○ e.g., ex:animals rdf:type skos:Concept

● SKOS concepts can have labels in different languages, these labels
can be either preferred labels or alternative labels
○ e.g., ex:animals rdf:type skos:Concept;

skos:prefLabel "animals"@en;

skos:altLabel "creatures"@en;

skos:prefLabel "animaux"@fr;

skos:prefLabel "animali"@it.

SKOS

ex:animals rdf:type skos:Concept;

skos:prefLabel "animals"@en;

skos:narrower ex:vertebrates.

ex:vertebrates rdf:type skos:Concept;

skos:prefLabel "vertebrates"@en;

skos:broader ex:animals;

skos:narrower ex:mammals.

ex:mammals rdf:type skos:Concept;

skos:prefLabel "mammals"@en;

skos:broader ex:vertebrates.

SKOS-XL

Sometimes it is required to

describe relationships among

lexical labels representing

concepts. For this SKOS

provides an extension SKOS-XL

- SKOS eXtension for Labels -

to identify, describe and link

lexical labels.

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ex: <http://www.example.com/> .

@prefix skosxl: <http://www.w3.org/2008/05/skos-xl#> .

ex:europeanWildcat rdf:type skos:Concept;

skosxl:prefLabel ex:europeanWildcatLabel1;

skosxl:altLabel ex:europeanWildcatLabel2.

ex:europeanWildcatLabel1 rdf:type skosxl:Label;

skosxl:literalForm "European wildcat"@en.

ex:europeanWildcatLabel2 rdf:type skosxl:Label;

skosxl:literalForm "Felis silvestris"@la.

ex:europeanWildcatLabel1 skosxl:labelRelation ex:europeanWildcatLabel2.

Ksenia Zaytseva and Matej Ďurčo (2020). Controlled Vocabularies and SKOS. Version 1.1.0. Edited by Matej Ďurčo and Tanja Wissik.

DARIAH-Campus. [Training module]. https://campus.dariah.eu/id/D8d6OrLdpLlGRqBSQDVN0

https://campus.dariah.eu/id/D8d6OrLdpLlGRqBSQDVN0

Controlled vocabularies

● CV are knowledge organization systems that contain (optionally) structured

set of concepts/terms for organizing and classifying data in order to ensure its

future access and retrieval.

○ The concepts/terms are data descriptors related to each other via explicit relationships

(hierarchical or associative).

○ These data descriptors are used to distinguish and define the characteristics of knowledge

resources in a specific domain.

● Using controlled vocabularies the resources can be queried (!!!), retrieved,

analysed and linked to other relevant information objects.

Ksenia Zaytseva and Matej Ďurčo (2020). Controlled Vocabularies and SKOS. Version 1.1.0. Edited by Matej Ďurčo and Tanja Wissik.

DARIAH-Campus. [Training module]. https://campus.dariah.eu/id/D8d6OrLdpLlGRqBSQDVN0

https://campus.dariah.eu/id/D8d6OrLdpLlGRqBSQDVN0

Types of CV

● On the Web → vocabularies are often used in building the information architecture for websites, data

repositories, information systems, etc…

● Biology → classification of living organisms (e.g. taxonomies of living organisms, classifications of cross-

species anatomical entities…).

● Public health and medicine → have CVs in various forms (terminologies, thesauri, ontologies) for defining

categorizations and classifications for biomedical investigations, diseases, symptoms, medical errors, etc.

● International organizations → United Nations terminologies: to standardize terms and translations in

international affair to eliminate ambiguity in terms used in international communication.

● GLAM (Galleries/Libraries/Archives/Museums) → describe their objects and resources, build catalogues

and information systems.

● Computer Science → used in data mining, knowledge extraction, or conversation AI use CVs to classify

entities and objects in text or speech recognition

Ksenia Zaytseva and Matej Ďurčo (2020). Controlled Vocabularies and SKOS. Version 1.1.0. Edited by Matej Ďurčo and Tanja Wissik.

DARIAH-Campus. [Training module]. https://campus.dariah.eu/id/D8d6OrLdpLlGRqBSQDVN0

https://campus.dariah.eu/id/D8d6OrLdpLlGRqBSQDVN0

Vocabulary platform

● A vocabulary platform is an integrated system designed to manage, publish

and provide access to controlled vocabularies used in the organisation and

classification of knowledge.

● These platforms facilitate the search and

navigation of terms through intuitive and

multilingual web interfaces, and often include

APIs for integration with other applications.

Ksenia Zaytseva and Matej Ďurčo (2020). Controlled Vocabularies and SKOS. Version 1.1.0. Edited by Matej Ďurčo and Tanja Wissik.

DARIAH-Campus. [Training module]. https://campus.dariah.eu/id/D8d6OrLdpLlGRqBSQDVN0

https://campus.dariah.eu/id/D8d6OrLdpLlGRqBSQDVN0

SKOSMOS

● Skosmos is an open source tool developed for

publishing controlled vocabularies represented according

to the SKOS (Simple Knowledge Organisation System)

model.

● Skosmos offers a multilingual web interface that

enables the navigation and search of concepts through

labels and semantic relations.

● The system architecture is based on a SPARQL endpoint

for data storage and uses the Twig template engine to

render the user interface.

● The system also supports a REST API for integration with

other applications, enabling the use of vocabularies in

annotation or cataloguing systems.

https://api.finto.fi/doc/

https://api.finto.fi/doc/

SSHOC Multilingual Data Stewardship Terminology

https://vocabs.sshopencloud.eu/browse/sshocterm/en/

https://vocabs.sshopencloud.eu/browse/sshocterm/en/

ROSSIO
https://vocabs.rossio.fcsh.unl.pt/pub/tesauro/en/page/c_0c97cab4?clang=pt

https://vocabs.rossio.fcsh.unl.pt/pub/tesauro/en/page/c_0c97cab4?clang=pt

Web Ontology Language (OWL)

● We have looked at ontologies in the abstract but how

do we actually develop ontologies for the Semantic

Web that we can publish and re-use?

● Answer: We use OWL a knowledge representation

language for the semantic web that is built on top of
RDF(S)

● ...or rather it’s a family of such languages

● The latest version is called OWL2 and was released

as a W3C recommendation in late 2009

● Based on previous knowledge representation

languages including the DARPA funded DAML

Jessie Eastland, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia

Commons

Types of OWL

● OWL comes in three main flavours (in order of increasing expressivity):

○ OWL Lite: intended for creating lightweight ontologies, e.g., classification

hierarchies, easier to provide tool support

○ OWL DL: boasts the maximum expressivity without incurring nasty

computational properties such as undecidability. DL stands for

Description Logic. Reasoners for OWL DL are slower than those for OWL

Lite.

○ OWL Full: More expressive but without certain computational guarantees

The Features of OWL

● OWL allows us to add logical constraints to the definition of classes and

properties. The idea is that these constraints can be automatically checked

by OWL-compatible ontology modelling tools

● OWL also gives us the following very useful properties:

○ owl:sameAs (two individuals are the same) and owl:differentFrom

(two individuals are different)

■ dbr:Leonardo_da_Vinci owl:sameAs dbpedia-ja:レオナル
ド・ダ・ヴィンチ

■ dbr:Leonardo_davincii owl:differentFrom

dbr:Leonardo_da_Vinci

○ owl:equivalentClass (two classes are the same)

The Features of OWL

● OWL allows us to define our own properties and they can be of two types:

○ Object properties: binary relations holding between instances of

classes

■ dbr:Lisbon dbo:country dbr:Portugal

○ Datatype properties: binary relations between class instances and

RDF literals

■ dbr:Lisbon dbp:name “Lisbon”@en

■ dbr:Lisbon dbo:populationTotal

"544851"^^xsd:nonNegativeInteger

The Features of OWL

● OWL also allows us to specify the transitivity and symmetry of properties

○ Transitivity: ancestorOf, i.e., if A ancestorOf B and B ancestorOf C,

then A ancestorOf C

○ Symmetry: isSiblingOf
■ dbpedia:Noel_Gallagher ex:isSiblingOf dbpedia:Liam_Gallagher
■ dbpedia:Liam_Gallagher ex:isSiblingOf dbpedia:Noel_Gallagher

● And to constrain roles to be functional (if aRb and aRc then b=c) and inverse functional (if

bRa and cRa then b=c),

○ Functional: populationTotal

■ dbr:Lisbon dbp:populationTotal 544851

● We can also specify that one property is the inverse of another (if aRb then bR¯a)

○ e.g., hasFather and isFatherOf

The Features of OWL

● OWL also allows us to encode the restrictions allValuesFrom and someValuesFrom

:Person rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :hasPet ;

owl:allValuesFrom :Animal

] .

:Person rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :hasPet ;

owl:someValuesFrom :Animal

] .

The Features of OWL

● OWL also allows us to encode the restrictions allValuesFrom and someValuesFrom

:Person rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :hasPet ;

owl:allValuesFrom :Animal

] .

:Person rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :hasPet ;

owl:someValuesFrom :Animal

] .

A person is a kind of

thing who can only
have an animal as

pet

The Features of OWL

● OWL also allows us to encode the restrictions allValuesFrom and someValuesFrom

:Person rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :hasPet ;

owl:allValuesFrom :Animal

] .

:Person rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :hasPet ;

owl:someValuesFrom :Animal

] .

A person is a kind of

thing who has at
least one Animal as

pet

The Features of OWL

● OWL also allows us to encode the following property restrictions
○ owl:cardinality, owl:maxCardinality, and owl:minCardinality

:Person rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :hasParent ;

owl:cardinality "2"^^xsd:nonNegativeInteger

] .

■ :Person rdfs:subClassOf [rdf:type owl:Restriction ;
owl:onProperty :hasParent ; owl:maxCardinality
"2"^^xsd:nonNegativeInteger] .

■ :Person rdfs:subClassOf [rdf:type owl:Restriction ;
owl:onProperty :hasParent ;owl:minCardinality
"1"^^xsd:nonNegativeInteger] .

A person is a kind of

thing who has two
parents

The Features of OWL

● OWL also allows us to encode the following property restrictions
○ owl:cardinality, owl:maxCardinality, and owl:minCardinality

:Person rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :hasParent ;

owl:cardinality "2"^^xsd:nonNegativeInteger

] .

■ :Person rdfs:subClassOf [rdf:type owl:Restriction ;
owl:onProperty :hasParent ; owl:maxCardinality
"2"^^xsd:nonNegativeInteger] .

■ :Person rdfs:subClassOf [rdf:type owl:Restriction ;
owl:onProperty :hasParent ;owl:minCardinality
"1"^^xsd:nonNegativeInteger] .

A person is a kind of

thing with at most
two and at least one

parents

The Features of OWL

● OWL also allows us to encode the following property restrictions

○ owl:qualifiedcardinality, owl:maxQualifiedCardinality,

and owl:minQualifiedCardinality

● Take home message, we can define all kinds of constraints on how classes

and properties should be understood with respect to other classes and

properties -- these can be automatically checked

● How do we get computers to check these are valid in a particular ontology?

OWL Tools

● There exist numerous reasoners (FaCT++, HermiT, Pellet, and Racer) and

ontology editors including the NeOn toolkit, TopBraid (a commercial

product) and the Fluent Editor (which uses Controlled Natural Language in

its interface) for OWL

● To date the most popular tool for OWL is Stanford University’s Protégé, a

free open source ontology editor

● The reasoners mentioned above are included with Protégé

Closed vs Open World

● OWL and (many other knowledge engineering languages) make the open

world assumption, and it’s important to know what this is.

● It basically means that the failure to derive a statement from our

ontology does not allow us to assume its falsity

○ E.g., if we can only derive one instance of the relation hasChild with

Donald as subject, i.e., hasChild(donald, ivanka), this doesn’t mean

that Donald has only one child...unless we have made this explicit

elsewhere in the ontology

Closed vs Open World

● The closed world assumption would allow us to make this inference

without further knowledge; databases usually make this assumption for

example, neither does the logic programming language PROLOG

● This assumption means that reasoning with OWL isn’t always as intuitive

as we would like and sometimes its better to find additional ways of

adding constraints on RDF datasets that can be automatically checked

● One increasing popular way to do this is to use the Shapes Query

Language (SHACL)

○ But this would take us too far off topic!

Domain Ontologies: OntoLex-Lemon

● We have already looked at some top level ontologies, one interesting example of

a domain ontology is OntoLex-Lemon, used for creating lexical resources.

● OntoLex is a modular ontology that includes a core module as well as others,

which we will look at in detail in the next lesson (where I will show how to use the

different classes and properties it contains)

● In this part of the lesson I want to look at OntoLex core module as a resource, as

an OWL ontology

● We will see how the core is defined using the OWL language, using some of the

OWL constructs we have just seen

● This is useful in order to know how to re-use the classes and properties in

OntoLex

We would like each

individual Lexical Entry to
have at most one lemma
(defined via the property

canonicalForm)

We would like each

individual Lexical Entry to
have at most one lemma
(defined via the property

canonicalForm)

We would like each

individual Lexical Entry to
be associated with at

most one Form (via the

property lexicalForm)

We would like each

individual Lexical Entry to
have at most one lemma
(defined via the property

canonicalForm)

We would like each

individual Lexical Entry to
be associated with at

leave one Form (via the

property lexicalForm)

We can make this an

OWL axiom in the file
defining OntoLex

<http://www.w3.org/ns/lemon/ontolex#LexicalEntry> a owl:Class ;

rdfs:label "leksikale inskrywing"@af, "Lexikoneintrag"@de, "lexical entry"@en, "словарная
единица"@ru ;

rdfs:subClassOf owl:Thing, [a owl:Restriction ;

owl:onProperty <http://www.w3.org/ns/lemon/ontolex#canonicalForm> ;

owl:onClass <http://www.w3.org/ns/lemon/ontolex#Form> ;

owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger

], [a owl:Restriction ;

owl:onProperty <http://www.w3.org/ns/lemon/ontolex#lexicalForm> ;

owl:onClass <http://www.w3.org/ns/lemon/ontolex#Form> ;

owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger

] ;

rdfs:comment "A lexical entry represents[…]."@en; rdfs:isDefinedBy

<http://www.w3.org/ns/lemon/ontolex> .

http://www.w3.org/ns/lemon/ontolex

<http://www.w3.org/ns/lemon/ontolex#LexicalEntry> a owl:Class ;

rdfs:label "leksikale inskrywing"@af, "Lexikoneintrag"@de, "lexical entry"@en, "словарная
единица"@ru ;

rdfs:subClassOf owl:Thing, [a owl:Restriction ;

owl:onProperty <http://www.w3.org/ns/lemon/ontolex#canonicalForm> ;

owl:onClass <http://www.w3.org/ns/lemon/ontolex#Form> ;

owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger

], [a owl:Restriction ;

owl:onProperty <http://www.w3.org/ns/lemon/ontolex#lexicalForm> ;

owl:onClass <http://www.w3.org/ns/lemon/ontolex#Form> ;

owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger

] ;

rdfs:comment "A lexical entry represents[…]."@en; rdfs:isDefinedBy

<http://www.w3.org/ns/lemon/ontolex> .

http://www.w3.org/ns/lemon/ontolex

We would like each

Lexical Sense to be the
sense of one Lexical
Entry (via isSenseOf)

We would like each

Lexical Sense to be the
sense of one Lexical
Entry (via isSenseOf)

We would like each

Lexical Sense to have
ontological reference (via

reference)

<http://www.w3.org/ns/lemon/ontolex#LexicalSense>

a owl:Class ;

rdfs:label "leksikale sin"@af, "lexikalischer Sinn"@de, "lexical sense"@en, "лексический
смысл"@ru ;

rdfs:subClassOf owl:Thing, [a owl:Restriction ;

owl:onProperty <http://www.w3.org/ns/lemon/ontolex#isSenseOf> ;

owl:onClass <http://www.w3.org/ns/lemon/ontolex#LexicalEntry> ;

owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger

], [

a owl:Restriction ;

owl:onProperty <http://www.w3.org/ns/lemon/ontolex#reference> ;

owl:cardinality "1"^^xsd:nonNegativeInteger

] ;

rdfs:comment "A lexical sense represents […]"@en ;

rdfs:isDefinedBy <http://www.w3.org/ns/lemon/ontolex> .

http://www.w3.org/ns/lemon/ontolex

<http://www.w3.org/ns/lemon/ontolex#LexicalSense>

a owl:Class ;

rdfs:label "leksikale sin"@af, "lexikalischer Sinn"@de, "lexical sense"@en, "лексический
смысл"@ru ;

rdfs:subClassOf owl:Thing, [a owl:Restriction ;

owl:onProperty <http://www.w3.org/ns/lemon/ontolex#isSenseOf> ;

owl:onClass <http://www.w3.org/ns/lemon/ontolex#LexicalEntry> ;

owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger

], [

a owl:Restriction ;

owl:onProperty <http://www.w3.org/ns/lemon/ontolex#reference> ;

owl:cardinality "1"^^xsd:nonNegativeInteger

] ;

rdfs:comment "A lexical sense represents […]"@en ;

rdfs:isDefinedBy <http://www.w3.org/ns/lemon/ontolex> .

http://www.w3.org/ns/lemon/ontolex

We would like the sense

property to be inverse
functional (each sense
has a unique Lexical

Entry)

We would like the sense

property to be inverse
functional (each sense
has a unique Lexical

Entry)

We would like the domain

of the sense to be Lexical
Entry and the range to be

Lexical Sense

We would also like sense

to be the inverse of the
property isSenseOf

<http://www.w3.org/ns/lemon/ontolex#sense>

a owl:ObjectProperty, owl:InverseFunctionalProperty ;

rdfs:label "sinne"@af, "Sinn"@de, "sense"@en, "acepción"@es, "signification"@fr, "senso"@it,

"zin"@nl, "sentido"@pt, "sens"@ro, "betydelse"@sv, "смысл"@ru ;

rdfs:comment "The 'sense' property relates a lexical entry to one of its lexical senses.
"@en, "Свойство 'смысл' связывает словарную единицу с одним из ее лексических смыслов."@ru ;

rdfs:isDefinedBy <http://www.w3.org/ns/lemon/ontolex> ;

rdfs:domain <http://www.w3.org/ns/lemon/ontolex#LexicalEntry> ;

rdfs:range <http://www.w3.org/ns/lemon/ontolex#LexicalSense> ;

owl:inverseOf <http://www.w3.org/ns/lemon/ontolex#isSenseOf> .

<http://www.w3.org/ns/lemon/ontolex#sense>

a owl:ObjectProperty, owl:InverseFunctionalProperty ;

rdfs:label "sinne"@af, "Sinn"@de, "sense"@en, "acepción"@es, "signification"@fr, "senso"@it,

"zin"@nl, "sentido"@pt, "sens"@ro, "betydelse"@sv, "смысл"@ru ;

rdfs:comment "The 'sense' property relates a lexical entry to one of its lexical senses.
"@en, "Свойство 'смысл' связывает словарную единицу с одним из ее лексических смыслов."@ru ;

rdfs:isDefinedBy <http://www.w3.org/ns/lemon/ontolex> ;

rdfs:domain <http://www.w3.org/ns/lemon/ontolex#LexicalEntry> ;

rdfs:range <http://www.w3.org/ns/lemon/ontolex#LexicalSense> ;

owl:inverseOf <http://www.w3.org/ns/lemon/ontolex#isSenseOf> .

<http://www.w3.org/ns/lemon/ontolex#sense>

a owl:ObjectProperty, owl:InverseFunctionalProperty ;

rdfs:label "sinne"@af, "Sinn"@de, "sense"@en, "acepción"@es, "signification"@fr, "senso"@it,

"zin"@nl, "sentido"@pt, "sens"@ro, "betydelse"@sv, "смысл"@ru ;

rdfs:comment "The 'sense' property relates a lexical entry to one of its lexical senses.
"@en, "Свойство 'смысл' связывает словарную единицу с одним из ее лексических смыслов."@ru ;

rdfs:isDefinedBy <http://www.w3.org/ns/lemon/ontolex> ;

rdfs:domain <http://www.w3.org/ns/lemon/ontolex#LexicalEntry> ;

rdfs:range <http://www.w3.org/ns/lemon/ontolex#LexicalSense> ;

owl:inverseOf <http://www.w3.org/ns/lemon/ontolex#isSenseOf> .

Summary and Take Away Message

● Take away message (even if you don’t quite follow the technical details):

OWL can be used to describe the meaning of different classes and properties

in an ontology in a machine actionable way.

● Further details on OWL and how to use it can be found in the Protégé pizza

tutorial, which exists in several versions, I like this updated one:

○ https://www.michaeldebellis.com/post/new-protege-pizza-tutorial

https://www.michaeldebellis.com/post/new-protege-pizza-tutorial

	Slide 1: Linguistic Linked Open Data for Humanists
	Slide 2: Exploring the Semantic Web Stack
	Slide 3:
	Slide 4: The Semantics of the Semantic Web
	Slide 5: The Semantics of the Semantic Web
	Slide 6: Semantic Artifacts
	Slide 7: Kinds of Semantic Artifacts
	Slide 8: Kinds of Semantic Artifacts
	Slide 9: Taxonomies, Folksonomies, Personomies and Thesauri
	Slide 10: Taxonomies, Folksonomies, Personomies and Thesauri
	Slide 11: Useful Semantic Web Taxonomies and Thesauri
	Slide 12: Focus on: Princeton WordNet
	Slide 13: Synsets
	Slide 14: Beyond English: the Open Multilingual WordNet project
	Slide 15: WordNets in Linked (Open) Data
	Slide 16: What are Ontologies?
	Slide 17: What are Ontologies?
	Slide 18: What are Ontologies Used for?
	Slide 19: What are Ontologies Used for?
	Slide 20: What are Ontologies Made Out Of?
	Slide 21: Excursus: Differences between Ontologies/Taxonomies
	Slide 22: Excursus: Differences between Ontologies/Taxonomies
	Slide 23: Excursus: Differences between Ontologies/Taxonomies
	Slide 24: Top-Level Ontologies
	Slide 25: Top-Level Ontologies Semantic Artifacts
	Slide 26: Some Useful Top Level SAs
	Slide 27: Some Useful Top Level SAs
	Slide 28: Dublin Core
	Slide 29: Dublin Core Categories
	Slide 30: Dublin Core Categories Ctd
	Slide 31: Dublin Core Categories Ctd
	Slide 32: Dublin Core
	Slide 33: Dublin Core - Your Turn
	Slide 34: Friend of a Friend (FOAF)
	Slide 35: Friend of a Friend (FOAF)
	Slide 36: Friend of a Friend (FOAF)
	Slide 37: Schema.org
	Slide 38: Schema.org
	Slide 39: DCAT
	Slide 40: CIDOC CRM
	Slide 41: CIDOC CRM
	Slide 42: CIDOC CRM
	Slide 43: CIDOC CRM
	Slide 44: CIDOC CRM
	Slide 45: CIDOC CRM
	Slide 46: VIAF, DBpedia, and Wikidata
	Slide 47: VIAF
	Slide 48: DBpedia and Wikidata
	Slide 49: Wikidata
	Slide 50: Wikidata
	Slide 51: Useful Semantic Artifacts on the LLOD Cloud
	Slide 52: Useful Semantic Artifacts on the LLOD Cloud
	Slide 53: Search Engines/Repositories
	Slide 54: Exploring the Semantic Web Stack A second tutorial on SPARQL (with Wikidata)
	Slide 55: Returning to SPARQL
	Slide 56: First Wikidata Query
	Slide 57: SERVICE
	Slide 58: Updated Wikidata Query
	Slide 59: Property Paths
	Slide 60: Exercise
	Slide 61: Exercise
	Slide 62: An Alternative
	Slide 63: BIND, BOUND, IF
	Slide 64: Query
	Slide 65: First Part
	Slide 66: Second Part
	Slide 67: QUERY
	Slide 68: QUERY
	Slide 69: Exploring the Semantic Web Stack
	Slide 70: SKOS
	Slide 71: SKOS
	Slide 72: SKOS
	Slide 73: SKOS-XL
	Slide 74: Controlled vocabularies
	Slide 76: Types of CV
	Slide 77: Vocabulary platform
	Slide 78: SKOSMOS
	Slide 79: SSHOC Multilingual Data Stewardship Terminology
	Slide 80: ROSSIO
	Slide 81: Web Ontology Language (OWL)
	Slide 82: Types of OWL
	Slide 83: The Features of OWL
	Slide 84: The Features of OWL
	Slide 85: The Features of OWL
	Slide 86: The Features of OWL
	Slide 87: The Features of OWL
	Slide 88: The Features of OWL
	Slide 89: The Features of OWL
	Slide 90: The Features of OWL
	Slide 91: The Features of OWL
	Slide 92: OWL Tools
	Slide 93: Closed vs Open World
	Slide 94: Closed vs Open World
	Slide 95: Domain Ontologies: OntoLex-Lemon
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 115: Summary and Take Away Message

