
Linguistic Linked Open Data for Humanists

Anas Fahad Khan, Giulia Pedonese, Michele Mallia

Image: Di Galak76 - Opera propria, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1206973

Lisbon Summer School in Linguistics, July 1-5, 2024

But first….

An Introduction to Linked

(Open) Data and the Semantic

Web

What is Linked Data?

● A means of publishing structured, interlinked data

by making use of standard web technologies such

as HTTP, XML and URIs

● Linked data (LD) is intended to be queried

semantically (we will explain what this means as we

go on) and it offers the possibility of querying across

different datasets at the same time remotely

● It has been around since 2006 and has become a

very popular way of sharing, accessing and

querying data in a number of different

disciplines…and has recently begun to make inroads

in the humanities too

What is Linked Data?

● Unlike standard HTML web pages, linked data datasets are meant to be

easier to process by machines

● HTML markup usually annotates the visual appearance of pages whereas

with linked data we’re interested in marking up the meaning/semantics of

our data

● With linked data we are encouraged to add links from our data to other

linked data datasets (linked data, it’s in the name :))

● Linked Data relies heavily on shared standards, including shared

vocabularies, in order to ensure the maximum of interoperability

But what is the Semantic Web?

● Linked Data is part of the movement towards a Semantic Web,

the next step on from the existing web, as proposed by Tim

Berners-Lee the inventor of the World Wide Web:

I have a dream for the Web [in which computers] become

capable of analysing all the data on the Web – the content, links,

and transactions between people and computers. A "Semantic

Web", which makes this possible, has yet to emerge, but when it

does, the day-to-day mechanisms of trade, bureaucracy and our

daily lives will be handled by machines talking to machines. The

"intelligent agents" people have touted for ages will finally

materialise.

"Tim Berners-Lee" by Uldis Bojārs is licensed under CC BY-SA 2.0.

Differences between the Semantic Web and Linked Data?

● The Semantic Web: a vision of the World Wide Web in

which web documents are structured in such a way that

computers can can process them according to their

contents (hence ‘semantic’)

● The Semantic Web is promoted by the Worldwide Web

Consortium (W3C) and is being implemented through

the use of common, open standards for data and for

exchange protocols.

● Linked Data is one of the ways of making the vision of

the Semantic Web a reality

First Definitions

● Linked Data is data published on the World Wide
Web that obeys the following principles:
○ 1. Use Uniform Resource Identifiers (URIs)

as names for things.
○ 2. Use HTTP URIs so that people can look up

those names.
○ 3. When someone looks up a URI, provide

useful information.
○ 4. Include links to other URIs. so that they

can discover more things.
● Linked Open Data: Linked Data published with an

open license

"World Wide Web Around Wikipedia" by Center for Image

in Science and Art _ UL is licensed under CC BY-SA 2.0.

https://www.flickr.com/photos/42873702@N05/4456386063
https://www.flickr.com/photos/42873702@N05
https://www.flickr.com/photos/42873702@N05
https://creativecommons.org/licenses/by-sa/2.0/?ref=openverse

First Definitions

These four principles were simplified and distilled by Tim Berners Lee himself into

the following three:

1. All kinds of conceptual things, they have names now that start with HTTP.

2. If I take one of these HTTP names and I look it up...I will get back some data

in a standard format which is kind of useful data that somebody might like

to know about that thing, about that event.

3. When I get back that information it's not just got somebody's height and

weight and when they were born, it's got relationships. And when it has

relationships, whenever it expresses a relationship then the other thing that

it's related to is given one of those names that starts with HTTP.

Standards for the Semantic Web

• The Semantic Web is based on a stack of open standards, with those

higher up on the stack dependent on those below them.

• At the very bottom we have the use of Uniform Resource Identifiers

(URIs) and the UNICODE character set

• Then the use of XML as a common serialisation format

• Next the use of RDF as a common data interchange framework

(specifies organisation of data at an abstract level). Then we come to

RDFS, another formal language for creating taxonomies.

• Then we come to OWL and SPARQL

The Semantic Web Stack

Why Linked Data?

● It helps to resolve the problem of data

silos: the problem of information being

stored in isolated databases making it

difficult to access and integrate or to

query across different datasets.

● Linked data enables different datasets to

be interconnected, breaking down silos

and enabling integrated access to data

from multiple sources.

"silos" by dsearls is licensed under CC BY 2.0.

https://www.flickr.com/photos/52614599@N00/5500714140
https://www.flickr.com/photos/52614599@N00
https://creativecommons.org/licenses/by/2.0/?ref=openverse

Why Linked Data?

● Integrating data from disparate sources can be complex due to the

diversity of formats and standards (some of these formats very discipline

specific).

○ Linked data helps to make data more interoperable by using common standards (like

RDF) and facilitating easier integration and interoperability across different systems and

organisations by making shared vocabularies and ontologies available for use

across disciplines.

● Data is often reused inefficiently, leading to duplication of effort.

○ Linked data encourages data reuse and enrichment and makes it easier for users to

build on existing data rather than starting from scratch.

The Linked Open Data Cloud

The Linked Open Data Cloud

● A visualisation of the accessible linked open data

datasets as a massive RDF knowledge graph (a

‘cloud’); it can be found at https://lod-cloud.net/

● Periodically regenerated (you can track the growth

of the cloud by looking at previous versions of the

diagram)

● The cloud is partitioned into a number of different

subject areas (corresponing to node colours)

https://lod-cloud.net/

The Linked Open Data Cloud

● The cloud is partitioned into a number of different subject areas (ctd on next

slide):
○ Cross-Domain: Datasets that span multiple subject areas and can be used in various

contexts.

○ Government: Datasets related to public administration, policies, and government operations.

○ Publications: Information from academic papers, books, journals, and other forms of

literature. This includes bibliographic data, citation networks, and publishing metadata.

○ Life Sciences: Data pertaining to biology, medicine, and healthcare.

○ Geography: Geographic information and spatial data, such as maps, geographic features,

locations, and geospatial datasets.

The Linked Open Data Cloud

● The cloud is partitioned into a number of different subject areas (ctd from

previous slide):
○ Social Media: Data from social networking sites, blogs, and other social media platforms. This

includes user profiles, interactions, and social network graphs.

○ User-Generated Content: Information created and shared by users on various platforms. This

includes reviews, comments, wikis, and other forms of collaborative content.

○ Media: Information related to audio, video, images, and other multimedia content. This

includes metadata about media files, usage data, and content descriptions.

○ Scholarly Data: Academic and research data, including research projects, experimental

results, and academic collaborations.

○ Linguistics: Data related to language, such as lexicons, thesauri, language resources, and

linguistic annotations.

The Linked Open Data Cloud

● The cloud is partitioned into a number of different subject areas (ctd from

previous slide):
○ Social Media: Data from social networking sites, blogs, and other social media platforms. This

includes user profiles, interactions, and social network graphs.

○ User-Generated Content: Information created and shared by users on various platforms. This

includes reviews, comments, wikis, and other forms of collaborative content.

○ Media: Information related to audio, video, images, and other multimedia content. This

includes metadata about media files, usage data, and content descriptions.

○ Scholarly Data: Academic and research data, including research projects, experimental

results, and academic collaborations.

○ Linguistics: Data related to language, such as lexicons, thesauri, language resources, and

linguistic annotations.

The Linguistic Linked Open Data (LLOD) Cloud

● That part of the LOD cloud dedicated to language
resources

● The datasets in the LLOD cloud are classified into
the following categories:

○ Corpora (and Linguistic Annotations)
○ Lexica and Dictionaries
○ Terminologies, Thesauri and Knowledge Bases

○ Linguistic Resource Metadata
○ Linguistic Data Categories
○ Typological Databases
○ Other

● We will describe these categories and the make-up
of the cloud in detail in further lessons

● Your data too could become part of the LLOD
cloud!

Exploring the
Semantic Web
Stack

"W3c semantic web stack" is licensed under CC BY 2.5.

https://commons.wikimedia.org/w/index.php?curid=721386
https://creativecommons.org/licenses/by/2.5/?ref=openverse

Exploring the
Semantic Web
Stack

"W3c semantic web stack" is licensed under CC BY 2.5.

https://commons.wikimedia.org/w/index.php?curid=721386
https://creativecommons.org/licenses/by/2.5/?ref=openverse

Uniform Resource Identifiers

• To start off we need a way of identifying people, things, locations, etc, that can be re-used
across datasets

• Uniform Resource Identifiers (URIs) answer the need for uniquely identifying resources
across the whole Semantic Web (global IDs)

○ NB. Resources here aren’t just documents on the web but anything that we want to
describe in a Semantic Web datasets, i.e., Cristiano Ronaldo, the Portuguese
language, Portugal, the number 23,

○ They can also be relationships: located in, bigger than, has name

• URIs are strings that are structured according to a standard schema

○ They are the basis on which the Semantic Web is constructed and give us the most
basic building blocks of our linked data datasets

• Uniform Resource Locators (URLs) are a kind of URI of identifying internet domain
resources:

○ https://clunl.fcsh.unl.pt/en/

https://clunl.fcsh.unl.pt/en/

Uniform Resource Identifiers

• All URI’s follow a set of syntactic rules represented by the following schema:
○ URI = scheme:[//authority]path[?query][#fragment]

■ where scheme can be for instance http or urn

■ authority can include hostnames, domain names and top level domains
such as in www.cnr.it

• URIs should be dereferenceable whenever we enter them in a browser or make a GET
request they should give us back some relevant data :

■ e.g., whenever we enter/click on such a URI in a browser you should get
back a relevant HTML document or automatically download an RDF file

• Ideally URIs should be stable (i,e,, not re-used for different things) and persistent
(be around for the long term)

• We should re-use pre-existing URIs to refer to things and not just randomly invent
new ones

https://www.unive.it/data/33113/2/37330
https://www.unive.it/data/33113/2/37330
https://www.unive.it/data/33113/2/37330
https://www.unive.it/data/33113/2/37330
https://www.unive.it/data/33113/2/37330

Example URIs

• The City of Lisbon:

■ https://dbpedia.org/resource/Lisbon

■ https://www.wikidata.org/wiki/Q597

■ htp://viaf.org/viaf/124321959

■ http://yago-knowledge.org/resource/Lisbon

• The property/relationship of country (‘The country where the
thing is located’)

■ https://dbpedia.org/ontology/country

■ http://www.wikidata.org/entity/P17

https://dbpedia.org/resource/Lisbon
https://www.wikidata.org/wiki/Q597
http://viaf.org/viaf/124321959
http://yago-knowledge.org/resource/Lisbon
https://dbpedia.org/ontology/country
http://www.wikidata.org/entity/P17

URIs vs IRIs vs URNs

● IRIs (Internationalized Resource Identifiers):
○ An IRI is an extended form of a URI that allows a wider range of characters than are allowed

with URIs.

○ Facilitates the use of non-ASCII characters, enabling resource identification in various

languages and scripts.

○ Examples:
■ http://my.dbpedia.org/resource/လစ်စဘွန််းမ ြို့

■ http://pa.dbpedia.org/resource/ਲਿਸਬਨ
● URNs (Uniform Resource Names):

○ A subset of URIs that provides a unique and persistent identifier for a resource, independent

of its location.

○ Focuses on the resource's identity rather than its location.

○ urn:cts:greekLit:tlg0012.tlg001.perseus-grc1

http://my.dbpedia.org/resource/%E1%80%9C%E1%80%85%E1%80%BA%E1%80%85%E1%80%98%E1%80%BD%E1%80%94%E1%80%BA%E1%80%B8%E1%80%99%E1%80%BC%E1%80%AD%E1%80%AF%E1%80%B7
http://pa.dbpedia.org/resource/%E0%A8%B2%E0%A8%BF%E0%A8%B8%E0%A8%AC%E0%A8%A8

Exploring the
Semantic Web
Stack

"W3c semantic web stack" is licensed under CC BY 2.5.

https://commons.wikimedia.org/w/index.php?curid=721386
https://creativecommons.org/licenses/by/2.5/?ref=openverse

Resource Description Framework

● We have URIs as universal IDs for identifying
resources in the Semantic Web (which can be
things in the world, abstract things including
words, events)

● How do use these to describe the world and in
a way that ensures interoperability at all levels
of description?

● The answer is the Resource Description
Framework (RDF)!

● RDF is a standard metamodel for data
interchange that utilises the linking structure
of the World Wide Web via URIs

● All linked data resources adhere to this
standard metamodel

Resource Description Framework

● RDF stipulates that data be structured in the form of
○ (subject, predicate, object) triples,

where the subject and predicate are URI resources identified and the object can
be either a URI resource or a data value (literal).

● RDF literals can be expressed using the ^^ syntax followed by the XSD

datatype.
● A set of RDF triples in an RDF dataset describes a directed, labelled graph

where the predicate relates together the subject and object
● Resources relating together other resources as predicates are called properties

(convention to represent them as labelled arrows)

<http://example.org/country/Portugal><http://example.org/city/Lisbon>

http://example.org/relation/is_located_in

https://dbpedia.org/resource/Portugal

https://dbpedia.org/ontology/capital

https://dbpedia.org/resource/Lisbon

http://dbpedia.org/ontology/populationTotal

544851 (xsd:nonNegativeInteger)

RDF

● RDF is also a vocabulary which gives us a number of built in classes and

properties built-in type property, introduced in the RDF namespace

https://dbpedia.org/resource/Portugal

https://dbpedia.org/ontology/Country

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

RDF

● RDF is also a vocabulary which gives us a number of built in classes and

properties built-in type property, introduced in the RDF namespace

https://dbpedia.org/resource/Portugal

https://dbpedia.org/ontology/Country

rdf:type

Blank Nodes

● We don’t always need to give resources a global identifier

(URI).

● Blank nodes are anonymous resources in RDF and are only

identifiable within a specific RDF graph.

● They can be useful for representing complex data without

cluttering the RDF graph with numerous URIs.

● Blank nodes often act as intermediate nodes connecting

various parts of an RDF structure.

Blank Nodes

http://dbpedia.org/resource/NOVA_University_Lisbon

http://example.org/relation/address

http://example.org/relation/street

http://example.org/relation/city

http://example.org/relation/country

“Avenida de Berna”

https://dbpedia.org/resource/Lisbon

https://dbpedia.org/resource/Portugal

Blank Nodes

● Pros:
○ They simplify RDF models by avoiding unnecessary URIs.
○ Can improve readability and manageability of RDF data (Can be

useful in presenting examples, especially in a classroom setting :))
● Cons:

○ Blank nodes cannot be referenced outside their graph.
○ Identification Issues: Difficult to merge RDF graphs containing blank

nodes.
● Best Practices:

○ Use blank nodes when the identity of the resource is not
important.

○ Avoid excessive use to maintain graph clarity and interoperability.

XSD Datatypes

● XSD (XML Schema Definition) datatypes provide a way to define the data
types of RDF literals.

○ Here xsd stands for http://www.w3.org/2001/XMLSchema

● xsd:string: Represents a sequence of characters.
○ Example: "Hello World"^^xsd:string

● xsd:integer: Represents an integer (can also have nonnegativeinteger).
○ Example: "42"^^xsd:integer

● xsd:decimal: Represents a decimal number.
○ Example: "3.14"^^xsd:decimal

● xsd:boolean: Represents a boolean value.
○ Example: "true"^^xsd:boolean

● xsd:float: Represents a floating point number.
○ Example: "3.14"^^xsd:float

● xsd:double: Represents a double precision floating point number.
○ Example: "2.71828"^^xsd:double

Date and Time XSD Datatypes

● xsd:date: Represents a date (YYYY-MM-DD).
○ Example: "2024-06-21"^^xsd:date

● xsd:time: Represents a time (HH:MM).
○ Example: "14:30:00"^^xsd:time

● xsd:dateTime: Represents a date and time (YYYY-MM-DDTHH:MM).
○ Example: "2024-06-21T14:30:00"^^xsd:dateTime

Language Tags in RDF Literals

● Language tags are used to specify the language of a string literal in RDF.

● Syntax: Literal followed by @ and the language code (e.g., from ISO 639).

● Example:
○ "Olá"@pt (Portuguese)

○ "Hello"@en

○ "Hola"@es

○ "Hallo"@de

○ "你好"@zh

● NB: RDF literals cannot have both an XSD datatype and a language tag

simultaneously.

RDFS

● Resource Description Framework Schema (RDFS) is a
semantic extension of RDF that builds on top of the former
and allows us to begin adding semantics to our data:

○ [RDFS] provides mechanisms for describing groups
of related resources and the relationships between
these resources. … These resources are used to
determine characteristics of other resources, such as
the domains and ranges of properties (source)

● With RDFS we can begin to describe salient things about

classes (sets of things) and properties (relationships

between things) and how they relate to each other classes and
properties; in particular RDFS allows us to specify hierarchies.

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf12-schema/

Defining Classes and Properties

● For instance we can use the rdfs Class resource (http://www.w3.org/2000/01/rdf-

schema#Class or rdfs:Class for short) to define a class and we can also use the rdfs

resource Property (http://www.w3.org/2000/01/rdf-schema#Property or rdfs:Property)to

define a property (a relationship)

● We can additionally use the properties rdfs:subClassOf and rdfs:subPropertyOf to

define subclass and subproperty hierarchies

https://example.com/Person

rdfs:Class

rdf:type

https://example.com/hasName

rdfs:Property

rdf:type

http://www.w3.org/2000/01/rdf-schema

Defining Classes and Properties

● For instance we can use the rdfs Class resource (http://www.w3.org/2000/01/rdf-

schema#Class or rdfs:Class for short) to define a class and we can also use the rdfs

resource Property (http://www.w3.org/2000/01/rdf-schema#Property or rdfs:Property)to

define a property (a relationship)

● We can additionally use the properties rdfs:subClassOf and rdfs:subPropertyOf to

define subclass and subproperty hierarchies

https://example.com/Person

rdfs:Class

rdf:type

rdfs:Property

rdf:type

https://example.com/hasName

http://www.w3.org/2000/01/rdf-schema

RDFS

https://dbpedia.org/resource/Sergio_Mattarella

https://dbpedia.org/ontology/OfficeHolder

rdf:type

rdfs:subClassOf

https://dbpedia.org/ontology/Person

https://dbpedia.org/ontology/Animal

rdfs:subClassOf

Attribuzione: Quirinale.it

https://www.quirinale.it/

RDFS: Domain and Range

Domain: Defines the class that a property applies to; e.g., the

property name of has as domain the class Person. It does

this via the use of the resources domain and range

Range: Defines the class or datatype of the property value;

e.g., the property husband of has as (domain and) range

Person.

rdfs:Property

rdf:type

https://example.com/Person xsd:integer

rdfs:domain rdfs:range

https://example.com/hasAge

RDFS: Comment and Label

rdfs:label: Provides a human-readable name for a

resource.

rdfs:comment: Provides a description of a resource.

https://example.com/Person

rdfs:label

rdfs:comment

rdfs:Class

rdf:type

“Person”@en “A human being”@en

rdfs:label

“Pessoa”@pt

rdfs:comment

“Um ser humano”@pt

Introduction to Serialisations

● So far we have represented our RDF examples as diagrams of graphs

● When it comes to actually producing RDF files in a format that we can store

or browse there are a number of different so called serialisations (or

serialization in American English) we can choose.

● We can choose these on the basis of various criteria including compatibility

with various technologies as well as readability/efficiency of processing.

Introduction to Serialisations

● We will look at the following common serialization formats:
○ RDF/XML

○ N-TRIPLES

○ TURTLE

○ JSON-LD

○ RDF-A

● You can convert between formats in the following site:
○ https://www.easyrdf.org/converter

https://www.easyrdf.org/converter

http://dbpedia.org/resource/Lisbon

“Nova University Lisbon”@en “Universidade Nova de Lisboa”@pt

http://dbpedia.org/resource/NOVA_University_Lisbon

http://dbpedia.org/resource/Jo%C3%A3o_S%C3%A0

%C3%A1gua

rdfs:label rdfs:label

http://dbpedia.org/ontology/city http://dbpedia.org/property/rector

RDF/XML

● Uses XML to represent RDF data.

● Pros:

○ Widely supported.

○ Good for integration with XML-based tools and systems.

● Cons:

○ Verbose and less readable for humans.

RDF/XML

<?xml version="1.0" encoding="utf-8" ?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:ns0="http://dbpedia.org/ontology/"

xmlns:ns1="http://dbpedia.org/property/">

<rdf:Description rdf:about="http://dbpedia.org/resource/NOVA_University_Lisbon">

<rdfs:label xml:lang="en">NOVA University Lisbon</rdfs:label>

<rdfs:label xml:lang="pt">Universidade Nova de Lisboa</rdfs:label>

<ns0:city rdf:resource="http://dbpedia.org/resource/Lisbon"/>

<ns1:rector rdf:resource="http://dbpedia.org/resource/Jo%C3%A3o_S%C3%A0%C3%A1gua"/>

</rdf:Description>

</rdf:RDF>

N-Triples

● Line-based, Plain Text: Each RDF triple on a separate line.

● Pros:
○ Simple and easy to parse.

○ Suitable for large datasets and streaming.

● Cons:
○ Less readable due to lack of abbreviations and prefixes.

N-Triples

<http://dbpedia.org/resource/NOVA_University_Lisbon> <http://www.w3.org/2000/01/rdf-

schema#label> "NOVA University Lisbon"@en .

<http://dbpedia.org/resource/NOVA_University_Lisbon> <http://www.w3.org/2000/01/rdf-

schema#label> "Universidade Nova de Lisboa"@pt .

<http://dbpedia.org/resource/NOVA_University_Lisbon>

<http://dbpedia.org/ontology/city> <http://dbpedia.org/resource/Lisbon> .

<http://dbpedia.org/resource/NOVA_University_Lisbon>

<http://dbpedia.org/property/rector>

<http://dbpedia.org/resource/Jo%C3%A3o_S%C3%A0%C3%A1gua> .

JSON-LD (JSON for Linking Data)

● JSON-based Syntax: Integrates seamlessly with JSON-based systems.

● Pros:
○ Easy to use with web APIs.

○ Embeds RDF in web documents.

● Cons:
○ JSON format might be unfamiliar to some RDF users.

JSON-LD

[
{"@id":"http://dbpedia.org/resource/Jo%C3%A3o_S%C3%A0%C3%A1gua"},
{"@id":"http://dbpedia.org/resource/Lisbon"},
{"@id":"http://dbpedia.org/resource/NOVA_University_Lisbon",

"http://www.w3.org/2000/01/rdf-schema#label":
[

{"@value":"NOVA University Lisbon","@language":"en"},
{"@value":"Universidade Nova de Lisboa","@language":"pt"}

],
"http://dbpedia.org/ontology/city":

[{"@id":"http://dbpedia.org/resource/Lisbon"}],
"http://dbpedia.org/property/rector":

[{"@id":"http://dbpedia.org/resource/Jo%C3%A3o_S%C3%A0%C3%A1gua"}]
}

]

http://dbpedia.org/resource/Jo%C3%A3o_S%C3%A0%C3%A1gua
http://dbpedia.org/resource/Lisbon
http://dbpedia.org/resource/NOVA_University_Lisbon
http://www.w3.org/2000/01/rdf-schema
http://dbpedia.org/ontology/city
http://dbpedia.org/resource/Lisbon
http://dbpedia.org/property/rector
http://dbpedia.org/resource/Jo%C3%A3o_S%C3%A0%C3%A1gua

RDFa (RDF in Attributes)

● XML-based Syntax: Embeds RDF directly into XML based formats, usually in

HTML.

● Pros:
○ Enhances web documents with semantic data.

○ Search engines can parse RDFa for better indexing.

○ Can be used to insert RDF triples inside TEI-XML documents

● Cons:
○ Can make HTML more complex.

TURTLE

● The Terse RDF Triple Language (TURTLE) is the most human readable of the

common serialisation formats adopted for RDF

● It is more readable for several reasons including the possibility of shortening URIs by

defining prefixes at the beginning of turtle documents

● Turtle allows for the same subject, predicate to have more than one object (separated by a

comma)

○ i.e., s p o . s p o’. -> s p o,o’.

● It also allows for the same subject to have more than one predicate object pairs (separated by a

semi-colon)

○ i.e., s p o . s p o’. s p’ o’’ . -> s p o, o’; p’ o’’.

Namespaces

● Namespaces are a method to group related terms and avoid naming

conflicts.

● They are essential for defining URIs in a concise and readable manner.

● A namespace is defined by a URI and a prefix. Prefix declarations are usually

made at the beginning of a file.
○ @prefix ex: <http://example.org/> .

● This defines the prefix ex for the namespace http://example.org/

http://example.org/

Common Namespaces

● RDF: http://www.w3.org/1999/02/22-rdf-syntax-ns#
○ Prefix: rdf:

● RDFS: http://www.w3.org/2000/01/rdf-schema#
○ Prefix: rdfs:

● OWL: http://www.w3.org/2002/07/owl#
○ Prefix: owl:

● XSD: http://www.w3.org/2001/XMLSchema#
○ Prefix: xsd:

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
http://www.w3.org/2001/XMLSchema

<http://dbpedia.org/resource/NOVA_University_Lisbon> <http://www.w3.org/2000/01/rdf-schema#label> "NOVA University
Lisbon"@en .

<http://dbpedia.org/resource/NOVA_University_Lisbon> <http://www.w3.org/2000/01/rdf-schema#label> "Universidade Nova de
Lisboa"@pt .

<http://dbpedia.org/resource/NOVA_University_Lisbon><http://dbpedia.org/ontology/city> <http://dbpedia.org/resource/Lisbon> .

<http://dbpedia.org/resource/NOVA_University_Lisbon> <http://dbpedia.org/property/rector>
<http://dbpedia.org/resource/Jo%C3%A3o_S%C3%A0%C3%A1gua> .

@prefix db: <http://dbpedia.org/resource/> .

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbp: <http://dbpedia.org/property/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

dp:NOVA_University_Lisbon rdfs:label "NOVA University Lisbon"@en .

dp:NOVA_University_Lisbon rdfs:label "Universidade Nova de Lisboa"@pt .

dp:NOVA_University_Lisbon dbo:city db:Lisbon .

dp:NOVA_University_Lisbon dbp:rector db:Jo%C3%A3o_S%C3%A0%C3%A1gua .

http://dbpedia.org/resource/NOVA_University_Lisbon

TURTLE Example

db:NOVA_University_Lisbon rdfs:label "NOVA University Lisbon"@en, "Universidade Nova de Lisboa"@pt;

dbo:city db:Lisbon;

dbp:rector db:Jo%C3%A3o_S%C3%A0%C3%A1gua .

<http://dbpedia.org/resource/NOVA_University_Lisbon> <http://www.w3.org/2000/01/rdf-schema#label> "NOVA University Lisbon"@en .

<http://dbpedia.org/resource/NOVA_University_Lisbon> <http://www.w3.org/2000/01/rdf-schema#label> "Universidade Nova de Lisboa"@pt .

<http://dbpedia.org/resource/NOVA_University_Lisbon><http://dbpedia.org/ontology/city> <http://dbpedia.org/resource/Lisbon> .

<http://dbpedia.org/resource/NOVA_University_Lisbon> <http://dbpedia.org/property/rector> <http://dbpedia.org/resource/Jo%C3%A3o_S%C3%A0%C3%A1gua>
.

http://dbpedia.org/resource/NOVA_University_Lisbon

What Serialisation Should I Use?

● Each of these different serialisations has its own advantages and

disadvantages

● Human Readability: Turtle,

● Machine Efficiency: N-Triples, RDF/XML.

● Integration with Web: JSON-LD, RDFa.

● Best Practice: Use the serialization that best fits your specific needs and

environment .

● We will use Turtle in the rest of the course because it is the most readable of

the common serialisations

Exploring the
Semantic Web
Stack
A first tutorial on

SPARQL

"W3c semantic web stack" is licensed under CC BY 2.5.

https://commons.wikimedia.org/w/index.php?curid=721386
https://creativecommons.org/licenses/by/2.5/?ref=openverse

What is SPARQL?

● Stands for the recursive acroyntm SPARQL Protocol and RDF Query

Language

● As the name suggests it is used as a query language and protocol used to

query RDF data (we can also use it to update RDF datasets)

● W3C standard since 2008.

● Uses: Retrieve and manipulate data stored in RDF format

● The syntax is based on the database query language SQL but also uses

RDF-like syntax:

Why SPARQL? SPARQL Endpoints

● Querying Linked Data: SPARQL is designed specifically for RDF data.

● Flexibility: Can extract information in a flexible way from diverse data

sources.

● Integration: Works well with other semantic web technologies (e.g., RDF,

RDFS, OWL).

● SPARQL endpoint: Web services accepting remote SPARQL queries and

returning results

● One of the most well known SPARQL endpoints is that made available by the

DBPedia node. We will look at this endpoint in this short tutorial

Basic Structure of a SPARQL Query

SELECT: Specifies the variables which we would like to appear in the query

results.

WHERE: Contains triple patterns to be matched against the RDF data .

SELECT ?subject ?predicate ?object

WHERE {

?subject ?predicate ?object.

}

Basic Structure of a SPARQL Query

SELECT: Specifies the variables which we would like to appear in the query

results.

WHERE: Contains triple patterns to be matched against the RDF data .

SELECT *

WHERE {

?subject ?predicate ?object.

}

DBpedia -- the Linked Data Version of Wikipedia

● A project aimed at extracting structured information from
Wikipedia and making this information available on the
Semantic Web.

● Transforms the unstructured data of Wikipedia into structured
linked data in RDF.

● Data is extracted from Wikipedia infoboxes, categories, and
other metadata.

● Offers a SPARQL endpoint for querying the dataset
○ https://www.dbpedia.org/resources/sparql/

● Used for data integration, semantic web applications, and
linked data projects.Supports a variety of applications
including search, data mining, and AI

● Pages available in human readable form too (thanks to content
negotiation)

https://www.dbpedia.org/resources/sparql/

DBpedia First Query

We will look at the first 10 triples in the dataset using the LIMIT keyword:

select * WHERE {?s ?p ?o} LIMIT 10

DBpedia Second Query

Explanation: The basic building block of SPARQL queries, similar to RDF triples

(subject-predicate-object).

select *

{?p <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/City>; <http://dbpedia.org/ontology/country>

<http://dbpedia.org/resource/Portugal>}

DBpedia Second Query

Explanation: The basic building block of SPARQL queries, similar to RDF triples

(subject-predicate-object).

PREFIX dpo: <http://dbpedia.org/ontology/>

PREFIX dpr: <http://dbpedia.org/resource/>

select *

{?p a dpo:City;

dpo:country dpr:Portugal}

USEFUL SPARQL KEYWORDS

FILTER: Restricts the results based on a condition.

OPTIONAL: Includes data if it exists but does not require it for the result.

BIND: Assigns a value to a variable within a query.

UNION: Combines results from multiple graph patterns.

GROUP BY: Groups results by one or more variables.

ORDER BY: Orders the results based on a variable.

LIMIT: Restricts the number of results returned.

OFFSET: Skips a number of results before returning the rest.

DESCRIBE: Returns an RDF graph that describes resources.

ASK: Returns a boolean indicating if a query pattern matches.

CONSTRUCT: Returns an RDF graph constructed from the query results.

ORDER BY

ORDER BY: Orders the results based on a variable.

List all the cities in Portugal and order them on the basis of their population

PREFIX dpo: <http://dbpedia.org/ontology/>

PREFIX dpr: <http://dbpedia.org/resource/>

PREFIX dbp: <http://dbpedia.org/property/>

select ?c ?p

{?c a dpo:City;

dpo:country dbr:Portugal;

dbp:populationTotal ?p

}

ORDER BY DESC(?p)

YOUR TURN

Find all the rivers in Portugal ordered by their length

A Potential Solution

What about this?

PREFIX dpo: <http://dbpedia.org/ontology/>

PREFIX dpr: <http://dbpedia.org/resource/>

PREFIX dbp: <http://dbpedia.org/property/>

select ?r

{?r a dpo:River;

dpo:country dbr:Portugal

}

A Potential Solution

What about this?

PREFIX dpo: <http://dbpedia.org/ontology/>

PREFIX dpr: <http://dbpedia.org/resource/>

PREFIX dbp: <http://dbpedia.org/property/>

select ?r

{?r a dpo:River;

dpo:country dbr:Portugal

}

A Better One!

select ?r

{?r a

<http://dbpedia.org/class/yago/WikicatRiversOfPortugal>

}

Moral: DBpedia

can be a bit

strange

OPTIONAL

OPTIONAL: Includes data if it exists but does not require it for the result.

A list of Portuguese cities and their mottoes (if they have one)

PREFIX dpo: <http://dbpedia.org/ontology/>

PREFIX dpr: <http://dbpedia.org/resource/>

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select ?c ?m

{?c a dpo:City;

dpo:country dbr:Portugal.

OPTIONAL {?c dbo:motto ?m}

}

COUNT

COUNT: Aggregates the number of results matching a pattern.

How many cities are there in Portugal?

PREFIX dpo: <http://dbpedia.org/ontology/>

PREFIX dpr: <http://dbpedia.org/resource/>

PREFIX dbp: <http://dbpedia.org/property/>

select COUNT(?c) AS ?ct

{?c a dpo:City;

dpo:country dbr:Portugal

}

PREFIX yago: <http://dbpedia.org/class/yago/>

select COUNT(?c) AS ?ct

{?c a yago:WikicatCitiesInPortugal

}

AVG

AVG: Calculates the average value of numeric data.

Find the average population of the cities in Portugal:

PREFIX dpo: <http://dbpedia.org/ontology/>

PREFIX dpr: <http://dbpedia.org/resource/>

PREFIX dbp: <http://dbpedia.org/property/>

select AVG(?pcp) AS ?apc

{?pc a dpo:City;

dpo:country dbr:Portugal;

dbp:populationTotal ?pcp

}

UNION

UNION: Combines results from multiple graph patterns.

All the rivers in either Spain or Portugal

SELECT (AVG(?r) as ?a) WHERE {

{

?r a <http://dbpedia.org/class/yago/WikicatRiversOfPortugal>;

}

UNION

{

?r a <http://dbpedia.org/class/yago/WikicatRiversOfSpain>

}

}

YOUR TURN

Find the average length of all rivers in Spain

FILTER

FILTER: Restricts the results based on a condition.

HOW MANY PORTUGUESE CITIES HAVE A POPULATION MORE THAN 10,000?

PREFIX dpo: <http://dbpedia.org/ontology/>

PREFIX dpr: <http://dbpedia.org/resource/>

PREFIX dbp: <http://dbpedia.org/property/>

select COUNT(?c) AS ?cc

{?c a dpo:City;

dpo:country dbr:Portugal;

dbp:populationTotal ?p

FILTER(?p > 10000)

}

FILTER

FILTER: Restricts the results based on a condition.

Give me the names of the Portuguese cities in Arabic

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?city ?arName

WHERE {

?city a dbo:City ;

dbo:country dbr:Portugal ;

rdfs:label ?arName .

FILTER (lang(?arName) = "ar")

}

GROUP BY ?arName

FILTER

FILTER: Restricts the results based on a condition.

Give me the names of Portuguese places starting with ‘Al’

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?place

WHERE {

?place dbo:country dbr:Portugal ;

rdfs:label ?name .

FILTER (strstarts(?name, 'Al'))

}
DISTINCT used to ensure that

the results returned by a query
are unique, eliminating any

duplicate results.

YOUR TURN

Give a list of all Portuguese locations beginning with ‘P’ with their name in English

and their population

HOMEWORK OPTIONAL

THE POWER OF REGEX

All of the DBPedia URIs of names of cities in Portugal with ‘, Portugal’ in the title

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?city

WHERE {

?city a dbo:City ;

dbo:country dbr:Portugal .

FILTER regex(str(?city), ",_Portugal")

}

MORE FILTER

What does the following do?

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?p ?name (YEAR(?birthDate) AS ?birthYear) WHERE {

?p rdf:type <http://dbpedia.org/class/yago/WikicatPortugueseMonarchs> ;

dbp:birthDate ?birthDate;

rdfs:label ?name .

FILTER (datatype(?birthDate) = xsd:date)

FILTER (lang(?name) = "pt")

}

ORDER BY ?birthYear

BIND

BIND: Assigns a value to a variable within a query

Order the list of Portuguese monarchs by their year of birth and classify them on the basis of whether they were also
Spanish and/or Brazilian monarchs

SELECT ?name (YEAR(?birthDate) AS ?birthYear) (BOUND(?spanish) AS ?spanishMonarch)
(BOUND(?brazil) AS ?brazilMonarch) WHERE {

?p rdf:type <http://dbpedia.org/class/yago/WikicatPortugueseMonarchs> ;
dbp:birthDate ?birthDate;

rdfs:label ?name .
FILTER (datatype(?birthDate) = xsd:date)
FILTER (lang(?name) = "pt")
OPTIONAL { ?p rdf:type <http://dbpedia.org/class/yago/WikicatSpanishMonarchs> .
BIND(true AS ?spanish) }
OPTIONAL { ?p rdf:type <http://dbpedia.org/class/yago/WikicatBrazilianMonarchs> .
BIND(true AS ?brazil) }
}
ORDER BY ?birthYear

BIND

Even better

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?name (YEAR(?birthDate) AS ?birthYear) (IF(BOUND(?spanish), "Yes", "No") AS
?spanishMonarch) (IF(BOUND(?brazil), "Yes", "No") AS ?brazilMonarch) WHERE {
?p rdf:type <http://dbpedia.org/class/yago/WikicatPortugueseMonarchs> ;
dbp:birthDate ?birthDate;
rdfs:label ?name .
FILTER (datatype(?birthDate) = xsd:date)
FILTER (lang(?name) = "pt")
OPTIONAL { ?p rdf:type <http://dbpedia.org/class/yago/WikicatSpanishMonarchs> . BIND(true
AS ?spanish) }
OPTIONAL { ?p rdf:type <http://dbpedia.org/class/yago/WikicatBrazilianMonarchs> . BIND(true
AS ?brazil) }
}
ORDER BY ?birthYear

Using Prompting to Write SPARQL Queries

● Confession: I used ChatGPT to help me write some of these queries

● SPARQL is a hard language to maintain fluency in if you don’t use it every

day

● The important thing is to have a basic grasp of the way that the keywords

work

● You can then use prompts to your favourite LLM to help your write your

queries

● BONUS: open up ChatGPT and use prompting to help write SPARQL queries

of your own/use it to help you write some of the queries in the previous

slides/exercises

SPARQL Query Forms

● SELECT: Retrieve specific variables.

● CONSTRUCT: Create RDF graph.

● ASK: Boolean query (true/false).

● DESCRIBE: Retrieve RDF graph about resources.

	Slide 1: Linguistic Linked Open Data for Humanists
	Slide 2
	Slide 3: What is Linked Data?
	Slide 4: What is Linked Data?
	Slide 5: But what is the Semantic Web?
	Slide 6: Differences between the Semantic Web and Linked Data?
	Slide 7: First Definitions
	Slide 8: First Definitions
	Slide 9: Standards for the Semantic Web
	Slide 10: The Semantic Web Stack
	Slide 11: Why Linked Data?
	Slide 12: Why Linked Data?
	Slide 13: The Linked Open Data Cloud
	Slide 14: The Linked Open Data Cloud
	Slide 15: The Linked Open Data Cloud
	Slide 16: The Linked Open Data Cloud
	Slide 17: The Linked Open Data Cloud
	Slide 18: The Linguistic Linked Open Data (LLOD) Cloud
	Slide 20: Exploring the Semantic Web Stack
	Slide 21: Exploring the Semantic Web Stack
	Slide 22: Uniform Resource Identifiers
	Slide 23: Uniform Resource Identifiers
	Slide 24: Example URIs
	Slide 25: URIs vs IRIs vs URNs
	Slide 26: Exploring the Semantic Web Stack
	Slide 27: Resource Description Framework
	Slide 28: Resource Description Framework
	Slide 29
	Slide 30: RDF
	Slide 31: RDF
	Slide 32: Blank Nodes
	Slide 33: Blank Nodes
	Slide 34: Blank Nodes
	Slide 35: XSD Datatypes
	Slide 36: Date and Time XSD Datatypes
	Slide 37: Language Tags in RDF Literals
	Slide 38: RDFS
	Slide 39: Defining Classes and Properties
	Slide 40: Defining Classes and Properties
	Slide 41: RDFS
	Slide 42: RDFS: Domain and Range
	Slide 43: RDFS: Comment and Label
	Slide 44: Introduction to Serialisations
	Slide 45: Introduction to Serialisations
	Slide 46
	Slide 47: RDF/XML
	Slide 48: RDF/XML
	Slide 49: N-Triples
	Slide 50: N-Triples
	Slide 51: JSON-LD (JSON for Linking Data)
	Slide 52: JSON-LD
	Slide 53: RDFa (RDF in Attributes)
	Slide 54: TURTLE
	Slide 55: Namespaces
	Slide 56: Common Namespaces
	Slide 57
	Slide 58: TURTLE Example
	Slide 59: What Serialisation Should I Use?
	Slide 60: Exploring the Semantic Web Stack A first tutorial on SPARQL
	Slide 61: What is SPARQL?
	Slide 62: Why SPARQL? SPARQL Endpoints
	Slide 63: Basic Structure of a SPARQL Query
	Slide 64: Basic Structure of a SPARQL Query
	Slide 65: DBpedia -- the Linked Data Version of Wikipedia
	Slide 66: DBpedia First Query
	Slide 67: DBpedia Second Query
	Slide 68: DBpedia Second Query
	Slide 69: USEFUL SPARQL KEYWORDS
	Slide 70: ORDER BY
	Slide 71: YOUR TURN
	Slide 72: A Potential Solution
	Slide 73: A Potential Solution
	Slide 74: A Better One!
	Slide 75: OPTIONAL
	Slide 76: COUNT
	Slide 77: AVG
	Slide 78: UNION
	Slide 79: YOUR TURN
	Slide 80: FILTER
	Slide 81: FILTER
	Slide 82: FILTER
	Slide 83: YOUR TURN
	Slide 84: THE POWER OF REGEX
	Slide 85: MORE FILTER
	Slide 86: BIND
	Slide 87: BIND
	Slide 88: Using Prompting to Write SPARQL Queries
	Slide 89: SPARQL Query Forms

