

Redox Electrodes for Electrochemical Energy Storage and Thermal Energy Conversion

P. Rupa Ranjani^{a, b, c}, N. Padmanathan^a, Anjali Ashokan ^{a,b,c}, Amit Tanwar ^a, Subhajit Biswas^{b, c}, Justin D. Holmes^{b,c*} and Kafil M. Razeeb^{a*}

^aMicro-Nano System Centre, Tyndall National Institute, Cork T12 R5CP, Ireland., ^bSchool of Chemistry, University College Cork, Cork T12 YN60, Ireland.

^cEnvironmental Research Institute, University College Cork, Cork, T23 XE10, Ireland. Address to correspondences: <u>kafil.mahmood@tyndall.ie</u>; <u>j.holmes@ucc.ie</u>

Introduction to "TRANSLATE"

Research Objective

> Development and optimization of novel electrode materials to enhance the electrochemical and thermal charge storage performance.

Motivation

- Bimetallic selenides are known for their excellent electrical conductivity and enhanced electrochemical activity.
 - Flexible carbon cloth (CC) can provide high mechanical integrity and large surface area.

Schematic representation of sustainable energy conversion from low grade waste heat through nanofluidic channels.

> TRANSLATE – Conversion of waste heat (near room temperature) into electricity.

> Developing novel porous electrodes and functionalised membranes for advanced thermogalvanic cell and thermophoretic design.

> Enhancing the Soret effect to obtain a high thermo-voltage for thermal charge storage application.

Direct integration of metal selenide on conducting substrates increase the electrochemical activity and stability.

Figure. Thermoelectric Measurement system.

Thermocell Characterization

- The thermo-cell is assembled by sandwiching the 1 M NaOH infiltrated celgard separator between two symmetric porous selenide electrodes.
- The thermo-voltage obtained from NS/CC based thermo-cell is -2.3 ± 0.55 mV K⁻¹.
- > The maximum thermo-voltage obtained from NCS/CC based thermo-cell is -3.4 ± 0.3 mV K⁻¹.
- > This results can be further improved by increasing specific surface area and can extended to thermally chargeable supercapacitor application.

Conclusion and Future Work

calculation of Seebeck voltage, S_e.

Future

Conclusion

>NCS/CC shows enhanced electrochemical properties with a high specific capacity of 112 mAhg⁻¹ (893 F g⁻¹) at a current density of 1 A g⁻¹.

► NCS/CC symmetric thermo-cell has been successfully fabricated and a thermo-voltage of -3.4 ± 0.3 mV K⁻¹ is obtained.

From this study, it can be concluded that NS/ACC can be a better choice of porous electrode when compared to metal electrodes for conventional supercapacitor or thermo-cell application.

 \succ This work can be extended to fabricate sustainable ternary metal selenides or sulphides (CuFeSe, NiCuSe etc.,)based chalcogenides for high performance thermo-energy application.

 \succ Further, research on improving thermo-voltage is in progress.

12

