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Ising machines are promising new hardware accelerators
whose use is studied in many space applications, such as
satellite scheduling and trajectory optimization. These ac-
celerators can only solve unconstrained problems, which
makes programming them challenging and unnatural.
Previous studies have revealed that common tricks to en-
code constraints into these unconstrained problems lead
to numeric instabilities and even infeasible solutions.

We propose a solution to both issues by relying on the
well-established paradigm from symbolic artificial intel-
ligence to decouple reasoning and optimization. To that
end, we use an Ising machine (for optimization) in con-
junction with a SAT solver (for reasoning) and develop an
algorithm for the maximum satisfiability problem based
on the implicit hitting set approach. We argue that it is
more natural to use maximum satisfiability as general-
purpose language, prove that our algorithm is guaranteed
to output a feasible solution, and provide a prototype im-
plementation that experimentally shows the advantages
and disadvantages of the approach. In this sense, the pro-
posed algorithm can be seen as a new interface to Ising
machines that avoids the direct use of the quadratic un-
constrained binary optimization problem.

1 Introduction

Many problems in early-stage mission design, the
maintenance of communication infrastructure, and
space logistics are computationally intractable. For in-
stance, designing active derbies removal missions or
missions to the asteroid belt to visit multiple asteroids
requires solutions to variants of the famous Traveling
Salesperson problem (TSP) [1, 2]; tracking space crafts
with the Deep Space Network (DSN) involves various
scheduling problems [3]; and space logistics involves
many classical combinatorial problems such as flow
problems (to model the flow of materiel, services, and
information) and facility location problems (such as
the vertex cover and dominating set problem) [4].

Example 1. As a running example, let us consider (a
simplified version of) the satellite scheduling problem.
For a detailed description of real data, see [3]. We are
given a set S of satellites, a set G of ground stations, a
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set T of discrete time windows, and a set R ⊆ S ×G × T
of communication options, e.g., (s,g, t) ∈ R means that
satellite s could communicate with ground station g at
time t. The goal is to find a schedule X ⊆ R of maximum
size such that no satellite is scheduled twice and such that
no ground station is used twice at the same time, i.e.:

(s,g, t), (s′ , g ′ , t′) ∈ X⇒ (s , s′)∧ (g , g ′ ∨ t , t′).

Due to the increasing number of parties entering
the new space sector, solving problems such as satel-
lite scheduling becomes increasingly important on
ever larger instances. Exact methods often fail to scale
to instances of industrial size and, thus, many re-
searchers have focused on heuristics [5–7].
An alternative are hardware accelerators based on non-
classical hardware. A promising line of research are
Ising machines or Ising processing units (ipus) [8], spe-
cialized chips that compute the ground state of an Ising
model, i.e., a vector (x1, . . . ,xn) ∈ {0,1}n that minimizes

ψ(x1, . . . ,xn) :=
n∑

i=1

wi,ixi +
n∑

i=1

n∑

j=i+1

wi,jxixj + c

for weights wi,j ∈ R and a c ∈ R. The problem of find-
ing the ground state is called quadratic unconstrained
binary optimization (qubo). Ising machines are ex-
plored in many space domains, e.g., active debris re-
moval [9], trajectory optimization [10], near-Earth ob-
ject classification [11], and satellite scheduling [3, 12].

The perhaps best-known ipu is the quantum an-
nealer by D-Wave, which claims to find the ground
state using quantum mechanical effects [13]. But an
Ising machine is not necessarily quantum. For in-
stance, Fujitsu and Toshiba are developing digital an-
nealers based on cmos annealing and the Markov
chain Monte Carlo method [14, 15]. Neuromorphic
hardware such as Intel’s Loihi [16] or ibm’s TrueNorth
system [17] can also be used as an Ising machine [18].

Example 2. In order to solve a problem such as the satel-
lite scheduling problem with an ipu, we have to encode
it as a qubo. Following the notation of Example 1, we
can encode the satellite scheduling problem by building a
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conflict graph G with vertex set V (G) = R and edge set:

E(G) = { (s,g, t), (s′ , g ′ , t′) | (s = s′)∨ (g = g ′ ∧ t = t′) }.

An independent set, i.e., a set S ⊆ V (G) of pairwise non-
adjacent vertices, of G corresponds to a schedule X. The
problem can be encoded as qubo by introducing for every
v ∈ V (G) a variable xv with the semantic xv = 1⇔ v ∈ S.
For a large penalty term ρ, the qubo encoding is:

ψis := −
∑

v∈V (G)

xv

︸      ︷︷      ︸
maximize the size of S

+ ρ
∑

uv∈E(G)

xuxv .

︸           ︷︷           ︸
do not select both endpoints of an edge

The example illustrates some issues with this new
technology. First, the encoding into qubo is some-
what artificial as we are used to encode problems us-
ing constraints. In the example, we were not allowed to
select two adjacent vertices, which we encoded using
the penalty method.
I1 Encodings into qubo require penalty terms.
Penalties lead to numerical errors and reduce the con-
vergence speed. This reinforces the second issue of
Ising machines: They are not optimal, i.e., an ipu is
not guaranteed to output the global minimum.
I2 Ising machines can output suboptimal solutions.

Both issues together imply a third and more se-
vere issue: In order to encode constraints, the penalty
method reasons along the lines of “Every solution that
does not satisfy the constraint sacrifices so much in
the objective function that an optimal solution cannot
afford to falsify the constraint.” However, this reason-
ing does not hold for suboptimal solutions, i.e., an Ising
machine can output infeasible solutions [19]:
I3 Ising machines can output infeasible solutions.

In an application such as satellite scheduling, I2
means a waste of resources, e.g., we could downstream
more data. In contrast, I3 means a loss of data since
multiple satellites would try to communicate with the
same ground station simultaneously. To overcome this
issue, one must apply post-processing to fix unsatis-
fied constraints [19, 20]. This, however, must be done
on a problem-to-problem basis and, hence, Ising ma-
chines are not full general-purpose solvers as one does
not only need to encode the problem but also prepare
dedicated algorithms to fix the solution:
I4 Ising machines are not general-purpose solvers.

1.1 Our Contribution

While issue I2 is strictly bound to the properties of
Ising machines, we tackle issues I1, I3, and I4 by

integrating an Ising machine into established auto-
mated reasoning algorithms. In particular, we develop
the Implicit Ising Hitting Set algorithm (I2HS) by in-
tegrating an Ising machine into the well-known im-
plicit hitting set algorithm for maximum satisfiability.
The matured formalism of max-sat does not suffer
from I1, and we propose a qubo encoding for the hit-
ting set problem that, with a simple post-processing
routine, is guaranteed to produce feasible hitting sets.
Hence, our hybrid algorithm always produces feasible
max-sat solutions and does not suffer from I3.

We supplement our theoretical findings with a pro-
totype implementation using PySAT [21] and the Fixs-
tars Amplify Annealing Engine [22]. Experiments
show that this approach, indeed, always outputs fea-
sible solutions and, furthermore, often produces opti-
mal solutions.

2 Implicit Hitting Sets With IPUs

Instead of using qubo as formalism, we use the well-
established language of maximum satisfiability. The
reader does not need to be familiar with the logi-
cal background (which we briefly introduce) to fol-
low the main idea of the proposed algorithm. We re-
fer to the Handbook of Satisfiability for an introduc-
tion [23]. The input of the maximum satisfiability
problem (max-sat) is a propositional formula in
conjunctive normal form. Each clause has a weight
w ∈ R+ ∪ {∞}, where ∞ indicates a hard constraint,
while the other clauses are soft. The goal is to find
an assignment of the variables to {0,1} such that all
hard clauses are satisfied and such that the sum of the
weights of the satisfied soft clauses is maximized.

Example 3. We denote weighted formulas by notating
the corresponding weights as the exponent of every clause:

φ = (x1 ∨ x2 ∨ x3)2 ∧ (¬x1 ∨ x2)∞ ∧ (x1 ∨¬x2)∞

∧ (¬x1 ∨¬x2)5 ∧ (x1 ∨ x2 ∨¬x3)120 ∧ (x3)100.

The maximum is achieved by setting all variables to 1.

Since max-sat provides soft and hard constraints,
it is easy and natural to encode problems into it. In
particular, it does not suffer from I1.

Example 4. The encoding for the satellite scheduling
problem from Example 2 can be expressed in max-sat:

φis :=
∧

v∈V (G)

(xv)1 ∧
∧

uv∈E(G)

(¬xu ∨¬xv)∞.

We utilize the implicit hitting set algorithm [24],
which famously “decouples” logical reasoning and op-
timization by letting a sat solver extract so-called
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cores (the reasoning part) and by encoding the opti-
mization part into a hitting set instance [25].

We briefly review the main idea: In order to solve
max-sat with the implicit hitting set approach, we
assume that the given formula has the special form
in which all soft clauses are positive unit clauses, i.e.,
they contain exactly one positive literal. This normal
form can easily be achieved by introducing relaxation
variables, e.g., if c is a soft clause c = (¬x) or with
|c| > 1, we replace c with the hard clause (c∨¬r) and
the soft clause (r) of weight w(c) for a fresh variable r.
Let then R be the set of all relaxation variables. Mod-
ern sat solvers can be executed with a set A of literals
as assumptions, which just means that the solver sets
these literals to true. Crucially, if the formula under
some assumptions is not satisfiable, the solver will re-
turn a core e ⊆ A of literals, of which at least one must
be false in any satisfying assignment, i.e., a reason why
the formula is not satisfiable under assumption A.

The implicit hitting set algorithm always assumes
that as many relaxation variables as possible are set
to true under the current knowledge (recall that all
weights are positive, so setting everything to 1 is the
best-case scenario). To that end, the algorithm main-
tains a hypergraphH with vertex setV (H) = R and the
edge set E(H) being the set of extracted cores. Initially,
there are no cores (i.e., E(H) = ∅), and we assume the
best-case scenario that all relaxation variables are set
to true (i.e., A = R). If the sat solver confirms that the
formula is satisfiable under the current assumptions,
we found the optimum and terminate. Otherwise, we
obtain a core e and add it as an edge to H . Since we
want to maximize the number of satisfied clauses, we
want to minimize the number of falsified relaxation
variables. Hence, we need the cheapest way to falsify
at least one element from each core, i.e., we need a set
X ⊆ V (H) with X ∩ e , ∅ for all e ∈ E(H) that mini-
mizes

∑
r∈Xw(r), whereby w(r) denotes in slight abuse

of notation the weight of the soft clause containing r.
Such a set X is called a hitting set of H . We now as-
sume A = R \X and repeat the process until we found
an assumption under which the formula is satisfiable.
It is well-known that this procedure solves max-sat
exactly if an exact hitting set solver is used [25]. It
is also easy to see that we will obtain a heuristic, but
feasible, solution if we compute heuristic hitting sets –
and that is precisely what we will do with an ipu.

3 The I2HS Algorithm

The main ingredient of the I2HS algorithm is an Ising
algorithm to compute hitting sets of small cardinal-
ity. Our qubo-encoding for the hitting set problem
consists of two parts, an optimization part ψ1 and a

penalty part ψ2 to enforce the constraint that every
edge gets hit. The first part is easy, as the objective
of the problem is already in the form of a quadratic
unconstrained binary optimization problem, i.e., we
introduce for every vertex v ∈ V (H) an indicator vari-
able xv with the semantic xv = 1⇔ v ∈ X. We obtain:

ψ1 :=
∑

v∈V (H)

w(v) · xv .

Encoding the constraints that X ∩ e , ∅ for every
e ∈ E(H) is a bit more complicated. We can rephrase
the set intersection as a cardinality constraint:

X ∩ e , ∅⇐⇒
∑

v∈e
xv ≥ 1.

Using a slack variable se with domain {0, . . . , |e| − 1} we
can rewrite the right side as

∑
v∈e xv − se = 1. Follow-

ing Djidjev, we use k := ⌊log2(|e| − 1) + 1⌋ binary vari-
ables se,i to encode se. We then rewrite the equality
constraint as the following quadratic objective [26]:

(∑

v∈e
xv −

k∑

i=0

2ise,i − 1
)2
.

Observe that this expression can evaluate to zero if,
and only if, at least one xv is set to 1. ThatX is a hitting
set can, thus, be encoded using:

ψ2 :=
∑

e∈E(H)

(∑

v∈e
xv −

k∑

i=0

2ise,i − 1
)2
.

To ensure that we optimize the weighted size of the
hitting set while satisfying all constraints (i.e., hitting
all edges), we define a penalty ρ := 1 +

∑
v∈V (H) |w(v)|

and collect the insights of this section as:

Theorem 1. Let H be a hypergraph and ψ1, ψ2, ρ be
defined as above. Then the ground state ofψhs := ψ1+ρψ2
corresponds to a minimum weight hitting set of H .

3.1 Ensuring Feasible Hitting Sets

Solving the hitting set problem using ψhs suffers from
the same issues discussed in the introduction. Due to
I3, an ipu may output a set X ⊆ V (H) that does not
hit all the edges. Fortunately, it is relatively easy to
obtain a set X ′ ⊃ X that is a feasible hitting set using:

Lemma 1. Let H be a hypergraph and X ⊆ V (H) be an
arbitrary vertex set. Let X̃ be a hitting set of the hyper-
graph H̃ with V (H̃) = V (H) \X and E(H̃) = {e ∈ E(H) |
X ∩ e = ∅}. Then X ∪ X̃ is a hitting set of H .

Proof. We need to argue that (X ∪ X̃) ∩ e , ∅ for all
edges e ∈ E(H). This is trivial if X ∩ e , ∅, so assume
otherwise. Then e ∈ {e′ ∈ E(H) | X ∩ e′ = ∅} = E(H̃) and,
since X̃ is an hitting set of H̃ , X̃ ∩ e , ∅.
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The lemma suggests a recursive algorithm that com-
putes a potential hitting set using an ipu (X in the
lemma) and recursively a hitting set of the remaining
hypergraph (X ′). Figure 1 contains the details.

1 input A hypergraph H =
(
V (H),E(H)

)
with weights w : V (H)→ R.

2 output A hitting set X ⊆ V (H).
3

4 algorithm is inghs
(
H = (V (H),E(H))

)

5 if E(H) = ∅ then
6 return ∅
7 X ← hitting set of H using ipu with ψhs
8 if X = ∅ then
9 e← arbitrary element of E(H)

10 v ← arbitrary element of e
11 X ← {v}
12 return X ∪ is inghs

(
(V (H) \X, {e ∈ E(H) | X ∩ e = ∅})

)

Figure 1: A recursive Ising algorithm that computes a hit-
ting set of H using an ipu and ψhs.

Theorem 2. Algorithm isinghs always outputs a feasible
hitting set using at most O(|V (H)|) calls to the ipu.

Proof. We prove by an induction over |E(H)| that
is inghs always outputs a feasible solution. The base
case is given by |E(H)| = 0 and Line 6. For the in-
duction step, we observe that otherwise X , ∅ due
to lines 8–11. Then, by Lemma 1 and the induction
hypothesis, Line 12 outputs a hitting set of H .

Since X is non-empty in every recursive step, the
graph contains no vertex (and thus no edge) after at
most O(|V (H)| recursive calls.

The description of the implicit Ising hitting set al-
gorithm (I2HS) can now be made very short:

Compute the hitting sets in the implicit hitting
set algorithm using isinghs.

4 Results

We implemented a prototype [27] of I2HS based
on PySAT [21] and the Fixstars Amplify Annealing
Engine [22], and performed experiments on a Mac-
Book Pro 2016 with an Apple M1 Max processor and
64 GB of RAM running macOS Sonoma 14.5. Domain-
specific experiments are postponed to the long version
of this article, but we briefly report on benchmarks
from the max-sat evaluation [28]. We assembled a
subset of the instances on which we never produced a
hitting set instance that was too large for the free plan
of the Annealing Engine. The annealer was allowed
to run for 10 seconds per hitting set instance, which
is the maximum possible in the free plan. I2HS found
the optimal solution on 31.25% of the instances, and
an error of at most ten on 52.82% of the instances.
Table 1 presents an excerpt from the results.

Table 1: Some instances of the max-sat evaluation [28].
For each instance, we report the gap to the optimal solution
(0 if we found it), the time (in seconds) spent preparing the
qubos, solving the qubos, the time used by the sat solver,
and the total number of calls to the ipu.

Gap Encoding Annealing SAT #IPU

CSG_wt-CSG40-40-95 1

0 0.0021 25.1218 0.0030 2
max-realizability_wt-power-distribution_9_4

0 0.0044 37.5707 0.0445 3
planning_wt-depot01c

0 0.0989 379.9619 0.0116 38
preference_planning_wt-WCNF_storage_p02

0 0.2588 754.5158 0.6816 56
pseudoBoolean_wt-normalized-factor-size=9-P=397-Q=449

0 0.3756 552.2546 0.0429 45
qcp_wt-file_qc_wcnf_N10_H60_2

0 0.0342 13.2721 0.0142 1
preference_planning_wt-WCNF_pathways_p11

3 0.1256 283.5582 0.0559 18
planning_wt-driverlog01bc

10 0.0108 24.6299 0.0005 1
Security-CriticalCyber-PhysicalComponents_wt-test52–n-15000

29 0.0179 36.8779 0.0128 3
quantum-circuit-portfoliovqe_4_18_rigetti-agave_8

117 0.6591 19.5794 0.1129 1

5 Discussion and Outlook

We presented the I2HS algorithm to solve max-sat
problems heuristically with the help of an Ising ma-
chine. The approach solves various issues associated
with ipus: It is well understood and natural to encode
combinatorial problems into the maximum satisfia-
bility problem (I1); the user does not need to care
about restoring and post-processing, i.e., it is a true
general-purpose algorithm (I4); and the algorithm is
guaranteed to output feasible solutions (I3).

We provide a prototype and showed in first experi-
ments that the approach can solve many max-sat in-
stances optimal or almost optimal. The experiments
also revealed a limitation of the approach (observe
the difference between the time used for annealing
and ten times the number of ipu calls in Table 1):
L1 The communication time with the ipu.

As with other hardware accelerators (e.g., gpus),
communication bandwidth with the ipu is a bottle-
neck, which is exacerbated as Ising machines can cur-
rently almost solely be accessed via cloud services. We
think, however, that this is a temporary issue. Once
Ising machines get cheaper and installed directly into
the user’s device (e.g., Intel Loihi chips [16]), the situ-
ation will improve automatically.

A further research direction is a dynamic scheme for
the annealing time: In our prototype, we always let
the annealer search for 10 seconds. However, this may
be a waste of time on easy hitting set instances at the
beginning of the search and potentially insufficient
to find good hitting sets in large hypergraphs that
emerge later. Thus, changing the annealing time with
the changing hypergraph over time seems promising.
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