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This paper introduces an open source simulator for
packet routing in Low Earth Orbit Satellite Constella-
tions (LSatCs). The simulator, implemented in Python,
supports traditional Dijkstra’s based routing as well as
more advanced learning solutions based on Q-Routing
and Multi-Agent Deep Reinforcement Learning (MA-
DRL) from our previous work. It uses an event-based
approach with the SimPy module to accurately simulate
packet creation, routing and queuing, providing real-time
tracking of queues and latency. The simulator is highly
configurable, allowing adjustments in routing policies,
traffic, ground and space segment topologies, communica-
tion parameters, and learning hyperparameters. Key fea-
tures include the ability to visualize system motion and
track packet paths while considering the inherent uncer-
tainties of such a dynamic system. Results highlight sig-
nificant improvements in end-to-end (E2E) latency using
Reinforcement Learning (RL)-based routing policies com-
pared to traditional methods. The source code, the docu-
mentation and a Jupyter notebook with post-processing
results and analysis are available on GitHub.

1 Introduction

Efficient routing in LSatCs is critical for global connec-
tivity in 6G networks. This requires addressing multi-
ple challenges, including the partial knowledge of the
network at the satellites and their continuous move-
ment, and the time-varying sources of uncertainty
in the system, such as traffic, communication links,
or communication buffers [1]. Traditional routing al-
gorithms are inadequate to address these problems:
They either lack adaptability to network changes or
congest the network with feedback messages. To over-
come these challenges, new algorithms must be devel-
oped, some of them RL-based, which need to be ac-
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Figure 1: Kepler constellation deployed and their corre-
sponding inter-satellite links (ISLs) established following
the Greedy matching with 18 active gateways over the popu-
lation maps [6], where the green tone depends on the pop-
ulation density. Each satellite’s colour is a different orbital
plane.

companied by a robust framework. Python is the best
environment for developing RL-based algorithms due
to its extensive libraries for machine learning, such as
Keras-TensorFlow, PyTorch, NumPy, and Pandas. This
paper introduces an open source MA-DRL Routing
Simulator for satellite networks built in Python, where
these designed algorithms can be implemented and
tested. The simulator supports various routing algo-
rithms, including some Dijkstra’s [2] shortest path-
based and those from our recent works: (1) The Q-
Routing with Q-tables for distributed routing deci-
sions [3], and (2) the MA-DRL first proposed in [4],
which was then further tested and extended to contin-
ual learning with Satellite Federated Learning (SFL)
in [1]. The source code, a Jupyter notebook with some
post-processing results and analysis, and the docu-
mentation for the MA-DRL Routing Simulator are
available on GitHub [5].

2 Simulator architecture

The event-based simulation environment was devel-
oped in Python using the SimPy module, chosen for its
effectiveness in discrete event modeling [7]. Time in
the simulator progresses by jumping from one sched-
uled event to the next, rather than continuously. Each
action, including creating, routing, and queueing of
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Figure 2: Input-Output MA-DRL Routing Simulator workflow.

individual data packets, is explicitly simulated as a
SimPy event, providing accurate real-time tracking of
queues and latency. Packets are unique entities (ob-
jects) existing from creation at a generating gateway
until they arrive at the destination gateway. The trans-
mission time is calculated based on the packet size
and current link rates, propagation time based on the
exact distance between transmitter and receiver at
transmission time, and queue time based on the time
a packet spends in the queue. This detailed level of
simulation is essential for representing the states and
computing the rewards of the environment in our RL-
based routing algorithms.

The simulator emulates a realistic scenario where
ground gateways gather the nearby terrestrial traf-
fic that is assumed to be generated by mobile users
and distribute that to each other gateway equally
through a LSatC, integrating space and ground seg-
ments into the communication network, as shown
in Fig. 1. The environment is built as a time-variant
dynamic graph Gt(N ,E) with nodes N , representing
satellites and gateways, and edges E, representing the
transmission links between them, which can be either
ISL or ground-to-satellite link (GSL), implemented as
Radio Frequency (RF) or Free Space Optical (FSO).

Space segment. The satellite constellation consists of
N satellites evenly distributed acrossO orbital planes.
Each satellite functions as a router and learning agent
for RL-based solutions. Satellites are positioned at spe-
cific and configurable altitudes, longitudes, and orbit
inclinations, moving according to orbital mechanics
and Earth’s rotation [1]. Satellites move periodically,
at the beginning of each time interval, rather than con-
tinuously. After a fixed time interval, each satellite
is placed in the exact position that it would reach if
it had moved continuously during that period. This
periodic movement impacts latency calculations by
updating transmission and propagation times at each
position update. Each satellite has one antenna for
GSL and four for ISL (two for inter-plane and two

for intra-plane links). Selecting the best ISL is a dy-
namic matching problem and consists of establishing
the best ISLs among satellites. Links are bidirectional,
and the network is reconfigured as satellites move, i.e,
Gt is built again maintaining previous queue states.

Ground segment. The ground segment consists of a
set of configurable ground gateways, which gather the
terrestrial traffic from mobile devices. Each gateway
aggregates this traffic into large packets for transmis-
sion to its nearest satellite, with which it maintains a
GSL.

Data rate. The communication data rate between
nodes i and j, R(i, j), is determined by the highest
modulation and coding scheme that ensures reliable
communication based on the current signal-to-noise
ratio (SNR), and zero otherwise, using DVB-S2 tech-
nology [8] for realistic data rates assuming free-space
loss [1].

Traffic generation. We consider a scenario with re-
alistic packet generation, queuing, and transmission,
where each gateway transmits data equally split
among the other gateways through the LSatC, then
data is assumed to be distributed to the nearby con-
nected users. The total traffic load ℓ in the network is
determined by the uplink data generation rate at each
gateway and the maximum supported traffic load ℓ,
derived from uplink and downlink rates. The traffic
generation follows a Poisson distribution and ℓ is con-
figurable by the user. As each gateway sends traffic to
each other, the total number of unidirectional flows
Uf can be expressed as: Uf = ng · (ng − 1), where ng is
the number of active gateways.

Routing. The routing algorithm at each satellite i
aims to relay each received packet p(d) towards its
destination d. Each satellite has a transmission buffer
with a maximum capacity of Qmax, operating under
a first-in first-out (FIFO) strategy. If the buffer is not
empty, the satellite takes the Head of Line packet and
delivers it to one of its linked nodes following the cho-
sen routing policy. Any packet arriving at a full buffer
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Figure 3: MA-DRL’s exploitation phase congestion test for
all routes output with 8 active gateways.

is dropped.
Latency. The one-hop latency to transmit a packet
from i to j depends on three factors: queue time, trans-
mission time, and propagation time [1]. The queue
time at the transmission queue is the elapsed time
since the packet is ready to be transmitted until the
beginning of its transmission. The transmission time
is the time taken to transmit the packet based on the
transmission rate. The propagation time is the time
it takes for the signal to travel the distance between i
and j, ||ij ||. This latency model considers varying traf-
fic loads, where propagation time is significant in low
traffic but queue time increases under high traffic con-
ditions [9].

3 Routing algorithms

Different routing policies are implemented in the
simulator. On one hand, we have the deterministic
ones, all of them based on shortest path Dijkstra’s al-
gorithm [2], where the edge weights are minimized
in centrally with full knowledge of the constellation.
Each method minimizes a different weight: (1) Data
Rate, where the edge weights between two nodes i
and j are determined by the inverse of the data rate
between nodes, namely wi,j = 1/R(i, j). This is a tradi-
tional routing approach that leads to choosing routes
with high data rate links; (2) Slant Range, where the
edge weights between i and j nodes are defined by
the distance between them, ||ij ||, in order to minimize
propagation times, and the (3) Hop, where all edges
have the same weight, 1, where the total number of
jumps is minimized.

On the other hand, other two RL-based routing poli-
cies are implemented, specifically the ones developed
in our previous work. Firstly, the Q-Routing policy,
developed in [3]. Q-Tables are created automatically
with NumPy [10] to increase efficiency. They will
store the learnt knowledge during the training pro-
cess. The user can choose if it wants the algorithm to
explore and make random routing actions or import
pre-trained Q-Tables and exploit its knowledge to use

Figure 4: Rewards over time of the offline phase of MA-DRL
with 8 active gateways. The highest rewards are given after
a packet has been delivered to the receiving gateway.

them as routing policy.
Secondly, MA-DRL from [1, 4] is implemented. The
Deep Neural Networks (DNNs) are initialized and
trained with Keras [11]. Double Deep Q-Learning
(DDQN) [12] is implemented and its usage is config-
urable. It is also possible either to import pre-trained
DNNs or not and choose between the offline and the
online phase of the algorithm.

4 Setup and general settings

The simulator, running in Python 3.9, is multi-
platform and has been tested on Windows, Linux, and
Mac systems. The user can install the required pack-
ages listed in the requirements.txt file using pip. It is
advisable to create a virtual environment or an Ana-
conda environment for better management.

The simulator is highly configurable, allowing users
to adjust various parameters to suit their specific
needs, as illustrated in Fig. 2. Key configurable param-
eters include: (a) Routing Policy, including the short-
est path-based, where the Data Rate, Slant Range or
Hop can be set as weights, and the RL-based options;
(b) Ground Segment settings, such as the number and
locations of active gateways, as well as traffic genera-
tion ℓ; (c) Space Segment parameters, which cover
constellation design (configurable elements include
the number of orbital planes and its inclination angle,
satellites per plane, and the choice between Walker
delta and Walker star designs), ISL matching (Greedy
or Markovian [13]), and orbital motion (which can be
sped up or slowed down); (d) Learning Hyperparam-
eters, including rewards and penalties, exploration
ϵ, learning α and gamma γ rates, state preprocess-
ing, and training modes (Import pre-trained models
for RL-based policies and choosing between online
and offline phases for MA-DRL); and (e) Communi-
cation Setup, such as physical constants, uplink and
downlink parameters, and packet size. Additionally,
the user can configure the simulator to plot the envi-
ronment every time the constellation moves to visu-
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Figure 5: E2E latency vs time vs ϵ connecting one gate-
way in Malaga, Spain and another one in Los Angeles, USA,
through the Starlink constellation during the offline phase
of the RL-based methods. It can be appreciated how both
methods learn to find the optimal path in less than 1 sec-
ond.

alize system motion, as in Fig. 1, and to plot the path
of each delivered packet over this to track its journey
through the network.

With all these settings configured, the simulator is
now ready to run simulations and generate results.

5 Results and analysis

The default ground segment has up to 18 active (trans-
mitting and receiving) gateways distributed across
the Earth, mainly following KSAT’s deployment1, but
more gateways can be added easily.

Moreover, four real constellations are implemented:
(1) Kepler constellation design, with O = 7 orbital
planes at heights h = 600 km andN = 20 satellites per
orbital plane, as illustrated in Fig. 1; (2) Iridium Next
constellation, with O = 6, h = 780 km and N = 11; (3)
the OneWeb constellation, with O = 36, h = 1200 km
and N = 18; and (4) Starlink orbital shell at h = 550
km, with O = 72 and N = 22. The three first con-
stellations follow a Walker star architecture, while the
Starlink shell follows a Walker delta architecture [14].
Moreover, two additional artificial constellations are
implemented for testing. Additionally, two ISL match-
ing algorithms are implemented: (1) The Markovian
solution proposed in [13] and (2) a Greedy approach,
where each satellite connects with immediate neigh-
bors within its plane and closest counterparts in adja-
cent planes in both East and West directions, optimiz-
ing for latency and data rates, as shown in Fig. 1.

When a simulation ends, it automatically outputs
a set of results in the form of figures and text files
(Fig. 2). Within the figures, a map like Fig. 1 with
the system model information is saved. An update
of this figure is also saved as the constellation moves
if desired. Then, a congestion test per route and for
all routes between gateways is done, in order to see

1https://www.ksat.no/services/ground-station-services/

Figure 6: Average E2E latency over an orbital period. The
fluctuations are given by the movement of the satellites and
the resulting changes in the routed followed by the packets.

what nodes and edges did the packets went through,
as shown in Fig. 3. If one of the RL-based routing
policies is chosen, one figure with the exploration rate
ϵ and training stamps and another one with the re-
ceived rewards (Fig. 4) are also saved. Other figures
saved are related to the average E2E latency vs time
vs ϵ, similar to Fig. 5, but with just one routing policy,
and to the queue lengths. On the other hand, the out-
put files include several .csv with extensive informa-
tion about each packet’s path and its latency, rewards,
exploration rates, training stamps, hyper-parameters
and a .txt log-file, that saves everything that happened
during the simulation and gives some statistics like
like the latency broken down by average queue, trans-
mission and propagation times, packets delivered vs
stuck and/or lost, most used links, etc. Lastly, if ei-
ther the MA-DRL or the Q-Routing algorithm was
chosen for routing, the trained DNNs (57Kb for the
Q-Network and 27 Kb for the Q-Target) or Q-Tables
(21Kb for 8 active gateways) are saved, respectively.

In the Jupyter notebook, we conduct further post-
processing analysis and explore more complex results.
A comparison between the Shortest path routing policy,
Q-Routing [3] and MA-DRL [1, 4] at their offline phase
is shown in Fig. 5. Additionally, a dynamic compari-
son of these policies at their online phase is shown in
Fig. 6, where the constellation has moved to complete
one orbital period in 96 minutes, with the satellite po-
sitions being updated at intervals of 15 seconds. No-
tably, even with only partial knowledge of the constel-
lation, MA-DRL consistently maintains the baseline
latency obtained with the Shortest path policy, which
has full knowledge of the constellation. Moreover, we
elaborate on the comparison of the four architectures
in Fig. 7, where the distribution of the E2E latency is
depicted in a box plot when the Shortest path is ap-
plied among one orbital period too. We observe that
Kepler and Starlink obtain the smallest average latency,
although the latter presents more outliers. This figure
helps to illustrate the behavior of the constellations
and highlights the usage of the simulator to test differ-
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Figure 7: Box plot of the E2E latency of the four constella-
tion topologies with the Shortest Path policy after one orbital
period is completed.

ent constellation architectures.
Additionally, as in MA-DRL, each satellite is an in-

dependent agent during the online phase, we con-
ducted a Centered Kernel Alignment (CKA) [15] anal-
ysis to compare the differences between each agent’s
local model after 1 second with varying traffic pat-
terns around the globe. Each satellite learns and
adapts its routing decisions based on these traffic pat-
terns, resulting in distinct updates to their local mod-
els. Consequently, these models exhibit differences. To
homogenize the models, we applied post-processing
SFL techniques: Initially among neighboring satel-
lites, Model Anticipation; then, among orbital planes,
Orbital Plane Aggregation (SFL); and finally, across
the entire constellation, Full Aggregation (SFL) [1].

6 Conclusion and Future work

The development of an open source MA-DRL simula-
tor for satellite network routing provides a robust plat-
form for testing and implementing various routing al-
gorithms in Python, where different machine learning
libraries can be leveraged. The simulator’s high config-
urability and realism allows for comprehensive evalu-
ation of different constellation designs and communi-
cation setups. The results highlight the effectiveness
of RL-based routing policies compared to traditional
methods, demonstrating significant improvements in
E2E latency and overall network performance.

Future directions include: (1) Developing an SFL
framework to enable aggregation during the online
phase of MA-DRL rather than implementing it as a
post-processing analysis; (2) implementing a two-tier
mesh network for UE-satellite-UE communications,
enabling ground moving users to connect directly to
satellites without the need for gateways; (3) increase
the complexity of satellites with regenerative capabil-
ities; and (4) implementing different types of traffic
with splittable flows.
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