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Attitude determination is a crucial task for space mis-
sions and relies on multiple onboard sensors such as
sun sensors, magnetometers, and Earth horizon sensors.
Moreover, star trackers, which identify stars in a scene
and match them against an existing star catalog to de-
termine the attitude, provide superior performance com-
pared to traditional sensors and they were previously re-
served for high-end missions. With the increasing pop-
ularity of small satellites, a trade-off between cost, effi-
ciency, and precision is often encountered. Nowadays, star
sensors have undergone significant advancements, becom-
ing more efficient and accessible due to notable enhance-
ments in hardware and software, particularly through
the integration of neural networks. This leveraging of
artificial intelligence (AI) has enabled the development
of a compact and reliable star sensor, potentially elimi-
nating the need for other sensor types. In this work, 6-
synchronized star-trackers (6SST), a sensor with multiple
imaging channels, is proposed to get wider celestial cov-
erage and hence reliability. To justify this configuration,
a more efficient and optimised software pipeline, along
with an enhanced hardware implementation, is required.

1 Introduction

Reliability in space missions depends significantly on
the On-board Attitude Determination System (OADS).
As a fundamental component, the OADS plays an im-
portant role in ensuring the proper orientation and
navigation of spacecraft. Thereby ensuring the suc-
cess of missions and avoiding lost-in-space scenarios
[1]. Attitude, defined as the three-dimensional ori-
entation of a vehicle relative to a specific reference
frame, is governed by the fundamental equations of
motion for rotational dynamics. Consequently, the de-
sign of an OADS requires meticulous consideration
of spacecraft geometry, mass properties, required ac-
curacy, mission duration, hardware capabilities, and
performance.

To estimate attitude, we use sensors that relate ex-
ternal references, such as the stars, the sun, the earth,
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or other celestial bodies, with the spacecraft’s orien-
tation. In most cases, we require the installation of
various types of sensors, such as sun sensors, magne-
tometers, and earth horizon sensors, to ensure the re-
liability of the system, particularly considering that
some sensors provide only two angles of attitude data
[2]. The calculation of the third angle can be achieved
by leveraging Kalman filtering [3], employing data
from two different types of sensors.

In this work, we focus on Star-Trackers [4], opti-
cal sensors used in spacecraft and satellites to pre-
cisely determine the attitude relative to the stars. They
ensure high accuracy and precision while providing
the full three-dimensional attitude without requir-
ing additional sensors. The typical workflow for Star-
Trackers consists of capturing an image, extracting a
series of centroids that represent stars that are then
matched against a catalog of known stars in order to
determine orientation.

Recently, small satellites and CubeSats have surged
in popularity, driven by their affordability and simpli-
fied design [5] [6]. However, this trend brings about
resource scarcity and performance constraints, espe-
cially considering that the traditional star sensor is
a relatively complex system that was previously re-
served for high-end missions. Thus, to attain the re-
quired attitude estimation precision in space missions
low-cost and efficient star-trackers have emerged [7]
[8].

We can also reduce complexity by removing other
types of sensors and adopting a star-tracker-only ap-
proach [2] [9]. This is intuitive because having mul-
tiple sensors introduces mass and consumes scarce
internal volume in the satellite that could be utilized
for other purposes.

The demand for compact Star-Trackers has
prompted the adoption of AI-based approaches
[10]. Many studies have embraced the use of neural
networks for tasks such as star identification [1] [11]
and in centroid estimation [12], demonstrating the
integration of AI into Star-Tracker development.

In this context, we propose the implementation of

Proceedings of the 1st SPAICE Conference on AI in and for Space | Pages 406 - 411 DOI: 10.5281/zenodo.13885637

© 2024 Authors of this article as listed on page 406.
This work is openly licensed via CC BY 4.0.

406



6-synchronised-star-trackers (6SST), a sensor with six
imaging channels, one for each face of a typical cube-
sat, operating in parallel, each providing a unique per-
spective. This setup enhances attitude determination
reliability by providing tracking of the entire celestial
sphere. Having wide celestial coverage opens up new
possibilities [13], including but not limited to space
debris cataloguing [14] [15], Space Situational Aware-
ness (SSA) [16], and improved relative positioning for
complex satellite formation flying maneuvers. How-
ever, this architecture requires highly efficient soft-
ware and hardware implementation to justify the op-
eration of a multifaceted sensor [17]. Our contribu-
tion consists of justifying this proposal by developing
a more efficient light-performance pipeline, consid-
ering the management of onboard resources such as
power and memory.

The remainder of this paper is structured as follows.
In Section 2, we introduce the considered material and
adopted methods. Section 3 discusses the results ob-
tained. Finally, Section 4 concludes the paper and sug-
gests ideas for future work.

2 Materials and Methods

In this section, we outline the materials and methods
employed in our experimentation. We begin by de-
tailing the data generation process, followed by an
overview of the proposed approaches.

2.1 Materials

2.1.1 Data Generation

In our study, we utilised ESA’s simulator provided in
the Kelvins competition "Star Trackers: First contact".
This simulator serves as a platform for generating syn-
thetics star data by effectively filtering the Hipparcos
[18] catalogue based on a predetermined magnitude
threshold and generating relevant data tailored to the
chosen simulation settings. Our generated dataset con-
sists of 2300 images where each image is accompa-
nied by a corresponding file containing (x,y) coordi-
nates relative to the image for every star within the
frame, as well as the scene’s exact attitude in space.
In our context, attitude is represented by a 3-tuple
(Right Ascension ω,Declination ψ,Roll). The Hippar-
cos catalogue uses celestial coordinates (ω,ψ) for the
epoch J1991.25 [19] [20], while roll refers to the rota-
tion around the line of sight of the observing space-
craft. When determining the simulation parameters,
we drew upon insights from the research conducted
by Rijllarsdam et al. [21] as can be seen in Table 1.

Parameter Value

Field of view (FOV) of camera 20x20 degrees
Normalized Focal Length (f ) 2.836

Normalized Principal Point px, py 0.5
Sigma PSF 0.5 pixel

Exposure Time 0.2 s
Cut-off magnitude Threshold 5.3Mv

Magnitude Gaussian 0.01Mv

Table 1: Simulation parameters.

2.1.2 Noise Addition

On-board imaging systems produce images with a
low signal-to-noise ratio [22]. This is caused by var-
ious physical constraints, such as faint incoming light
and analog-to-digital data conversion. Multiple noise
models [23] can be present. Following Guesmi et
Moloney’s work [24], different noise models are gener-
ated such as salt and pepper, Read, Shot, and Gaussian
noise to handle real conditions. Table 2 presents the
parameters we adopted.

Parameter Value

Salt Probability 0.003
Pepper Probability 0.007

Read Mean 0
Read Standard Deviation 4

Gaussian Mean 3
Gaussian Sigma 1.3

Table 2: Added Noise Parameters

2.1.3 Multi-Faced Images

Considering the availability of multiple data sources,
image stitching becomes a viable choice for improving
performance. This allows us to construct a wide field-
of-view (FOV) scene by stitching together multiple im-
ages with limited FOV, effectively eliminating redun-
dant information. Thus, this process is simulated by
utilizing a Python script to generate six translated and
rotated point-of-views from a given image to generate
overlapped data from different angles.
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Figure 1: Star denoising and detection pipeline proposed in
[24].
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Figure 2: Proposed star detection U-Net-based Denoising
Autoencoder architecture.

2.2 Methods

2.2.1 End-to-End Detection

Previously, a denoising autoencoder has been pro-
posed to reconstruct clean star images, a lightweight
modified yolov5x to estimate the bounding boxes of
small objects (stars) [24] and then compute the Cen-
ter of Gravity (CoG) of every bounding box to get
the star centroid as illustrated in Figure 1. The aim
of our work is to propose a lightweight but efficient
star detection pipeline for accurate centroiding and
attitude determination. Firstly, the denoising autoen-
coder proposed in [24] is trained for image denoising,
and then the decoder layers are removed because re-
constructing the image is not necessary as the latent
space contains all the information we need. Basically,
we can use the encoder’s output as input for train-
ing the star detection model. Instead of estimating
bounding boxes [24], it makes sense to directly output
the (x,y) coordinates and remove the CoG calculation
step. Thus, we propose an end-to-end star model that
accomplishes both tasks in a one-shot manner [25],
image denoising and outputs a segmentation map es-
timation [26] for localizing stars. To achieve this we
can adopt an Autoencoder-based U-Net architecture
[27] with shared layers as you can see in Figure 2. A
lightweight deep learning approach is justified over

traditional image processing methods due to it ad-
dressing resource constraints while maintaining high
performance. For instance, Dave et al. [15] introduced
RSOnet, a CNN-based system that enables wide-FOV
camera sensors for Resident Space Object (RSO) de-
tection and tracking. This justifies the use of machine
learning in our proposed framework, ensuring that we
leverage these benefits for improved star detection.

2.2.2 Image Stitching

Fortunately, a lot of prior work [28] [29] has been done
on image stitching due to its importance in domains
such as medical imaging and remote sensing. The typ-
ical approach consists of matching the features ex-
tracted by methods like SIFT [30]. Then, the geomet-
ric relationships between the images need to be de-
termined. The homography [31] transformation that
takes you from one image to another. However, if we
plan to use a homography matrix-based approach we
won’t need to calculate it again every time because the
positions of our installed sensors are fixed. Thanks
to having a considerable amount of data we can try
out efficient deep learning methods for feature ex-
traction [32] instead of relying on SIFT. In this con-
text, Nie et al. [33] have proposed an efficient image-
stitching approach. One of their key insights is the
proposal of a novel composition approach to generate
seamless stitched images via unsupervised learning.
This method effectively eliminates parallax artifacts
and avoids undesirable blurring compared to previ-
ous techniques. For this work, the composition task is
expended to support six warped inputs, enabling the
creation of a large wide star image panorama. This
panorama serves as input to the 6SST pipeline, reduc-
ing processing resources while ensuring greater accu-
racy compared to using a single limited FOV image.

2.2.3 Attitude Determination Pipeline

For the purposes of this paper, we use an existing at-
titude determination method as an evaluation tool
to study the effect of pixel shifting caused by denois-
ing and stitching models, as presented in Section III.
While we have yet to develop our own approach, this
will be addressed in future work. After estimating the
centroids in the image, we adopt the attitude deter-
mination pipeline presented in [21]. This method ac-
counts for the trade-off between accuracy and com-
plexity, employing neural networks for star identifi-
cation followed by a verification step using the star
catalog to estimate attitude.
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3 Results and Discussion

3.1 Star shifting due to reconstruction

The analysis aims to understand the impact of our
models on centroid estimation accuracy and to make
sure that the denoising and stitching steps did not
shift the stars which can introduce errors in the atti-
tude estimation process. Since the dataset was simu-
lated, we have the precise centroid for every star. The
evaluation consists of drawing a 20x20 pixel bound-
ing box around every star, calculating the CoG, and
determining the average Centroid Estimation Error
(CEE) across different image types Equation (1) [34]
on different image types.

CEE =

√
(xc − x∗c)2 + (yc − y∗c)2

S
(1)

where (xc, yc) represent the ground truth centroid and
(x∗c, y∗c) are the CoG calcualted centroids. S is the num-
ber of stars in the image. Table 3 shows that the

Image Type Average CEE (px)

Ground Truth 0
Clean Image 0.329
Noisy Image 0.546

Denoised Image 0.576
Stitched Image 0.964

Table 3: Average centroid shifting results in pixels

centroid estimation process effectively localised stars
within the provided bounding boxes, demonstrating
robust performance. Despite going through the de-
noising autoencoder, the reconstructed image main-
tained a relatively stable centroid estimation, before
and after denoising. On average, shifted centroids are
less than one pixel off from the actual star centroids.
This leads us to another question, how much shifting
and lack of centroid precision is tolerable and what is
the effect on attitude determination?

3.2 Shifting effect on Attitude
Determination

The process consists of gradually adding random shift-
ing to the ground truth star centroids of our test im-
ages and then comparing the estimated attitude with
the correct value. By doing this we can learn how
much imprecision and shifting in the detection and
stitching pipelines we can tolerate.

Random Shifting (x,y, r) = (x+ r1, y + r2) (2)
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Figure 3: Correlation between the average randomness and
the attitude estimation error.
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Figure 4: Relationship between the average randomness and
the percentage of failed attitude estimations.

Random shifting is calculated according to Equa-
tion (2), where r1 and r2 are random variables repre-
senting the shift in the x and y directions, respectively.
These random variables are drawn from a distribution
with an average randomness r, where 0 ≤ r ≤ 10 pixels.
It is intuitive to expect a positive correlation between
the average randomness and the average attitude de-
termination error. Instead of making assumptions, we
empirically verify this through Figure 3. To determine
the tolerable degree of shifting, we compared the per-
centage of failed determinations to the degree of im-
precision we added. As depicted in Figure 4, there is
a significant increase in failure after 4 pixels of impre-
cision.

3.3 Six Views Stitching

The warped model achieved impressive stitching re-
sults, reaching a total loss of 0.0076 within only 5
epochs. Initially, the model was trained on a dataset
consisting of 2 views, each containing 2603 samples.
These results demonstrate the efficiency and accuracy
of the model in producing seamless stitched images
from multiple perspectives. Subsequently, the compo-
sition task was performed, producing stitched images
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that represent the full panorama of six views.

4 Conclusion

The novelty of this study revolves around the notion
that achieving complete celestial coverage enhances
the reliability of star trackers for attitude estimation
and unlocks possibilities for tasks such as space debris
cataloguing, space situational awareness, and complex
satellite formation flying maneuvers. Despite the in-
herent challenges in implementing a 6SST system, par-
ticularly concerning software and hardware efficiency,
our study and preliminary findings underscore its po-
tential call for further exploration. Looking ahead,
our efforts will encompass exploring additional appli-
cations, refining software implementation, and con-
ducting comprehensive benchmarking across various
hardware systems to compare metrics like inference
time, data rate, and power consumption, which will
allow us to select a suitable System-on-Chip. Lever-
aging AI-optimized hardware, we can further empha-
size the feasibility of the proposal. Additionally, fu-
ture work will include providing detailed information
on the optical system, such as the field of view (FOV)
and the relative orientation of the six imaging chan-
nels. We will specify the choice of sensors and the
onboard computer used, as well as include the overall
physical dimensions resulting from implementing six
imaging pipelines. We will also discuss any challenges
these dimensions might pose for space utilization.
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