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In the space sector, due to environmental conditions
and restricted accessibility, robust fault detection meth-
ods are imperative for ensuring mission success and safe-
guarding valuable assets. This work proposes a novel
approach leveraging Physics-Informed Real NVP neural
networks, renowned for their ability to model complex
and high-dimensional distributions, augmented with a
self-supervised task based on sensors’ data permuta-
tion. It focuses on enhancing fault detection within the
satellite multivariate time series. The experiments in-
volve various configurations, including pre-training with
self-supervision, multi-task learning, and standalone self-
supervised training. Results indicate significant perfor-
mance improvements across all settings. In particular, em-
ploying only the self-supervised loss yields the best over-
all results, suggesting its efficacy in guiding the network
to extract relevant features for fault detection. This study
presents a promising direction for improving fault detec-
tion in space systems and warrants further exploration in
other datasets and applications.

1 Introduction

Today’s world is increasingly reliant on satellite tech-
nology for navigation [1], communication [2], and sci-
entific studies [3, 4]. It is therefore important to en-
sure the reliability and longevity of these assets. The
challenges presented by the space environment, char-
acterized by extreme temperatures, radiation expo-
sure, and limited, if not absent, maintenance oppor-
tunities, underscore the critical importance of fault
detection in satellite systems [5, 6]. Traditional ap-
proaches often rely on predetermined rules or thresh-
olds, which can be inadequate for capturing the com-
plex and dynamic nature of faults in such demanding
conditions, or costly model-based approaches [7, 8].

To address these challenges, in recent years we
have witnessed a surge of studies in Artificial In-
telligence (AI) methodologies for fault detection in
space systems, which have shown promising results
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Figure 1: Self-supervised loss: the dataset’s columns are per-
muted and the Real NVP model is trained to predict the
correct permutation. As shown in the image patch extracted
from the ADAPT circuit, each column is associated with a
given sensor of the testbed.

in automatically identifying and diagnosing anoma-
lies in satellite data. Among these methodologies, the
Physics-Informed Real NVP model introduced by [9]
demonstrated its ability to model complex distribu-
tions while incorporating domain-specific knowledge.

This model integrates principles of physics, specific
to the considered dataset, ADAPT [10], into the loss
function, enabling the model to capture underlying
physical relationships within the data. By leveraging
the Normalizing Flow family [11, 12] and affine cou-
pling layers [13], this model excels in representing
high-dimensional distributions, making it well-suited
for analyzing multivariate satellite data.

Given the scarcity and cost of labeled data in this
sector, self-supervision offers the advantage of lever-
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aging unlabeled data to guide the learning process,
enhancing the model’s ability to extract meaningful
features relevant to fault detection [14]. These ap-
proaches typically rely on creating pretext tasks that
provide supervisory signals for model training. Their
success depends on the effectiveness of the designed
pretext tasks, which can be categorized into various
paradigms, such as contrastive learning and gener-
ative learning [15]. Contrastive methods, like Sim-
CLR [16], focus on learning representations by en-
couraging the model to distinguish between similar
and dissimilar data points. Conversely, generative ap-
proaches, such as Masked Autoencoders [17], train
models to reconstruct the original data from a cor-
rupted version, forcing them to capture essential fea-
tures.

Self-supervised tasks should be carefully chosen
to exploit the specific structure of the data at hand
and steer learning toward robust representations. Ex-
amples from other fields include object recognition
across different domains using jigsaw puzzles as a
self-supervised task [18] or augmentation-aware self-
supervised task in the discriminator network of a
GAN for robust representation learning [19].

Time series data presents unique challenges for
self-supervised approaches due to their sequential
nature and the importance of capturing temporal
dependencies. Traditional methods primarily focus
on inter-sample relationships, neglecting the crucial
intra-temporal structure within a single time series.

Recent advancements address this gap by incorpo-
rating self-supervised tasks to learn inter-sample and
intra-temporal relationships [20, 21]: SelfTime [20]
proposes a framework that explores these relation-
ships simultaneously. It considers separate reasoning
heads within the model to analyze both the similar-
ities between different time series and the relation-
ships between time steps within a single series.

The challenges become even more complex when
dealing with multivariate time series, where multiple
interconnected variables evolve over time. Graph Neu-
ral Networks (GNNs) offer a promising solution in
this domain [14], as they can capture the relationships
between different variables. [22] applies transforma-
tions (permutation, scaling, etc.) on sensor data and
subsequently tries to differentiate them as a training
method for human activity detection.

Recognizing the potential of self-supervised learn-
ing techniques to augment existing methodologies,
we propose the integration of a self-supervision task
into the fault detection process for satellites’ Electri-
cal Power System (EPS). We propose to permute the
input sensor’s measurements (i.e. channels), but dif-
ferently from [22], which only aimed at detecting a
generic permutation among other transformations, we

ask the network to sort them by predicting the permu-
tation’s index, similarly to what is done in [18] with
image patches.

To the best of our knowledge, this is the first time
that the prediction of the permutation applied to the
time series features, i.e. sensor’s data, is used in the
space sector as a self-supervision task, and this is the
first study that performs extensive experiments to un-
derstand its effect in a multi-task setting and as a stan-
dalone loss. To summarize, the contributions of this
paper are:

1. we introduce a self-supervised task for fault de-
tection in multivariate systems, demonstrating its
effectiveness in the space domain;

2. we evaluate the above-mentioned task in mul-
tiple settings, showing its effectiveness both for
pre-training and in multi-task training;

3. we show that when used as a standalone loss
this self-supervised task leads to better results
on ADAPT [10] demonstrating its relevance espe-
cially when labels are not available.

Through these contributions, this paper aims to ad-
vance the state-of-the-art in satellite fault detection
towards more resilient and reliable spacecraft.

2 Methodology

Here we delve into the description of the model and
the losses used.

The self-supervision loss is computed by permuting
the order of the dataset’s columns (S1,S2, ...,Sn) (see
Figure 1), and asking the model to predict the permu-
tation applied.

In particular, the loss function is

Lself_sup = − 1
N

N∑

i=1

P∑

p=1

yi,p log
exp(F(R(xi,p)))

∑P
j=1 exp(F(R(xi,j )))

(1)

where N is the number of samples, P is the number
of permutations, yi,p is the label (1 if p is the correct
permutation, 0 otherwise), xi,p is a vector composed
by concatenating 50 rows of the dataset after the ap-
plication of the given permutation, R is the Real NVP
model and F a fully-connected layer (see Figure 2).

We applied our loss to the configuration proposed
by [9]: a Real NVP [23] neural network trained with a
physics-informed loss, for fault detection.

Real NVP enables the learning of complex, high-
dimensional distributions by mapping data to a sim-
pler latent space. Unlike other Normalizing Flow mod-
els, Real NVP employs affine coupling layers to cap-
ture local dependencies and diverse modes in data,
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Setting Configuration # Perms AUROC FPR95 F1 Avg. Prec.
Baseline [9] - - 84.92 46.81 84.51 74.64
Multi-task - 4000 90.43 29.36 89.42 82.72
Multi-task complete dataset 8000 90.26 35.89 89.67 83.71

Pre-Training - 4000 90.14 30.24 89.39 82.42
Pre-Training complete dataset 8000 92.13 26.67 90.03 83.90

Only self-supervision - 4000 89.96 30.20 89.34 32.40
Only self-supervision complete dataset 10000 92.50 24.13 90.41 84.68

Table 1: The best-performing setting is Only self-supervision when trained with the complete training set, with both nominal
and faulty data.

Figure 2: R, F, and G represent the model, a fully connected
and a Gaussian distribution layer. p is the permutation
applied to the input and used in the self-supervised loss,
(Lself_sup). For the self-supervised task both nominal, xnomp ,

and fault data, x
f
p , were used, while for the main loss only

nominal data, xnom, was given as input. The main loss is
composed by the default loss for Real NVP, (−Llog_prob), and
a physics-informed loss specific to ADAPT, (Lphys_inf).

facilitating the generation of realistic samples. Each
coupling layer transforms one set of variables while
keeping the other unchanged through invertible func-
tions, usually implemented as neural networks. This
approach allows for efficient inference and generation
of samples.

We tested our self-supervised loss by using it in
three different settings, shown in Figure 2:

1. Multi-task: a multi-task training loop where both
losses were used simultaneously;

2. Pre-Training: a self-supervised pre-training step
followed by a fine-tuning step in which [9]’s final

loss was used, i.e. our Main Loss;

3. Only self-supervision: the self-supervision task
was used as a standalone loss during training.

In all settings, to compute the self-supervision loss the
architecture was augmented with a fully connected
layer (F), with a number of output units equal to the
number of permutations (P ) to predict the permuta-
tion’s index among a given set through a softmax acti-
vation function.

3 Experimental Setup

In the following, we provide an overview of the ar-
chitecture used, the dataset considered for the experi-
ments, some implementation details, and the metrics
selected to evaluate our solutions.

Architecture: we used the Real NVP with 4 cou-
pling layers [13], where the neural networks used as
translation functions (t) and scale functions (s) are
made up of 2 fully-connected layers with 32 units and
a final fully-connected layer with as many units as the
dimension of the inputs. As activation, the t networks
have a linear function, while the s neural networks
have the tanh function.

Dataset: We used ADAPT [10], a dataset created by
NASA Ames Research Center to evaluate EPS fault de-
tection algorithms. We generated 7 splits by randomly
splitting the provided files between training and test-
ing data decreasing the number of samples by 66%
with respect to those used in [9] to deal with a more
challenging task and to demonstrate the efficacy of
our method in conditions where labeled data is scarce
and expensive. In all settings we also consider a differ-
ent configuration (complete dataset), in which we used
the complete dataset, excluding the test set of the cur-
rent split, to train the self-supervision task.

Implementation Details: All models have been
trained and evaluated on an Intel Xeon Scalable Pro-
cessors Gold 6130 with 5 different random seeds on
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all 7 splits using as input a time window of 50 times-
tamps. Each training was performed keeping 30% of
the training data as validation set and using it for
early stopping. Before training, the dataset was scaled
between 0 and 1. The self-supervised task requires
the permutation of the input features. Given the high
number of possible permutations, we decided to cre-
ate a few sets of permutations of different sizes as
follows: for each set, given its target size P, we ran-
domly permuted the columns for a number of times
well above P and then kept the P permutations with
higher entropy. Specifically, we compute

D =
P∑

i,j=1,i,j

n∑

k=1

|ik − jk |+
P∑

i=1

n∑

k=1

|k − ik | (2)

where n is the number of sensors present in the
dataset (Figure 1), i and j indicate distinct permuta-
tions, ik (jk) represents the sensor’s index moved in
position k by permutation i (j). When selecting the P
permutations we aim to maximize D, as this ensures
greater positional deviation from the features’ true po-
sitions and distinctiveness from other permutations
within the set.

Metrics: During inference, the fully connected layer
was removed, allowing for the direct use of the log-
likelihood values outputted by the Real NVP model’s
distribution layer (G) to evaluate the effect of the self-
supervised loss. We computed the Area Under the Re-
ceiver Operating Curve (AUROC), which measures the
model’s ability to distinguish between classes by cal-
culating the area under the curve generated by plot-
ting the True Positive Rate against the False Positive
Rate with various thresholds; the F1-score, which bal-
ances precision and recall by considering both false
positives and false negatives; and the False Positive
Rate at a 95% true positive rate (FPR95), which indi-
cates the rate of false alarms when the true positive
rate is high.

4 Results

In Table 1 we show, for each setting and configuration,
the results obtained evaluating the model on the 7 test
sets with 5 different random seeds.

All the experiments shown in Table 1 performed
better than the baseline, i.e. the neural network and
loss proposed by [9] showing that the self-supervised
task is useful in driving the network toward the rele-
vant features.

Additionally, the results show that in all settings the
complete dataset configuration leads to better results in
all metrics, but FPR95 in multi-task. This is expected
as more data is used. More interesting are the results

obtained when training using only the self-supervised
loss with the complete dataset, which leads to the best
results overall. We believe this is because, differently
from the final loss in [9], this loss uses both nominal
and faulty data, successfully learning representative
features about sensor correlations from both.

Moreover, the experiments showed that the use of a
bigger dataset for the self-supervised task always led
to an increase in the number of permutations needed
for the best results. This may be due to the hardness
of the chosen task, which requires a high number of
samples to be successfully learned in all cases.

5 Discussion

We present a self-supervised task based on feature
permutations to pre-train a Physics-Informed - Real
NVP neural network for fault detection in multivari-
ate time series. The experiments are performed on
several custom splits of the ADAPT dataset.

The results show that using this self-supervised loss
leads to improvements with respect to those that can
be obtained with previous studies when dealing with
a small dataset. This demonstrates the contribution
of this work towards more data-efficient AI models, a
particularly relevant feature in the space sector, due to
the complexities involved in creating a fault detection
dataset. Moreover, the proposed task has also been
shown to be useful in multi-task settings, as well as a
standalone loss.

We believe that the last case is particularly interest-
ing, and we plan on further investigating it to under-
stand the differences between the features extracted
by the Real NVP model trained with it and those ob-
tained from the models trained with the log probabil-
ity and the physics-informed loss. Moreover, we plan
on further analyzing the effect of the number of per-
mutations on the self-supervision task in all settings.
Finally, the results show that there may be room for
additional improvements by using a higher number
of samples to pre-train models using bigger sets of
possible permutations.
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