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When an Artificial Intelligence model runs in a real
scenario, two situations are possible: 1) the data anal-
ysed follows the same distribution as the data used for
model training and therefore the model performance is
similar; or 2) the distribution of the new data is differ-
ent, resulting in lower model performance. This is called
“data/domain shift" and its measurement is desirable in
order to reduce it. For example, for a model trained us-
ing images captured with high brightness, a change in
the sensor may produce darker samples and make the
model fail. To mitigate this problem, the sensor can be
configured to obtain brighter images and thus reduce data
shift. The simplest way to measure the shift is to com-
pare metrics for the two data distributions. However, data
captured in the real scenario is not labelled and an al-
ternative is needed. In this work we propose using the
Jensen-Shannon divergence score to measure the data
shift. Results, obtained by using 5-fold cross-validation,
show high correlation between the proposed metric and
the accuracy (-0.81, -0.87 and -0.91) when test samples
are modified for different brightness, sharpness and blur.
The approach has applicability to autonomously measur-
ing domain shift in Earth Observation data.

1 Introduction

Deep learning models are usually trained using a col-
lection of labelled data, the acquisition of which can
be difficult, and which can have bias in sample selec-
tion. Thus, the training set does not always represent
the variability of the problem and there is a need to
adapt the model to a new data distribution in order to
increase its performance. In some cases, objects are
not correctly identified or images are misclassified
due to unusual contrast, brightness, blur, etc. Some
deep learning-based systems discard low quality im-
ages to improve overall performance, necessitating im-
age re-acquisition. If the acquisition process is carried
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out manually, the user can adjust some parameters
and check if the resulting image has better quality. If
not, the system will need to change a set of camera
parameters automatically to improve the outcome [1].

Deep learning models are based on the assumption
that training and test data are independent and dis-
tributed in the same way. Unfortunately, factors such
as image acquisition equipment, light conditions or
camera angles depend on the real scenario and can
reduce the model performance. Similarly, the perfor-
mance of the imaging system can change over time,
either due to system degradation or to environmen-
tal changes, e.g., Earth Observation (EO) image qual-
ity may change over mission lifetime as the satellite
altitude decays. The difference between the training
data distribution and the distribution of the scenario
where a model is deployed is called domain shift [2].
Thus, the higher the domain shift is, the lower is the
generalisation to the new data. Domain shift can be
measured by a drop in accuracy in the test set. How-
ever, when the model is finally deployed in the real
scenario, such as on an EO satellite, new data coming
from the sensor has not been labelled and the accuracy
can not be obtained to measure if the model is obtain-
ing good results. This is especially true of the new
class of missions enabled by on-board Artificial Intel-
ligence (AI), where insights are extracted from images
directly on-board (for subsequent downlink) and the
associated image data may never be downlinked. In
this context, we propose an “unsupervised" metric to
assess the domain shift existing between two datasets
based on the divergence between training and real test
distributions.
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2 Methods and Materials

2.1 Dataset and Models

Rather than using an existing EO dataset for initial
experimentation, a terrestrial proxy was chosen. This
was done in order to access a large dataset of images
that is captured from a range of different sensors, and
contains a variety of imaging artefacts such as out-
of-focus blur and overexposure. The selected proxy
dataset is the “Diabetic Retinopathy Detection” Kag-
gle dataset [3], constituting colour retinal images cap-
tured with fundus cameras, and classified as either
DR (classes 1-4, 9316 images) or Non DR (class 0,
25813 images). In order to minimise the loss of in-
formation when resizing the images for input to the
CNN model, the images are pre-processed according
to the “squaring" method described in [4]. All images
were distributed across 5 subsets to perform a 5-fold
cross validation (5fcv). With this distribution, 5 differ-
ent models were trained. The CNN architecture em-
ployed during our evaluation is an InceptionV3 with
an additional fully-connected layer of size 512. To sim-
ulate different acquisition conditions and induce do-
main shift, three types of image modifications with
different parameters have been applied to each test
set: (1) Gaussian Blur with variances {1, 3, 5, 7, 9}; (2)
Brightness increase by adding {12.5, 25, 37.5, 50, 62.5,
75, 87.5, 100}; (3) Sharpness with values {1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2}.

2.2 Neuron Activation Patterns

Neuron Activation Patterns (NAPs), introduced in [5],
are the neural outputs from a single specified network
layer, and can be used to measure how the model out-
put is supported by the information learnt from the
training samples. Once a model is trained, the NAPs
for close-to-output Neural Network layers can be ob-
tained from all training samples that are correctly clas-
sified by it. Once obtained, these NAPs can be clus-
tered into groups, with the Silhouette coefficient [6]
measuring how cohesive and separated are the result-
ing clusters. For a given sample, the Silhouette score,
s, is obtained as:

s =
b − a

max(a,b)
(1)

where a is the mean distance between a sample and
all other points in the same class, and b is the mean
distance between a sample and all other points in the
next nearest cluster. A value close to 1 indicates that
the sample is far away from the neighbouring clusters,
whereas a value close to 0 indicates that the sample is
on or very close to the decision boundary between two

neighbouring clusters. In addition, a value close to -1
may indicate that those samples have been assigned to
the wrong cluster. Hence, the Silhouette score for a set
of samples is given as the mean of all sample scores.
This value will be higher when clusters are dense and
well separated.

Figure 1 shows the Silhouette score obtained for
some of the InceptionV3 layers in our model. It is pos-
sible to see how the score value increases towards the
top of the CNN with the second-to-last layer having
the highest value (notice that the last layer is excluded
from the analysis because its output is the class and
not a set of features). The Silhouette score can be used
to choose the most appropriate layer for which to col-
lect and monitor NAP divergence in the subsequent
phase.

Figure 1: Silhouette score across InceptionV3 layers

2.3 Data Shift Metrics

We consider each neuron value from the NAP as a
single random variable and therefore each of the 512
variables of the selected layer will follow a probabil-
ity distribution. The distribution can be the same for
both training and real scenario datasets when the shift
between domains is close to 0, or can have different
values depending on the divergence between training
and real datasets. We have analysed three metrics for
measuring the distribution shift between two distri-
butions, training, Q, and modified test, P: Kullback-
Leibler Divergence [7], Jensen-Shannon Divergence
[8], and Fortiss NAP Monitoring [5].

2.3.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence score (also
known as relative entropy) [7], between two distribu-
tions P and Q is commonly expressed as:

KL(P ∥Q) =
x∈X∑

P (x)× log P (x)
Q(x)

(2)

The KL divergence is the sum of the probability of
each event in P multiplied by the log of the probability
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of the event in P over the probability of the event in
Q. A score of 0 indicates that both distributions are
equal. If not, the score is a positive number and the
higher its value the larger is the difference between
both distributions.

When the probability of a possible value is large
in P but small in Q, the resulting divergence is large.
On the contrary, when the probability of an event is
smaller in P than in Q, the divergence is not as large.

Finally, if there is more than one variable, the global
KL divergence can be calculated as the sum of all the
individual KL scores. In this case we have obtained
and summed the KL divergence score of each of the
512 NAP values.

2.3.2 Jensen-Shannon Divergence

The Jensen-Shannon (JS) divergence score is derived
from the KL divergence but, contrary to KS, JS is sym-
metrical [8]. It is defined as:

JS(P ∥Q) =
1
2
×KL(P ∥M) +

1
2
×KL(Q ∥M) (3)

where M is calculated as:

M =
1
2
× (P +Q) (4)

2.3.3 NAP Runtime Monitoring

Monitoring the newly acquired NAPs is proposed in
[5] to check if the model outputs are supported by the
training data. When an unseen NAP pattern appears,
it may indicate the presence of an out-of-distribution
sample, i.e., samples that differ from the training in-
distribution samples. Therefore, monitoring the pres-
ence or the absence of the runtime NAPs in the train-
ing NAP database can be used as a measure of the do-
main shift. Two scenarios can then be distinguished:

• The NAP pattern of the image can be found in
the training patterns. The network is able to ex-
tract the features from the image and classify it
accordingly.

• The NAP pattern is not found in the training pat-
terns. This often happens when the input has fea-
tures that have not been seen before and may in-
dicate a domain shift.

In our case, the percentage of test samples with
NAPs contained in the training NAP database is ob-
tained (hereafter referred to as the NAP Runtime Mon-
itoring (RTM) metric). The higher this percentage, the
more similar both distributions are.

3 Results

Blur, Brightness and Sharpness have been applied to
the test set of each of the 5fcv partitions. In all cases,
classification accuracy, KL and JS divergences, and
RTM metrics have been obtained.

The training, test and modified test set NAP values
have been plotted to see how the distribution varies
when the modification is applied (Fig. 2). To achieve
this, the selected 512 neuron activation values have
been reduced to only 3 by applying Principal Compo-
nent Analysis (PCA). In all cases the explained vari-
ability is over 99% which means that most of the in-
formation is retained in these three components and
the plots are representative. When the test images are
modified, the resulting NAP distribution is less simi-
lar to the training one (compare Fig. 2-b and Fig. 2-c
with Fig. 2-a).

The correlation between the accuracy and each of
the metrics was calculated using the Pearson Correla-
tion Coefficient (PCC). A PCC of 0 means that changes
in accuracy do not correlate with changes in the met-
ric. A PCC close to 1 or -1 means that between both
the accuracy and the metric variable values there is
a strong relation. Table 1 contains the correlation
results for each image modification, fold and metric
used. Figure 3 shows the relation between accuracy
and JS after blurring the images.

Blur Brightness Sharpness

Fold JS KL RTM JS KL RTM JS KL RTM

Fold 0 -0.82 -0.81 0.98 -0.77 -0.91 0.97 -0.66 0.69 0.60
Fold 1 -0.88 -0.90 0.98 -0.97 -0.94 0.78 -0.97 0.87 0.05
Fold 2 -0.90 -0.99 0.27 -0.99 -0.95 -0.88 -0.87 -0.92 0.18
Fold 3 -0.97 -1.00 0.79 -0.99 -0.89 -0.07 -0.91 0.53 -0.03
Fold 4 -1.00 -0.87 0.86 -0.33 -0.23 -0.09 -0.96 0.87 0.72

Mean −0.91 −0.91 0.78 −0.81 −0.79 0.14 −0.87 0.41 0.30
SD 0.07 0.08 0.29 0.28 0.31 0.75 0.13 0.76 0.34

Table 1: Correlation results measured using PCC.
JS=Jensen-Shannon divergence, KL=Kullback-Leibler
divergence, RTM=Runtime Monitoring.

The JS divergence score shows the strongest corre-
lation average values (-0.91, -0.81 and -0.87) followed
by the KL divergence score (-0.91, -0.79 and -0.41).
The correlation between accuracy and {KL, JS} diver-
gence scores is expected to be negative as the accuracy
decreases when the divergence between training and
test distributions increases. On the other hand, the
correlation between the accuracy and the number of
samples with NAPs in the training database should
be positive since more patterns found means that the
test images are more similar to the training samples.
The difference between the JS and KL metrics may
be caused by the symmetric property of JS. For KL
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(a) Training distribution (b) Test distribution (c) Modified Test distribution

Figure 2: Comparison of the NAP distributions from training, test and modified sets.

Figure 3: Accuracy and JS values after applying Blur. Accu-
racy decreases as JS divergence increases for all 5 folds.

divergence, when the probability for an event in P is
large but the probability for the same event in Q is
small, there is a large divergence. Conversely, when
the probability in P is small and the probability in
Q is large, there is also a divergence, but it is not as
significant as in the first case. This asymmetry can
lead to different results depending on the order of the
distributions, which is not always desirable. This is
particularly important in scenarios such as clustering,
where the goal is to measure the similarity between
distributions without biasing one over the other.

In contrast to KL divergence, JS divergence gives
the same weight to a probability difference between
the compared distributions, whether it increases or de-
creases, ensuring that the divergence measure is the
same regardless of the order of the distributions be-
ing compared. In this context, an increase or decrease
in the probability value of a certain event is equally
important, as it measures the magnitude of the differ-
ence between both distributions.

The lowest results obtained by the RTM metric may
be caused by the loss of information from binarising
the NAP or by the fact that changes in the output
of one of the neurons can produce a pattern that is

no longer in the training database but it is still cor-
rectly classified. It is worth noting that both JS and
KL metrics compare NAP distributions without re-
quiring/considering the ground truth label.

4 Discussion

Measuring the domain shift between training and real
scenario distributions is crucial for tuning the image
acquisition sensor parameters to optimize model per-
formance. The proposed metric can be used as a guide
to how the selection of a certain value to configure
the sensor is affecting the accuracy. The first step will
be to select a set of samples from the real scenario
with the default sensor parameters and calculate the
domain shift metric between it and the training set.
Then, a modification of the parameters is performed
obtaining a new set of modified samples and its corre-
sponding domain shift metric. If the value of the met-
ric increases after the parameter modification, it in-
dicates a larger divergence between the distributions
and, therefore, a decrease in accuracy. On the other
hand, if the divergence is smaller, the gap between
the distributions shortens with the new value of the
selected parameter and the accuracy of the model in-
creases.

Although one of the advantages of the metric is that
it can be used for unlabelled data, it is not capable of
detecting class changes. For example, having two dis-
tributions with exactly the same NAP values, but with
each of the NAPs corresponding to different classes
depending on which distribution they belong to, will
lead to a domain shift equal to 0 when in reality there
is a huge drop in accuracy.

Finally, the metric can be used to identify samples
that belong to a different distribution and can poten-
tially be used to indicate that the NN model needs to
be updated due to domain shift.

Future work will explore the JS metric applied to an
AI model trained and operating on real EO datasets,
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in order to investigate the sensitivity and effectiveness
of domain shift detection in real EO imagery.

The effect of the real data dataset size needs to
be explored, particularly when this dataset is much
smaller than the training dataset. A small real dataset
size may impact the divergence metrics. For example,
the model might perform well on the training set but
poorly on the real data due to overfitting, leading to
misleading divergence measures. Similarly, smaller
real datasets can lead to higher variability in the es-
timated distributions, affecting the reliability of the
divergence metrics. In this respect, the KL divergence
might be more sensitive to the discrepancies between
training and test dataset sizes, especially if there are
events with zero probabilities in the real data that
are not zero in the training set. Contrarily, the JS di-
vergence tends to be more robust in handling small
datasets due to its symmetric and bounded nature. It
smooths out the differences by averaging the distri-
butions, which can provide a more stable measure of
divergence.

5 Conclusions

In this work a metric to quantify the difference be-
tween two data distributions has been proposed for
the identification of domain shift for an NN model.
The metric is obtained using the NAPs obtained from
the second-to-last layer. The layer selected is the one
with the higher Silhouette score, which indicates how
well the NAP values of the layer separates the samples
between the classes. Results, obtained by using 5-fold
cross-validation, show the higher metric/accuracy cor-
relation using the Jensen-Shannon divergence metric
(values -0.81, -0.87 and -0.91) when test image sam-
ples are modified using different brightness, sharp-
ness and blur parameters. The proposed metric can
be used to calibrate the image acquisition process in
order to minimize the effect produced by the domain
shift, or for alerting to the presence of domain shift.
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