
Fine-tuning LLMs for Autonomous Spacecraft Control: A Case
Study Using Kerbal Space Program

Alejandro Carrasco∗, Victor Rodriguez-Fernandez1 and Richard Linares2

1Universidad Politécnica de Madrid, Madrid, Spain
2Massachussets Institute of Technology, Massachussets, USA

Recent trends are emerging in the use of Large Language
Models (LLMs) as autonomous agents that take actions
based on the content of the user text prompt. This study
explores the use of fine-tuned Large Language Models
(LLMs) for autonomous spacecraft control, using the Ker-
bal Space Program Differential Games suite (KSPDG) as
a testing environment. Traditional Reinforcement Learn-
ing (RL) approaches face limitations in this domain due
to insufficient simulation capabilities and data. By lever-
aging LLMs, specifically fine-tuning models like GPT-3.5
and LLaMA, we demonstrate how these models can ef-
fectively control spacecraft using language-based inputs
and outputs. Our approach integrates real-time mission
telemetry into textual prompts processed by the LLM,
which then generate control actions via an agent. The
results open a discussion about the potential of LLMs
for space operations beyond their nominal use for text-
related tasks. Future work aims to expand this methodol-
ogy to other space control tasks and evaluate the perfor-
mance of different LLM families. The code is available at
this URL: https://github.com/ARCLab-MIT/kspdg.

1 Introduction

Large Language Models (LLMs) are, without a doubt,
the last major breakthrough in the evolution of arti-
ficial intelligence systems. Since the release of Chat-
GPT [1] at the end of 2022, we have seen a plethora of
applications and use cases emerge across various in-
dustries. From generating human-like text to aiding
in code completion, LLMs have significantly impacted
the way we interact with technology and the possibili-
ties of what AI can achieve.

In recent months, the use of LLMs is expanding
beyond text-based applications to become language
agents capable of taking actions based on the con-
text of the system in which they are integrated. By
leveraging the contextual information available to
them, LLMs can make informed decisions and per-

∗Corresponding author. E-Mail:
alejandro.carrasco.aragon@alumnos.upm.es

form tasks autonomously. This new way of creating
autonomous agents intersects with the usage of Rein-
forcement Learning (RL) algorithms, and provides a
way to overcome some of its well-known limitations,
such as the sample inefficiency, and the need for a well-
defined reward function. Some recent studies have
demonstrated how some powerful LLMs, such as GPT-
4, can surpass state-of-the-art RL algorithms in com-
plex games just through studying academics texts and
reasoning [2], executing sophisticated trajectories and
achieving good zero-shot performance.

This work is focused on the domain of space appli-
cations and the development of autonomous agents
for guidance and control of spacecrafts. In this con-
text, the creation of AI-based agents has mainly been
tackled through RL during recent years, and in fact,
we can find RL-based agents for different tasks such as
sensor-tasking [3] and planetary landing [4]. However,
unlike other AI research areas, the space domain lacks
of publicly available simulation environments, which
are crucial for training AI agents in complex space
operations and providing a standard benchmark for
evaluating different AI and autonomous control meth-
ods. To address this issue, Allen et al. introduced Spac-
eGym [5], a set non-cooperative game environments
that are intended to spur development and act as prov-
ing grounds for autonomous and AI decision-makers
in the orbital domain. Among the available environ-
ments in SpaceGym, in this work we focus on the Ker-
bal Space Program Differential Games suite (KSPDG).
KSPDG is a suite of differential games, such as pursuit-
evasion scenarios, encoded within the Kerbal Space
Program (KSP) game engine 1 and standardized with
OpenAI Gym [6] and PettingZoo [7] interfaces, facil-
itating the use of diverse AI techniques, including
multi-agent reinforcement learning.

While KSPDG presents an innovative framework
for testing AI and autonomous control methods in

1https://www.privatedivision.com/portfolio/kerbal-space-
program/

Proceedings of the 1st SPAICE Conference on AI in and for Space | Pages 247 - 251 DOI: 10.5281/zenodo.13885579

© 2024 Authors of this article as listed on page 247.
This work is openly licensed via CC BY 4.0.

247



space applications, it is unsuitable for RL training,
due to technical and non-technical reasons. On the
one hand, the KSP engine, which underpins KSPDG,
lacks the capacity for the parallel, accelerated, and
headless operations essential for extensive faster-than-
real-time RL training. On the other hand, the princi-
pled stance of KSPDG’s creators to focus on evalua-
tion rather than training emphasizes the need for a
“true test set" environment where overfitting is mini-
mized, and the genuine and unbiased capabilities of
AI agents are tested. This approach diverges from the
typical RL methodology that relies on iterative train-
ing and fine-tuning of agents within a specific simula-
tion environment.

Figure 1: Overview of the proposed approach to use a fine-
tuned LLM (e.g. ChatGPT, LLaMA) as an autonomous space-
craft operator that gets, as user prompt, the current status of
the mission from the KSDPG simulation environment (i.e.,
the state or observation in the RL jargon), and replies with a
reasoned action to carry out, expressed as a function calling
with the specific throttle vector and the textual justification
behind the action.

To overcome the limitations of RL in creating au-
tonomous agents for environments such as KSDPG,
as well as for other space operations where numer-
ous simulated data cannot be provided, we propose
to adapt the current trend of LLM-based agents to de-
velop an “intelligent" operator that controls a space-
craft based on the real-time telemetry of the environ-
ment, using language exclusively as the input and out-
put of the system. As depicted in Figure 1, we design
the classic RL loop by interfacing the simulation envi-
ronment (KSDPG) with a LLM, transforming the real-
time observations (or state) of the mission as textual

user prompts that are fed to the model. The LLM then
processes the prompt and replies with an action that
will be plugged in KSDPG to control the spacecraft.
Our agent was ranked 2nd in the KSPDG challenge 2,
and was presented via a live demonstration during a
special session at AIAA SciTech in January 2024.

In our previous study [8], prompt engineering was
the primary focus, and LLM models demonstrated out-
standing performance with zero-shot and few-shot
prompts. That work utilized prompt engineering to
effectively control a spacecraft in the Kerbal Space
Program (KSP) simulation, achieving exceptional but
non-generalizable results. Additionally, some fine-
tuning experiments were conducted using the Ope-
nAI fine-tuning API. At the time, the latest and most
powerful model available for fine-tuning was gpt-3.5-
turbo-0125. The customization of this fine-tuning pro-
cess relied mainly on the data and three hyperparam-
eters: number of epochs, batch size, and learning rate
multiplier [9]. These experiments achieved moderate
results due to the API’s limitations and its economical
cost of fine-tuning.

The objective of the current study is to expand
upon previous research by incorporating a set of open-
source tools to overcome the limitations of the ear-
lier framework. In contrast to the previous paper, this
study focuses solely on the PE1_I3_E3 scenario. PE
refers to the pursuer-evader problem (rendezvous),
I3 denotes the initial position (2.7 km of separation
distance), and E3 represents a heuristic maneuver-
ing technique. [10]. In the past two years, the land-
scape of LLMs has undergone significant transforma-
tions, characterized by frequent and substantial up-
dates. Given these advancements, the "mighty" Chat-
GPT model is now rivaled by capable models such as
Claude[11], Gemini[12], and open-source models like
Mistral[13] and LLaMA[14]. This research focuses on
these latter models due to their enhanced flexibility
and open source nature, which is crucial for pioneer-
ing research in this relatively unexplored area.

The integration of a code agent with KSP is fa-
cilitated through a Remote Procedure Call (RPC)
program that connects to the selected environment
within the game. After each state update, the agent is
able to execute an action from a defined set of contin-
uous throttle commands. For a more verbose interac-
tion with the LLM, the actions are verbal—forward,
backward, right, left, up, and down—which are then
converted into full throttle, full reverse throttle, or no
action for each of the three thrusts. This discretization
also allows the model to be more like a ‘human pilot’
instead of a control algorithm.

2https://www.ll.mit.edu/conferences-events/2024/01/kerbal-
space-program-differential-game-challenge

Proceedings of the 1st SPAICE Conference on AI in and for Space | Pages 247 - 251 DOI: 10.5281/zenodo.13885579

© 2024 Authors of this article as listed on page 247.
This work is openly licensed via CC BY 4.0.

248



Figure 2: Diagram of the data generation process for fine-
tuning the model. The sequence is as follows: (1) The orbit
generator is invoked to create a new orbit. (2) The new or-
bit is saved into KSP. (3) The navball agent is activated to
navigate the orbit and generate logs. (4) The logs are saved
by the orbit generator. (5) After sufficient runs (e.g., 100),
the script data parser converts the logs into text suitable for
LLM processing.

The primary challenge to address when fine tuning
a model for KSPDG is the unavailability of varied mis-
sion scenarios, and the lack of expert gameplay logs
completing those missions. In fact, this is one of the
keys that prevented us from scaling up fine-tuning in
[8]. Figure 2 depicts a diagram of a program, along-
side a bot that tracks the KSP navball’s information3

and aligns the vessel to its prograde, to generate a
number of pairs of randomized orbits for the pursuer
and the evader problem.

The eccentricity, inclination, semimajor axis, and
true anomaly of the pursuer’s orbit were randomly
generated within the given constraints: eccentricity
≤ 0.1, inclination within 5 degrees of the evader’s or-
bit, and an initial distance ≤ 3 km. The longitude of
the ascending node and argument of periapsis were
kept constant, ensuring the mission feasibility within
a 4-minute span.

Once the issue of data availability is resolved, the
real focus of this research—fine-tuning—can be tack-
led. While OpenAI models, such as those used in
previous studies, offer high-quality function calling
and perform well with minimal customization, they
present significant limitations for large-scale training
due to cost and reduced flexibility. These constraints
limited our previous experiments to using only 1-2
files of human gameplay logs with discretized throttle

3https://wiki.kerbalspaceprogram.com/wiki/Navball

actions to test the behavior of GPT models with lim-
ited data. Though these initial results were promising,
they underscored the need for a more adaptable and
cost-effective solution.

To address the challenges in this study, which de-
mand specialized domain-specific knowledge for mis-
sion success, we transitioned to an open-source model
capable of local training. LLaMA, the most renowned
open-source model as of 2024, was chosen for its
broad adoption and extensive research community
support. The flexibility and adaptability of LLaMA
allow for comprehensive fine-tuning tailored to our
specific needs, moving beyond aggressive prompt en-
gineering to a more data-driven approach.

To fine-tune LLaMA efficiently4, we utilized a sin-
gle workstation equipped with five RTX 4090 GPUs,
employing several optimization techniques and tools
to enhance efficiency:

• Low-Rank Adaptation (LoRA): LoRA reduces
the number of trainable parameters by factoriz-
ing weight updates into low-rank matrices. Being
more computational effective [15].

• Hugging Face Transformers Library: This li-
brary facilitated the management of model archi-
tecture and training processes [16].

• Quantization: To reduce model size and enhance
inference speed, we applied quantization, con-
verting weights and activations to lower pre-
cision without significantly impacting perfor-
mance [17].

• LLaMA Factory: This tool streamlined the fine-
tuning process by efficiently managing datasets,
pre-processing, and training tasks [18].

Training hyperparameters included a batch size
of 2, a learning rate of 1e-4, a cosine learning rate
scheduler, 3 epochs, a LoRA configuration (rank=16,
alpha=8, dropout=0.05), Flash Attention 2 and
Dora enabled, and gradient accumulation steps of 2.
Fine-tuning only the last layers (2 in this case) and us-
ing a small batch size are recommended [19, 20]. The
very small batch size here was due to hardware limi-
tations. Extending the training beyond 3 epochs did
not improve loss.

The LLaMA dataset consisted of 50 top-performing
randomly generated orbit missions from the navball
agent (see Figure 2), chosen for their optimal distance
(meters) and approach speed (seconds). These mis-
sions employed less aggressive prompting while still
utilizing the chain-of-thought technique [21] to en-
able the model to learn and apply its own reasoning
effectively.

4The LLaMA version used in this work is LLaMA-3-8B

Proceedings of the 1st SPAICE Conference on AI in and for Space | Pages 247 - 251 DOI: 10.5281/zenodo.13885579

© 2024 Authors of this article as listed on page 247.
This work is openly licensed via CC BY 4.0.

249



2 Results

In Table 1, we present the results of fine-tuned GPT
models using human gameplays and LLaMA mod-
els using navball agent gameplays. GPT models show
gradual improvement, surpassing the baseline after
two training gameplays, indicating the potential of a
fine-tuned model with more gameplays. Note that the
simple fine-tuning in the GPT experiments used only
one file, basic prompting, and the default hyperparam-
eters selected by the OpenAI API. The LLaMA dataset
was divided into subsets of 10, 25, and 50 gameplay
files. One subset—the 10 files—utilized a sliding
window technique, where previous actions were in-
cluded to provide the model with additional context.
LLaMA models consistently exceed their baseline per-
formance, where the closest distance is ~120 meters
better than GPT’s baseline5. The best LLaMA mod-
els perform exceptionally well, demonstrating the po-
tential benefits of larger datasets, indicating the po-
tential of a fine-tuned model with more gameplays.
Finally, the model utilizing the sliding window tech-
nique demonstrates great performance results lever-
aging the context of the LLM.

Method
Distance (m)

Best Average Worst
Failure

Rate
Average

Latency (ms)

baseline GPT 178.11 200.10 232.16 36.8% 840.42
simple fine-tuning 263.55 265.89 271.51 0.0% 987.43
+ hyperparameter tuning 188.90 202.08 210.62 0.1% 831.30
+ system prompt 197.41 214.87 227.67 0.0% 753.52
+ two train gameplays 132.09 159.78 200.47 0.2% 557.49
baseline LLaMA 52.69 140.68 267.32 9.09% 8580.43
fine-tune 10 files 30.52 51.53 80.88 0.00% 3444.88
fine-tune 25 files 13.54 29.44 58.83 0.00% 3316.89
fine-tune 50 files 11.86 29.76 48.81 0.00% 3455.29
fine-tune 10 files win=3 23.08 40.03 49.28 0.00% 3292.44
human gameplays 5.97 6.25 6.54 - -
navball agent 34.34 36.43 39.76 - -

Table 1: Performance of fine-tuned models for each tech-
nique, measured in distance (meters) and latency (millisec-
onds). Bold indicates best, underline indicates second best,
and dashed underline indicates third best.

The fine-tuning trajectories in Figure 3 indicate that
the data ingested by the model aids in understand-
ing the problem and determining appropriate actions.
However, these trajectories also show that the model’s
prior knowledge and reasoning still influence its per-
formance. For instance, an incorrect hint, as depicted
by the GPT trajectory, deteriorates the model’s perfor-
mance and makes the agent recede from the evader
once it overshoots (meaning when it goes past the
evader). In contrast, an "agnostic" prompt that com-
plements rather than dictates the model’s reasoning
can even surpass the dataset results.

5The GPT Model is 3.5, which is older than LLaMA 3

Figure 3: This 3D plot depicts the trajectories of the best-
performing fine-tuned models for GPT and LLaMA, along
with the evader’s path. Due to an incorrect hint, the GPT
model deviates significantly after overshooting its target,
while the LLaMA model maintains a closer trajectory to the
evader.

3 Discussion

The preliminary results of this study demonstrate
that LLMs possess the capability to perform techni-
cal tasks beyond merely generating verbose text. Fine-
tuning these models enhances their reasoning for au-
tonomous space control missions without solely de-
pending on the hints and reasoning provided in the
prompt. This process yields a generalized model that
can interact as an agent in KSP rendezvous missions.

The fine-tuned LLaMA model clearly surpasses the
navball agent results, even in average distance, which
poses a singular use case where the model outper-
forms the agent responsible of creating its own train-
ing data. The tests were run on validation sets, thus
remarking the generalization capacity LLMs offer.

However, the complexity of a trajectory is not solely
determined by distance. This highlights the necessity
for more complex and dynamic scenarios that require
additional metrics. This issue will be addressed in the
next stages of this research.

Moreover, the close distances achieved by the
LLaMA models pave the way for exploring docking
operations, where the increased complexity will test
the robustness of the model’s chosen trajectories.

We also plan on leveraging the advantages offered
by multi-modal LLMs, such as the recently released
GPT-4o [22] (where ’o’ stands for ’omni’) and the
Phi-3 family [23], an open-source model incorporat-
ing multi-modal capabilities. Specifically, we intend
to utilize vision capabilities in conjunction with lan-
guage, as both modalities show the potential for creat-
ing an agent with human-like decisions.

Proceedings of the 1st SPAICE Conference on AI in and for Space | Pages 247 - 251 DOI: 10.5281/zenodo.13885579

© 2024 Authors of this article as listed on page 247.
This work is openly licensed via CC BY 4.0.

250



References

1. Introducing ChatGPT https : / / openai . com / blog /
chatgpt.

2. Wu, Y. et al. SPRING: GPT-4 Out-performs RL Algo-
rithms by Studying Papers and Reasoning. arXiv preprint
arXiv:2305.15486 (2023).

3. Siew, P. M., Jang, D., Roberts, T. G. & Linares, R. Space-based
sensor tasking using deep reinforcement learning. The Journal
of the Astronautical Sciences 69, 1855–1892 (2022).

4. Gaudet, B., Linares, R. & Furfaro, R. Deep reinforcement
learning for six degree-of-freedom planetary landing. Ad-
vances in Space Research 65, 1723–1741 (2020).

5. Allen, R. E. et al. SpaceGym: Discrete and Differential Games
in Non-Cooperative Space Operations in 2023 IEEE Aerospace
Conference (2023), 1–12.

6. Brockman, G. et al. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

7. Terry, J. et al. Pettingzoo: Gym for multi-agent reinforcement
learning. Advances in Neural Information Processing Systems
34, 15032–15043 (2021).

8. Rodriguez-Fernandez, V. et al. Language Models are Space-
craft Operators. arXiv preprint arXiv:2404.00413. https://
arxiv.org/abs/2404.00413 (2024).

9. OpenAI. Analyzing Your Fine-Tuned Model https : / /
platform.openai.com/docs/guides/fine-tuning/
analyzing-your-fine-tuned-model. 2024.

10. Allen, R. spacegym-kspdg https://github.com/mit-
ll/spacegym-kspdg. 2023.

11. Claude AI https://claude.ai/.

12. Gemini AI https://gemini.google.com/.

13. Dettmers, T. et al. Mistral 7B 2023. arXiv: 2310 . 06825
[cs.CL]. https://arxiv.org/abs/2310.06825.

14. Touvron, H. et al. LLaMA: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971 (2023).

15. Hu, E. J. et al. LoRA: Low-Rank Adaptation of Large Language
Models 2024. arXiv: 2402 . 12354 [cs.LG]. https : / /
arxiv.org/abs/2402.12354.

16. Wolf, T. et al. Transformers: State-of-the-art natural language
processing in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstra-
tions (2020), 38–45.

17. Nagel, M., van Baalen, M., Blankevoort, T. & Welling, M.
White noise: Regularizing neural networks through quantization
in International Conference on Machine Learning (2021), 7197–
7206.

18. Zheng, Y. et al. LlamaFactory: Unified Efficient Fine-Tuning
of 100+ Language Models. arXiv preprint arXiv:2403.13372.
http://arxiv.org/abs/2403.13372 (2024).

19. Masters, D. & Luschi, C. Revisiting Small Batch Training
for Deep Neural Networks. ArXiv abs/1804.07612. https:
//api.semanticscholar.org/CorpusID:5032969
(2018).

20. Liu, Y., Agarwal, S. & Venkataraman, S. AutoFreeze: Auto-
matically Freezing Model Blocks to Accelerate Fine-tuning.
ArXiv abs/2102.01386. https://api.semanticscholar.
org/CorpusID:231749529 (2021).

21. Wei, J. et al. Chain of Thought Prompting Elicits Reasoning
in Large Language Models. arXiv preprint arXiv:2201.11903.
https://arxiv.org/abs/2201.11903 (2022).

22. OpenAI. Hello GPT-4o https://openai.com/index/
hello-gpt-4o/. 2024.

23. Bilenko, M. New models added to the Phi-3 family, available
on Microsoft Azure https://azure.microsoft.com/
en-us/blog/new-models-added-to-the-phi-3-
family-available-on-microsoft-azure/. 2024.

Proceedings of the 1st SPAICE Conference on AI in and for Space | Pages 247 - 251 DOI: 10.5281/zenodo.13885579

© 2024 Authors of this article as listed on page 247.
This work is openly licensed via CC BY 4.0.

251


