
SiHoneypot: a Digital Twin-based honeypot for
Autonomous Vehicles

Athanasios Liatifis∗, Charis Eleftheriadis†, Zisis Mpatzos†,
Ioannis Nanos†, Thomas Lagkas‡, Sotirios Goudos§, Vasileios Argyriou∗∗,

Konstantinos E. Psannis¶, Ioannis D. Moscholios∥ Panagiotis Sarigiannidis∗,

Abstract—Autonomous Vehicles (AVs) stand as the vanguard
of the automotive industry’s evolution, offering a multitude of
advantages in terms of transportation efficiency and applications
of critical importance. Notably, their interconnection with various
smart devices, such as smartphones and associated services, is
achieved effortlessly. However, these merits are counterbalanced
by significant security risks pertaining to human safety and
the potential exposure of personal data. This work introduces
SiHoneypot, an innovative honeypot system rigorously crafted to
address security challenges intrinsic to AVs. SiHoneypot leverages
Digital Twins and incorporates state-of-the-art trends in software
deployment, providing a faithful emulation of Autonomous Ve-
hicle systems. Demonstrating its efficacy as a strategic decoy,
SiHoneypot affords sufficient time for other security systems to
enact responsive measures. Experimental results underscore the
minimal resources required for the deployment of SiHoneypot,
emphasizing its operational efficiency and resource optimization.
Moreover, the inherent extensibility and versatility of SiHoney-
pot’s architecture are showcased, illustrating its adaptability to
evolving security challenges within the dynamic landscape of
autonomous vehicular technologies.

Index Terms—Honeypots, Autonomous Vehicles, Digital Twin,
LiDAR Honeypot

I. INTRODUCTION

Internet of Autonomous Vehicles (IoAV) is the next evo-
lution in the transportation domain, ensuring advanced and
dynamic traffic management of vehicles with little-to-none
human intervention, eliminating road accidents and improving
the overall experience of vehicle drivers and passengers [1].
To achieve the aforementioned goals, Autonomous Vehicles
(AVs) leverage several technological advancements such as
hardware acceleration, Machine Learning (ML) and 5G tech-
nology to make rapid and accurate decisions in constantly
evolving environments such as highways and towns with little
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communication delay [2]. Despite the evident benefits of AVs
to society, these systems are prone to a multitude of attacks
stemming from the underlying technologies they rely upon,
but also to new threats specific to their operational charac-
teristics [3]. Such threats include attacks on the navigation
and control systems, attacks on the sensors of the vehicle and
attacks related to the protocols and subjacent communication
technologies [4].

Honeypots are software components that emulate the be-
haviour of real assets or services, with the goal to present
themselves as vulnerable entities to attract attackers [5].
Depending on the level of interaction with another entity
(usually an attacker), a honeypot may be categorised as low-
interaction, medium-interaction or high-interaction. As the
interaction level increases, so does the complexity in terms
of development effort and the emulation capabilities of the
honeypot with respect to the device or service.

Low-interaction honeypots can emulate simple protocols
and services, whereas high-interaction ones can emulate whole
systems making them indistinguishable. Evidently, a tradeoff
exists in the degree of interaction between a honeypot and
the host system, thereby impacting the potential data acquired
from malicious actors. A higher interaction level allows for
more extensive engagement, resulting in a larger volume of
collected data. Conversely, a lower interaction level constrains
engagement, diminishing critical interactions and limiting the
amount of collected data. Throughout the interaction process,
valuable logs are recorded together with traffic traces. The data
can then be analysed to get valuable insight related to attacker
motives and possible misconfiguration of security tools.

In this work SiHoneypot framework is presented, a novel
high-interaction honeypot that leverages the latest trends in
microservices and Digital Twin technology to emulate AV
sensors. To the best of our knowledge this is the first work
to present an application of a LiDAR sensor Honeypot. The
structure of the paper is as follows: Section I introduces
honeypots as a possible mitigation method against security
concerns regarding AVs. A short survey review of related
honeypot developments in past years is presented in Sec-
tion II. Section III presents the SiHoneypot framework, a
Digital Twin high interaction Honeypot that follows state-of-
the-art practices. Section IV presents evaluation results and
performance metrics of the SiHoneypot. Finally, Section V
concludes our findings, while also outlines potential future
research endeavors.
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II. RELATED WORK

Honeypots differ fundamentally from conventional security
solutions, such as firewalls, as their primary purpose is not
to obstruct attackers. Instead, they purposefully present them-
selves as vulnerable targets, diverting the focus of potential
threats and introducing delays sufficient for other security
systems to promptly detect and forestall any malicious activi-
ties. This proactive approach ensures the timely protection of
authentic assets. Given their inherent attributes, honeypots find
applicability across diverse domains, including but not limited
to IoT [6] and web-servers [7].

Siniosoglou et al. developed NeuralPot [8], a high-
interaction Industrial Control Systems honeypot that leverages
Deep Neural Networks (DNNs) to emulate the behaviour
of Modbus devices. The honeypot uses a collection of past
measurements to train the model and emulate Modbus device
readings. Suratkar et al. [9] also leverage DNNs to develop
a Reinforcement Learning honeypot that can perform severity
analysis on adversaries and hide its presence. The proposed
system was evaluated using Cowrie 1 honeypot.

HoneyBot [10] is a hybrid robotic system honeypot that
incorporates software and hardware components to emulate
a robotic system. HoneyPhy honeypot [11] includes real
sensors that are queried in real time upon request. Malicious
commands are analysed and executed in a safe emulated
environment to protect the real devices. HoneyBoT is the first
honeypot that attempts to combine the benefits of real systems
with the safety of emulated environments.

HoneyCar [12] is a framework designed specifically for hon-
eypot deception in Internet of Vehicle environments. HoneyCar
offers dynamic honeypot configuration of honeypot instances
by modelling the honeypots and the attacker’s interactions as
an imperfect zero-sum game theoretic model. The framework
can efficiently generate optimal strategies Common Vulner-
ability Scoring System (CVSS) [13] values of the Common
Vulnerabilities and Exposure (CVE) 2 list. However, Honeycar
does not propose any new AV-specific honeypot.

Anastasiadis et al. [14] propose a high-interaction honeypot
framework that emulates IoV sensors and leverages Markov
Chain Models to analyse honeypot logs to describe attack
propagation patterns.

III. PROPOSED SYSTEM ARCHITECTURE

At this juncture, the proposed architecture of SiHoneypot
introduced, exhibiting the details of its integral components
and their respective functionalities. The tool comprises three
primary components: 1) The Honeypot component, tasked
with emulating the behavior of authentic sensors and/or em-
bedded devices within complex cyber-physical systems. In
our case, the Honeypot implementation focuses on replicating
the operations of a LiDAR sensor integrated into an AV. 2)
The Digital Twin which mirrors the functionalities of the
Honeypot, accurately replicating its entire operational cycle.

1https://github.com/cowrie/cowrie/
2https://www.cve.org/

Fig. 1: SiHoneypot architecture

3) The Dashboard which serves as a user-friendly interface
equipped with visualizations, aiding interested individuals in
making informed decisions.

Figure 1 outlines a detailed depiction of SiHoneypot’s
architecture. The LiDAR Honeypot simulates a LiDAR sensor,
generating binary (.bin) files with unique hashes. These files
are transmitted to a designated location, posing a potential
cybersecurity risk, such as a Man-in-the-Middle attack. Upon
arrival, the .bin files undergo Merkle tree hashing [15], and any
inconsistency triggers a manipulation alert sent to the LiDAR
Honeypot. In response, the Honeypot generates a Telemetry
data JSON file, converted to STIX 2.1 3 format and sent to
the Dashboard. The Dashboard transforms the analyzed data
into insightful plots for decision-making. Detailed descriptions
of each component are provided in subsequent subsections.

A. LiDAR Honeypot

LiDAR Honeypot serves as a protective measure against
cyber threats targeting LiDAR Sensors crucial for modern
AI systems and AVs. The proposed honeypot component
consists of two main facets: the emulated sensor and the
core part that is responsible for all the related operations and
message exchanges. This digital decoy accurately emulates a
real LiDAR Sensor, streaming LiDAR-generated point clouds
as .bin files and transmitting telemetry data in JSON format to
the Digital Twin. Leveraging Apache Kafka 4 for scalability,
fault tolerance, and high throughput, the Honeypot ensures
robust data pipelines.

The Honeypot core serves as the central orchestrator for all
LiDAR data operations, embodying principles of modularity
and extendibility in its design patterns. This fact ensures
the seamless adaptation of its operations and functionalities,
enabling the future simulation of a wide range of devices and

3https://oasis-open.github.io/cti-documentation/stix/intro
4https://kafka.apache.org



Fig. 2: Graphical Interface of SiHoneypot

sensors. This adaptability is crucial for accommodating evolv-
ing cybersecurity landscapes and technological advancements.

The Honeypot core is responsible for the alert exchange
with the emulated LiDAR sensor upon detecting malicious
activities, transforming telemetry data for anomaly detection
using CICFlowmeter-V4.0 5 format. To convey attack details,
Honeypot core prepares informative messages in compliance
with the STIX 2.1 cyber threat intelligence standard.

B. Digital Twin

A Digital Twin [16] is a virtual representation of a physical
entity, utilized for simulation, integration, testing, monitor-
ing, and maintenance. In the proposed system, the Digital
Twin acts as a moderator between the LiDAR Honeypot
and the Dashboard. It pushes .bin files to the Honeypot,
which assimilates them through Kafka streaming and assigns
unique hashes to them facilitating future verification steps.
The Digital Twin can serve data from various sources such as
well-known atasetss [17], organisational data or anonymised
data incorporating LiDAR measurements, represented as point
clouds, from various landscapes.

The verification procedure unfolds as follows: upon receiv-
ing the .bin files transmitted by the LiDAR Honeypot, the
Server utilizes these files as input for a hashing function,
specifically utilizing the Merkle tree signature (MTS) algo-
rithm, yielding a corresponding hash. The Server assumes the

5https://github.com/ahlashkari/CICFlowMeter

role of a database management system, facilitating communi-
cation between the SiHoneypot and the network. Additionally,
it undertakes crucial operations including hash calculation, in
order to optimize the verification process, thereby enhancing
the overall dependability of the system architecture. Conse-
quently, these hashes are transmitted back to the Digital Twin
for comparison against the pre-existing list of known hashes.
Upon a non-matching scenario, a flag is raised, triggering
the transmission of a message to the LiDAR Honeypot to
commence the generation of Telemetry data, encompassing
detailed information about the deployed attack.

As a digital twin, it faithfully mirrors Honeypot opera-
tions and functionalities, ensuring synchronized and congruent
behaviour. Distinctively, the Digital Twin interacts with the
Dashboard pushing metrics and results related to data integrity.
In this interaction, the Digital Twin communicates several file
types to the Dashboard, encompassing: 1) .bin files linked
to the LiDAR Honeypot output, and 2) thoroughly analyzed
Telemetry data packaged in CSV files, offering a comprehen-
sive overview of malicious network flows.

C. Dashboard

The architecture’s final component is a dynamic dashboard
showcasing SiHoneypot outcomes and emulating LiDAR sen-
sor data, as illustrated in Figure 2. The Digital Twin connects
these elements and launches the Dashboard online. Given
the containerised environment of SiHoneypot, the dashboard
offers a simple and efficient interface to communicate with
container instances.

The Dashboard has the capacity to accommodate various
output file types from different devices/sensors, offering a
comprehensive view of the network’s status through diverse
visualization techniques like charts, histograms, and other
methods. Key functionalities include selecting LiDAR data
for which the attack report has been generated, downloading
reports in CSV format, and displaying real-time detections of
manipulated data. Histograms depict network packet details,
while scatter plots and spider diagrams allow in-depth analysis.
In summary, the Dashboard’s visualizations provide a clear
representation of network traffic, improving usability and
comprehension for end-users.

IV. EVALUATION AND RESULTS

To evaluate SiHoneypot, a high-end computer with an i7-
12700K, 32GB of RAM and 1 TB of solid-state drive was
used. Table I summarises our findings regarding resource
consumption when idle and under load (i.e. when the honeypot
is attacked). The tests were conducted to measure the overall
resource consumption of SiHneypot. To attack the honeypot,
hping3 tool was used to perform denial of service attacks, a
set of attacks well-known for their resource consumption on
the victim’s side. The attacks included packets with payload
and random ports to stress the LiDAR Sensor. The test
was designed to measure the worst-case scenario of resource
consumption for each component, especially on the LiDAR
Sensor responsible for interaction with any potential attacker.



All components consume little resources when in an idle
state and under load with the LiDAR sensor being the only
exception. The percentage values measure the utilization of all
system cores (i.e. 100% translates to all system cores utilised).

TABLE I: SiHoneypot idle and under load scnario

Idle Under Load

CPU
LiDAR Sensor 0.6% 7.7%
Digital Twin 0.5% 2.6%
Honeypot Core 0.5% 4%

Memory
LiDAR Sensor 400MB 1.2GB
Digital Twin 400MB 450MB
Honeypot Core 300MB 950MB

Network bandwidth LiDAR Sensor 2Mpbs 3Mbps

Based on the analysis above Table II summarises the recom-
mended system requirements for all components to properly
function. In terms of necessary bandwidth, the LiDAR Sensor
uses 2 Mbps to send the security incidents in STIX 2.0 format.
As a result, SiHoneypot can operate on a wide range of
infrastructure sites, ranging from a couple of computers to
large-scale computing nodes. The microservices approach of
SiHoneypot simplifies the deployment of its components with
little effort for infrastructure operators or administrators.

TABLE II: System Requirements for SiHoneypot and Digital
Twin Core

LiDAR Sensor Digital Twin Honeypot Core
CPU 2 Cores 1 Core 2 Cores
RAM 2 GBs 1 GB 1 GB

V. CONCLUSION

Honeypots are a promising means of gathering and ana-
lyzing data pertaining to attackers, yielding valuable insights
into their motives and uncovering potential security miscon-
figurations. A lack of IoV-specific honeypots has led to the
development of SiHoneypot, a high-interaction honeypot that
leverages Digital Twin technology to emulate AV sensors. The
first version of Sihoneypot set the foundation for a highly
configurable and extensible honeypot system. In the future,
we plan to include additional sensors and AV components,
increasing support for diverse AV profiles. Additionally, we
aim to follow recent trends in honeypot development by incor-
porating AI into the process of system behaviour emulation. In
conclusion, prioritizing the establishment of metrics to assess
the performance and emulation accuracy of honeypots used
in AVs and related domains is imperative, given the limited
progress in this research area.
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