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Abstract. Damage detection remains a critical challenge, especially
within the industrial automation sector, necessitating the development of
advanced inspection technologies and their potential applications. Con-
ventional industrial inspection methods are hindered by high costs and
operational disruptions, motivating the development of innovative and
efficient solutions. This paper introduces a novel, architecture-agnostic
deep neural network (DNN) knowledge distillation (KD) method able
to enhance vision-based damage detection performance even in challeng-
ing industrial environments. Our proposed method integrates foreground
knowledge with feature KD to enhance data feature utilization in de-
tection models, effectively minimizing background clutter. The results
demonstrate the efficiency of our method in consistently enhancing the
student’s training process, including up to a 12% increase in mean Aver-
age Precision (mAP), across various DNN architectures. Our approach
bridges the gap between academic research and real-world industrial cur-
rent applications, offering a robust solution for damage detection in in-
sulated pipelines.

Keywords: Industrial inspection · Damage detection · Feature knowl-
edge distillation

1 Introduction

Damages in the industrial pipelines lead to inefficiencies and leakages, harming
plant productivity operations. Corrosion Under Insulation (CUI), if not prop-
erly managed, potentially causes catastrophic failures. While manual inspection
is possible, it is often difficult and time-consuming due to the height and com-
plexity of plant environments. The modern industrial automation sector urgently
requires advanced vision inspection technologies to enhance the maintenance of
sensitive industrial infrastructures. This need is particularly pronounced in re-
finery industries, where inspecting insulated pipes is essential for maintaining
operational flow and energy efficiency. Deep Neural Network (DNN) models have
significantly advanced the field of industrial defect detection. They offer supe-
rior precision, facilitating the automation of tasks that were previously deemed
impossible. Recently, various vision damage detection studies employed DNN
models for structural infrastructures, leveraging their enhanced state-of-the-art
(SOTA) performance in a variety of tasks and applications [4, 8, 32,33].
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Fig. 1: Insulated pipes images from the PDI dataset [17].

Despite advancements in DNN models, a significant gap persists between
academic research and real-world applications, particularly in complex outdoor
environments where vision-based analysis algorithms face substantial challenges.
DNN models are prone to failure when encountering real-world challenges that
were not present in their training datasets. While significant advancements have
been made in object detection with SOTA algorithms [10,11,14,16,35], these ef-
forts often fall short of addressing the complexities and challenges encountered in
real-world scenarios. Most benchmark datasets used to develop these algorithms
are ideally structured and do not accurately reflect the complexities encountered
in real-world applications. While these datasets are crucial for advancements in
general detection tasks, they fail to address the issue of background clutter preva-
lent in real-world applications. This clutter introduces additional noise for the
models, often resulting in poor performance in practical scenarios. As illustrated
in Figure 1, the working conditions in industry data are highly challenging and
cluttered. This underscores the necessity to adapt these models for such environ-
ments. The work of [17], which introduced the PDI dataset that includes images
from various refineries, highlights that SOTA object detection models struggle
in these difficult and cluttered environments. This underscores the critical need
to adapt these models to such environments.

Motivated by the need for robust real-world solutions in the industry, we pro-
pose a novel feature Knowledge Distillation (KD) method specifically tailored
for algorithms operating in clutter environments including industrial damage
detection in insulated pipes. Our approach leverages feature KD incorporat-
ing foreground knowledge during the training phase aiming to improve vision-
based industrial damage detection. To address background clutter, we employ a
teacher-student framework where the teacher model is trained on preprocessed
image data, and the student model is trained on original image data. The stu-
dent leverages feature KD from the teacher, which processes the same data but
with the preprocessing. This approach allows the student model to utilize the
foreground knowledge from the teacher, maximizing the amount of relevant in-
formation used during its training. The term "relevant information" refers to the
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data deemed useful by the model for accurately detecting the object of inter-
est—in this case, the area of the pipe—without being confused by background
noise. This approach significantly aids the DNN models in detecting the damages
in challenging industrial environments where background clutter often degrades
model performance. Notably, the proposed method is architecture-agnostic and
can be integrated into various models by modifying only the training phase,
making it straightforward to implement and highly versatile for integration pur-
poses.

Fig. 2: Results overview.

We demonstrate the superiority of our approach compared to traditional fea-
ture KD methods [25, 27, 29, 38, 39] that do not utilize additional foreground
information during the training phase. The proposed method is simple yet effi-
cient, significantly improving SOTA object detection DNN models across nearly
all benchmark metrics. Extensive experiments incorporating our method into
various SOTA object detection models, surpassing the performance of the base
training models as shown in Figure 2, highlight its generality. By experimenting
with different loss functions and image preprocessing techniques, we optimized
model performance, underscoring the importance of this training framework in
adapting SOTA DNN algorithms to real-world industrial challenges.

In summary, this paper presents the following key contributions:

– We introduce a novel, architecture-agnostic DNN training approach utilizing
feature KD, tailored specifically for improving damage detection in insulated
pipes across real-world industrial settings. Our method efficiently maximizes
the use of essential foreground information to achieve optimal damage de-
tection results while avoiding background clutter.

– Our baseline models exhibit significant performance enhancements, includ-
ing a 12% increase in mean Average Precision (mAP) along with other con-
siderable improvements in metrics within the scope of damage detection in
industrial insulated pipelines.
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– Model performance has been optimized through extensive experimentation
with various loss functions and image preprocessing techniques, illustrating
the framework’s ability to adapt SOTA DNN algorithms to practical indus-
trial applications.

The remainder of this paper is organized as follows. Section 2 summarizes
the related work. Section 3 presents the methodology of the training framework.
Our experiments are detailed in Section 4, including a subsection on our ablation
study in Section 4.1. Finally, conclusions and proposed future work are discussed
in Section 5.

2 Related Work

Knowledge Distillation. KD, introduced by [7], involves transferring knowl-
edge from a large, pre-trained teacher network to a smaller student network.
Initially used for model compression, KD enhances performance through guided
training. Feature-based KD methods, introduced by [25], focus on intermediate
representations, with subsequent advancements made by [9, 18, 46]. Recent in-
novations include Mutual Information Maximization KD by [28] and flow-based
techniques by [42]. Some works have aimed to improve the attention to the
foreground objects via KD [40, 43, 44]. In detection tasks also, [19] proposed
a Frequency Attention Module, and [45] developed the Feature-Richness Score
method. In [41] and [38], they enhanced detector performance using feature KD,
while [14] implemented self-distillation in YOLOv6, facilitating easy integration
with high-performance detectors. Channel-wise KD for dense prediction tasks
was explored by [29], whereas [39] and [27] addressed low-resolution face recog-
nition using different input resolutions. These studies highlight KD’s versatility
and effectiveness, motivating our proposed method to enhance DNN model per-
formance in real-world applications with suboptimal inputs.

Damage Detection. Damage detection, an extension of object detection,
has significantly advanced in recent years with the advent of deep learning tech-
niques that offer high precision and rapid inference, making them suitable for
industrial applications. One-stage methods, such as YOLO [21] and SSD [15],
have become prevalent due to their speed, whereas two-stage methods, like R-
CNN [6], Fast R-CNN [5], and Faster R-CNN [24], are noted for their higher
accuracy but slower performance. The field has seen extensive research and con-
tinuous updates to models like YOLO almost annually [2,10,11,14,22,23,34–36].
Recently, transformer-based algorithms have gained prominence in object de-
tection, with models ranging from DETR [3] to real-time variants like RT-
DETR [16], showcasing their potential to lead in this domain like in others.
Also, DNN models have significantly advanced surface defect detection, enhanc-
ing accuracy and efficiency across various industrial applications [1,13,26,31,37].
In UAV inspection, deep learning models like Mask R-CNN [12] and methods in-
tegrating synthetic data [30] have improved infrastructure maintenance. Despite
these advancements, challenges remain in cluttered backgrounds, particularly for
UAV-based inspection.
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3 Method

Fig. 3: Architecture of the proposed feature knowledge distillation (KD) method. The
teacher model processes images without the cluttered background, while the student
model processes the original images. The KD metric loss, applied to the final feature
maps, encourages the student to mimic the features of the pretrained teacher on more
informative images.

Our approach involves training the teacher model using preprocessed image
data to focus on foreground features, followed by training the student model
with the original image data utilizing the distilled foreground knowledge from
the teacher model, thereby enhancing its capability to distinguish and recognize
foreground objects. During training, the weights of the teacher model are kept
frozen while the student model is trained on the dataset D. For each training
batch {(Xi,ai)}Ci=1, where Xi ∈ RC×H×W represents the images, ai denotes the
detection ground truth labels, C is the batch size, the teacher model processes a
corresponding batch {(XMi

,ai)}Ci=1 from the preprocessed dataset DM , where
XMi

∈ RC×H×W represents the preprocessed images. The order and transforma-
tions applied to these batches are consistent across both models. Feature maps
from the last layers of both models are compared using a metric loss, which is
the distillation loss, and integrated into the overall loss function of the student
model. This feature distillation approach brings the student’s feature representa-
tions closer to the teacher’s foreground feature representations, thereby enhanc-
ing the student’s performance. The proposed method is illustrated in Figure 3,
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where we utilize two DNN models of identical architecture and size. It is a two-
stage training process where the teacher model is first trained on the task using
DM .

Method mAP mAP50 mAR1 mAR10 mAR100

Original image 0.25 0.505 0.232 0.349 0.419
RB 0.254 0.473 0.244 0.360 0.430
BB 0.241 0.483 0.237 0.354 0.414
EF 0.245 0.452 0.242 0.351 0.427
SF 0.209 0.403 0.223 0.320 0.400
RB & EF 0.231 0.469 0.223 0.339 0.418
RB & SF 0.247 0.458 0.233 0.361 0.413
BB & EF 0.235 0.455 0.228 0.388 0.429
BB & SF 0.217 0.423 0.213 0.335 0.409

Table 1: Comparison of different foreground-background preprocessing methods on
train and validation set for YOLOv6s [14] on mAP and mAR metrics.

As shown in Table 1, the use of image preprocessing with masks improves
the performance of the YOLOv6s [14]. The simplest preprocessing technique in-
volves removing the background and retaining only the pipe in the image, which
results in a slight improvement in mAP and mAR1 metrics. Beyond the Remove
Background (RB) technique, we explored additional preprocessing methods. One
such method involves applying a Gaussian filter to create a Blurred Background
(BB). This technique aims to preserve some background information while intro-
ducing a smoothing effect by implementing a convolution function Tbgrnd with
a Gaussian kernel. Additionally, we enhanced the foreground features through a
sharpening filter, termed Sharpen Foreground (SF), which applies a Laplacian
sharpening filter using the convolution function Tfgrnd. Furthermore, to improve
contrast, we employed histogram equalization on the foreground, referred to as
Equalize Foreground (EF). We further experimented with combinations of these
preprocessing techniques for both background and foreground to evaluate their
impact on model performance. Histogram equalization adjusts the intensity dis-
tribution of the image to enhance contrast. The transformation is defined as:

Tfgrnd = H(I) =
L− 1

N

i∑
j=0

h(j) (1)

where H(X) is the histogram-equalized intensity, L is the number of possible
intensity levels, N is the total number of pixels, and h(j) is the histogram count
for intensity level j. These preprocessing transformations are illustrated in Figure
4. Notably, the combination of BB and EF significantly increased performance,
with an improvement in mAR10 by nearly 0.04 (+11%) and in mAR100 by 0.01
(+2%).
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Method mAP mAP50 mAR1 mAR10 mAR100

Original image 0.25 0.505 0.232 0.349 0.419
RB 0.23 0.422 0.219 0.342 0.422
BB 0.232 0.453 0.229 0.326 0.398
EF 0.25 0.448 0.245 0.365 0.428
SF 0.204 0.389 0.223 0.31 0.381
RB + EF 0.21 0.429 0.197 0.311 0.395
RB + SF 0.232 0.42 0.228 0.33 0.402
BB + EF 0.218 0.414 0.217 0.33 0.419
BB + SF 0.178 0.34 0.204 0.29 0.363

Table 2: Comparison of different foreground-background preprocessing methods on
YOLOv6s [14], evaluated on mAP and mAR metrics.

As demonstrated in Table 2, the absence of these masks during the valida-
tion phase leads to a decrease in model performance across most metrics. This
highlights the importance of maintaining these masks during validation to pre-
serve performance levels. However, this is not trivial at inference time because
the masks are not available as they are during training. One way to obtain
these masks at inference is to incorporate a segmentation model, such as the one
proposed by [20]. However, this approach has two main drawbacks. First, the
overall system becomes slower since the detection model has to wait for the out-
put of the segmentation model. Second, any error in the segmentation model’s
output can propagate and degrade the overall performance of the detector. For
instance, if the segmentation model incorrectly classifies a part of the pipe as
background, the detection model will never see this part, potentially missing any
damage present. The proposed method addresses these issues by exploiting the
foreground knowledge only during the training phase.

3.1 Data preprocessing

We use a dataset D = {(Xi,ai,Mi)}Ni=1, Mi are the ground truth masks of
the pipeline, and N is the total number of images. Using the ground truth
masks Mi, we create a new dataset DM = {(XMi

,ai)}Ni=1. To create DM , we
use the ground truth masks M to separate the background and the foreground
and apply different transformations to each. The mask M contains values of
1 where the pipeline is present and 0 elsewhere. Using this mask, we extract
the foreground and background of the image and apply distinct transformations
to each. Afterward, we combine the transformed foreground and background to
reconstruct the new image, which is then added to the preprocessed dataset DM .
The ground truth labels ai remain unchanged.

Formally, in our framework, given an input image X ∈ RC×H×W where C,
H, and W denote the number of channels, height, and width of X, respectively,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4: Image preprocessing: (a) Original image, (b) Remove Background (RB), (c)
Blurred Background (BB), (d) Sharpen Foreground (SF), (e) Remove Background &
Sharpen Foreground (RB & SF), (f) Blurred Background & Sharpen Foreground (BB
& SF), (g) Equalize Foreground (EF), (h) Remove Background & Equalize Foreground
(RB & EF), (i) Blurred Background & Equalize Foreground (BB & EF).

the preprocessed image XM is obtained by:

Xforeground = Tfgrnd(X)⊙M (2)
Xbackground = Tbgrnd(X)⊙ ¬M (3)

XM = Xbackground +Xforeground (4)

where ⊙ denotes element-wise multiplication, Tfgrnd is the foreground trans-
formation function, and Tbgrnd is the background transformation function. The
¬M is the binary complement of M, having a value of 1 for the background and
0 for the pipeline. We experimented with various Tfgrnd and Tbgrnd functions to
identify the optimal combination, as discussed in Subsection 4.1.

3.2 Feature KD with different inputs

The latest SOTA DNN detection models typically consist of three primary
components: the backbone B(·), the neck N(·), and the detection head H(·).
The overall flow of the detection process can be represented as Ŷ = F (X) =
H ◦N ◦B(X), where F (X) denotes the model’s output.
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The backbone network B(·) extracts feature maps from an input image X ∈
RC×H×W . The final output is a feature map FL from the last layer L:

FL = B(X) = fL ◦ fL−1 ◦ · · · ◦ f1(X) (5)

where FL ∈ RCL×HL×WL and f l represents the transformation function at
layer l.

To capture multi-scale information, we extract feature maps from a sequence
of intermediate layers. Let L = {L,L− 1, . . . , L−K + 1} be the ordered set of
layers, where K is the number of layers considered. Consequently, the backbone
output is an ordered sequence of feature maps

(
Fl

)L
l=L−K+1

= B(X). This ap-
proach allows the model to utilize multi-scale information effectively, enhancing
its capability to detect objects of varying scales and improve overall performance.

The teacher model is trained using XM , where the student model is trained
using both X and XM . During student training, the feature maps are given by:

{Fl
S}Ll=L−K = BS(X) and {Fl

T }Ll=L−K = BT (XM ) (6)

where BS and BT denote the backbones of the student and teacher models,
respectively.

To optimize the student model, we measure the cosine distance between the
feature maps of the student Fi

S and the teacher Fi
T :

d(Fi
S ,F

i
T ) = 1− flatten(Fi

S) · flatten(Fi
T )

T

∥flatten(Fi
S)∥2∥flatten(Fi

T )∥2
(7)

where flatten : RCi×Hi×Wi → RCiHiWi is the vectorization function, and ∥·∥2
is the l2 norm.

The distillation loss LKD and the total loss Ltotal are defined as follows:

LKD =

K∑
i=1

d(Fi
S ,F

i
T ), (8)

Ltotal = L+ αLKD (9)

where L is the original task-specific loss (e.g., classification or detection loss)
and α is a weight hyperparameter balancing the two loss components.

4 Experiments

In our experimental evaluation, we use a subset of the PDI dataset [17], which
consists of 939 images. We use 752 images for the training phase and 187 images
for the validation phase. We selected a subset because the PDI dataset [17] does
not include pipe segmentation masks, so we had to annotate them manually. For
experimental purposes, we annotated a subset of the dataset. The images in the
PDI dataset [17] have varying resolutions, ranging from 1920x1080 to 9504x6336,
due to the different camera sensors used. This variation in resolution presents
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Raw Image Base Method Proposed Method Ground Truth

Fig. 5: Comparison of YOLOv6s [14] results. Each column presents the results for the
raw image, base training method, proposed method, and ground truth.

additional challenges. The dataset comprises images from generic, anonymized
European refinery imagery, adding to its diversity and complexity.

The experiments were conducted on a machine running Ubuntu 16.04.4 LTS,
equipped with an NVIDIA GeForce RTX 2080ti GPU and an Intel(R) Core(TM)
i7-6900K CPU @ 3.20GHz. The software environment included Python 3.8.18
and CUDA 11.3. The training batch size was set to 16, and the image size was
640 x 640 pixels. All models were trained for 100 epochs and were pre-trained
on the COCO dataset. We used the default fine-tuning configuration for each
model.

In this paper, we use several metrics to evaluate the performance of our
framework. Specifically, we employ COCO metrics for detection, which include
mAP at different intersection over union (IoU) thresholds. Additionally, we mea-
sure mean average recall (mAR) under different scenarios, such as the maximum
number of objects in an image. The primary metric we focus on is mAP, which
is the standard benchmark metric for object detection tasks. However, we also
report other metrics to comprehensively assess the benefits and performance
improvements of our method.

Table 3 presents a comparison between the base training method, a simple
feature distillation method using Cosine Similarity (CS) loss, and our proposed
method across several SOTA object detection models. We utilized CS in the
simple feature distillation to highlight the significance of using different inputs
for the teacher and the student in our framework. The results show that our pro-
posed method consistently outperforms both the baseline and the simple feature
distillation method across almost all models. This demonstrates the architecture-
agnostic capability of our framework. Notably, even transformer-based architec-
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tures exhibit improvements with our method compared to the baseline training.
However, these architectures show a significant performance decrease when sim-
ple feature distillation is applied. Overall, this table illustrates that our frame-
work effectively enhances the performance of nearly every detector.

mAP Comparison

Model Base Feature-KD Proposed vs Base vs Feature-KD

YOLOv5n 0.219 0.207 0.223 +0.004 (+1.8%) +0.016 (+7.7%)
YOLOv5s 0.221 0.245 0.241 +0.020 (+9%) -0.004 (-1.6%)
YOLOv5m 0.234 0.215 0.244 +0.010 (+4.2%) +0.029 (+13.4%)
YOLOv5l 0.206 0.234 0.235 +0.029 (+14%) +0.001 (+0.4%)

YOLOv8n 0.200 0.218 0.217 +0.017 (+8.5%) -0.001 (-0.4%)
YOLOv8s 0.224 0.229 0.222 -0.002 (-0.8%) -0.007 (-3%)
YOLOv8m 0.213 0.236 0.250 +0.037 (+17.3%) +0.014 (+5.9%)
YOLOv8l 0.211 0.209 0.239 +0.028 (+13.2%) +0.030 (+14.3%)

YOLOv6n 0.249 0.242 0.261 +0.012 (+4.8%) +0.019 (+7.8%)
YOLOv6s 0.250 0.240 0.275 +0.025 (+10%) +0.035 (+14.5%)
YOLOv6m 0.242 0.275 0.256 +0.014 (+5.7%) -0.019 (-6.9%)
YOLOv6l 0.276 0.277 0.280 +0.004 (+1.4%) +0.003 (+1%)

RT-DETR 0.242 0.175 0.253 +0.011 (+4.5%) +0.078 (+44.5%)
Table 3: Comparison of the base training method and feature distillation with the
proposed method, including improvements across various model architectures.

In Figure 5, we can see the inference results of YOLOv6s [14] with the base
training method and our proposed training method. The significant improve-
ment in recall and precision achieved by our training framework is evident. Our
proposed method closely matches the ground truth, whereas the baseline model
struggles with detection and often produces false positives showing the impor-
tance of our training framework and how it can help the detection models in
those types of environments.

In Table 4 we compare our best results which are with the RB & SF for
teacher input, determined through an ablation study discussed later in this pa-
per in Subsection 4.1. Unlike our method, these traditional approaches do not
use different inputs for the teacher and student models. In these methods, the
teacher is pretrained on the task with the original images, and the distillation
process follows the classical feature KD method [25], where both the student and
the teacher have the same input. Additionally, it demonstrates a significant per-
formance increase compared to base training. Specifically, our method improves
the mAP of the SOTA baseline detector YOLOv6s [14] by 0.031 (+12%), mAP50
by 0.045 (+9%), mAR1 by 0.02 (+8%), mAR10 by 0.038 (+10%), and mAR100
by 0.029 (+7%). These results show that our proposed training framework with
KD method significantly outperforms the base training approach.
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Method mAP mAP50 mAR1 mAR10 mAR100

Base training 0.25 0.505 0.232 0.349 0.419
Feature KD-CS [27] 0.24 0.505 0.215 0.348 0.403
Feature KD-MMD [39] 0.246 0.445 0.223 0.376 0.432
Feature KD-CWD [29] 0.235 0.432 0.225 0.325 0.39
Feature KD-MSE [25,38] 0.255 0.504 0.227 0.365 0.426
KD-KL [7,14,46] 0.225 0.449 0.227 0.343 0.377
Proposed Method 0.281 0.55 0.252 0.387 0.438

Table 4: Performance comparison of various feature knowledge distillation (KD) meth-
ods using different loss functions on YOLOv6s [14]. Metrics include mAP and mAR,
highlighting the effectiveness of the proposed method.

4.1 Ablation Study

We conducted an ablation study to evaluate the impact of various preprocessing
techniques on the teacher model’s input and to assess different distance met-
rics for distillation loss. We aimed to identify the most effective preprocessing
methods for both the background and foreground, as well as to determine the
optimal distance metric for our KD loss. The distance metrics used were sourced
from existing literature on feature distillation. Our objective was to identify the
best loss function and the corresponding α hyperparameter, which balances the
KD loss within the overall loss function of the detection model. This study was
crucial for optimizing the model’s performance in the specific task of damage
detection in insulated pipelines.

Method mAP mAP50 mAR1 mAR10 mAR100

MSE, α = 0.1 0.261 0.493 0.244 0.364 0.431
MSE, α = 0.5 0.271 0.501 0.246 0.366 0.438
MSE, α = 1 0.265 0.516 0.248 0.361 0.419

MMD, α = 0.1 0.261 0.502 0.252 0.361 0.433
MMD, α = 0.5 0.261 0.497 0.243 0.371 0.425
MMD, α = 1 0.25 0.467 0.235 0.353 0.42

CWD, α = 0.1 0.263 0.494 0.244 0.364 0.43
CWD, α = 0.5 0.259 0.505 0.229 0.363 0.427
CWD, α = 1 0.252 0.482 0.238 0.344 0.423

CS, α = 0.1 0.256 0.488 0.242 0.355 0.422
CS, α = 0.5 0.275 0.531 0.248 0.369 0.419
CS, α = 1 0.266 0.509 0.244 0.366 0.423

Table 5: Comparison of proposed method with different losses for YOLOv6s [14] on
mAP and mAR metrics.
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In this study, a separate model was trained for each preprocessing method
and used as the teacher. The results indicated that the best performance was
achieved when the teacher model was trained with a combination of RB and
SF preprocessing. This combination enabled the model to learn more effectively,
resulting in improved precision and recall. The only metric where RB and SF
were not the best was mAR100, where it was surpassed by the BB and EF com-
bination. However, in all other metrics, the RB and SF combination performed
significantly better. Consequently, we selected this preprocessing method for our
best-performing model.

Furthermore, we identified the most effective loss function for our approach
by evaluating several well-known loss functions previously employed in other
distillation works. We also fine-tuned the hyperparameter α to determine the
optimal combination. Table 5 provides a comprehensive overview of these exper-
iments, including all relevant metrics. Overall, the best combination was found
to be the CS loss with α = 0.5. This is further illustrated in Figure 6. For the
mAR1 metric, the Maximum Mean Discrepancy (MMD) loss function at α = 0.1
yielded the best performance, while the Mean Squared Error (MSE) loss function
at α = 0.5 was most effective for the mAR100 metric. Our best model, trained
with a teacher using the RB and SF preprocessing and employing the CS metric
as the distillation loss with the hyperparameter α = 0.5, surpasses nearly all
detection metrics. This combination demonstrates superior overall performance
in both precision and recall.

Method mAP mAP50 mAR1 mAR10 mAR100

RB 0.275 0.531 0.248 0.369 0.419
BB 0.26 0.487 0.244 0.368 0.435
SF 0.251 0.486 0.226 0.364 0.42
EF 0.244 0.489 0.229 0.362 0.417
BB & SF 0.269 0.503 0.25 0.37 0.43
BB & EF 0.245 0.493 0.227 0.364 0.443
RB & SF 0.281 0.55 0.252 0.387 0.438
RB & EF 0.257 0.509 0.24 0.369 0.424

Table 6: Comparison of different foreground-background preprocessing for teacher
inputs for YOLOv6s [14] on mAP and mAR metrics.

5 Conclusion

In this paper, we addressed the critical need for advanced vision-based inspec-
tion technologies in industrial environments, with a specific focus on detecting
damage in insulated pipes within refineries. We proposed a novel, architecture-
agnostic DNN training methodology based on KD to enhance the performance
of SOTA object detection models in these challenging environments where the
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Fig. 6: Comparison of mAP metric for different losses and different α.

base algorithms fail. Our approach leverages feature KD, incorporating fore-
ground knowledge during the training phase, which significantly boosts model
performance and effectively addresses the clutter noise in industrial environ-
ments.

Extensive experiments validated our framework, demonstrating substantial
improvements in key metrics, including up to a 12% increase in mAP. Our ap-
proach demonstrates both versatility and efficacy across multiple DNN architec-
tures, highlighting its broad applicability and independence from specific net-
work architectures. Additionally, since our approach is only applied during the
training phase and does not impact model deployment, it is straightforward to
implement in industrial settings. By experimenting with various loss functions
and image preprocessing techniques, we further optimized model performance
and identified the optimal parameters for the damage detection task in insu-
lated pipes.

We believe that this work can inspire further research to address real-world
vision-based challenges, such as background clutter. Future work will explore
applying this method to other tasks, such as anomaly detection and binary se-
mantic segmentation, with the potential for performance enhancements in these
areas for industrial applications. This research represents a significant step to-
ward bridging the gap between academic advancements in DNN models and their
practical deployment in industrial environments, thereby ensuring more reliable
and efficient inspections.
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