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ABSTRACT

Industrial anomaly detection (AD) plays a critical role in maintain-
ing the safety, efficiency and productivity of modern manufactur-
ing and production processes. Despite the widespread adoption of
IoT sensor boards in industry, there is still a lack of comprehensive
multi-sensor and multi-rate datasets for AD that adequately account
for domain shifts, i.e. variations in operational and environmental
conditions that significantly affect AD performance. To address this
gap, we present the Industrial Multi-sensor Anomaly Detection un-
der Domain Shift Conditions (IMAD-DS) dataset. The IMAD-DS
dataset comprises multi-sensor data from two scaled industrial ma-
chines: a robotic arm and a brushless motor, collected under differ-
ent operating conditions to mimic real-world domain shifts, includ-
ing speed and load changes. We also add different types of back-
ground noise to the audio data to simulate different environmental
domain shifts. Benchmark testing with an autoencoder model show
that AD performance decreases significantly with domain shifts,
emphasizing the value of IMAD-DS for the development of robust
multi-sensor AD systems.

Index Terms— Anomaly Detection, Sensor Fusion, Dataset,
Domain Shift

1. INTRODUCTION

As modern industry grows in complexity and scale, the role of
anomaly detection (AD) in machine monitoring and fault detection
has increased significantly. This brings several benefits, such as in-
creased safety, reduced impact on machine performance and higher
productivity. Traditionally, industrial AD has relied on the experi-
ence of on-site technicians. While effective, this method is labor-
intensive and often limited by the physical accessibility of some
machine components. Therefore, the shift towards automated, data-
driven methods such as machine learning and deep learning has
gained momentum [1]. In this context, AD is framed as the task of
automatically detecting abnormal conditions by learning only nor-
mal operating conditions.

A variety of physical variables such as vibration [2, 3, 4], tem-
perature [5], pressure [6], and audio [7, 8, 9] can be used to de-
tect anomalies in the industrial environment. However, with the
widespread adoption of IoT boards it is now possible to simultane-
ously collect data from numerous sensors, providing a more com-
prehensive multi-modal description of machine operation. This data
enables the development of more robust AD algorithms that take
advantage of this richer description. Thus, the presence of multi-
modal AD datasets becomes crucial for the development of the next
generation of data-driven industrial AD systems.

Nevertheless, most existing industrial AD datasets primarily fo-
cus on single-sensor data, with only a few datasets covering multi-
sensor scenarios. Notably, the Tennessee Eastman Process (TEP)
models an industrial chemical process using a model-based simu-
lator [10]. The HAI dataset captures data from a realistic indus-
trial control system augmented with a hardware-in-the-loop simu-
lator [11]. The CWRU Bearing dataset focuses on motor condition
assessment [12]. Additionally, the Skoltech Anomaly Benchmark
(SKAB) provides data from various machines captured using mul-
tiple sensors [13]. However, these datasets often overlook the in-
herent variability of real industrial environments that significantly
affect the performance of AD systems [14, 15, 16, 17]. These de-
viations are often referred to as domain shifts and represent natural
deviations in the distribution of normal data, which, however, make
the automatic detection of anomalies more difficult.

The importance of accounting for domain shifts has recently
been recognized in the field of audio-based anomaly detection,
thanks in part to the contributions of the DCASE Task2 challenge
and the availability of datasets that take this aspect into account,
such as TOYADMOS2 [15], MIMII DUE [16] and MIMII-DG [17].
Introducing domain shifts into a dataset enables the development of
more robust AD models and facilitates the development of domain
adaptation and generalization techniques [17].

Inspired by the growing interest for AD in the presence of
domain shifts, this paper introduces the Industrial Multi-sensor
Anomaly Detection under Domain Shift Conditions (IMAD-DS)
dataset. IMAD-DS comprises multi-sensor data from two scaled
representations of industrial machines, namely a robotic arm and a
brushless motor, collected under varying operational conditions to
mimic real-world domain shifts, which include variations in oper-
ating speeds and loads. We also add different types of background
noise to the audio signals to simulate different environmental do-
main shifts. Further, the dataset comprises sensors producing data
with different sampling frequency, increasing the complexity with
respect to single-rate multi-sensor datasets such as [10, 11, 13].

In addition to the dataset, we propose a deep learning model that
enables multi-modal and multi-rate anomaly detection (AD) under
domain shift conditions, serving as a benchmark to evaluate the
dataset’s usefulness. The model employs a fully connected autoen-
coder (AE) architecture that attempts to reconstruct multi-sensor
data, yielding a reconstruction error which serves as an anomaly
score metric for unsupervised AD. Results show that using multi-
ple sensors is helpful for the task of AD, and also that performance
decreases under domain shifts, underscoring the usefulness of the
IMAD-DS dataset. The dataset is freely available for download at
https://zenodo.org/records/12636236.
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ABSTRACT

Industrial anomaly detection (AD) plays a critical role in maintain-
ing the safety, efficiency and productivity of modern manufactur-
ing and production processes. Despite the widespread adoption of
IoT sensor boards in industry, there is still a lack of comprehensive
multi-sensor and multi-rate datasets for AD that adequately account
for domain shifts, i.e. variations in operational and environmental
conditions that significantly affect AD performance. To address this
gap, we present the Industrial Multi-sensor Anomaly Detection un-
der Domain Shift Conditions (IMAD-DS) dataset. The IMAD-DS
dataset comprises multi-sensor data from two scaled industrial ma-
chines: a robotic arm and a brushless motor, collected under differ-
ent operating conditions to mimic real-world domain shifts, includ-
ing speed and load changes. We also add different types of back-
ground noise to the audio data to simulate different environmental
domain shifts. Benchmark testing with an autoencoder model show
that AD performance decreases significantly with domain shifts,
emphasizing the value of IMAD-DS for the development of robust
multi-sensor AD systems.

Index Terms— Anomaly Detection, Sensor Fusion, Dataset,
Domain Shift

1. INTRODUCTION

As modern industry grows in complexity and scale, the role of
anomaly detection (AD) in machine monitoring and fault detection
has increased significantly. This brings several benefits, such as in-
creased safety, reduced impact on machine performance and higher
productivity. Traditionally, industrial AD has relied on the experi-
ence of on-site technicians. While effective, this method is labor-
intensive and often limited by the physical accessibility of some
machine components. Therefore, the shift towards automated, data-
driven methods such as machine learning and deep learning has
gained momentum [1]. In this context, AD is framed as the task of
automatically detecting abnormal conditions by learning only nor-
mal operating conditions.

A variety of physical variables such as vibration [2, 3, 4], tem-
perature [5], pressure [6], and audio [7, 8, 9] can be used to de-
tect anomalies in the industrial environment. However, with the
widespread adoption of IoT boards it is now possible to simultane-
ously collect data from numerous sensors, providing a more com-
prehensive multi-modal description of machine operation. This data
enables the development of more robust AD algorithms that take
advantage of this richer description. Thus, the presence of multi-
modal AD datasets becomes crucial for the development of the next
generation of data-driven industrial AD systems.

Nevertheless, most existing industrial AD datasets primarily fo-
cus on single-sensor data, with only a few datasets covering multi-
sensor scenarios. Notably, the Tennessee Eastman Process (TEP)
models an industrial chemical process using a model-based simu-
lator [10]. The HAI dataset captures data from a realistic indus-
trial control system augmented with a hardware-in-the-loop simu-
lator [11]. The CWRU Bearing dataset focuses on motor condition
assessment [12]. Additionally, the Skoltech Anomaly Benchmark
(SKAB) provides data from various machines captured using mul-
tiple sensors [13]. However, these datasets often overlook the in-
herent variability of real industrial environments that significantly
affect the performance of AD systems [14, 15, 16, 17]. These de-
viations are often referred to as domain shifts and represent natural
deviations in the distribution of normal data, which, however, make
the automatic detection of anomalies more difficult.

The importance of accounting for domain shifts has recently
been recognized in the field of audio-based anomaly detection,
thanks in part to the contributions of the DCASE Task2 challenge
and the availability of datasets that take this aspect into account,
such as TOYADMOS2 [15], MIMII DUE [16] and MIMII-DG [17].
Introducing domain shifts into a dataset enables the development of
more robust AD models and facilitates the development of domain
adaptation and generalization techniques [17].

Inspired by the growing interest for AD in the presence of
domain shifts, this paper introduces the Industrial Multi-sensor
Anomaly Detection under Domain Shift Conditions (IMAD-DS)
dataset. IMAD-DS comprises multi-sensor data from two scaled
representations of industrial machines, namely a robotic arm and a
brushless motor, collected under varying operational conditions to
mimic real-world domain shifts, which include variations in oper-
ating speeds and loads. We also add different types of background
noise to the audio signals to simulate different environmental do-
main shifts. Further, the dataset comprises sensors producing data
with different sampling frequency, increasing the complexity with
respect to single-rate multi-sensor datasets such as [10, 11, 13].

In addition to the dataset, we propose a deep learning model that
enables multi-modal and multi-rate anomaly detection (AD) under
domain shift conditions, serving as a benchmark to evaluate the
dataset’s usefulness. The model employs a fully connected autoen-
coder (AE) architecture that attempts to reconstruct multi-sensor
data, yielding a reconstruction error which serves as an anomaly
score metric for unsupervised AD. Results show that using multi-
ple sensors is helpful for the task of AD, and also that performance
decreases under domain shifts, underscoring the usefulness of the
IMAD-DS dataset. The dataset is freely available for download at
https://zenodo.org/records/12636236.
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Figure 1: Robotic arm in the anechoic chamber, without weights.
The IoT acquisition board is connected to the machine through the
plexiglass base.

Figure 2: Brushless motor in the anechoic chamber. The IoT acqui-
sition board is connected to the machine by screws that hold it on
the plastic base.

Machine Name Domain Shift Parameter Value for Source-Domain Value for Target-Domain
Robotic Arm Attached loads of increasing weight 00, 10, 15, 20 25, 30, 35

Factory background noise (SNR -4 dB) A, C, D, F B, E, G
Brushless Motor Different rotation speeds [rpms] 1500, 1600, 1700, 1800, 1900, 2000,

2400, 2800, 3000
1000, 1100, 1200, 1300,
1400

Factory background noise (SNR -4 dB) A, C, D, F B, E, G

Table 1: Domain shift configurations for the robotic arm and brushless motor in the IMAD-DS dataset. The table lists the different operational
and environmental conditions used to create source and target domains. Numbers from 00 to 35 are indexes of increasing weights. Letters A
to F index 7 background noise recordings from different real factories, all scaled to attain a SNR of -4 dB.

Robotic Arm Brushless Motor
Source Domain Target Domain Source Domain Target Domain

Normal Anomaly Normal Anomaly Normal Anomaly Normal Anomaly
Train 1812 0 27 0 1263 0 18 0
Test 116 116 116 116 78 78 78 78

Table 2: Number of samples for each class in source and target domains, further divided into normal and anomaly classes for the two machines.

2. DATASET OVERVIEW

The IMAD-DS dataset comprises multi-rate and multi-sensor data
from two scaled representations of industrial machines, namely a
robotic arm and a brushless motor. It contains both normal and
abnormal multi-sensor data, which are also recorded under differ-
ent operating conditions to account for domain shifts. The domain
shifts considered in this dataset are divided into operational domain
shifts, which are all the allowed machine working configurations,
and environmental domain shifts, which are caused by changes in
background noise. Anomalies are introduced by intentional disrup-
tions to the normal behavior of the machine in question. IMAD-DS
dataset consider the following machines.
Robotic Arm: The robotic arm is a scaled version of a robotic arm
used to move silicon wafers in a factory, reproducing actual fac-
tory movements. The machine and its recording setup are shown in
Fig. 1. Anomalies are created by loosening the screws at the arm’s
nodes, causing the typical spatial miscalibrations of such machines.
Brushless Motor: The brushless motor is a scaled representation
of an industrial brushless motor, as shown in Fig. 2. Two anomalies
are introduced: first, a magnet is moved closer to the motor load,

causing oscillations by interacting with two symmetrical magnets
on the load; second, a belt that rotates in unison with the motor
shaft is tightened, creating mechanical stress.

To introduce domain shifts, various operating and environmen-
tal conditions are considered for each machine type. The robotic
arm is recorded with seven different loads of increasing weight. In
contrast, the brushless motor is recorded using 14 different operat-
ing voltages leading to various speeds. Both machines are also sub-
jected to different background noises as environmental conditions.
Combinations of these operating and environmental conditions di-
vide each machine’s dataset into two subsets, namely the source
domain and the target domain. The source domain represents the
original environment where a large number of training examples are
available. In contrast, the target domain is characterized by a series
of domain shifts where the availability of training data is severely
limited and often restricted to few clips of target condition. The dis-
crepancy between the source and target domains reflects a common
problem in practice, where sufficient training data is often not avail-
able for the target domain. The domain shift configurations for both
datasets are shown in Tab. 1.

As the dataset is tailored for unsupervised anomaly detection,
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Sensor Type Sample Rate Part Number
Analog microphone 16 kHz IMP23ABSU

3-axis Accelerometer 6.7 KHz ISM330DHCX
3-axis Gyroscope 6.7 KHz ISM330DHCX

Table 3: Sensors embedded on the STWIN.box IoT board and used
for data acquisition.

this characteristic is also mirrored in the dataset’s composition. Un-
supervised AD systems exclusively use normal data for training,
since acquiring a comprehensive set of real-world anomalies is chal-
lenging. Anomalous samples are included only in the test set to
assess the system’s capability to detect unknown anomalies. The
composition of each machine dataset is detailed in Tab. 2.

3. RECORDING SETUP AND DATA PROCESSING

Multi-sensor data is collected using a STEVAL-STWINBX1 [18],
an IoT Sensor Industrial Node from STMicroelectronics. In both
machines, the sensor board and the machine lie on the same sur-
face, allowing us to jointly characterize the machine’s behavior in
terms of audio, vibration, and rotations. The MEMS sensors used to
capture these physical quantities are a microphone, an accelerome-
ter, and a gyroscope, respectively. The actual sensors embedded on
the sensor board and used to collect data are listed in Tab. 3 along
with their respective sampling frequencies.

All recordings are conducted in a completely anechoic cham-
ber, allowing precise control of the acoustic environment. This con-
figuration not only enables detailed acoustic simulations, but also
provides the flexibility to adjust the level of background noise to
achieve the desired signal-to-noise ratio (SNR) and thus adjust the
difficulty of the audio part of the AD task.

3.1. Processing of Audio Signals

The audio signals collected by the microphone are processed to sim-
ulate environmental domain shifts. For this purpose, machine noises
are mixed with background noises recorded in real factories accord-
ing to specific SNRs. In order to make the machine sounds and
the background noise acoustically coherent, an acoustic simulation
is performed to simulate a virtual acoustic environment in which
sound sources, i.e. the background noises and the machine sounds,
and a virtual microphone are present. Fig. 3 shows the configuration
of the virtual acoustic environment in which the background noise
sources are placed at the corners of a shoebox room with dimen-
sions 10 × 7.5 × 4 meters. The acoustic simulation is performed
by employing the image source method (ISM) [19], which is used
to calculate the room impulse response (RIR) of each virtual source
and the virtual microphone, thus modeling the multi-path propaga-
tion of sound sources in the reverberant environment. In particular,
the Pyroomacoustics library [20] is used to implement the ISM and
to obtain the RIRs with a fixed reverberation time of T60 = 0.5 s.

Given the static nature of the acoustic environment under con-
sideration, the RIRs are computed once for the entire dataset. The
subsequent audio processing steps are as follows:

• Selection and Cropping: A background noise signal n is se-
lected and cropped to match the length of the anechoic machine
sound.

• Reverberation of Background Noise: The background noise
signal n is convolved with the RIRs of the background noise

Figure 3: Acoustic environment simulated with the ISM. The red
squares indicate the position of the background noise emitters, the
blue circle the position of the machine sound emitter and the green
triangle the position of the virtual microphone that senses the multi-
path propagation of the sound sources.

emitters, producing the reverberated background noise signal
at the virtual microphone nrev.

• Reverberation of Machine Sound: The machine sound xanech
mic is

convolved with its corresponding RIR, yielding xrev
mic.

• Scaling for SNR: The background noise nrev is scaled to
achieve the desired SNR using

nscaled = nrev

√
Pxrev

mic

10SNR/10Pnrev
(1)

where Pnrev and Pxrev
mic

denote the power of the reverberated
background noise and machine sound, respectively. SNRs are
set according to Tab. 1.

• Final Cropping and Mixing: The signals xrev
mic and nscaled are

cropped to the original machine sample length to remove the
reverberation tail and are then mixed to produce the final audio
sample used in the dataset.

Note that, in this work, we assume that the coupling of the ma-
chine with its surrounding environment is reflected only in the au-
dio signals, as the acoustic coupling is more relevant than the oth-
ers. The same setup used for the IMADS-DS dataset has also been
used for generating audio files for the DCASE2024 task2 challenge
First-Shot Unsupervised Anomalous Sound Detection for Machine
Condition Monitoring.

4. EVALUATION AND BENCHMARK

To give an idea of the use and usefulness of the IMAD-DS dataset,
we tested each machine sub-dataset on a simple baseline system.
The Python codes for training, testing and creating the training and
test data are available in the IMAD-DS dataset public repository.

4.1. Baseline

As a benchmark system, we use a fully-connected autoencoder
(AE) that attempts to reconstruct an input vector consisting of all
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multi-rate, multi-sensor data related to the same temporal window.
When an anomalous input is presented, a larger reconstruction er-
ror is expected, making the reconstruction error a valid anomaly
score metric for unsupervised AD. The input of the baseline sys-
tem consists of a column vector obtained by concatenating 100
ms windows of multi-sensor data. We denote each sensor data
as xs ∈ RLsCs , where s ∈ S ≜ {mic, acc, gyr} denotes a
specific sensor, Ls is the number of samples in the 100 ms win-
dow given the sensor’s sampling frequency, and Cs is the num-
ber of channels for that sensor (e.g., the accelerometer has x-, y-
and z- axis components). Note that we stack all the sensor chan-
nels to form a single column vector of size

∑
s∈S LsCs. More-

over, we apply a z-score normalization for each sensor channel,
thereby obtaining the normalized sensor data x̃s ∈ RLsCs . Fi-
nally, the input of the AE is expressed as the concatenation of each
normalized and stacked sensor data, i.e., x = [x̃T

mic, x̃
T
acc, x̃

T
gyr]

T .
The model encoder E(·|θe), defined by trainable parameters θe,
is composed of 3 fully connected (FC) layers with ReLU ac-
tivation function [21], namely FC(

∑
s∈S LsCs, 2048,ReLU),

FC(2048, 2048,ReLU) and FC(2048, 2048,ReLU), and a bot-
tleneck layer FC(2048, 16, ·). The decoder D(·|θd) mirrors the
architecture of the encoder, with parameters θd. The model output
is therefore the reconstructed input vector x′ = D(E(x|θe)|θd).
The parameters of the encoder and decoder neural networks (i.e.,
θ = (θe, θd)) are trained to minimize the loss function given as

L(θe, θd) =
1∑

s∈S LsCs
∥x−D(E(x|θe)|θd)∥22 (2)

We trained the model with the Adam optimizer [22] with a learning
rate of 10−4 and a batch size of 1024.

4.2. Results

To assess the AD performance of our benchmark model, we use the
Area Under the Receiver Operating Characteristic Curve [23], i.e.,

AUC =
1

N−
d N+

d

N−
d∑

i=1

N+
d∑

j=1

H
(
Aθ(X+

j )−Aθ(X−
i )

)
, (3)

where X−
i represents the ith normal data segment from the set of

normal test data segments {X−
i }N

−
d

i=1 , and X+
j is the jth anoma-

lous data segment from the set of anomalous test data segments

{X+
j }N

+
d

j=1. Each data segment consists of several 100 ms win-
dows. In this context, N−

d and N+
d denote the total num-

ber of normal and anomalous test segments, respectively, with
d ∈ {Source, Target, Source + Target} specifying the domain un-
der consideration. The anomaly score Aθ(·) of each segment is
the median reconstruction error of all inputs x within the segment.
The function H(·) outputs 1 if its input is positive, and 0 otherwise.
Tab 4 summarizes the AD performance of the benchmark system.
The columns labeled ‘Source’, ‘Target’, and ‘S + T’ present the
AUC metrics for the source domain, the target domain, and the com-
bined domain, respectively. The ‘Overall’ row displays the AUC
calculated using the anomaly score from (2). To assess the benefits
of using multi-sensor data over a single sensor setup, we also set all
but one sensor data to zero. For instance, to evaluate the AD per-
formance with only the microphone, we use as input to the AE the
vector x = [x̃T

mic,0
T ,0T ]T . For this configuration, (2) is evaluated

on the subvectors corresponding to the microphone data only, i.e.,

x[: LmicCmic] for the input and x′[: LmicCmic] for the reconstructed
output. The corresponding AUC metric is denoted in Tab. 4 as
‘S-mic’. Moreover, we can also evaluate the single sensor AD per-
formance when the others sensor data is present, i.e., when using
as input to the AE x = [x̃T

mic, x̃
T
acc, x̃

T
gyr]

T . For instance, to evaluate
how AD performance of just the microphone is influenced by other
sensors, we use again (2) on the microphone subvectors. The corre-
sponding AUC is denoted in Tab. 4 as ‘F-mic’. Results indicate that

Machine Robotic Arm Brushless Motor

Domain S + T Source Target S + T Source Target

Overall 91.62 93.28 90.48 58.95 73.63 55.59

F-acc 90.49 98.98 94.00 69.30 77.80 59.62
S-acc 88.96 98.40 84.24 67.38 77.17 56.03

F-gyr 87.88 93.91 93.37 57.27 68.28 55.70
S-gyr 46.79 44.99 48.54 57.38 68.11 56.49

F-mic 66.31 73.27 63.18 54.19 58.83 49.27
S-mic 50.92 52.11 49.69 50.71 53.13 46.10

Table 4: Baseline AUC results, in percentage.

sensor-specific AUCs generally improve when incorporating data
from other sensors, rather than relying solely on their own data.
This suggests that multi-sensor data enhances performance even for
single-sensor AD tasks. Furthermore, superior performance in the
source domain over the target domain suggests domain shifts pose
a challenge in the IMAD-DS dataset. In some instances, the ‘S + T’
AUC is lower than that of individual domains, as seen with ‘F-acc’
AUCs for the Robotic Arm dataset. This occurs when normal sam-
ples in the target domain have higher anomaly scores than anoma-
lous samples in the source domain, leading the model to mistake
domain changes for anomalies. For the Robotic Arm, the ‘Overall’
AUC exceeds individual sensors’ AUCs in ‘S + T’ domain, which
is not the case for the Brushless Motor dataset. This suggests that
while sensor data fusion often aids AD, using (2) as an anomaly
score does not guarantee that using all sensors always yield optimal
performance. Therefore, exploring alternative multi-sensor meth-
ods is key to fully exploiting the potential of multi-sensor data.

5. CONCLUSIONS

We presented IMAD-DS, a dataset developed to support the cre-
ation of domain adaptation and generalization strategies specifically
tailored for multi-rate, multi-sensor AD systems in industrial set-
tings. IMAD-DS includes both normal and abnormal operational
data from two scaled versions of industrial machines, each collected
under different operational scenarios to account for the variability in
the domain. Our experiments with a fusing AE show improvements
in AD when data from multiple sensors are included, compared to
using data from a single sensor. Furthermore, we observe a de-
crease in AD efficacy due to domain shifts. This emphasizes the
crucial role of IMAD-DS in the development of robust multi-rate
multi-sensor systems for AD.
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ABSTRACT

Classification is a pivotal task in deep learning not only because
of its intrinsic importance, but also for providing embeddings with
desirable properties in other tasks. To optimize these properties,
a wide variety of loss functions have been proposed that attempt
to minimize the intra-class distance and maximize the inter-class
distance in the embeddings space. In this paper we argue that, in
addition to these two, eliminating hierarchies within and among
classes are two other desirable properties for classification embed-
dings. Furthermore, we propose the Angular Distance Distribution
(ADD) Loss, which aims to enhance the four previous properties
jointly. For this purpose, it imposes conditions on the first and sec-
ond order statistical moments of the angular distance between em-
beddings. Finally, we perform experiments showing that our loss
function improves all four properties and, consequently, performs
better than other loss functions in audio classification tasks.

Index Terms— angular distance, audio classification, loss

1. INTRODUCTION

Classification is one of the main tasks to be solved with machine
learning. In this task, there are typically high-dimensional elements
and the goal is to decide to which class of a finite set each of these el-
ements belongs. For this purpose, most of the solutions, particularly
those based on deep learning, involve obtaining intermediate repre-
sentations of reduced dimension of the elements to be classified.
These representations are called embeddings and they can be con-
sidered as a summary of these elements containing the information
that is relevant for classification. This problem is very popular not
only because of its intrinsic importance, but also because it provides
a simple way to obtain embeddings compared to other methods.
Embeddings are useful for a multitude of tasks such as anomaly de-
tection [1, 2], biometric recognition [3, 4], etc. The standard loss
function to solve the classification task is the cross-entropy. As a
secondary result of using this loss function, the embeddings of the
different classes usually end up being somewhat separated. How-
ever, it is common to impose certain conditions directly on them
due to two reasons: (i) this tends to improve the performance in
the classification problem by guiding more the optimization [5, 6];
and (ii) it may be desirable for embeddings to have certain prop-
erties when used for a specific task other than classification [7, 8].

∗This work was supported by MCIN/AEI/10.13039/501100011033 un-
der Grants PDC2021-120846-C41 & PID2021-126061OB-C44, and in part
by the Government of Aragón (Grant Group T36 23R). This project has re-
ceived funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant agreement No
101007666.

These conditions on embeddings are usually imposed through the
loss function. Typically, a term is added to the cross-entropy or a
modification is made to it.

In this paper we propose a loss function that is added to cross-
entropy and we call it Angular Distance Distribution Loss because it
imposes conditions on the first and second order statistical moments
of the angular distances between embeddings in order to organize
the embeddings in the space. Specifically, this organization consists
of: (i) bringing embeddings of the same class closer, (ii) moving
embeddings of different class away, (iii) minimizing the variation
of the distances of the embeddings of the same class, and (iv) mak-
ing the embeddings of a class equal in distance to the embeddings
of any class. Traditionally, only the first two have been considered
in the literature. However, in section 3 we formalize all four, ar-
guing why they are all important. In addition, we reason how they
relate to the statistical moments of the distances between embed-
dings. Furthermore, we propose an experimental framework with
different Audio Classification datasets. In these experiments, on
the one hand, we verify that our embeddings satisfy the properties
described in the previous paragraph, so we verify that our loss func-
tion encourages the properties to be satisfied. On the other hand,
we obtain a better accuracy than other loss functions that aim to
establish conditions on the embeddings. Thus, we verify that the
described properties translate into better classification performance.
The details of these experiments are presented in the section 4 and
can be replicated using the code in https://github.com/
antonioalmudevar/distance_distribution_loss

2. RELATED WORK

Audio Classification consists of identifying to which class an audio
belongs [9, 10]. In recent years it has received a lot of interest from
the community [11, 12]. Solutions to this problem typically involve
an embedding extractor followed by a small classifier net which are
trained by minimizing cross-entropy. In many SOTA solutions the
embedding extractor has a large number of parameters, so it is com-
mon to pre-train it with a large dataset and perform finetuning for
the desired dataset. Although convolutional architectures has been
widespread used [13–15], the most popular systems nowadays are
transformer-based. These include Audio Spectrogram Transformer
(AST) [16] and BEATs [17].

Loss Functions. It has been observed in different works that sep-
arating the embeddings of different classes often results in better
performance in the classification task [5, 18–20]. Two loss func-
tions that stand out are Focal Loss [7] and Orthogonal Projection
Loss (OPL) [5], with which we compare our proposal.
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3. PROPOSED METHOD

The problem we seek to solve in this paper is that of canonical clas-
sification, which has two characteristics: (i) all errors are considered
equally critical; and (ii) all elements are considered equally similar
to each other within a class. This means that intra-class and inter-
class hierarchies are not desirable. In fact, the standard evaluation
metric is accuracy, which considers all errors and correct predic-
tions equally relevant. The presence of these hierarchies is desirable
in some scenarios, but our goal is not to solve the latter.

3.1. Classification Solution Formulation

Let D = {x(i), y(i)}Ni=1 be the dataset, where x(i) is each input
and y(i) the label of x(i) and is a vector containing at each position
j the probability that x(i) belongs to class j. The objective is to
design a system that allows us to obtain a prediction of y(i) which
we denote ỹ(i). Typical deep learning classifier solutions consists
of (i) an embeddings extractor fθ , which provides the embedding
as z(i) = fθ(x

(i)) ∈ Rk; and (ii) a classifier net gϕ, which gives
the predictions as ỹ(i) = gϕ(z

(i)) ∈ Rc. Cross-entropy between yi
and ỹi is used as loss function, which we call LCE .

3.2. Desirable Properties of Embeddings

We explain below some desirable properties of embeddings for clas-
sification. In figs. 1 to 4 the dots correspond to low dimensional
representations of the embeddings and different colors are used to
indicate different classes.

• Intra-class clustering: The embeddings of the same class
are close to each other in space. This has been shown to
improve performance in classification and additional tasks.

Figure 1: Low (left) and high (right) Intra-class clustering

• Intra-class equidistance: All the embeddings from the
same class have approximately the same distance from each
other. From a conceptual perspective, all the elements in a
given class should be equally similar.

Figure 2: Low (left) and high (right) Intra-class equidistance

• Inter-class separation: Embeddings of different classes are
far away from each other. This allows to take better advan-
tage of all the space and, as a consequence, improves the
performance in different tasks, especially when coupled with
intra-class clustering.

Figure 3: Low (left) and high (right) Inter-class separation

• Inter-class equidistance: All embeddings from different
classes are approximately equally spaced from each other.
This allows removing hierarchies between classes, which is
conceptually desirable since all errors have the same penalty
in the classical classification problem.

Figure 4: Low (left) and high (right) Inter-class equidistance

Traditionally, only intra-class clustering and inter-class separa-
tion have been considered as desirable properties. However, we also
consider it convenient to have intra-class and inter-class equidis-
tance, since these allow to avoid intra-class and inter-class hierar-
chies, respectively, which is desirable in the canonical classification
problem, since all errors and correct predictions are equally criti-
cal. As a result, as we will see in section 4, maximizing these two
improves the accuracy.

3.3. Angular Distance Distribution Loss

Having described the above properties and argued why they are de-
sirable, we now present Angular Distance Distribution Loss, which
encourages these properties. It imposes conditions on the first and
second order statistical moments of the angular distances between
embeddings. For now, we assume that the labels are hard, i.e.
y
(i)
k = 1 for one k and 0 for the rest. With this idea, we can de-

fine the sets:

Dp =

{
dc

(
z(i), z(j)

)2
∣∣∣∣ y(i) = y(j); i ̸= j

}
(1)

Dn =

{(
1− dc

(
z(i), z(j)

))2
∣∣∣∣ y(i) ̸= y(j)

}
(2)

where dc (x, y) = 1 − xT · y, which takes values in the interval
[0, 2], being 0 when the two vectors are proportional, 1 when they
are orthogonal and 2 when they are opposites. Next, we define the
following terms from the previous ones:

µp =
1

|Dp|
∑
k∈Dp

k (3)

σp =

√∑
k∈Dp

(k − µp)2

|Dp| − 1
(4)

and µn and σn analogously for Dn. Each term can be related to one
of the properties in 3.2 as follows:

• Minimizing µp implies boosting intra-class clustering, since
it implies minimizing the average distance between embed-
dings of the same class.

• Minimizing σp implies promoting the intra-class equidis-
tance, since we are reducing the variation of all the distances
between embeddings of the same class.

• Minimizing µn implies boosting the inter-class separation,
since we are promoting the embeddings of different classes
to be orthogonal

• Minimizing σn implies favoring the inter-class equidistance,
since we are reducing the variation between embedding dis-
tances of different classes.
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With all this, we define our loss function to minimize ADD as:

LADD = λp
µµp + λp

σσp + λn
µµn + λn

σσn (5)

where λ = {λp
µ, λ

p
σ, λ

n
µ, λ

n
µ} are hyperparameters. In section 4 we

explore how each of these terms separately affects the accuracy and
distribution of embeddings in space.

Finally, the loss function of our system is as follows:

L = LCE + LADD (6)

3.4. Soft Labels Adaptation

In some scenarios, the labels used to optimize our model are soft,
i.e., they represent the probability that an element belongs to each
class instead of considering that an element belongs to a single class
[21]. One of the main causes of having soft labels is the use of data
augmentation techniques such as mixup [22]. As mixup is widely
used in audio classification [23], we propose a modification of our
loss function to deal with soft labels.

When we have soft labels, it is still important to maximize intra-
class clustering and intra-class equidistance, since we are interested
that elements belonging to the same class should be close and at
a similar distance from each other. However, inter-class separa-
tion must be reinterpreted, so that it would be desirable that if y(i)

is more similar to y(j) than to y(k), then z(i) should be closer to
z(j) than to z(k), and vice versa. For this, we must strive that
dc

(
z(i), z(j)

)
= dc

(
y(i), y(j)

)
for each pair i, j. To modify the

loss function, we first define:

Lµ =
1

NB

∑
i∈B

∑
j ̸=i

(
dc

(
y(i), y(j)

)
− dc

(
z(i), z(j)

))2

(7)

where NB = |B|(|B| − 1) is the number of pairs in a batch. Op-
timizing Lµ we manage to jointly maximize intra-class clustering
and inter-class separation. In fact, we note that we do not lose gen-
erality with respect to the hard scenario, since dc

(
y(i), y(j)

)
holds

0 if y(i) = y(j) and 1 otherwise and, therefore, optimizing Lµ is
equivalent to optimizing λp

µµp + λn
µµn with λn

µ = |Dn|
|Dp|λ

p
µ. In ad-

dition, since elements do not belong to a single class, it does not
make sense to maximize the inter-class equidistance. Thus, when
we have soft labels, we define the ADD as:

Lsoft
ADD = λµLµ + λp

σσp (8)

4. EXPERIMENTS

4.1. Datasets

Environmental Sound Classification (ESC-50) [24] contains
2,000 5-second ambient sound recordings annotated with 5 classes,
so that each audio belongs to a single class. In our experiments we
follow the standard 5-fold cross-validation to evaluate our systems.
Speech Commands V2 (KS2) [25] is composed of 105,829 clips
of 1-second spoken keywords annotated with 35 word classes. It is
officially divided into 84,843, 9,981 and 11,005 clips for training,
test and validation, respectively.
IEMOCAP (ER) [26] contains about 12 hours of speech with four
different emotions. We use the standard 5-fold cross-validation pro-
posed in [27] for evaluation.

Table 1: Hyperparam. per embeddings extractor and dataset

AST BEATs
ESC KS2 ER ESC KS2 ER

Window type Hanning Povey
Freq. Mask 24 48 24 0
Time Mask 96 48 96 0
Mixup λ 0 0.5 0 0 0.5 0
Epochs 25 30
Batch Size 32 16
Optimizer AdamW Adam
Learning rate 7e-4 6e-5 7e-4 8e-6 1e-4 8e-6
Momentum β = {0.9, 0.98} β = {0.95, 0.999}
Weight Decay 1e-2 5e-6

4.2. Embeddings Extractors Architectures

Audio Spectrogram Transformer (AST) [16] is the first to use
Transformer type architectures for audio. The original AST model
is pre-trained on Imagenet [28] and Audioset [9]. We fine-tune it
for each scenario.
Bidirectional Encoder representation from Audio Transformers
(BEATs) [17] is a pre-training framework for learning representa-
tions from Audio Transformers, in which an acoustic tokenizer and
a self-supervised audio model are optimized. We use the original
pre-trained model with Audioset and finetune for each scenario.

4.3. Hyperparameters

For all our systems we use the audio signals at 16kHz. The input
to the systems are 128 mel-spectrograms coefficients computed on
25 ms windows every 10 ms. We normalize the mean and stan-
dard deviation to 0 and 0.5, respectively. Some hyperparameters
vary between scenarios. These details can be found in table 1 and
are inspired by the experiments in the original papers, with slight
modifications due to computational limitations.

4.4. Ablation Study on each term of the ADD

We are going to analyze the influence of each of the terms of LADD .
First, we want to see if the hypotheses outlined in section 3.3 about
the relationship between each ADD term and the properties of 3.2
hold. Second, we want to analyse the impact of each particular term
in the ADD and their combination on the accuracy. For this, we train
four classifiers, each with one of the elements of λ equal to 1 and
the rest equal to zero. Third, we want to test whether optimizing
intra-class and inter-class equidistance provides an advantage de-
spite already optimizing intra-class clustering and inter-class sepa-
ration. To do so, we train two classifiers: one with λ = {1, 0, 1, 0}
and another with λ = {1, 1, 1, 1} and compare them. The dataset
to be classified is ESC-50 and the embedding extractor used an AST
in all cases. In figure 5 we present the mean and coefficient of vari-
ation of the dc between the embeddings of 10 pairs of classes and
the accuracy calculated for all the classes.

• In figure 5a we see that the distance between embeddings of
the same class is in general the minimum in mean, i.e. the
intra-class clustering is the maximum.

• In figure 5b we observe that the distances between the em-
beddings of the same class is the least spread, which means
that the intra-class equidistance is the highest.
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Table 2: Accuracy for the different Datasets, Embeddings Extractors and Loss Functions

ESC-50 KS2 ER
AST BEATs AST BEATs AST BEATs

Cross-entropy 93.97± 0.21 91.05± 0.41 92.05± 0.04 88.94± 0.13 59.91± 0.60 61.66± 0.31
Focal Loss [7] 94.40± 0.36 91.10± 0.49 - - 60.79± 0.16 62.17± 0.05
OPL [5] 94.11± 0.37 91.50± 0.20 - - 60.53± 0.42 63.06± 0.32
ADD (λ = {1, 1, 1, 1}) 94.68± 0.09 92.22± 0.06 97.54± 0.06 90.49± 0.16 61.30± 0.38 62.73± 0.17

(a) λ = {1, 0, 0, 0}
Acc = 94.35± 0.23

(b) λ = {0, 1, 0, 0}
Acc = 94.58± 0.38

(c) λ = {0, 0, 1, 0}
Acc = 94.32± 0.13

(d) λ = {0, 0, 0, 1}
Acc = 94.42± 0.18

(e) λ = {1, 0, 1, 0}
Acc = 94.17± 0.26

(f) λ = {1, 1, 1, 1}
Acc = 94.66± 0.37

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 5: Mean (top row) and coefficient of variation (bottom row) of the dc values between embeddings of 10 classes of ESC-50. The
accuracy given is calculated for the 50 classes. Coefficient of variation is defined as σ

µ
and is used here instead of σ because it normalizes the

variation by normalizing by the mean, which changes depending on λ, so it represents better intra-class equidistance.

• In figure 5c we contemplate that the inter-class distance or
separation is the maximum in mean.

• In figure 5d we find that the distances between embeddings
of different classes are similar regardless of the class pairs,
thus achieving a higher inter-class equidistance.

• In figure 5e we see that if we only optimize intra-class clus-
tering and inter-class separation, the distances between dif-
ferent pairs of embeddings of different classes are very far
from each other. In addition, there are classes for which em-
beddings are closer to each other than for other classes.

• In figure 5f we obtain embeddings that do not satisfy each
property as well as when we try to optimize them separately,
but with a good balance between all of them.

Finally, the best accuracy obtained is for λ = {1, 1, 1, 1}, that is,
when we optimize all four properties together. This leads us to
believe that all these properties have an influence in achieving a
higher accuracy. In addition, we see that the properties that sep-
arately have most positively influence accuracy are inter-class and
intra-class equidistance.

4.5. Quantitative Results

We have found in the previous section that our loss function allows
us to meet the properties that we consider desirable. Moreover, we
have verified that for the analyzed scenario, the accuracy when the
four properties are optimized jointly is better than when they are
optimized separately. Here we perform a more extensive study in
which we compare in terms of accuracy the ADD with other loss

functions with good performance. We do not use Focal Loss and
OPL for KS2, as these do not support soft labels and we use mixup
for this dataset. We have performed all the experiments three times
and we provide the mean and standard deviation of the accuracy. In
table 2 we can see that the results of our loss function is superior
to the rest except in one case. This suggests that, in general, the
described properties are desirable to improve accuracy and that the
ADD function performs superiorly in different scenarios.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented four properties for embeddings of a
classifier arguing why we consider these properties to be desirable.
In addition, we have designed Angular Distance Distribution Loss,
a loss function that is intended to allow us to obtain each of these
properties. First, we have verified that, indeed, our loss function
allows us to obtain emebddings that satisfy these properties sepa-
rately and jointly. Subsequently, we have observed, for a given sce-
nario, that the performance in terms of accuracy is better when all
four properties are satisfied jointly than separately. Finally, we have
found for different datasets and architectures that the fact that our
embeddings satisfy these properties translates into better accuracy
than other relevant loss functions in the literature. This validates the
hypothesis about the importance of these properties to improve ac-
curacy. We believe that the properties described in this work may be
desirable also for other applications, such as anomaly detection or
biometric recognition. Thus, experiments testing the ADD in these
fields can be developed in the future
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ABSTRACT
Automatic sound classification has a wide range of applications in
machine listening, enabling context-aware sound processing and
understanding. This paper explores methodologies for automati-
cally classifying heterogeneous sounds characterized by high intra-
class variability. Our study evaluates the classification task using
the Broad Sound Taxonomy, a two-level taxonomy comprising 28
classes designed to cover a heterogeneous range of sounds with se-
mantic distinctions tailored for practical user applications. We con-
struct a dataset through manual annotation to ensure accuracy, di-
verse representation within each class and relevance in real-world
scenarios. We compare a variety of both traditional and modern
machine learning approaches to establish a baseline for the task of
heterogeneous sound classification. We investigate the role of in-
put features, specifically examining how acoustically derived sound
representations compare to embeddings extracted with pre-trained
deep neural networks that capture both acoustic and semantic in-
formation about sounds. Experimental results illustrate that audio
embeddings encoding acoustic and semantic information achieve
higher accuracy in the classification task. After careful analysis of
classification errors, we identify some underlying reasons for failure
and propose actions to mitigate them. The paper highlights the need
for deeper exploration of all stages of classification, understanding
the data and adopting methodologies capable of effectively handling
data complexity and generalizing in real-world sound environments.

Index Terms— sound classification, sound taxonomies, ma-
chine learning, error characterization

1. INTRODUCTION

Sound classification plays a crucial role in numerous applications
ranging from sound and music analysis, browsing and retrieval to
acoustic monitoring and ubiquitous computing [1]. Automatic anal-
ysis of diverse sound types necessitates the extraction of relevant
features from audio signals, combined with machine learning tech-
niques. This has garnered significant attention from fields focused
on music, speech, and environmental sounds, leading to the devel-
opment of various taxonomies and algorithmic techniques tailored
to different applications.

In this paper, we concentrate on a general-purpose classifica-
tion framework where, instead of focusing on a particular type of
sound, the goal is to classify any type of input sound. For that pur-
pose, we previously developed the Broad Sound Taxonomy (BST),
which organizes sounds into a two-level hierarchical structure with
5 top-level and 23 second-level classes [2]. The top level of the tax-
onomy consists of the classes Music, Instrument samples, Speech,
Sound effects, and Soundscapes. A diagram with all classes (and
their abbreviated names) can be seen in Fig. 1. The taxonomy is

Music Instrument 
Samples Speech Sound Effects Soundscapes

Solo percussion 
(m-sp) Percussion (is-p) Solo speech (sp-s) Objects/House 

appliances (fx-o) Nature (ss-n)

Solo instrument 
(m-si) String (is-s) Conversation/

Crowd (sp-c) Vehicles (fx-v) Indoors (ss-i)

Multiple instruments 
(m-m) Wind (is-w) Processed/

Synthetic (sp-p)
Other mechanisms, 
engines, machines 

(fx-m)

Urban (ss-u)

Piano/Keyboard 
instruments (is-k)

Animals (fx-a)

Synthetic/
Artificial (ss-s)

Synth/Electronic 
(is-e) Human sounds and 

actions (fx-h)

Natural elements and 
explosions (fx-n)

Experimental (fx-ex)

Electronic/
Design (fx-el)

Figure 1: Class hierarchy for the Broad Sound Taxonomy (BST).

designed to be user-friendly and accommodates a wide diversity of
sounds, ensuring the classes are easy to understand, broad, and com-
prehensive. These classes exhibit significant intra-class variability,
primarily influenced by the semantic foundation upon which the
taxonomy was constructed. Such intra-class variability means that
sounds of the same class can exhibit very different acoustic charac-
teristics. Our goal is to build a sound classification system that can
successfully classify sounds using the BST taxonomy. To that end,
we curate a dataset comprising 10k sounds annotated with the BST
classes. We use k-NN classifiers and study their performance using
input sound representations that capture different levels of acous-
tic and/or semantic information. Besides the classifier performance
metrics, we conduct manual error analysis and systematically char-
acterize the model’s misclassifications. The moderate number of
classes in the taxonomy proves advantageous in this step, enabling
easier human evaluation of algorithmic mistakes. By analyzing mis-
classifications, we are able to suggest ways in which the classifica-
tion system can be further improved.

The proposed approach and findings have broad applicability,
as the automatic extraction of the systematized knowledge from
such a hierarchical structure can streamline the organization, an-
notation, and retrieval of audio data, along with other related tasks
across diverse domains. Using such a classifier, capable of cate-
gorizing any type of sound into broad categories, can be useful for
providing an initial context of a sound class and thereafter for car-
rying out context-aware processing of sounds.

2. BACKGROUND

Over the years, several taxonomies have been proposed for orga-
nizing sound. Most taxonomies are tailored to specific domains
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or tasks, as exemplified by works on sound design [3, 4], urban
or environmental scene analysis [5, 6, 7] and music or instrument
categorization [8, 9, 10], while other taxonomies are designed to
cover general use cases (e.g. Google’s AudioSet [11]). On the
one hand, when existing taxonomies are simple (i.e. low number of
classes with shallow hierarchy), they tend to be domain-specific and
are not comprehensive enough to generally classify heterogeneous
sounds (e.g. ESC-50 [5], Urban Sound Taxonomy [6], FMA [8],
NSynth [10]). On the other hand, general-purpose taxonomies are
often very complex or lack a user-centric design (e.g. AudioSet
has over 500 sound classes organized in a deep hierarchy), meaning
that only expert users can use them effectively. The aforementioned
Broad Sound Taxonomy addresses the lack of a simple yet compre-
hensive sound taxonomy that can be easily understood and used by
sound practitioners of different levels of expertise and, at the same
time, provide informative sound classes relevant to various applica-
tions such as sound analysis and retrieval [2].

In the field of machine listening, automatic sound classifica-
tion has been typically addressed using machine-learning classifiers
such as k-Nearest Neighbors (k-NNs), Support Vector Machines
(SVMs), Multilayer Perceptrons (MLPs), and Hidden Markov
Models (HMMs) [12]. These classifiers traditionally rely on fea-
tures such as Mel-frequency cepstral coefficients (MFCCs) and
other spectrum-based representations that only capture acoustic in-
formation of sounds. In recent years, different types of deep neural
networks (DNNs) have gained prominence across the audio field
due to their superior performance. One notable use is their abil-
ity to effectively transform raw audio data into highly meaningful
representations. Because such representations are often obtained
from models trained on classification tasks, they do not only capture
acoustic information about sounds, but also encode some level of
semantic information. Models such as VGGish[13], YAMNet [14],
or FSD-SINet [15], produce high-level, semantically meaningful
embeddings while using audio as input. Another recent approach is
the use of contrastive learning techniques to train models that learn a
joint audio and language embedding space in which sound seman-
tics are even more prominent. An eminent example is the CLAP
architecture [16, 17], which learns audio concepts from natural lan-
guage sound descriptions. These learned feature representations can
be used as input features with traditional machine learning classi-
fiers for addressing downstream tasks, which is typically known as
transfer learning. Through transfer learning, less complex models
can efficiently leverage pre-trained models to achieve high accura-
cies in downstream tasks [18, 19, 20]. In this work, we use transfer
learning to address the task of heterogeneous sound classification.

3. METHODOLOGY

3.1. Dataset creation

We introduce the Broad Sound Dataset (BSD), a collection of anno-
tated sounds aligned with the second level of the classes defined in
the BST taxonomy (Fig. 1). The initial release, a contribution of this
paper, contains more than 10,000 sounds and is named BSD10k.
BSD10k has been built using sounds obtained from Freesound, a
website that hosts over 650,000 diverse sounds released under Cre-
ative Commons (CC) licenses and contributed by a wide range of
individuals [21]. We leveraged existing public Freesound-based
datasets such as FSD50K [22], freefield1010 [23], Freesound Loop
Dataset [9], together with other in-house Freesound collections to
compile an initial list of approximately 60,000 sound candidates of

heterogeneous nature. These candidates were assigned to one of
the five top-level classes of the BST taxonomy by leveraging their
ground-truth labels from their original dataset(s) and using other
heuristics based on basic signal processing techniques (e.g. onset
detection) and available Freesound metadata (e.g. sound tags). Af-
ter mapping the candidates to the top level of the taxonomy, a man-
ual annotation phase was carried out to address potential inaccura-
cies and assign the corresponding second-level taxonomy category
to each sound candidate.

For the annotation phase, we developed an in-house online an-
notation tool which was used by the authors of the paper to get
familiar with the taxonomy and carry out the annotations. For
each candidate sound, the annotators selected the most appropriate
second-level class and provided a confidence level for their annota-
tion. The provided confidence level is not used for the classification
tasks in this paper, but it helps ensure a more accurate annotation
process and may provide useful data for future experiments [24].
The original sound title and tags from Freesound were presented to
the annotators to facilitate the annotation of acoustically ambiguous
sounds. During the course of three months, the annotators classi-
fied 10,309 sounds, resulting in a total duration of 32.5 hours of au-
dio, which forms the final BSD10k dataset. The annotated data has
a non-uniform class distribution, leading to data imbalance, with
some classes having over 1,000 sounds while others are represented
by approximately 100 sounds. The top-level division of the audio
data is 1635 Music, 2094 Instrument samples, 1250 Speech, 3911
Sound effects, and 1419 Soundscapes.

The Freesound audio data is heterogeneous, not only in content
but also in quality, devices of recording, and lengths. Even though
many sounds use (semi-)professional recording equipment [22], this
diversity can be used as an advantage in developing a general-
purpose classifier that generalizes well. During the annotation, we
also monitored the diversity within each class; e.g. in the Natu-
ral sounds and explosions class, we ensured the presence of water
sounds, rocks, as well as lightning and fireworks. The length of
the sounds also varies, following a U-shape distribution. Longer
samples were cropped to a maximum of 30 seconds, as sounds of
this nature —often music or soundscapes— tend to repeat informa-
tion. Even though we start with candidates from existing datasets,
we download the original files using their IDs from the Freesound
API. We then transform all sounds to adhere to a standardized for-
mat of uncompressed 44.1 kHz 16-bit mono audio files. The dataset
is released with an open license and is publicly accessible1.

3.2. Sound representations

We compare a selection of different types of sound representations,
which are chosen to capture distinct levels of acoustic and semantic
features.

FSSimRep: We extract a feature representation derived from
various spectral, time-domain, rhythm and tonal charac-
teristics calculated using signal-processing algorithms with
the FreesoundExtractor2 of the Essentia audio analysis li-
brary [25]. With an audio file given as input, the FreesoundEx-
tractor provides several statistics for each of the features
above, which are then aggregated into a vector of 846 dimen-
sions and scaled to be in the range [0, 1]. The scaled vector is

1https://github.com/allholy/BSD10k
2https://essentia.upf.edu/freesound_extractor.

html
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reduced to 100 dimensions using Principal Component Anal-
ysis (PCA), producing the final sound representation. This
representation is akin to the representation currently used for
the sound similarity feature in Freesound, and it is expected to
only capture the acoustic properties of sounds.

VGGish and FSD-SINet: We utilize the embeddings from VG-
Gish [13] and FSD-SINet [15]. They are both large convo-
lutional neural network (CNN) models trained on audio sig-
nals in classification tasks. These models take audio signals
as input and are expected to learn both about their acoustic
properties and semantic meaning by relating audio signals to
the classification labels. We use both models as two examples
of classification-based embeddings trained on distinct datasets
(YouTube100M and FSD50K), with output representation di-
mensions of (n, 128) and (n, 512), respectively, where n rep-
resents the number of frames dependent on the length of the
audio file. To obtain the final one-dimensional vector rep-
resentation, we carry out temporal aggregation by averaging
over n frames.

LAION-CLAP: Finally, in our experiments, we include em-
beddings extracted from the multi-modal LAION-CLAP
model [17]. CLAP uses contrastive learning techniques to ac-
quire knowledge from pairs of audio signals and natural lan-
guage textual descriptions. This approach allows the model
to be fed not only with the audio signals but also with rich
contextual semantic information about them. Given an audio
file as input, LAION-CLAP provides a final 512-dimensional
vector representation.

3.3. Model and evaluation metrics

For our experimental setup, we use the k-Nearest Neighbors (k-NN)
algorithm as our classifier. The choice is motivated by its low com-
plexity, interpretability, and common use in transfer learning set-
tings. To complement our experiments, we run preliminary exper-
iments using Support Vector Machine (SVM) models and obtained
results similar to those reported by k-NN models, therefore we will
not report SVM results in this paper.

To identify the optimal hyperparameters, we compare various
sets of model parameters to determine the most effective configura-
tion for model performance. We conduct a grid search to systemat-
ically explore the hyperparameter space, evaluating different num-
bers of neighbors, distance metrics, and weighting schemes [26].
To evaluate the performance of the trained models, we calculate
accuracy, precision, recall and F1-score evaluation metrics. We di-
vide our dataset into two splits used for training and evaluation.
The evaluation split consists of a random selection of 40 sounds for
each second-level class of the taxonomy, totaling 920 sounds (9̃%
of the size of the dataset). We assess qualitatively that the random
selection for the evaluation set resulted in high intra-class sound
variations. The rest of the sounds are included in the training set.

Additionally, we take advantage of the hierarchical structure of
the taxonomy to run experiments using only the top-level classes
as labels, grouping sounds with similar semantics and reducing the
total number of classes to five (Fig. 1). For consistency, we use the
same data split for the top-level training process. Although this ap-
proach introduces imbalance in the number of test samples per class
due to the varying number of second-level classes within each top-
level class, it ensures a fair comparison in the evaluation process.

To obtain further insights about classification performance,
we characterize the errors by manually reviewing all misclassified

Table 1: Accuracy and F1-score for the best-performing k-NN per
input sound representation.

Model input Second-level Top-level
Accuracy F1-score Accuracy F1-score

FSSimRep 0.426 0.40 0.678 0.667
VGGish 0.527 0.506 0.748 0.741
FSD-SINet 0.562 0.544 0.746 0.746
LAION-CLAP 0.761 0.748 0.873 0.868

sounds from the best-performing model across all input representa-
tions, as well as 200 randomly sampled misclassifications from the
best models of the remaining input representations. This analysis is
performed for both second-level and top-level classification setups.
We identify the potential reasons for each misclassification and then
consolidate the most common reasons into error categories.

4. RESULTS

4.1. Performance metrics

Table 1 shows the classification accuracies and F1-scores of the
k-NN classifiers trained with the different input representations
we compare. We report the accuracy and F1-score of the best-
performing classifier for each input representation according to the
hyperparameter optimization. We observe that, in almost all in-
stances, the highest recall coincides with the highest accuracy. This
suggests that comparing accuracies across various input representa-
tions, including the top-level classifiers with an unbalanced test set,
remains a reliable metric without inherent bias towards classes with
larger sample sizes.

Both accuracy and F1-score metrics show that classification
performance improves when classifying at the top level compared
to the second level of the taxonomy (average of 0.19 for accuracy
and 0.21 for F1-score). This is expected as the task becomes pro-
gressively easier with fewer number of classes, introducing greater
orthogonality at the first level of the taxonomy. The increase in
performance comparing top-level with second-level is significantly
lower for CLAP (0.11 for accuracy and 0.12 for F1-score), which
could be attributed to the fact that CLAP captures sound semantics
more efficiently and therefore it can perform better in the second-
level of the taxonomy where class semantics are more nuanced.

The CLAP embeddings outperformed the other representations
in both top-level and second-level classification tasks. This suggests
that the joint audio-language embedding space captures acoustic
and semantic information better, which is beneficial for the clas-
sification of heterogeneous sounds. VGGish and FSD-SINet result
in very similar performances. Despite our expectation that FSD-
SINet would outperform VGGish due to its training on the FSD50K
dataset, which includes Freesound data relevant to our task, both
models show comparable results. They have an average of 0.216
and 0.223 lower than CLAP for accuracy and F1-score, respectively.
This suggests that these embeddings do not capture acoustic and
semantic sound properties with the same richness as CLAP embed-
dings. Finally, the models trained with FSSimRep exhibit the lowest
performance, an average of 0.101 and 0.106 lower than VGGish for
accuracy and F1-score, respectively. This highlights the challenge
of distinguishing classes using solely acoustic information due to
intra-variability and acoustic diversity within classes.
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Figure 2: Confusion matrix for the best-performing k-NN model
trained with CLAP.

Fig. 2 shows the confusion matrix for the best-performing k-NN
model trained with the CLAP sound representation and holds in-
sights into how the model performs for each individual second-level
class of the taxonomy. We observe that most classes exhibit very
good performance, yet there are instances of lower performance
in specific classes, such as Conversation/Crowd. This discrepancy
may stem from factors such as data imbalance, class complexity, or
reduced orthogonality between certain classes.

Regarding hyperparameter optimization, we find that the vari-
ation in accuracy among the top 100 grid search configurations for
each embedding training remains small, with a maximum difference
of approximately 0.065 (and 0.035 for top classes). The top 100
choices include nearly all neighbors, distance metrics, and weight-
ing schemes, indicating stable performance across a broad area of
the hyperparameter space. This stability suggests that specific hy-
perparameters have little impact on the performance of this task
when leveraging embeddings, regardless of their efficacy.

4.2. Error characterization

Table 2 shows the results of the error characterization. We observe
that the most common reason for the misclassification of sounds
is when sounds fall ambiguously between classes, either between
second-level classes with a common top-level class (14.6%), or be-
tween second-level classes belonging to a different top-level class
(26%). That suggests that even humans may have difficulty distin-
guishing these classes. Further insights about that matter could be
obtained by analyzing the confidence annotation scores included in
BSD10k. We also observe that simplifying the task in the top-level
classification does not significantly reduce between classes errors.
Interestingly, errors are more prevalent between different top-level
categories than within the same one, indicating potential for enhanc-
ing the classifier’s capability to differentiate between higher-level
classes to improve overall hierarchical classification accuracy. An-
alyzing the discrepancies between the top-level and second-level

Table 2: Error characterization for the best-performing k-NN model
trained with CLAP.

Error category Second-level Top-level

Acoustic ambiguity 60 27
Between classes (different top) 57 52
Between classes (same top) 32 -
Common source 18 10
Prominence of one source 23 18
Single-source evolution 3 2
Low quality 3 0
Uncommon/Weird/Other 24 8
Total 220 117

classifiers reveals that 54% of errors across all second levels are ac-
curately predicted by the top-level classifier, supporting the claim
that integrating hierarchical information within a unified model is
a promising future direction. Additionally, a notable portion of
these errors are linked to the lowest-performing class (Conversa-
tion/Crowd), suggesting that improving the dataset or model to bet-
ter handle less orthogonal classes could lead to better overall results.

Misclassifications due to common source (i.e classes include
sounds from the same source), single-source evolution (i.e sound
from one source evolves over time), or prominence of one source
(i.e. one sound dominates in duration or loudness) are influenced by
the taxonomy’s nature, which separates sound samples even when
they originate from the same source (e.g. birds as part of a sound-
scape vs isolated birds, or human talking vs human crying). Because
of the class definitions, the model is tasked to learn deeper semantic
distinctions and information about the source mixture, thereby mak-
ing the classification task more complex. To reduce these errors,
models could integrate mixture and context-aware learning strate-
gies during training. Errors grouped under acoustic ambiguity have
one or more acoustic properties that resemble another sound from a
different class (sounds like x, is y). Emphasizing semantic informa-
tion could mitigate these errors, as they are more pronounced in the
lower-performing models with less semantic integration, constitut-
ing 43−54% of their total errors (against 23−27% for CLAP). We
note, though, that confusing sounds with very high acoustic similar-
ity may be less consequential in certain tasks, such as sound design.

5. CONCLUSIONS

In this paper, we present a comparative analysis of various input
representations with different levels of acoustic and semantic in-
formation for the task of heterogeneous sound classification. To ad-
dress the challenges posed by the classification of a broad taxonomy
with significant intra-variability, we introduce the manually curated
BSD10k dataset which enables automatic classification tasks and
offers valuable data pools for diverse research tasks. To baseline
the problem and understand the error margin, we complement the
evaluation metrics with manual error characterization through audi-
tory evaluation of the misclassifications. Our findings indicate that
greater semantic information enhances classification performance
and insertion of hierarchical information during training can prove
beneficial. Organizing available data into simpler taxonomic struc-
tures can improve the sound description process and enable the
training of reliable automatic classifiers, providing a pre-processing
step for context-aware sound processing and understanding.
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ABSTRACT

Sound event localization and detection (SELD) systems using audio
recordings from a microphone array rely on spatial cues for deter-
mining the location of sound events. As a consequence, the local-
ization performance of such systems is to a large extent determined
by the quality of the audio features that are used as inputs to the sys-
tem. We propose a new feature, based on neural generalized cross-
correlations with phase-transform (NGCC-PHAT), that learns audio
representations suitable for localization. Using permutation invari-
ant training for the time-difference of arrival (TDOA) estimation
problem enables NGCC-PHAT to learn TDOA features for multiple
overlapping sound events. These features can be used as a drop-in
replacement for GCC-PHAT inputs to a SELD-network. We test
our method on the STARSS23 dataset and demonstrate improved
localization performance compared to using standard GCC-PHAT
or SALSA-Lite input features.

Index Terms— sound event localization and detection, time
difference of arrival, generalized cross-correlation

1. INTRODUCTION

The sound event localization and detection (SELD) task consists of
classifying different types of acoustic events, while simultaneously
localizing them in 3D space. The DCASE SELD Challenge [1] pro-
vides first order ambisonics (FOA) recordings and signals captured
from a microphone array (MIC). In recent years, most systems sub-
mitted to the challenge have utilized the former format, whereas the
latter has been less explored. In this work, we therefore focus on
how to better exploit information in the MIC recordings by learning
to extract better features.

Generalized cross-correlations with phase transform (GCC-
PHAT) [2] combined with spectral audio features is the basis
for most SELD methods for microphone arrays. The spectral
features contain important cues on what type of sound event is
active, whereas the purpose of GCC-PHAT is to extract the time-
differences of arrival (TDOA) for pairs of microphones. The TDOA
measurements can then be mapped to direction-of-arrival (DOA)
estimates, given the geometry of the array. However, GCC-PHAT

This work was partially supported by the strategic research project
ELLIIT and the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP), funded by the Knut and Alice Wallenberg (KAW) Founda-
tion. Model training was enabled by the Berzelius resource provided by the
KAW Foundation at the National Supercomputer Centre in Sweden.

Code: https://github.com/axeber01/ngcc-seld/
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Figure 1: Overview of our pre-training strategy with K = 3 tracks.
Given a set of sound events, we train a neural GCC-PHAT to predict
the TDOA of each event. When the number of sound events is less
than K, auxiliary duplication of the labels is used. In this illustra-
tion, only two microphones are shown for brevity.

is known to be sensitive to noise and reverberation [3]. GCC-PHAT
can also fail to separate TDOAs for overlapping events, since two
events at different locations can have the same TDOA for a given
microphone pair, which yields only one correlation peak.

To improve separation of overlapping events, Xu et al. [4] pro-
posed a beamforming approach, where phase differences from the
cross-power spectrum are used as input features. Similarly, Cheng
et al. [5] showed that localization performance can be improved
by first filtering the audio signals using a sound source separation
network before performing feature extraction. Several works [6,
7] have also proposed end-to-end localization from raw audio sig-
nals. The most widely adopted input feature is however the spatial
cue-augmented log-spectrogram (SALSA) [8] and variants thereof
(SALSA-Lite) [9], that combine directional cues with spectral cues
in a single feature. This is done by calculating the principal eigen-
vector of the spatial covariance matrix for the different frequencies
in the spectrogram.

Although some recent works [10, 11, 12] have approached
TDOA estimation using learning-based methods, there is a lack
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of research in how to combine this with the SELD task. Berg
et al. [12] proposed using a shift-equivariant neural GCC-PHAT
(NGCC-PHAT) network. However, this method, as it was origi-
nally proposed, only supports single-source TDOA estimation and
was not evaluated in a real-world localization scenario.

In this work, we describe how NGCC-PHAT can be trained
to extract TDOA features for multiple sound sources. We show
that such features can be learnt by employing permutation invariant
training, which allows for prediction of TDOAs for multiple over-
lapping sound events. Furthermore, we show that these features can
be used with an existing SELD-pipeline on a real-world dataset,
for better performance compared to using traditional input features.
The material presented in this work is an extension of our DCASE
2024 challenge submission [13].

2. METHOD

2.1. Background

Consider an acoustic scene, as shown in Figure 1, with M micro-
phones located at positions rm ∈ R3 for m = 1, . . . ,M . Further-
more, let sp ∈ R3, p = 1, . . . , P denote the locations of the active
sound events. For a given time frame, each microphone records a
signal xi, which is composed of the sum of active events as

xi[n] =
P∑

p=1

(hp,i ∗ up)[n] + wi[n], n = 1, . . . , N, (1)

where up is the p:th active event, hp,i is the room impulse response
from the p:th event to the i:th microphone, wi is additive noise and
N is the number of samples. Furthermore, we define the TDOA for
microphone pair (i, j) and the p:th event as

τp
ij = ⌊Fs

c
(||sp − ri||2 − ||sp − rj ||2)⌉, (2)

where Fs is the sampling rate, c is the speed of sound and ⌊·⌉ de-
notes rounding to the nearest integer.

The GCC-PHAT is defined as

Rij [τ ] =
1

N

N−1∑
k=0

Xi[k]X
∗
j [k]

|Xi[k]X∗
j [k]|

e
i2πkτ

N , (3)

where (Xi, Xj) are the discrete Fourier transforms of (xi, xj). The
feature is calculated for time delays τ = −τmax, ..., τmax, where
τmax = maxi,j⌊||ri − rj ||2Fs/c⌉ is the largest possible TDOA for
any pair of microphones. In an anechoic and noise-free environment
with a single sound event up, this results in Rij [τ ] = δτp

ij
[τ ], where

δτp
ij
[τ ] =

{
1, τ = τp

ij ,

0, otherwise.
(4)

In practice, GCC-PHAT will often yield incorrect TDOA esti-
mates due to noise and reverberation. In the case of multiple over-
lapping sound events, the different events may interfere and result
in difficulties resolving peaks in their signal correlations.

NGCC-PHAT attempts to alleviate this problem by filtering
the input signals using a learnable filter bank with L convolutional
filters, before computing GCC-PHAT features Rl

ij , l = 1, . . . , L
for each channel in the signals independently. In theory, such a
filter bank can perform source separation so that different channels

in the NGCC-PHAT correspond to TDOAs for different sound
events. Note that for an ideal filter bank that perfectly sepa-
rates the p:th sound event to the l:th channel, we would have
Rl

ij [τ ] = δτp
ij
[τ ] in an anechoic and noise-free environment, due to

the shift-equivariance of the convolutional filters.

2.2. Permutation Invariant Training for TDOA Estimation

We extend NGCC-PHAT to predict time delays for multiple events
in a single time frame using auxiliary duplicating permutation in-
variant training (ADPIT) [14], by creating separate target labels for
each active sound event. This is done by training a classifier net-
work to predict the TDOA of all active events for all pairs of mi-
crophones by treating it as a multinomial classification problem.
The L correlation features are first processed using another series
of convolutional layers with C output channels. These are then pro-
jected to K different output tracks which are assigned to the dif-
ferent events. The last layer of the NGCC-PHAT network therefore
outputs probability distributions pk(τ |xi,xj) for k = 1, . . . ,K
over the set of integer delays τ ∈ {−τmax, ..., τmax}, as illustrated in
Figure 1.

With K as the number of tracks, assume for now that there are
also P = K active events. Furthermore, let Perm([K]) denote the
set of permutations of the events {1, . . . ,K}. For a single micro-
phone pair (i, j) and an event arrangement α ∈ Perm([K]), the loss
is calculated using the average cross-entropy over all output tracks
as

lα(xi,xj) = − 1

K

K∑
k=1

τmax∑
τ=�τmax

δ
τ
α(k)
ij

[τ ] log pk(τ |xi,xj). (5)

Due to the ambiguity in assigning different output tracks to different
events, we calculate the loss for all possible permutations of the
events and use the minimum. The loss is then averaged over all
M(M − 1)/2 microphone pairs, giving the total loss

L =
2

M(M − 1)

M∑
i,j=1
i<j

min
α∈Perm([K])

lα(xi,xj). (6)

Note that this loss function is class-agnostic, since the output tracks
are not assigned class-wise. The main purpose of the TDOA fea-
tures are therefore to provide better features for localization when
combined with spectral features that are suitable for classification.

When the assumption P = K does not hold, the formal impli-
cation is that α needs to cover another set of event arrangements.
Our approach is equivalently to transform each such case into sub-
cases where the assumption holds. Time frames with no active
events (P = 0) are discarded in the loss calculation, since no TDOA
label can be assigned. When 1 ≤ P ≤ K−1, we perform auxiliary
duplication of events following the method in [14], which makes the
loss invariant to both permutations and which events that are dupli-
cated. Furthermore, in the case of K < P , it is possible to compute
the loss for all subsets of K events from P and use the minimum.

3. EXPERIMENTAL SETUP

3.1. Using TDOA Features for SELD

In order to show the benefits of better TDOA features for SELD,
we demonstrate how they can be used in conjunction with a SELD-
system. This involves two training phases: 1) pre-training of the
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NGCC-PHAT network for TDOA prediction and 2) training the
SELD-network using the TDOA features as input. The NGCC-
PHAT network operates on raw audio signals and consists of four
convolutional layers, the first being a SincNet [15] layer, and the
remaining three use filters of length 11, 9, and 7 respectively. Here,
each convolutional layer has L = 32 channels and together form the
filter bank mentioned in Section 2.1, which is applied independently
to audio from the different microphones. GCC-PHAT features are
computed channel-wise for each microphone pair, and the features
are then processed by another four convolutional layers, where the
final layer has C = 16 output channels.

The maximum delay used is chosen for compatibility with the
setup in the STARSS23 dataset [16], which uses a tetrahedral array
with M = 4 microphones. The diameter of the array is 8.4 cm,
which corresponds to a maximum TDOA of τmax = 6 delays at a
sampling rate of Fs = 24 kHz. In total, the TDOA features there-
fore have shape [C,M(M − 1)/2, 2τmax + 1] = [16, 6, 13].

During pre-training for TDOA-prediction, the 16 channels are
then mapped by a convolutional layer to K = 3 output tracks.
Although the maximum polyphony in a single time frame in the
dataset is five, we use K = 3 tracks since the computational com-
plexity of permutation invariant training scales as O(K!) and more
than three simultaneous events are rare. When more than three
events are active, for pre-training we randomly select labels for
three events and discard the rest.

When training the SELD-network, we extract the TDOA input
features for longer audio signals by windowing the NGCC-PHAT
computation without overlap. We use an input duration of 5 second
audio inputs, which corresponds to T = 250 TDOA features when
using a window length of 20 ms. Since the TDOA features are de-
signed to be class-agnostic, we combine them with spectral features
for the same time-frame in order to better distinguish between dif-
ferent types of event. For this we use log mel-spectograms (MS)
with F = 64 spectral features for each recording.

When merging the spectral features with the TDOA features,
we first concatenate the 16 channels for the 6 microphone pairs of
the TDOA features, and use a multi-layer perceptron to map the
13 time-delays to 64 dimensions. The TDOA features are then
reshaped and concatenated with the M spectral features channel-
wise, as shown in Figure 2, resulting in a combined feature size of
[CM(M − 1)/2 +M,T, F ] = [100, 250, 64].

The combined feature is passed through a small convolutional
network with 64 output channels with pooling over the time and
spectral dimensions. Here we use two pooling variants that deter-
mine the size of the input features to the SELD-network: 1) pooling
over 5 time windows and 4 frequencies, which produces features of
size [64, 50, 16], or 2) pooling over 5 time windows and no pooling
over frequencies, which results in features of size [64, 50, 64]. We
call the resulting network variants Small and Large for this reason.

For SELD-training, we use a CST-Former [17] network that
consists of Transformer blocks, where each block contains three
self-attention modules: temporal attention, spectral attention and
channel attention with unfolded local embedding. We use the de-
fault configuration with two blocks, each with eight attention heads,
and refer to [17] for more details about this architecture.

3.2. Dataset and Model Training

We train all our models on a mixture of real spatial audio record-
ings and simulated recordings. The real recordings are from the
STARSS23 [16] audio-only dev-train dataset, which consists of

TDOA input
features

log-mel
spectrogram

  

combined input feature

reshape and
concatenate

CST-Former

 

time-frequency
conv

multi-accdoa
predictions

Figure 2: Illustration of how TDOA features are used together with
log mel-spectrograms as input to the CST-Former network.

about 3.5 hours of multi-channel audio recordings. The dataset
has up to 5 simultaneous events from 13 different classes. For
data augmentation, we use channel-swapping [18], which expands
the dataset by a factor of 8 by swapping the input channels and
corresponding DOA labels in different combinations.

The simulated data is provided as a part of the DCASE 2024
challenge [19] and consists of 20 hours of synthesized recordings,
where the audio is taken from the FSD50K [20] dataset. In addition,
we generate an additional 2 hours of synthesized recordings using
Spatial Scaper [21] with impulse responses from the TAU [22] and
METU [23] databases. This additional data contains sounds from
classes that occur rarely in STARSS23, namely “bell”, “clapping”,
“doorCupboard”, “footsteps”, “knock” and “telephone”. The total
amount of training data is about 50 hours.

The NGCC-PHAT network was trained for one epoch with a
constant learning rate of 0.001, after which the weights were frozen.
The CST-Former network was then trained for 300 epochs using the
AdamW optimizer [24] with a batch size of 64, a cosine learning
rate schedule starting at 0.001 and weight decay of 0.05. The mean
squared error was used as loss function with labels in the Multi-
ACCDOA [14] format, with distances included as proposed in [25].
In order to penalize errors in predicted distance relative to the prox-
imity of the sound events, we scale loss-terms for the distance error
with the reciprocal of the ground truth distance.

Evaluations were done using the DCASE 2024 SELD chal-
lenge metrics [1, 26]. This includes the location dependent F-score
FLD , the DOA error DOAE and the relative distance error RDE,
which is the distance error divided by the ground truth distance to
the event. Each metric is calculated class-wise and then macro-
averaged across all classes. Furthermore, the location dependent
F-score only counts predicted events as true positives if they are
correctly classified and localized, such that predictions with DOAE
larger than TDOA = 20◦ or RDE larger than TRD = 1 are counted
as false positives. We focus on evaluating the performance of our
method compared to that of other commonly used input features
with the same SELD-network, and do not compare to other (e.g.
FOA-based) state-of-the-art methods.

4. RESULTS

Our main results are presented in Table 1, where we compare our
method to GCC with MS and to SALSA-Lite. Our method performs
better in terms of FLD and DOAE, for both the Small and Large
variant of the network, although SALSA-Lite has the lowest RDE
for the Large variant. When increasing the model size, the results
improve for both SALSA-Lite and NGCC, but not for GCC. Since
GCC features are less informative, the increase in model size results
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Figure 3: An example of the TDOA predictions pk(τ |xi,xj) from the pre-trained NGCC-PHAT network using K = 3 output tracks.
Predictions are shown for all six microphone combinations (i, j) at a single time frame with two events and ground truth TDOAs τ1

ij and τ2
ij .

Table 1: Macro-averaged test results on STARSS23 [16] dev-test.
Input feature FLD ↑ DOAE ↓ RDE ↓ #params

CST-Former Small

GCC + MS 15.7± 1.0 27.7± 2.1 0.78± 0.02 550K
SALSA-Lite 24.6± 2.0 27.0± 1.2 0.41± 0.02 530K
NGCC + MS 26.0± 2.0 25.8± 2.3 0.42± 0.01 663K

CST-Former Large

GCC + MS 14.2± 1.1 28.4± 1.9 0.84± 0.03 1.37M
SALSA-Lite 26.1± 1.0 26.4± 3.6 0.42± 0.02 1.35M
NGCC + MS 28.2± 2.8 23.2± 1.8 0.50± 0.02 1.49M

Table 2: Ablations of the number input channels used in the TDOA
input features for CST-Former Small.

C FLD ↑ DOAE ↓ RDE ↓ #params

1 24.4± 2.3 29.7± 3.3 0.44± 0.08 608K
4 24.2± 0.8 23.2± 2.5 0.46± 0.01 619K
16 26.0± 2.0 25.8± 2.3 0.42± 0.01 663K

in overfitting. The same can be said for the increase in RDE when
using NGCC + MS, since the TDOA features from both GCC and
NGCC mostly contain angular cues, but less information about spa-
tial distance. Note that GCC + MS and NGCC + MS use exactly the
same CST-Former architecture, so the extra parameter count when
using NGCC comes from the pre-trained feature extractor. When
using SALSA-Lite, the pooling operations in the convolutional lay-
ers were adjusted in order to achieve a similar model size.

In order to verify the importance of using more than one input
channel for TDOA features, we ablate the number of channels C
in the NGCC-PHAT network. The results are shown in Table 2,
where it can be seen that increasing the number of channels from
1 to 16 increases performance in terms of all metrics. This agrees
with the intuition that using more than one input channels enables
the pre-training to better separate spatial cues from different events.
Furthermore, the cost for increasing the number channels in terms
of the increase in model parameters is relatively small.

We also ablate the number of tracks K used for TDOA-
prediction during pre-training, and present the location dependent
F-score for values of TDOA in Figure 4. Due to the sensitivity of
the macro-averaged F-score to incorrect predictions for rare classes
in the test data, we instead use the micro-averaged statistic. At the
default 20◦ threshold, the effect of increasing the number of tracks
is small, but asymptotically it is clear that using K = 3 tracks
increases the F-score regardless of how many events are active.
Note that the number of tracks only affects the complexity in the
pre-training stage of NGCC-PHAT, and not the overall parameter
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Figure 4: Micro-averaged F-score as a function of the angular
threshold TDOA using different number of output tracks K during
TDOA pre-training. Evaluation was done using CST-Former Small.

count of the final model, since all C channels are used as input to
the network, and the mapping to K tracks can be discarded.

Finally, we show examples of TDOA predictions in Figure 3.
When the TDOAs of the events are well-separated, the different
tracks yield different peaks at approximately the correct time de-
lays. However, for the microphone pairs where events are tightly
spaced, the predictions fail to separate the different TDOAs.

5. CONCLUSIONS

In this work we proposed an input feature based on NGCC-PHAT
and showed its usefulness as input to a SELD-network. Permuta-
tion invariant training for the TDOA estimation problem enabled
NGCC-PHAT to learn TDOA features for multiple overlapping
sound events, and improved SELD performance compared to using
GCC-PHAT or SALSA-Lite input features.

These results indicate that our NGCC-PHAT pre-training for
TDOA classification provides a good feature extractor for the SELD
task. Intuitively, better TDOA prediction in the feature extractor
ought to yield better SELD results, but further studies are needed
to validate this. Evaluating TDOA prediction performance would
however involve new methodology, such as heuristics for peak se-
lection from the output tracks, as well as selecting useful evaluation
metrics. The downstream network could be resilient to some type
of information our current loss function aims to suppress. In addi-
tion, a source-wise or class-wise TDOA format could be beneficial.
We therefore anticipate future work to explore other pre-training
options and end-to-end training.

Focusing on the feature extractor, we made minimal effort to
address the other challenges of the dataset. We leave for future work
to incorporate known techniques, such as class balancing, additional
data augmentation, temporal filtering and ensemble voting.
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ABSTRACT

Acoustic scene classification (ASC) predominantly relies on su-
pervised approaches. However, acquiring labeled data for train-
ing ASC models is often costly and time-consuming. Recently,
self-supervised learning (SSL) has emerged as a powerful method
for extracting features from unlabeled audio data, benefiting many
downstream audio tasks. This paper proposes a data-efficient and
low-complexity ASC system by leveraging self-supervised audio
representations extracted from general-purpose audio datasets. We
introduce BEATs, an audio SSL pre-trained model, to extract the
general representations from AudioSet. Through extensive experi-
ments, it has been demonstrated that the self-supervised audio rep-
resentations can help to achieve high ASC accuracy with limited
labeled fine-tuning data. Furthermore, we find that ensembling the
SSL models fine-tuned with different strategies contributes to a fur-
ther performance improvement. To meet low-complexity require-
ments, we use knowledge distillation to transfer the self-supervised
knowledge from large teacher models to an efficient student model.
The experimental results suggest that the self-supervised teachers
effectively improve the classification accuracy of the student model.
Our best-performing system obtains an average accuracy of 56.7%1.

Index Terms— Acoustic scene classification, data efficiency,
self-supervised learning, fine-tuning, knowledge distillation

1. INTRODUCTION

Acoustic Scene Classification (ASC) is a task to recognize the envi-
ronment in which an audio recording was captured, such as streets,
parks, or airports [1]. Traditional approaches to ASC typically rely
on supervised learning techniques [2, 3, 4, 5], which require large,
labeled datasets to perform effectively. However, obtaining such
labeled datasets is a resource-intensive process, often involving ex-
tensive manual annotation and data collection efforts. In the task 1
of the DCASE 2024 Challenge, participants are required to create
low-complexity ASC systems that are trained with limited labeled
data [6]. Specifically, five training subsets are provided, including
5%, 10%, 25%, 50%, and 100% of the original training set’s size.
The performance of the submitted systems, trained on 5 subsets, is
assessed by the average accuracy. This task encourages the develop-
ment of efficient models capable of maintaining high performance
despite reduced training data, advancing the practical applicability
and scalability of ASC systems in real world.

1https://github.com/yqcai888/easy_dcase_task1

In recent years, self-supervised learning (SSL) has been widely
applied to address the scarcity of labeled data in audio tasks. SSL
leverages the structure of the data to create supervisory signals,
allowing models to learn meaningful representations from unla-
beled audio data. SSAST [7] introduces a masking strategy on
the input spectrogram patches, allowing the transformer model to
be pre-trained using both reconstruction loss and contrastive loss.
Similarly, Audio-MAE [8] and MaskSpec [9] pre-train an encoder-
decoder transformer architecture by reconstructing the original au-
dio spectrogram from its masked version. BEATs [10] focuses on
pre-training the transformer encoder by predicting the discrete la-
bels generated by an acoustic tokenizer. After SSL pre-training on
the general-purpose datasets, these models can be fine-tuned for var-
ious labeled tasks, such as keyword spotting and sound event detec-
tion. However, the application of audio self-supervised pre-trained
models to ASC has been relatively unexplored.

In this work, we propose a data-efficient and low-complexity
system with audio self-supervised pre-trained models for ASC. In
Section 2, BEATs [10], an audio transformer model SSL pre-trained
on AudioSet [11], is introduced. The pre-trained encoders of mod-
els are then appended with a new linear classifier and fine-tuned on
the ASC dataset. We experiment with various fine-tuning strategies
and data augmentation techniques. The results demonstrate that the
self-supervised representations extracted from the general-purpose
audio dataset can significantly improve the ASC accuracy with lim-
ited labeled data. Moreover, it has been found that the ensemble
of SSL models fine-tuned with different strategies makes further
improvements to the ASC performance. Section 3 focuses on ad-
dressing the complexity requirements, where a knowledge distilla-
tion framework [3] is used to transfer the self-supervised knowledge
from BEATs to TF-SepNet-64 [12, 13], which is an efficient CNN-
based ASC model. The experimental results and ablation study are
detailed in Section 4. It shows that the self-supervised teachers sig-
nificantly improve the performance of student model, achieving an
average accuracy of 56.7%. Our submitted system ranked 4th in the
DCASE 2024 Challenge [13].

2. SELF-SUPERVISED PRE-TRAINING AND
FINE-TUNING

In this section, we aim to achieve high ASC accuracy with lim-
ited labeled data by leveraging the self-supervised audio represen-
tations. Specifically, we introduce BEATs, a state-of-the-art audio
SSL model, to extract the general features from AudioSet [11]. The
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Figure 1: Proposed data-efficient and low-complexity ASC sys-
tem. (a) Self-supervised pre-training BEATs on AudioSet. (b) Fine-
tuning pre-trained BEATs on ASC dataset. (c) Distilling knowledge
from fine-tuned BEATs to TF-SepNet-64. Snowflake icon indi-
cates that the parameters of the corresponding part are frozen, while
Flame icon indicates the opposite.

SSL pre-trained models are then experimented with two fine-tuning
strategies, frozen fine-tuning and unfrozen fine-tuning, for adapting
to the ASC task. Experimental results are presented in Section 4.1.

2.1. BEATs

Bidirectional Encoder representation from Audio Transformers
(BEATs) [10] is an audio pre-training framework that iteratively
optimizes an acoustic tokenizer and an audio SSL model. As il-
lustrated in Figure 1 (a), the BEATs tokenizer generates discrete
labels of unlabeled audio, which the BEATs model learns to pre-
dict. Concurrently, the tokenizer is trained by distilling knowledge
from the pre-trained BEATs model, enabling iterative optimization
of both components. The authors argue that discrete label predic-
tion captures high-level audio semantics more effectively than the
reconstruction loss used in previous audio SSL models. The tok-
enizer and label predictor of SSL model are discarded after self-
supervised pre-training. In the original work, BEATs models are
self-supervised pre-trained, and alternatively supervised fine-tuned,
on AudioSet before applying to downstream tasks. For convinience,
we denote the purely self-supervised pre-trained BEATs model as

Model 5% 10% 25% 50% 100% Avg.

BEATs (SSL)* 50.7 52.0 54.2 55.0 55.8 53.5
BEATs (SSL) 52.9 54.9 58.1 59.7 61.2 57.4
BEATs (SSL+SL) 54.3 56.6 59.7 60.7 62.1 58.7

3 Ensemble 55.4 57.6 61.1 62.2 64.2 60.1
12 Ensemble 55.8 58.0 61.6 62.9 64.6 60.6

Table 1: Accuracy of fine-tuned BEATs on the test set of TAU Ur-
ban Acoustic Scene 2022 Mobile development dataset [14]. SSL
denotes the BEATs model is self-supervised pre-trained on Au-
dioSet. SSL+SL denotes the SSL pre-trained BEATs model is addi-
tionally supervised fine-tuned on AudioSet. * indicates the encoder
of BEATs is frozen during the fine-tuning on ASC dataset. Top-1
accuracy of 5 independent runs is presented.

BEATs (SSL). The SSL pre-trained BEATs with additional super-
vised fine-tuning on AudioSet is denoted as BEATs (SSL+SL).

Before fine-tuning for ASC, the reserved BEATs encoder is ap-
pended with a task-specific linear classifier to output class proba-
bilities for different acoustic scenes, as shown in Figure 1 (b). The
linear classifier consists of a linear layer, a mean-pooling layer and a
softmax operation. The fine-tuning data is from TAU Urban Acous-
tic Scene 2022 Mobile development dataset [14]. Each audio clip is
resampled to 16 kHz, and 128-dimensional Mel-filter bank features
are extracted using a 25 ms Povey window with a 10 ms shift. The
features are normalized according to the mean and standard devia-
tion of AudioSet. Each acoustic feature x ∈ RF×T is then divided
into 16 × 16 patches and flattened into a sequence of patches to
serve as input for the pre-trained BEATs model.

2.2. Frozen Fine-tuning

To evaluate the benefits of self-supervised audio representations,
the encoder of BEATs (SSL) is frozen as a feature extractor while
only the linear classifier is trained with the cross entropy loss, as
shown in Figure 1 (b). The frozen model is denoted as BEATs
(SSL)*. Frozen fine-tuning allows the model to leverage represen-
tations learned during self-supervised pre-training, preventing over-
fitting and catastrophic forgetting [15]. We train BEATs (SSL)* for
60 epochs using the default Adam optimizer. To further enhance the
robustness and generalization of the model, we apply two widely-
used data augmentation methods: Mixup [16] with an α of 0.3 and
SpecAugmentation [17] with a mask ratio of 0.2.

2.3. Unfrozen Fine-tuning

Beside freezing the SSL models as feature extractors, we also ex-
plore unfrozen fine-tuning to further adapt BEATs to the ASC task.
Unfrozen fine-tuning allows the model to refine representations
learned during self-supervised pre-training, typically leading to bet-
ter performance compared to frozen fine-tuning.

We apply BEATs (SSL) and BEATs (SSL+SL) for unfrozen
fine-tuning, using the same training configurations. The models are
fine-tuned for 30 epochs with a batch size of 512. The AdamW
optimizer [18] is applied with β = (0.9, 0.98) and a weight decay
of 0.01. The learning rate is scheduled to exponentially increase
from 0 to a peak value of 1 × 10−5 over four epochs, then lin-
early decrease to a minimum value of 5 × 10−8 for the remaining
epochs. Four data augmentation techniques are used during fine-
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tuning: Mixup [16] with α = 0.3, Freq-MixStyle [19] with α = 0.4
and pfms = 0.4, SpecAugmentation [17] with a mask ratio of 0.2,
and DIR augmentation [20] with pdir = 0.6.

2.4. Ensemble Models

Previous works [3, 19] have shown that model ensemble with dif-
ferent configurations can enhance ASC performance and benefit
knowledge distillation. In this work, we average the logits to ensem-
ble BEATs models that fine-tuned with different fine-tuning strate-
gies. The small ensemble consists of three fine-tuned BEATs mod-
els: BEATs (SSL)*, BEATs (SSL) and BEATs (SSL+SL). The large
ensemble includes twelve fine-tuned BEATs models: one BEATs
(SSL)*, one BEATs (SSL) and ten BEATs (SSL+SL). The ten
BEATs (SSL+SL) models are AudioSet fine-tuned BEATs models
with different tokenizers as described in the original work [10].

3. KNOWLEDGE DISTILLATION WITH
SELF-SUPERVISED TEACHERS

DCASE Challenge 2024 task 1 imposes strict limitations on com-
putational complexity, restraining the model size within 128kB and
the number of multiply-accumulate operations within 30 MMACs.
In this section, knowledge distillation [21] is introduced to transfer
knowledge from the fine-tuned BEATs to an efficient student model,
TF-SepNet-64. By employing the self-supervised teachers, we aim
to develop ASC systems that operate within the computational lim-
its while maintaining high accuracy with limited labeled data. The
framework of proposed system is shown in Figure 1 (c).

3.1. TF-SepNet-64

Time-Frequency Separate Network (TF-SepNet) [12] is a deep
CNN architecture designed specifically for low-complexity ASC
tasks, achieving second place in DCASE Challenge 2023. TF-
SepNet processes features separately along the time and frequency
dimensions using one-dimensional (1D) kernels, which reduce
computational costs and provide a larger effective receptive field
(ERF), allowing the model to capture more time-frequency features.

As in [13], TF-SepNet-64 is optimized to meet the upper com-
plexity limit of the challenge requirements. Several adjustments
have been made. First, the number of base channels is set to 64.
Second, all Adaptive Residual Normalization layers [4] are replaced
with Residual Normalization layers [2] to reduce the number of
model parameters. Third, a Max-pooling layer is added before the
last TF-SepConvs block to further reduce the feature size. In the
finish, the total parameter number of TF-SepNet-64 is 126,858. For
an input feature size of (512, 64), the maximum number of MACs
per inference is 29.4196 MMACs.

3.2. Knowledge Distillation

We adopt the widely used knowledge distillation framework in pre-
vious years’ challenges [3, 19], which focuses on directly mimick-
ing the final predictions of the teacher model. As illustrated in Fig-
ure 1 (c), the knowledge transfer involves two main steps.

The input feature is a log-mel spectrogram x ∈ RF×T . For
the teacher path, once the self-supervised teachers are fine-tuned,
as shown in Figure 1 (b), the predictions on a specified training
subset are computed, serving as the teacher logits in the knowledge
distillation process. For the student path, the ASC student is trained

on the specified training subset using a combination of the ground
truth labels and the soft targets provided by the teacher model. Give
a vector of logits z as the outputs of the last classification layer of a
model, the soft targets are the probabilities that the input belongs to
the classes and can be estimated by a softmax function δ(·) as

δ(zi, τ) =
exp(zi/τ)∑
j exp(zj/τ)

(1)

where zi is the logit for the i-th class, and a temperature factor τ is
introduced to control the importance of each soft target. The train-
ing objective of student model is to minimize the divergence be-
tween the student’s predictions and the soft targets from the teacher,
as well as to correctly classify the labeled data. The overall loss
function for the student can be formulated as

L = λLCE(y, δ(zs)) + (1− λ)τ2LKL(δ(zt, τ), δ(zs, τ)) (2)

where LCE is the cross-entropy loss between the ground truth labels
and the student’s predictions, and LKL is the Kullback-Leibler di-
vergence between the soft targets from the teacher and the student’s
predictions. λ is a hyperparameter to balance the weight between
label and distillation loss.

3.3. Experimental Setup

Dataset and Baseline: The dataset for the task1 of DCASE 2024
Challenge has exactly the same content as the TAU Urban Acoustic
Scenes 2022 Mobile development dataset [14], but the training sets
of different sizes are provided. These train subsets contain approx-
imately 5%, 10%, 25%, 50%, and 100% of the audio snippets in
the training set provided in previous years. The DCASE baseline
model for comparison, CP-Mobile [22], is a fully-supervised CNN
classifier that achieved top ranking in DCASE Challenge 2023.
Feature Extraction: For TF-SepNet-64, we generally follow the
baseline settings [22] for feature extraction. The audio recordings
are firstly resampled to 32 kHz. Time-frequency representations are
then extracted using a 4096-point FFT with a window size of 96 ms
and a hop size of 16 ms. The primary difference in our approach
is the application of a Mel-scaled filter bank with a large number
of frequency bins, 512, to convert the spectrograms into mel spec-
trograms, which leads to a slight improvement on the classification
accuracy. The final input size for TF-SepNet-64 is (512, 64).
Data Augmentations: Data augmentation is a crucial technique in
ASC tasks, especially when the labeled data is limited. In this work,
we use a combination of Soft Mixup [13], Freq-MixStyle [19], and
Device Impulse Response (DIR) augmentation [20] to enhance the
diversity and quality of our training data. α of Soft Mixup is set
to 0.3. α and p of Freq-MixStyle are respectively set to 0.4 and
0.8. pdir of DIR augmentation is set to 0.4. All augmentations are
implemented to be plug-and-played during training.
Training: We train TF-SepNet-64 for 150 epoch using Adam op-
timizer with different initial learning rate for 5 subsets, 0.06 for
split5, 0.05 for split50 and 0.04 for all other splits. Stochastic Gra-
dient Descent with Warm Restarts (SGDR) [23] is applied with T0

=10 and Tmult = 2, where the learning rate is periodically reset to
initial value and then decayed with cosine annealing. The batch size
is set to 512. We fix λ = 0.02 and τ = 2 for the knowledge distil-
lation as in [3]. After training, Post-Training Static Quantization is
implemented through the Intel Neural Compressor2 to quantize the
weights of model into INT8 data type.

2https://intel.github.io/neural-compressor
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Model 5% 10% 25% 50% 100% Avg.

DCASE Baseline 42.4 45.3 50.3 53.2 57.0 49.6

TF-SepNet-64 45.7 51.1 55.6 59.6 62.5 54.9
+BEATs (SSL)* 48.2 51.0 54.9 58.0 59.9 54.4
+BEATs (SSL) 47.3 52.5 57.6 60.8 61.9 56.0
+BEATs (SSL+SL) 47.8 52.1 57.7 61.1 62.6 56.3
+3 Ensemble 49.0 52.3 57.9 60.7 63.5 56.7
+12 Ensemble 47.9 52.3 57.5 60.1 62.8 56.1

Table 2: Accuracy of TF-SepNet-64 with different BEATs teachers
on the test set of TAU Urban Acoustic Scene 2022 Mobile devel-
opment dataset [14]. The teacher logits of each BEATs model is
used (+) in knowledge distillation at a time. Top-1 and quantized
accuracy of 5 independent runs is presented.

Figure 2: TSNE [24] visualization of acoustic scene features ex-
tracted by TF-SepNet-64, which is trained on the 5% subset. Left:
Knowledge distillation is not applied. Right: Distilling knowledge
from the 3 ensemble BEATs teacher.

4. RESULTS

4.1. Performance of Fine-tuned BEATs

Table 1 presents the accuracy of fine-tuned BEATs using different
fine-tuning strategies. Even with the encoder frozen, BEATs (SSL)*
achieves over 50% accuracy with only 5% training data. This re-
sult demonstrates the self-supervised representations learned from
general-purpose audio dataset are beneficial to the ASC task, es-
pecially when labeled data is exceptionally limited. However, the
accuracy witnesses little improvements with the increase of training
data. This is due to the limited capability of a single linear layer to
adapt to changes in data scale. When the encoder is unfrozen during
fine-tuning, BEATs (SSL) shows a significant 3.9% improvement in
average accuracy. Additionally, the AudioSet supervised fine-tuned
model, BEATs (SSL+SL), achieves further improvements. For the
model ensembles, the 3 ensemble outperforms the best single model
by 1.4% in average accuracy, and the large 12 ensemble achieves an
average accuracy of 60.6%. The different fine-tuning strategies di-
versify the predictions for ensembling, effectively combining self-
supervised knowledge and supervised knowledge.

4.2. TF-SepNet-64 with BEATs Teachers

The performance of TF-SepNet-64 with various BEATs teachers is
shown in Table 2. TF-SepNet-64 without knowledge distillation
outperforms the DCASE baseline by 5.3% in average accuracy but
experiences considerable drop as the amount of training data de-
creases. The single BEATs (SSL)* teacher only helps in the 5%

System 5% 100% MMACs Param/k

Proposed System 49.0 63.5 29.4 126.9

Mel bins (512→256) 47.3 61.9 14.8 126.9
Base channels (64→40) 45.8 61.3 12.9 52.3
ResNorm→AdaResNorm 48.8 61.9 29.4 128.6
w/o added Max-pooling 45.9 63.3 32.0 126.9

w/o Soft Mixup 46.0 62.3 29.4 126.9
w/o Freq-MixStyle 47.0 61.6 29.4 126.9
w/o DIR Augmentaion 48.0 62.4 29.4 126.9

w/o BEATs teacher 45.7 62.5 29.4 126.9

Table 3: Ablation study of our proposed system (TF-SepNet-64 +
3 BEATs ensemble). Each component is changed (→) or removed
(w/o) at a time. MMACs (million multiply-accumulate operations)
represents the computational costs per inference. Param/k denotes
the number of parameters.

subset while BEATs (SSL) and BEATs (SSL+SL) improve the stu-
dent model across more subsets. By comparing the performance
between TF-SepNet-64 and BEATs, we infer that a teacher model
is generally helpful when it has a higher accuracy than the student.
Nevertheless, BEATs (SSL) helps to obtain the highest accuracy
in the 10% subset while BEATs (SSL+SL) is most effective in the
50% subset. Compared to individual teachers, the ensemble teach-
ers generally provide greater benefits to the student. Interestingly,
rather than the large 12 ensemble, the small 3 ensemble achieves
the best performance for the remaining subsets, obtaining the high-
est average accuracy of 56.7%. Therefore, a teacher with higher
accuracy does not necessarily guarantee better improvement for the
student. To further examine the benefits of BEATs teacher, we visu-
alize the acoustic scene features as shown in Figure 2. The samples
are better clustered with the assistance of BEATs teacher.

4.3. Ablation Study

Table 3 presents the ablation study for our proposed system (TF-
SepNet-64 + 3 BEATs ensemble) on the two extreme subset: 5%
and 100%. The configurations for TF-SepNet-64, such as using a
larger amounts of Mel bins, more base channels, replacing AdaRes-
Norm with ResNorm, and adding a Max-pooling layer, contributes
to performance improvements to varying degrees while maintaining
the system’s complexity within the challenge requirements. Mean-
while, the data augmentation methods enhance the accuracy without
introducing additional overheads. The results also indicate that the
BEATs teacher is the dominant factor in performance when labeled
training data is extremely limited.

5. CONCLUSION

In this paper, we introduce self-supervised audio representations
to address the challenge of data-efficient low-complexity acoustic
scene classification (ASC). We fine-tune BEATs models as self-
supervised teachers and then transfer the knowledge to a low-
complexity student model, TF-SepNet-64, through a knowledge
distillation framework. The experimental results demonstrate the
effectiveness of self-supervised pre-trained models in the ASC task,
and also show the benefits of self-supervised teachers for the low-
complexity student model when the labeled training data is limited.
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ABSTRACT

Audio sources recorded for specific purposes often contain extra-
neous sounds that deviate from the intended goal. Re-recording to
achieve the desired result is expensive. However, separating the tar-
get source from the original audio source based on natural language
queries would be much more efficient. However, audio source sep-
aration with natural language queries is a complex task. To ad-
dress this, the DCASE 2024 Challenge Task 9 proposed language-
queried audio source separation (LASS). This paper aims to tackle
LASS by proposing an extended language-audio contrastive learn-
ing approach. To align the separated output audio with the target
text and target audio, we first designed audio-to-text contrastive
loss and audio-to-audio contrastive loss, respectively. By leverag-
ing the characteristics of contrastive learning, we combined these
two losses into an extended audio-to-multi contrastive loss. Our
model, trained with this loss, improves the signal-to-distortion ratio
(SDR) by more than 30% compared to the baseline provided by the
challenge.

Index Terms— Source Separation, Contrastive Learning

1. INTRODUCTION

In real-world scenarios, unintended and uncontrollable events fre-
quently occur. During on-location content recording, numerous fac-
tors are managed to capture the desired purposes. Nevertheless,
unwanted elements often contaminate the recorded audio sources.
Re-recording to achieve perfection is not only expensive but also
challenging. If an AI model could separate the target source from
the recorded audio source based on natural language queries, these
costs could be significantly reduced. However, audio source separa-
tion with natural language queries is a complex task. Consequently,
research in this field is limited, and existing performance levels are
suboptimal [1, 2]. To address this, the DCASE 2024 Challenge Task
9 proposed language-queried audio source separation (LASS) [3].
This task focuses on developing a system that separates the target
audio source from a mixed audio source based on a text description
about the intended audio.

LASS-Net [1] first introduced the task of language-queried au-
dio source separation (LASS), proposing an end-to-end neural net-
work consisting of a text encoder, which takes a text description
(target text) as input and outputs a text embedding, and a separa-
tor, which takes the mixed audio (a mixture of a target audio and
a noise audio) and text embedding as inputs to predict the target
audio. AudioSep [2] used a contrastive language-audio pre-training

Figure 1: The figure above provides a schematic overview of our
model. From the audio-text paired dataset, a pair consisting of tar-
get text and target audio, along with a pair of noise text and noise
audio, are randomly sampled to ensure they do not overlap. The tar-
get audio and noise audio are mixed at a signal-to-noise ratio (SNR)
ranging from -15 to 15 dB to create a mixed audio. The text encoder
extracts a text embedding from the target text. The separator then
takes this text embedding as a condition and the mixed audio, sepa-
rating the output audio conditioned on the text embedding from the
mixed audio.

model (CLAP) model [4] as the text encoder, which was frozen dur-
ing training, and the separator was trained to predict phase residu-
als as well as a magnitude mask [5]. Furthermore, unlike LASS-
Net, which was trained on a subset of the AudioCaps dataset [6],
AudioSep was trained with large-scale audio datasets, leading to a
significant performance improvement over LASS-Net. The base-
line system for the DCASE 2024 Challenge Task 9 is based on the
AudioSep model, but it only used the development set (Clotho [7]
and augmented FSD50K [8] dataset) provided in the challenge for
training data. This baseline system achieved a signal-to-distortion
ratio (SDR) score of 5.708 when evaluated on the validation dataset
provided in the challenge.

We also adopted a model structure consisting of a text encoder
and a separator. The separator was same to ResUNet [5] setting
used in AudioSep. For the text encoder, we used FLAN-T5 [9],
an instruction-tuned large language model (LLM), instead of the
CLAP model. FLAN-T5 was chosen based on its successful appli-
cation as a text encoder in TANGO [10], which addresses the text-
to-audio generation task. To train this system, we introduced three
loss functions, and utilized a loss balancer [11] to stabilize the train-
ing. First, L1 loss was employed to align the separated audio wave-
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form with the target audio waveform in the time domain. Second, to
optimize performance in both the time and frequency domains, we
utilized multi-scale mel-spectrogram loss [12, 13, 11, 14], applied
across multiple time scales in the mel-spectrogram. Lastly, con-
trastive loss was introduced in addition to L1 loss and spectrogram
loss.We designed three distinct contrastive losses using target au-
dio, noise audio, target text, and noise text for output audio. To em-
bed audio and text, CLAP model [4] was used. First, audio-to-text
contrastive loss (A2T-CL) was introduced to increase the similarity
between output audio and target text while reducing the similarity
with other non-target texts within the mini-batch. The performance
was further improved by combining audio-to-audio contrastive loss
(A2A-CL), which applies to the target audio and other non-target
audios within the mini-batch, with A2T-CL. Contrastive learning
tends to improve performance as the comparison samples, espe-
cially negative samples, increases [15, 16]. For leveraging this, we
designed the audio-to-multi contrastive loss (A2M-CL) by integrat-
ing A2A-CL and A2T-CL into a single expanded loss. A2M-CL en-
courages output audio to increase similarity for both the target text
and the target audio while reducing similarity for other non-target
texts and audios in the mini-batch. This doubles the number of com-
parison samples, both positive and negative samples, than A2A-CL
or A2T-CL. We experimented for each method and achieved SDR
scores of 7.030, 7.12, and 7.139, respectively. This is a performance
improvement of more than 30% over the baseline model.

2. METHODS

2.1. Overview

Our system consists of two models: a text encoder and a separator.
For the text encoder, we utilize FLAN-T5 [9], an enhanced version
of the text-to-text transfer transformer (T5) model [17]. FLAN-
T5 is initialized with a T5 checkpoint and fine-tuned with instruc-
tions and chain-of-thought reasoning, enabling it to extract robust
text embeddings from text descriptions with its strong text repre-
sentation capacity. TANGO [10], which tackles the text-to-audio
generation task, demonstrated effectiveness of FLAN-T5 as the text
encoder for cross-modal task.

The separator is the ResUNet model [18, 5], an advanced ver-
sion of the UNet model. We used the same setting as ResUNet used
in AudioSep [2]. The ResUNet model takes a mixed audio wave-
form and text embedding as input and separates the output audio
waveform conditioned on the text from the mixed audio. The pro-
cess begins with applying a short-time Fourier transform (STFT) to
the waveform to extract the complex spectrogram, magnitude spec-
trogram and phase. The ResUNet model takes the complex spec-
trogram and outputs the magnitude mask and phase residual condi-
tioned on the text embedding. The separated complex spectrogram
is obtained by multiplying the STFT of the mixture with the pre-
dicted magnitude mask and phase residual. Finally, the separated
complex spectrogram is converted back into an audio waveform us-
ing the inverse short-time Fourier transform (iSTFT).

2.2. Training Loss Terms

From the audio-text paired dataset, N target pairs (target audio dta

and target text dtt) and N noise pairs (noise audio dnt and noise text
dnt ) are randomly sampled to ensure they do not overlap. For cre-
ating mixed audio waveform dma, two audio waveforms are com-
bined with a signal-to-noise ratio (SNR) ranging from -15 to 15 dB.

The target text is forwarded into the text encoder to extract the text
embedding. The separator then takes the mixed audio waveform
and the text embedding, separating the output audio waveform doa

conditioned on the text from the mixture.
L1 Loss In the source separation task, it is crucial to extract the
desired target sound source from a given mixture without altering
its original characteristics. In other words, the closer the separated
sound source is to the target sound source, the better the perfor-
mance. To achieve this, minimizing the L1 distance between the
target audio and separated audio over the time domain is commonly
used due to its simplicity and effectiveness in universal source sep-
aration tasks. We also applied this approach. The equation is as
follows:

Ltime =
∥∥dta − doa

∥∥
1

(1)

Spectrogram Loss To optimize performance in both the time
and frequency domains, we also employed a multi-scale mel-
spectrogram loss [12, 13, 11, 14] applied across multi time scales
in the mel-spectrogram. This loss is calculated based on the dis-
tance in the mel-spectrogram, which is derived from the short-time
Fourier transform (STFT) and converted to a mel scale that better
captures human auditory characteristics. This approach enhances
the perceptual quality of the output. Additionally, using loss func-
tions on mel-spectrograms across multiple STFT scales enables the
model to effectively capture the time-frequency distribution, signif-
icantly enhancing its overall performance.

Lfreq =
1

|α|+ |s|
∑
αi∈α

∑
i∈e

∥∥Si(d
ta)− Si(d

oa)
∥∥
1

+ αi

∥∥log Si(d
ta)− log Si(d

oa)
∥∥
2

(2)

where Si is a 64-bins mel-spectrogram using a normalized
STFT with window size of 2i and hop length of 2i−1, e = 6, ..., 12
is the set of scales, and α represents the set of scalar coefficients
balancing between the L1 and L2 terms, αi =

√
2i−1. Here, |α|

denotes the sum of the elements of the α set, and |s| is the number
of scales.
Audio-to-Text Contrastive Loss The output audio of the text-
conditioned audio source separation should match the target audio,
for which L1 loss and spectrogram loss were used. Additionally, the
output audio must involve all the content of the target text while ex-
cluding any content not present in the target text. To achieve this, we
implemented an audio-to-text contrastive loss (A2T-CL) using the
contrastive language-audio pre-training (CLAP) model [4]. CLAP
was trained to align audio and text by projecting them into a shared
feature space. Firstly, we designed the loss so that the output au-
dio attracts its corresponding target text as positive and repels other
target texts within the mini-batch as negative in the shared feature
space of CLAP model. Contrastive learning tends to improve per-
formance as the comparison samples, especially negative samples,
increases [15, 16]. To leverage this, we additionally use noisy texts
within the mini-batch as negative examples. This approach encour-
ages the output audio to be distinguishable from various other texts
while accurately fitting the target text. The equation is as follows:

La2t = −
1

N

N∑
i=1

log
exp(foa

i · f tt
i /τ)

N∑
k=1

{
exp(foa

i · f tt
k /τ) + exp(foa

i · fnt
k /τ)

}

(3)
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Figure 2: Each rectangle in red, orange, yellow, green, and blue represents the features of target texts, noise texts, target audios, noise audios,
and the output audios of the separator, all embedded using the CLAP model. The matrices on the right schematically illustrate three types
of contrastive loss with a mini-batch size of 4. In these matrices, purple spaces indicate positive relationships, while white spaces indicate
negative relationships. The output audio has positive relationships with its corresponding target text and target audio, whereas all other texts
and audios within the mini-batch are considered negative relationships.

where foa is a feature with output audio embedded using audio
encoder of CLAP model, and f tt and fnt are features with target
text and noise text embedded using text encoder of CLAP model.
And τ is a scalar temperature parameter.
Audio-to-Audio Contrastive Loss The concept of A2T-CL, which
encourages output audio to contain only the content of the target
text, can also be applied to audios (target audios and noise audios).
Therefore, it is possible to design an audio-to-audio contrastive loss
(A2T-CL) using these.

La2a = −
1

N

N∑
i=1

log
exp(foa

i · f ta
i /τ)

N∑
k=1

{
exp(foa

i · f ta
k /τ) + exp(foa

i · fna
k /τ)

}

(4)

where f ta and fna are features with target audio and noise au-
dio embedded using audio encoder of CLAP model.
Audio-to-Multi Contrastive Loss As aforementioned, contrastive
learning shows better performance as the number of the comparison
samples increases. To take advantage of this, we integrated audio-
to-text contrastive loss and audio-to-audio contrastive loss into a
single expanded loss: audio-to-multi contrastive loss (A2M-CL),
effectively doubling the number of the comparison samples. This
causes the output audio to pull closer to its corresponding target
text and target audio while pushing away from all remaining target
texts, noise texts, target audios, and noise audios within the mini-
batch. As a result, the output audio maximizes its similarity to both
the target text and target audio.

a2ti =

N∑
k=1

{
exp(foa

i · f tt
k /τ) + exp(foa

i · fnt
k /τ)

}
(5)

a2ai =

N∑
k=1

{
exp(foa

i · f ta
k /τ) + exp(foa

i · fna
k /τ)

}
(6)

La2m = −
1

N

N∑
i=1

1

2

{
log

exp(foa
i · f tt

i /τ)

a2ti + a2ai
+ log

exp(foa
i · f ta

i /τ)

a2ti + a2ai

}

(7)

Loss Balancer Encodec [11] introduced a loss balancer to stabilize
the training by adjusting the loss weights based on various scales of
gradients from the model. We used a loss balancer to stabilize the
model training with various losses. The gradient ∂li

∂doa
of the loss

based on the output doa is recalculated using the following equation,
incorporating the weights λi for the loss and reference norm R.

g̃i = R
λi∑
j λj

·
gi〈

∥gi∥2
〉
β

(8)

where
〈
∥gi∥2

〉
β

is the exponential moving average of gi. We
take R = 1 and β = 0.999. All the model losses fit into the
balancer. The model is then backpropagated to

∑
i g̃i instead of

the original
∑

i λigi.
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2.3. Proposed Systems

We propose a total of three systems. The process by which data
is preprocessed and fed forward to the model in all systems is the
same as mentioned in Section 2.1. The primary difference between
each system lies in the configuration of losses during the training
process, particularly the type of contrastive loss. The configuration
of the losses for each system in our training was defined as follows.
All weights λ for the losses are set 1.

System1 = λ1Ltime + λ2Lfreq + λ3La2t (9)
System2 = λ1Ltime + λ2Lfreq + λ3La2t + λ4La2a (10)
System3 = λ1Ltime + λ2Lfreq + λ3La2m (11)

3. SETTING

3.1. Training Data

A total of four datasets were used for model training: AudioCaps
[6], WavCaps [19], Clotho v2 [7], and FSD50K [8]. For the Wav-
Caps dataset, only data belonging to AudioSet were used. The com-
bined dataset comprises a total of 216,398 audio clips, amounting to
approximately 580 hours. The following procedure was employed
to generate mixed audio:

1. Random Selection: Target and noise audio clips were ran-
domly selected to ensure no overlap within the entire dataset.

2. Mono Conversion: If an audio clip had 2 channels, the av-
erage of the two channels was calculated to convert it into a
mono clip.

3. Resampling: Audio clips with a sampling rate different from
16 kHz were resampled to 16 kHz.

4. Length Adjustment: If an audio clip exceeded 10 seconds in
length, it was randomly truncated to 10 seconds. If it was
shorter than 10 seconds, zero padding was added to the end
to make it 10 seconds long.

5. Mixing: The pre-processed target audio clip and a noise au-
dio clip were mixed with signal-to-noise ratios (SNR) rang-
ing from -15 dB to 15 dB to produce a mixed audio clip.

3.2. Model

The text encoder for embedding the text is used pre-trained FLAN-
T5 model [9], and all parameters were frozen. AdamW optimizer
[20] with a learning rate of 0.0003 is used for training the separator
with the batch size of 25. τ was all set to 0.1 for the contrastive loss.

3.3. Test Data

To evaluate the performance of the model, validation (synth) dataset
provided in DCASE2024 Challenge Task9 [3] was used.

3.4. Metric

To compare the performance of language-queried audio source sep-
aration (LASS), we used three objective metrics that are commonly
used in the field of source separation: signal-to-distortion ratio
(SDR), signal-to-distortion ratio enhancement (SDRi), and scale-
invariant SDR (SI-SDR) [21].

4. RESULTS

The language-queried audio source separation (LASS) task is a
nascent field with limited prior research. However, due to its high
usability and future potential, the DCASE Challenge adopted this
task as Task 9 for this year. We participated in Task 9 of the DCASE
2024 Challenge to officially demonstrate the performance of our
model, specifically designed for LASS

SDR SDRi SI-SDR
Baseline 5.708 5.673 3.862
System1 7.030 6.995 5.368
System2 7.124 7.089 5.593
System3 7.139 7.104 5.504

Table 1: The comparison of baseline model and our proposed model
on validation set.

We compared our system with the baseline model provided by
challenge. The baseline provided in the challenge was based on
the AudioSep model. Table 1 shows the performance compari-
son between the baseline model and our proposed systems using
the challenge validation set. Our proposed systems show signifi-
cant performance improvements across all three metrics. While the
baseline provided for the challenge achieved a signal-to-distortion
ratio (SDR) score of 5.708, our systems achieved SDR scores of
7.030, 7.124, and 7.139, respectively. This represents a remarkable
performance improvement of over 30% compared to the baseline.
In language-queried audio source separation (LASS), it is crucial
to precisely match the output audio to the target audio. Addition-
ally, we demonstrate that aligning the output audio more closely
with both the target text and target audio in the feature space using
contrastive learning enhances performance. We also show the ef-
fectiveness of the audio-to-multi contrastive loss, which leverages
the characteristics of contrastive learning by integrating audio-to-
text and audio-to-audio contrastive losses. This approach leverages
the advantage of having more negatives, significantly improving the
model’s effectiveness.

SDR SDRi SI-SDR
Baseline 5.799 5.693 3.873
System1 7.302 7.195 5.628
System2 7.186 7.080 5.526
System3 7.118 7.012 5.301

Table 2: The comparison of baseline model and our proposed model
on evaluation set.

We received a score by submitting the results of each system
on the evaluation set to the challenge. Contrary to expectations, the
evaluation in the evaluation set came out opposite to the evaluation
in the validation set. We doubt whether this is an overfitting on the
validation set. We leave it as a future work. However, nevertheless,
the systems we proposed showed significant performance improve-
ment compared to the baseline. The performance can be improved
using the contrastive learning method we designed simply without
modification to the model architecture.

29



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

5. REFERENCES

[1] X. Liu, H. Liu, Q. Kong, X. Mei, J. Zhao, Q. Huang,
M. D. Plumbley, and W. Wang, “Separate what you describe:
Language-queried audio source separation,” arXiv preprint
arXiv:2203.15147, 2022.

[2] X. Liu, Q. Kong, Y. Zhao, H. Liu, Y. Yuan, Y. Liu, R. Xia,
Y. Wang, M. D. Plumbley, and W. Wang, “Separate anything
you describe,” arXiv preprint arXiv:2308.05037, 2023.

[3] https://dcase.community/challenge2024/
task-language-queried-audio-source-separation.

[4] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick,
and S. Dubnov, “Large-scale contrastive language-audio pre-
training with feature fusion and keyword-to-caption augmen-
tation,” in ICASSP 2023-2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2023, pp. 1–5.

[5] Q. Kong, K. Chen, H. Liu, X. Du, T. Berg-Kirkpatrick,
S. Dubnov, and M. D. Plumbley, “Universal source separation
with weakly labelled data,” arXiv preprint arXiv:2305.07447,
2023.

[6] C. D. Kim, B. Kim, H. Lee, and G. Kim, “Audiocaps: Gen-
erating captions for audios in the wild,” in Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019, pp.
119–132.

[7] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: An au-
dio captioning dataset,” in ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 736–740.

[8] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “Fsd50k:
an open dataset of human-labeled sound events,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 30, pp. 829–852, 2021.

[9] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fe-
dus, Y. Li, X. Wang, M. Dehghani, S. Brahma, et al., “Scaling
instruction-finetuned language models,” Journal of Machine
Learning Research, vol. 25, no. 70, pp. 1–53, 2024.

[10] D. Ghosal, N. Majumder, A. Mehrish, and S. Poria, “Text-to-
audio generation using instruction-tuned llm and latent diffu-
sion model,” arXiv preprint arXiv:2304.13731, 2023.
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Irene Martı́n-Morató4, Manu Harju4, Annamaria Mesaros4, Romain Serizel3

1Carnegie Mellon University, USA 2Mitsubishi Electric Research Laboratories, USA
3 Universite de Lorraine, CNRS, Inria, Loria, Nancy, France 4 Tampere University, Finland

ABSTRACT
The Detection and Classification of Acoustic Scenes and Events
Challenge Task 4 aims to advance sound event detection (SED)
systems by leveraging training data with different supervision un-
certainty. Participants are challenged in exploring how to best use
training data from different domains and with varying annotation
granularity (strong/weak temporal resolution, soft/hard labels), to
obtain a robust SED system that can generalize across different
scenarios. Crucially, annotation across available training datasets
can be inconsistent and hence sound events of one dataset may be
present but not annotated in an other one. As such, systems have to
cope with potentially missing target labels during training. More-
over, as an additional novelty, systems are also evaluated on labels
with different granularity in order to assess their robustness for dif-
ferent applications. To lower the entry barrier for participants, we
developed an updated baseline system with several caveats to ad-
dress these aforementioned problems. Results with our baseline
system indicate that this research direction is promising and it is
possible to obtain a stronger SED system by using diverse domain
training data with missing labels compared to training a SED sys-
tem for each domain separately.

Index Terms— Sound event detection, missing labels, effi-
ciency, weak supervision, heterogeneous data

1. INTRODUCTION

It can be argued that, with current deep learning based techniques,
the ability to leverage as much training data as possible is as im-
portant as the pursue of novel (in the methodological sense) tech-
niques [1]. For example, the effectiveness of modern large-language
models (LLMs) relies mostly on the scale of the training data rather
than on their deep neural network (DNN) architecture. The same
is true for automatic speech recognition (ASR) models, with recent
works [2–4] demonstrating that a great deal of robustness, as well as
zero-shot and emerging capabilities [2], come both from the scale
of the model and, crucially, the size of the training set.

However, leveraging data at scale has its own set of challenges.
This is particularly true for SED where readily available data and
metadata is not effortlessly obtainable from web sources. While
self-supervised learning (SSL) techniques [5–8] can help to circum-
vent this issue, supervised data is still necessary for fine-tuning.
For this latter, the only viable option right now is manual anno-
tation, which is very expensive and difficult to scale as SED re-
quires temporal endpoints together with the class label. To lower
the annotation burden, temporally weak annotations (i.e. presence
or not of a sound event inside a particular audio clip of several sec-
onds without precise endpoints) are often used in conjunction with a

*These authors contributed equally to this work

smaller portion of temporally precise (i.e. strong) annotated record-
ings [9, 10]. These latter are particularly important, as it has been
demonstrated [11,12] that increasing the amount of strongly-labeled
examples brings considerable benefits in terms of performance, de-
spite the obvious drawbacks of increasing the annotations costs. As
such, in the recently proposed MAESTRO [13] dataset, a sliding
window approach to the annotation procedure was developed. This
approach, together with crowdsourcing, allows for better scaling in
the annotation stage. In MAESTRO, temporally strong labels are
obtained by overlap-add of several temporally weak annotations.

This discrepancy in the annotation temporal granularity has
been explored extensively in the past DCASE Task 4 challenges [10,
14–19] since 2018, with DESED [20, 21] being the main dataset
used through all these past editions.

However, another crucial issue is that, between different
datasets, not only the temporal granularity (temporally strong vs.
weak labels) can vary but also the consistency in the annotation pro-
cedure, i.e. which classes are considered as events of interest and
which are instead disregarded, or again, if annotation confidence
(i.e. the use of soft labels) is available or not. This direction has
been largely underexplored in previous DCASE Task 4 challenges
but is essential towards the goal of leveraging as much as training
data as possible and is the main novelty introduced this year.

2. MOTIVATION

This year the DCASE Challenge Task 4 aims at addressing two dif-
ferent aspects related to the aforementioned problem of leveraging
diverse training data with missing and (temporally and/or posterior-
wise) weak annotation. Each of these aspects answer fundamental
research questions which are formulated in the following.

2.1. Can we combine datasets from diverse domains with dif-
ferent annotations to improve performance ?

One of the many challenges of combining different datasets for SED
is the fact that datasets may not have consistent annotation with one
another. In extreme cases, the datasets might not even share any
common sound event classes. Instead of training a SED model on
each dataset separately an intriguing approach is to just train one
model on all available datasets. Intuitively, if two datasets have
sound classes that overlap or, at least, some classes that could be
mapped from one another (e.g. when one event is a sub-class of an-
other event [22–24]), then we expect that using both datasets should
afford better performance compared to training a model for each
separately. However, since annotation can be inconsistent and some
events that are annotated in one dataset may be present but not anno-
tated in the other, the training procedure and possibly even the SED
model must be modified to account for this issue. In Section 6 we
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describe how we addressed this when developing this year baseline
system and in Section 7.2 we present some results which indicate
that this research direction is promising and indeed leads to large
performance gains.

2.2. What is the best way to exploit soft labels ? Are they useful
to improve performance ?

Some datasets, such as MAESTRO, due to their data annotation pro-
tocol, have soft labels expressing the annotators overall confidence
of the presence or not of a particular sound event. In [13] it was
shown that it is possible to train an effective SED system using such
soft labeled annotation and two possible loss functions: binary cross
entropy (BCE) and mean square error (MSE) were explored, as well
as different post-processing techniques. In particular, the choice
of the loss function was found to affect the model performance on
more rarely occurring sound event classes. Several research ques-
tions however arise when soft labels are combined with strong la-
bels from other datasets and with soft labels from pseudo labels
obtained from the model (e.g. via mean-teacher [25]). It would be
interesting to assess if annotation confidence metadata is useful for
training a robust SED system when training data is scaled, and if
also other approaches e.g. filtering are helpful or not.

3. CHALLENGE DATASETS

This year the challenge keeps using the DESED dataset, in order
to be comparable with previous editions, but adds MAESTRO as
another dataset participants can use and on which performance will
be evaluated. Both are described in detail in the following.

DESED consists of 10 seconds length audio clips either
recorded in a domestic environment or synthesized to repro-
duce such an environment. It features annotated sound events
from 10 different classes: alarm bell ringing, blender, cat, dishes,
dog, electric shaver toothbrush, frying, running water, speech, vac-
uum cleaner. The synthetic part of the dataset is generated with
Scaper [26] with foreground events obtained from the Freesound
dataset [27] while backgrounds are extracted from YouTube videos
under Creative Commons license, Freesound subset of the MUSAN
dataset [28] and SINS [29]. The synthetic set is divided into an
evaluation and training part. More information is available in [16].
The real-world recording part is instead derived from AudioSet [30]
and it comprises of a temporally-weakly annotated set (1578 clips),
a totally unlabeled set (14412 clips) and also a strongly annotated
portion obtained with the procedure described in [11] (3470 clips).

MAESTRO Real, which has been proposed in [13] and used
in the past DCASE 2023 Task 4 (track B) challenge, consists of
a development (6426 clips) and an evaluation part of long-form
real-world recordings. This dataset contains multiple temporally-
strong annotated events with soft labels from 17 classes. How-
ever, in this challenge, out of these, only 11 are considered in
evaluation as the other 6 do not occur with confidence over 0.5.
These classes are: birds singing, car, people talking, footsteps, chil-
dren voices, wind blowing, brakes squeaking, large vehicle, cut-
lery and dishes, metro approaching, metro leaving. As said, this
data was annotated using crowdsourcing and the procedure intro-
duced in [31], where temporally-weak labeling is used in conjunc-
tion to a sliding window approach to derive events temporal local-
ization. Multiple annotators outputs are aggregated via MACE [32].
The recordings are derived from TUT Acoustic Scenes 2016 [33]
dataset and are between 3 to 5 minutes long.

4. RULES

Rules are largely similar to previous year edition. However this
year we allow participants to use external data and pre-trained mod-
els 1. Another important difference is that, this year, since we have
two scenarios, we prohibit domain identification. In fact we want
participants to focus on approaches that can generalize across vari-
ous scenarios without apriori knowledge of which subset of sound
classes can be present.

5. EVALUATION

SED evaluation assesses a system’s capability of recognizing
and temporally localizing sound events. Currently three different
event-matching approaches exist, namely collar- [34], intersection-
[35, 36] and segment-based [34], which differ in the way they com-
pare predicted and ground truth temporal locations of sound events.
In recent years, intersection-based evaluation has gained popularity
as an event-based metric favoring detection of reasonably connected
events, while being less sensitive to annotation ambiguities com-
pared to collar-based evaluations. Further, there is a high variation
in SED application requirements, with some applications requiring
a high recall, others a high precision, and yet others may even let
the user control sensitivity. Hence, an SED evaluation metric ide-
ally aggregates performance over various operating modes.

Therefore, the polyphonic sound detection score (PSDS) [35,
37] has been used as primary metric in this task since 2021. It
evaluates the normalized partial area under the PSD-ROC curve,
where the PSD-ROC is the average of class-wise intersection-based
ROC curves plus a penalty on inter-class standard deviation. PSDS
parameters are the detection tolerance criterion ρDTC (the required
intersection of a detected event with ground truth events to not be
counted false positive (FP)), the ground truth intersection criterion
ρGTC (the required intersection of a ground truth event with non-
FP detected events to be counted true positive (TP)), the penalty
weight αST on inter-class standard deviation, and the maximum FP-
rate emax up to which the area under curve is computed 2. In previous
editions PSDS1 and PSDS2 have been evaluated, which differ in
their parameters. This year we are considering only PSDS1 for eval-
uation with ρDTC = ρGTC = 0.7, αST = 1., emax = 100FPs/hour,
as PSDS2 is tuned more as an audio tagging than an SED metric.
Events onset and offset times required for PSDS computation, how-
ever, are only available for DESED data and classes, which is why
PSDS1 is only evaluated on this fraction of the evaluation set.

For MAESTRO, segment-based labels (segment length of one
second) are provided, and we use the segment-based mean (macro-
averaged) partial area under ROC curve (segMPAUC) as the pri-
mary metric instead, with a maximum FP-rate of emax = 0.1.
To better match the PSDS calculation, we don’t use McClish cor-
rection [38], but only normalize by emax yielding segMPAUC ∈
[ emax

2
, 1]. segMPAUC is computed w.r.t. hard labels (using a bi-

narization threshold of 0.5) for the 11 classes listed in Sec. 3.
To have a common processing of DESED and MAESTRO data

during inference, we split MAESTRO recordings, which comprise
several minutes, into clips of 10 seconds with a clip overlap of 50%.
DESED and MAESTRO clips are anonymized and shuffled in the
evaluation set to prevent manual domain identification (cf. task
rules in Sec. 4). At evaluation time, we reconstruct recording-level

1Allowed data and model resources are listed in the challenge website
2Cross-trigger parameters are not mentioned as not considered this year.
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predictions from the MAESTRO clips by computing, for each class,
a scalar posterior score in each segment. To do so, submitted (short-
time) class posterior scores are obtained, first by averaging over the
duration of a segment and, secondly, by averaging segment-level
scores of the same segment from overlapping clips.

In addition to the primary metrics (PSDS1DESED and
segMPAUCMAESTRO), we report segMPAUC on DESED
(segMPAUCDESED), macro-averaged collar-based F1-scores on
DESED, and macro-averaged segment-based F1-scores on DESED
and MAESTRO for a detection threshold of 0.5 and for optimal de-
tection thresholds. All metrics are evaluated using sed scores eval3.
As in previous editions, we use both the predictions from three
independent training runs and bootstrapped evaluation [39] to
compute metrics’ means and standard deviations. For DESED, 20
different bootstrap samples (whereby we ensure that each clip is
overall sampled equally often) are evaluated for each of the three
runs yielding 60 results to compute statistics from. For MAESTRO,
statistics are only computed over the three independent training
runs as otherwise some classes may not have any positive instances
in a bootstrap sample due to the small number of evaluation
files. As ranking metric the sum of the primary metrics’ means
PSDS1DESED + segMPAUCMAESTRO is used. Note that both metrics
are taken from the same system, as, in contrast to previous editions,
both metrics focus on SED here.

Energy efficiency is another important factor in SED systems.
As in the previous two editions, we ask participants to report the en-
ergy consumption of their system during both training and testing
stages using the CodeCarbon package [40]. We also ask participants
to report the energy consumption for training the baseline model on
10 epochs as well as for inference with the baseline model on the
development set. This procedure has to be performed on the same
hardware as used for their system training/inference such that en-
ergy consumption can be normalized among different hardware and
provide fairer comparisons [18]. In addition, this year we ask not
only CodeCarbon’s total energy consumption, which is calculated
as the sum of the three components (GPU, CPU, RAM), but also the
energy from the GPU component alone. In fact, we found that CPU
and RAM consumption due to dataloading were included by Code-
Carbon in previous DCASE Task 4 challenges, while we are also
interested in an accurate picture of the GPU energy alone. Having a
more precise energy consumption estimation could allow to better
assess the relationship between the number of multiply-accumulate
(MAC) operations, the number of parameters, and energy consump-
tion from the GPU. Section 7, Table 1 reports energy consumption
figures for the baseline.

6. DCASE 2024 CHALLENGE TASK 4 BASELINE SYSTEM

The baseline system is directly inherited from the previous 2023
DCASE Task 4 challenge [19] and consists of a convolutional re-
current neural network (CRNN) network which also employs self-
supervisedly learned features from BEATs pre-trained model [7].
The CRNN model has a convolutional neural network (CNN) en-
coder of 7 convolutional layers with batch normalization, gated lin-
ear unit and dropout, followed by a bi-directional gated recurrent
unit (biGRU) layer. Before this latter, BEATs features are concate-
nated with the CNN extracted ones. Average pooling is applied to
BEATs features to make the sequence length the same as the one
from the CNN encoder. Clip-wise and frame-wise posteriors are

3https://github.com/fgnt/sed_scores_eval

then derived using an attention pooling [41]. The CNN encoder is
fed log-mel filterbank energies extracted with a 128 ms window and
16 ms stride from 16 kHz audio. During training the BEATs model
is kept frozen, Mixup [42] regularization strategy is employed and
the mean-teacher framework [25] is used in order to leverage un-
labeled and weakly-labeled data. Baseline code and pre-trained
checkpoints are available online4.

For this year challenge we introduced two incremental im-
provements and, to deal with the aforementioned missing labels
problem, also some ad-hoc modifications to the training proce-
dure. Regarding the minor improvements, for this year baseline we
use SpecAugment-style [43] time-wise masking on the features ex-
tracted by the pre-trained model and, independently, on the features
extracted from the CNN encoder. We denote this strategy as drop-
step in Section 7.1. Another difference is that for post-processing
we employ a multi-class median filter where each class has a differ-
ent median filter length.

6.1. Dealing with partially annotated data

The training procedure had to be modified in several places in order
to deal with the missing labels problem.

1) Cross mapping sound event classes: first, as a pre-
processing step, we map some DESED events to similar classes in
MAESTRO. More in detail, we have in DESED “speech” which is
a super-class for “people talking, children voices, announcement”
in MAESTRO, “dishes” which corresponds to “cutlery and dishes”
and also “dog” which is a super-class for “dog bark”. Note that
these mapping are from MAESTRO to DESED but not vice-versa
as DESED ones are mostly super-classes of MAESTRO ones. Intu-
itively, with this strategy, when computing the loss on MAESTRO
e.g. for a clip with the event “people talking” having confidence
0.5, we also drive the network output posterior corresponding to
“speech” class to 0.5.

2) Loss computation: the model is trained using BCE loss
function on real-world strongly, synthetic and weakly labeled ex-
amples as well as on MAESTRO soft labeled examples. MSE is
instead used for the mean-teacher pseudo-labeling loss component
which is applied on both weak and unlabeled data from DESED.
When computing the loss for both components on a particular clip
we avoid computing the loss for the network outputs corresponding
to the classes that do not correspond to the clip original dataset. For
example, for MAESTRO, we do not compute the loss for DESED
output logits except for classes that have been cross-mapped as ex-
plained before.

3) Attention-pooling masking: the attention pooling mecha-
nism [41] employed in the final layer of the baseline model applies
the softmax function over classes. Before taking the softmax, the
values corresponding to unlabeled classes (not belonging to the cur-
rent clip dataset) are masked to minus infinite in order to prevent to
attend to them.

4) Mixup: Mixup [42] regularization strategy is applied for
MAESTRO and DESED independently as labels are missing and
the two cannot be mixed together in a reliable manner.

6.2. Hyperparameters tuning

We adopt a dual-phase approach to hyperparameters tuning in order
to ease the computational burden of the overall tuning procedure. In
the first step, we tune the network and training parameters 5. This

4github.com/DCASE-REPO/DESED task/recipes/dcase2024 task4 baseline
5Script available at: dcase2024 task4 baseline/optuna pretrained.py
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300 epochs 10 epochs Dev-test
Total Energy (kWh) 0.9458± 0.0708 0.0299± 0.0011 0.0682± 0.0007
GPU Energy (kWh) 0.3127± 0.0160 (33%) 0.0103± 0.0008 (34%) 0.0116± 0.0004 (17%)
CPU Energy (kWh) 0.2203± 0.0205 (23%) 0.0068± 0.0002 (23%) 0.0197± 0.0001 (29%)
RAM Energy (kWh) 0.4129± 0.0391 (44%) 0.0128± 0.0004 (43%) 0.0369± 0.0003 (54%)

Duration (s) 7929± 737 244± 8 708± 4

Table 1: Baseline energy consumption for training and inferring on the development set, both DESED and MAESTRO, on one A100 (40GB)

Model PSDS1 ↑ segMPAUC ↑
Dev-test (DESED) Dev-test (MAESTRO)

Random Init 0.0 0.02
Baseline 0.491 0.731
- dropstep 0.479 0.706
- HypTune1 0.458 0.669
- HypTune2 0.391 0.702
- MC-Median 0.485 0.714

- DESED 0.0 0.642
- MAESTRO 0.483 0.115
- CrossMap 0.469 0.722

Table 2: Baseline improvements ablation study on dev-test and ef-
fect of training the system only on DESED or MAESTRO data. For
MAESTRO, we used 90% overlap when reconstructing the long-
form audio.

requires training the model from scratch for each set of selected hy-
perparameters. In detail we tune the number of biGRU layers and
its hidden state size, learning rate, dropout and dropstep parame-
ters, warmup epochs and gradient clipping value. In a second step,
the network is kept frozen and we use the best model as found in
the first step and tune only the multi-class median filter. This sec-
ond step requires only to perform inference on the dev-test portions
of the data6. Such dual-phase approach allows for dramatically re-
ducing the required number of training runs compared to tuning
everything together from scratch, since a slight change in the me-
dian filter length for a particular class has a significant effect on the
performance of the overall system, leading to a very noisy hyper-
parameter tuning procedure. This procedure was performed using
the Optuna toolkit [44] using multi-objective tree-structured Parzen
estimator [45] with dev-test PSDS1DESED + segMPAUCMAESTRO as
the objective function.

7. EXPERIMENTAL RESULTS

7.1. Baseline improvements

In Table 2 top-panel, we report an ablation study to motivate the
baseline system changes described in Sec. 6. We can observe that all
the proposed changes bring substantial improvement. In particular,
the dual-phase Optuna-based hyperparameter tuning (- HypTune
ablations) appears to be quite effective. Adding a median filter (-
HypTune 2 ablation, unprocessed scores) seems crucial, while hav-
ing a multi-class median filter (- MC-Median ablation), improves
performance only marginally. Compared to this latter, the dropstep
regularization strategy has a more significant effect (- dropstep ab-
lation).

6The optimized class-wise median filters lengths are in
dcase2024 task4 baseline/confs/default.yaml

7.2. Leveraging heterogeneous datasets with missing labels

In Table 2 bottom-panel we report an ablation study to assess how
removing one of the two datasets (MAESTRO or DESED) affects
the overall performance of the SED system. We can see that, in
both instances where the other dataset is removed, whether it is
DESED (- MAESTRO ablation) or MAESTRO (- DESED abla-
tion), the performance on the remaining dataset also drops. How-
ever, the performance drop on DESED is small if MAESTRO is re-
moved. This is likely due to the fact that DESED is much larger and
thus the effect of removing/adding MAESTRO is modest. The strat-
egy described in Section 6 of mapping some MAESTRO classes to
some DESED classes is considerably effective (- CrossMap abla-
tion) in particular for DESED as one would expect (some MAE-
STRO classes are mapped to corresponding DESED super-classes).
What is rather surprising is, instead, the fact that if DESED is re-
moved (- DESED ablation), the performance on MAESTRO drops
quite dramatically. In fact, as described in Section 6, during train-
ing, when both datasets are used, the loss on the classes that do
not belong to the dataset from which the input audio is taken are
masked, thus e.g. MAESTRO outputs are completely ignored when
the input audio comes from DESED (we do not map any class
from DESED to MAESTRO). We hypothesize that the addition of
DESED data boosts significantly the performance on MAESTRO
because it may help the model to learn how to extract a more mean-
ingful and generalizable representation especially in the earlier lay-
ers of the network, acting as a regularization strategy (especially
important as MAESTRO is small compared to DESED). This hy-
pothesis may also explain why if we remove the class mapping (-
CrossMap ablation) the performance on MAESTRO is still superior
to using MAESTRO alone.

8. CONCLUSIONS

In this paper we presented the DCASE 2024 Task 4 challenge which
addresses the important problem of leveraging multiple data sources
for training SED systems. Datasets can differ in the temporal res-
olution of the labels e.g. temporally strong or weak labels or in the
fact that annotator confidence may be present (e.g. soft labels) or
not, or again, by which sound classes are actually considered during
the annotation process. To spur research towards addressing these
issues, this year task involves two datasets DESED and MAESTRO
on which participants systems are benchmarked, while external data
and pre-trained models can also be leveraged. Due to the aforemen-
tioned annotation inconsistencies participants need to devise novel
and effective ways to cope with the fact that sound events that are
considered in DESED may be present in MAESTRO but are not
annotated and vice versa. To ease the challenge participation entry
barrier, an updated baseline system was developed. Results from
such baseline suggest that leveraging more data, if the aforemen-
tioned problems are addressed in a reasonable way, is always bene-
ficial. In fact, we show that it is possible to obtain a system trained
on multiple datasets which is stronger than single systems that are
trained on each dataset/scenario independently.
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ABSTRACT

The identification of siren sounds in urban soundscapes is a cru-
cial safety aspect for smart vehicles and has been widely addressed
by means of neural networks that ensure robustness to both the di-
versity of siren signals and the strong and unstructured background
noise characterizing traffic. Convolutional neural networks analyz-
ing spectrogram features of incoming signals achieve state-of-the-
art performance when enough training data capturing the diversity
of the target acoustic scenes is available. In practice, data is usually
limited and algorithms should be robust to adapt to unseen acous-
tic conditions without requiring extensive datasets for re-training.
In this work, given the harmonic nature of siren signals, character-
ized by a periodically evolving fundamental frequency, we propose
a low-complexity feature extraction method based on frequency
tracking using a single-parameter adaptive notch filter. The features
are then used to design a small-scale convolutional network suit-
able for training with limited data. The evaluation results indicate
that the proposed model consistently outperforms the traditional
spectrogram-based model when limited training data is available,
achieves better cross-domain generalization and has a smaller size.

Index Terms— siren detection, frequency tracking, data-
efficient learning, convolutional neural network

1. INTRODUCTION

The increasing level of automation of road vehicles requires robust
systems that enable cars to understand their surroundings and ei-
ther provide feedback to human drivers or autonomously interact
with other road users. Environmental awareness is obtained by col-
lecting information using multi-modal sensors including cameras,
radar, lidar and acoustic sensors [1]. With the rich urban soundscape
containing information on events happening on a road, sound detec-
tion has been widely explored for both monitoring purposes [2, 3]
and to identify emergency or harmful situations that require atten-
tion [4, 5, 6, 7, 8, 9, 10, 11]. In particular, emergency vehicles (EV)
are usually announced by the sound of their siren that can often be
detected from a distance, before they become visible to the driver
or can be identified using other sensing modalities (e.g., when ob-
stacles occlude the line of sight or the EV is behind a corner).

∗This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 956962, from KU Leuven internal funds
C3/23/056, and from FWO Research Project G0A0424N. This paper reflects
only the authors’ views and the Union is not liable for any use that may be
made of the contained information. The resources and services used in this
work were provided by the VSC (Flemish Supercomputer Center), funded
by the Research Foundation - Flanders (FWO) and the Flemish Government.

Several siren identification algorithms have been proposed,
with deep learning models achieving state-of-the-art performance
thanks to their robustness to the diversity of siren signals (three
classes of sirens exist, namely two-tone, wail and yelp, and a
large variability can be observed even between sirens of the same
type) and to the prominent and non-stationary traffic background
noise [4, 7, 12, 13, 14, 15]. Most state-of-the-art solutions rely on a
spectrogram-based time-frequency representation of sound signals
fed to 2D convolutional neural networks (CNN) [13, 12, 15]. These
vision-inspired architectures process the spectrogram as a 2D image
and achieve high accuracy when (diverse) enough training data is at
disposal. Siren identification systems are faced with several use-
case specific challenges. First, models to be deployed on-vehicle
should have a low complexity to run on resource-constrained em-
bedded devices. Second, models should have a vast generalization
ability to face the diverse urban soundscape: not only the back-
ground noise can significantly differ based on factors such as the
landscape (e.g., urban vs. rural), the region, or the time of the day
(and day of the year), but also the characteristics of siren sounds
can strongly vary among different countries. Finally, in practice,
the amount of available data can be limited and datasets are un-
likely to capture the diversity of the target scenes. In [15], the gen-
eralization ability of state-of-the-art siren identification networks is
investigated, showing that models trained on one dataset do not al-
ways generalize well to unseen domains (cross-dataset setting): us-
ing synthetic data for training purposes is thus proposed to enhance
data diversity. In [14], instead, data-efficient learning is achieved by
fine-tuning a pre-trained environmental audio classification model
in a few-shot setting to identify a specific type of two-tone siren.

Aiming for data-efficiency and low complexity, in this work,
we propose novel features for siren identification based on fre-
quency tracking. In contrast to the unstructured nature of traffic
noise, sirens are artificial signals generated with a simple process:
all types of sirens have a harmonic behavior characterized by a pe-
riodically evolving fundamental frequency, that can be tracked over
time by means of an adaptive notch filter (ANF) [16, 17]. Adopting
the single-parameter ANF design proposed in [17] (KalmANF), we
design a CNN model using two features, namely the tracked fun-
damental frequency and the power ratio between the tracked sinu-
soidal component, extracted by the ANF, and the full audio signal.
This allows to drastically reduce the input feature size compared to
using the full spectrogram, and to thus adopt low-complexity net-
works. In the experimental evaluation, we show that the proposed
model is suitable for training with a limited amount of data, con-
sistently outperforming a spectrogram-based CNN [13] when small
training sets are used. Moreover, the proposed model is 7 times
smaller than the baseline [13] and achieves improved performance
in a cross-dataset setting. Accompanying code is available at [18].
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Figure 1: Proposed features for three audio samples: frequency tracked by the ANF algorithm (above, highlighted in white and overlaid to
the full spectrogram) and power ratio (below).

Layer Kernel Size Filters/Neurons

Conv1D, stride 2 16 10
MaxPool 2x1 - -

Conv1D, stride 2 8 20
MaxPool 2x1 - -

Conv1D, stride 2 4 40
GlobAvgPool - -

Fully Connected - 40
Fully Connected - 20

Output - 1

Table 1: Proposed ANFNet architecture, taking as input the two
frequency tracking features.

2. PROBLEM STATEMENT AND BASELINE

We cast siren identification as a binary classification problem,
where the goal is to assign a unique label (siren or noise) to a
2 s audio segment. The task is solved using the proposed archi-
tecture (ANFNet), introduced in Sec. 3, that we compare with the
spectrogram-based baseline [13], denoted as VGGSiren. The net-
work is a VGG-inspired [19] 2D-CNN composed of three blocks,
each containing two 2D convolutional layers and a max pooling op-
eration, followed by a 10-neurons FC layer and the single-neuron
output layer. The network takes as input the mel-spectrogram of a
2 s-long single-channel audio segment.

3. PROPOSED METHOD

In this section, we summarize the KalmANF frequency tracking
algorithm described in [17], underlining the modifications intro-
duced to obtain the proposed features; we then present the proposed
ANFNet siren identification network.

An ANF is a type of notch filter [20] whose notch frequency
is recursively updated in order to suppress a high-energy sinusoidal
component while leaving nearby frequencies relatively unaffected.
The KalmanANF in [17] is expressed as a time-varying single-
parameter bi-quadratic infinite impulse response (IIR) filter

H(q−1, n) =
1− a(n)q−1 + q−2

1− ρa(n)q−1 + ρ2q−2
, (1)

where n is the time index, q denotes the discrete-time shift op-
erator defined such that, for an input signal y(n), q−ky(n) =
y(n− k) [21]; ρ < 1 is a fixed hyperparameter denoting the radius
of the complex conjugate pole pair and a(n) = 2 cos [2πf(n)/fs]
is the single filter parameter, f(n) being the notch frequency and fs
the sampling frequency. In the KalmANF, the time-varying coeffi-
cient a(n) represents the state that is adaptively estimated in order
to track the variations of f(n) over time, as outlined in the follow-
ing. The given N -samples long input signal y(n) is filtered by the
direct-form II [22] of H(q−1, n−1) using a joint delay line for the
feedforward and the feedback paths of the IIR filter. The delay line
signal s(n) is defined as [17]

s(n) = y(n) + ρa(n− 1)s(n− 1)− ρ2s(n− 2) . (2)

In the KalmANF, s(n) represents the measurement. This results in
the state space model (see [17] for the detailed derivation)

[
a(n)
1

]
=

[
1 0
0 1

] [
a(n− 1)

1

]
+

[
w(n)
0

]
(3)

s(n) =
[
s(n− 1) −s(n− 2)

] [a(n)
1

]
+ e(n) , (4)

where e(n) is the residual signal obtained at the output of the
notch filter and w(n) is the process noise. Based on this state-
space model, a(n) can be estimated in a recursive manner using
the Kalman filter [23]. The estimation procedure consists in the re-
cursive update of the covariance of the prediction error p̂(n), the
Kalman gain k(n), and the parameter estimate â(n). These steps
involve scalar operations and require a memory of 2 past samples.
The filter relies on tuning three hyperparameters, namely the pole
radius ρ, the variance σe of the residual e(n) and the variance σw of
the process noise w(n). First, given the previous estimate â(n−1),
the measurement s(n) is computed according to (2). Then, the co-
variance of the prediction error is computed as

p̂(n|n− 1) = p̂(n− 1) + σw (5)

and is used to obtain the Kalman gain

k(n) =
s(n− 1)

s2(n− 1) + σe
p̂(n|n−1)

. (6)

The update equation to estimate the current value of the parameter
â(n) can then be expressed as

â(n) = â(n− 1) + k(n)e(n) , (7)
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where, from eq. (4), the residual takes the value

e(n) = s(n)− â(n− 1)s(n− 1) + s(n− 2) . (8)

Finally, the covariance of the prediction error is updated by

p̂(n) =

(
1− s2(n− 1)

s2(n− 1) + σe
p̂(n|n−1)

)
p̂(n|n− 1) . (9)

At each time step, the estimated parameter â(n) contains infor-
mation on the frequency tracked by the ANF, that is retrieved as
f̂(n) = (fs/2π) arccos [â(n)/2] and will be used as a first feature
for the siren identification network. It is important to notice that the
tracked frequency is not necessarily the fundamental frequency, but
the one with the highest energy. This comes with the advantage that,
if the fundamental of a siren is missing or hidden in the background
noise, the higher harmonics could still be tracked by the ANF.

We then expand the above formulation to introduce a second
feature that we call power ratio, expressing the ratio between the
power of the suppressed sinusoidal component and of the input sig-
nal. At each time step, the power of the input signal, the notched
signal (after f̂ has been suppressed) and the suppressed frequency
component can be estimated recursively as

Py(n) = λPy(n− 1) + (1− λ)y2(n) (10)

Pe(n) = λPe(n− 1) + (1− λ)e2(n) , (11)
Pf (n) = Py(n)− Pe(n) , (12)

where λ = e−1/(τfs), with τ constituting a first additional hyperpa-
rameter representing the time constant for recursive averaging. The
power ratio is finally computed as

Pratio(n) = Pf (n)/Py(n) . (13)

To reduce the feature size, we finally downsample Pf and f̂ by a
factor qdown, the second additional hyperparameter of the proposed
method. The procedure is summarized in Algorithm 1.

In Fig. 1 the f̂ and Pratio features are shown for a noise sam-
ple and two different siren samples (wail and yelp) extracted from
the sireNNet dataset [24], that will be used for the experimental
evaluation. In the top row, the tracked f̂ is overlaid to the full spec-
trogram: nevertheless, we remark that the frequency estimate is ob-
tained directly from the time-domain signal without computing the
spectrogram. The visualization shows the effectiveness of the track-
ing algorithm when applied to siren signals, and underlines the clear
contrast between the features extracted from a (structured) siren and
the (unstructured) traffic noise.

We solve the siren identification problem using the ANFNet
network, that processes the f̂ and Pratio features extracted from a sin-
gle channel, 2 s-long audio sample: the two features are stacked into
a 2-channel vector provided as input to the first layer. The architec-
ture (see Tab. 1) contains three 1D convolutional layers (Conv1D)
with, respectively, 10, 20 and 40 filters having kernel size 16, 8 and
4. Each of the first two Conv1D layers is followed by a max pooling
operation (MaxPool) for dimensionality reduction. After the third
one, a global average pooling operation (GlobAvgPool) is used as
interface between the convolutional part and the classification head,
composed of two fully connected (FC) layers with 40 and 20 neu-
rons, respectively, and a single neuron output layer. We use the
ReLU activation function in each hidden layer and the sigmoid ac-
tivation in the output layer, and introduce dropout layers with 0.25
drop probability after each FC layer to prevent overfitting. The net-
work has 7.7 k floating-point 32-bit parameters.

Algorithm 1: The modified KalmANF algorithm
Initialize s(0), s(1), â(1), p̂(1) = 0
Set σe, σw, ρ, τ, qdown

for n = 2 to N − 1 do
p̂(n|n− 1) = p̂(n− 1) + σw

s(n) = y(n) + ρâ(n− 1)s(n− 1)− ρ2s(n− 2)

k(n) = s(n−1)

s2(n−1)+ σe
p̂(n|n−1)

e(n) = s(n)− â(n− 1)s(n− 1) + s(n− 2)
â(n) = â(n− 1) + k(n)e(n)

p̂(n) =

(
1− s2(n−1)

s2(n−1)+ σe
p̂(n|n−1)

)
p̂(n|n− 1)

if |â(n)| > 2 then
â(n) = 2sgn(â(n))

end
f̂(n) = (fs/2π) arccos [â(n)/2]
Py(n) = λPy(n− 1) + (1− λ)y2(n)
Pe(n) = λPe(n− 1) + (1− λ)e2(n)
Pf (n) = Py(n)− Pe(n)
Pratio(n) = Pf (n)/Py(n)

end
Downsample f̂ and Pratio by factor qdown

4. EVALUATION

We run an evaluation campaign to assess the effectiveness of the
proposed method: to promote reproducibility, the code is avail-
able at [18]. For training, we use the sireNNet dataset [24], con-
taining a total of 421 noise and 1254 siren samples including dif-
ferent types of sirens. All samples have a duration of 3 s, and
since half of the siren files are artificially generated for data aug-
mentation purposes, we exclude them and use only the 627 non-
augmented siren samples. We divide this dataset into training, val-
idation and test data with ratios [0.8, 0.1, 0.1]. In order to perform
a data-efficient evaluation, we split the training set into subsets
of different size similarly to [25]: in particular, we create subsets
containing an increasing percentage of the full training set, with
ratios 0.25%, 0.5%, 1%, 2%, 4%, 8%, 16%, 32%, 64% and 100%
(i.e., the entire training set). 10 folds are randomly generated for
each subset, in order to compute the mean and standard deviation
of the results. The subsets are created such that (i) smaller splits
are subsets of larger ones; (ii) the data distribution is kept similar
to that of the entire training set; (iii) overlapping folds are allowed.
The validation and test sets are always used without additional split-
ting. To further evaluate the generalization performance in a cross-
dataset setting, we also use a subset of 210 audio files randomly ex-
tracted from the dataset [26] (that we will call LSSiren) for testing;
this dataset contains siren and noise files with lengths between 3 s
and 15 s. All files of both datasets have been re-sampled to 16 kHz
and converted to mono; moreover, since we use 2 s samples as in-
put, we take only the first two seconds of each file of the sireN-
Net dataset, and divide the LSSiren files in non-overlapping 2 s seg-
ments. Both datasets include real recordings, with background traf-
fic noise, moving sirens and Doppler effect.

We implement the proposed ANFNet and the baseline VG-
GSiren using Pytorch Lightning [27]: for the KalmANF algo-
rithm, we set the hyperparameters ρ = 0.99, σw = 10−5, σe =
0.66, qdown = 5, τ = 0.02, all chosen by manual tuning based on
the best loss obtained on the validation set. For VGGSiren, to com-
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Figure 2: Comparison of the average (solid line) and standard devi-
ation (shaded area) of the F1-score for the baseline VGGSiren and
the proposed ANFNet, trained with an increasing amount of data:
in-domain evaluation (above) and cross-dataset evaluation (below).

pute the mel-spectrogram we use a 1024 samples Hann window
with 512 samples overlap, and 128 mel channels. As a result, VG-
GSiren has a total of 53.9 k floating point 32-bits parameters, thus
being 7 times larger than the proposed ANFNet. For VGGSiren,
we apply peak normalization to the mel-spectrograms, whereas for
ANFNet we normalize the f̂ feature to fs/2 (the Pratio feature is
normalized by definition). In all experiments we train both mod-
els for 400 epochs using the binary cross-entropy loss function, the
Adam optimizer [28] with learning rate between 0.001 and 0.005,
a batch size between 2 and 32, both depending on the size of the
training split, and select the best model based on the validation loss.
To evaluate the performance, we use the F1-score [29] and the area
under the precision-recall curve (AUPRC) [29, 30] metrics, chosen
to deal with non-balanced datasets.

We train both models on the 10 folds of each sireNNet sub-
set. Note that the 0.25%, 0.5% and 1% splits contain, respectively,
only 2, 4 and 9 samples, making the problem extremely challenging
and comparable to that of few-shot learning (without pre-training).
First, we evaluate in-domain performance on the sireNNet test set
and report in Fig. 2 the average and standard deviation (shaded
area) of the F1-score. In Tab. 2 we report the average F1-score and
AUPRC obtained with the two models for each training split. As ex-
pected, the performance of both networks degrades as the amount
of training data decreases; nevertheless, ANFNet outperforms the
baseline when trained using smaller subsets, and reaches a compa-
rable performance on the larger ones (with a lower complexity).

We then evaluate the models on the LSSiren data (cross-dataset
setting) and report the results in the bottom plot of Fig. 2 and in
Tab. 3. Again, the performance of both decreases as the training
dataset size decreases. In this case, the proposed ANFNet sig-
nificantly outperforms the baseline on all subsets. These results
indicate that the proposed features help the network capture the
difference between siren and noise classes also when limited data

F1-score AUPRC
VGGSiren ANFNet VGGSiren ANFNet

0.25 0.7372 0.8047 0.8120 0.8471
0.5 0.8379 0.8840 0.8844 0.9162
1 0.8676 0.9139 0.9602 0.9658
2 0.8965 0.9504 0.9745 0.9787
4 0.9130 0.9543 0.9781 0.9772
8 0.9348 0.9572 0.9860 0.9796

16 0.9688 0.9702 0.9949 0.9904
32 0.9864 0.9787 0.9990 0.9962
64 0.9865 0.9865 0.9996 0.9966
100 0.9833 0.9831 0.9995 0.9995

Table 2: In-domain evaluation: average F1-score and AUPRC met-
rics computed on the sireNNet test set for VGGSiren and ANFNet.

F1-score AUPRC
VGGSiren ANFNet VGGSiren ANFNet

0.25 0.6856 0.7448 0.6962 0.7364
0.5 0.7309 0.7895 0.7512 0.8447
1 0.7831 0.8362 0.8607 0.9169
2 0.7624 0.8522 0.8426 0.9272
4 0.7536 0.8393 0.8349 0.9147
8 0.7284 0.8455 0.7914 0.9180

16 0.7520 0.8520 0.8100 0.9247
32 0.7936 0.8550 0.8492 0.9302
64 0.7926 0.8646 0.8229 0.9355
100 0.7867 0.8601 0.8052 0.9384

Table 3: Cross-dataset evaluation: average F1-score and AUPRC
metrics computed on LSSiren data for VGGSiren and ANFNet.

is available, suggesting their potential for data-efficient learning.
Moreover, the evaluation underlines that the proposed features en-
sure an enhanced robustness to domain shift compared to the mel-
spectrogram. In Fig. 2 it is also visible that the standard deviation
is reduced compared to VGGSiren, showing that ANFNet is less
sensitive to the choice of training samples. Finally, ANFNet has a
lower complexity, with a 7 times smaller network size (7.7 k param-
eters vs. the 53.9 k of VGGSiren). Note that, thanks to time-domain
processing and downsampling, the feature extraction procedure has
also a reduced complexity and the ANFNet input features have a
smaller size compared to the mel-spectrograms used by VGGSiren.

5. CONCLUSIONS

In this work, we investigated two novel features based on fre-
quency tracking for training a siren identification model. Given the
harmonic nature of siren signals, as opposed to the unstructured
background noise, the features are effective for learning in a data-
efficient setting, when limited data is available. The proposed sys-
tem outperforms a spectrogram-based baseline on in-domain test
data, when limited training data is available, and always achieves
better performance in a cross-dataset setting. Moreover, its reduced
complexity promotes its adoption in the automotive domain. Future
work will focus on extending the frequency tracker to include higher
harmonics, further investigating the generalization performance of
the proposed system and optimizing the model for complexity.
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ABSTRACT

This technical report presents the objectives, evaluation, and base-
line changes for Task 3, Sound Event Localization and Detection
(SELD), of the DCASE2024 Challenge. While the development
and evaluation dataset, STARSS23, and the division of the task into
two tracks, audio-only and audiovisual (AV), remain the same, this
year introduces source distance estimation (SDE) along with de-
tection and direction-of-arrival (DOA) estimation of target sound
events. Changes in task evaluation metrics and the design and train-
ing of the baseline models due to this new SDE subtask are detailed
in the report and compared with the previous iteration of the chal-
lenge. Further baseline improvements regarding the integration of
video information are also presented. Overall, the design of highly
effective SELD models evaluated in real scenes with a limited vol-
ume of unbalanced training data has proven challenging. The intro-
duction of SDE makes the task even more demanding, as evidenced
by the low spatially-thresholded detection scores for both audio-
only and AV baselines. While distance estimation error results seem
promising, this comes at the expense of lower detection and DOA
estimation scores compared to the previous year’s baseline models
without SDE. Based on the current AV model design, video integra-
tion does not bring apparent estimation benefits compared to using
only audio input, indicating that more research is required into more
effective fusion strategies, model architectures, data augmentation
and simulation methods, or training strategies.

Index Terms— Sound event localization and detection, sound
source localization, acoustic scene analysis, microphone arrays

1. INTRODUCTION

The sound event localization and detection (SELD) task, detecting
the presence of sound events of target classes of interest and track-
ing their activity and location over time, has seen growing interest
from the time of the earliest publications [1]. A large part of the
research effort in this topic has been centered around the DCASE
challenge1 and the subsequent workshop, with the task developing
every year in terms of data complexity and realism [2–4].

The first three iterations of the task (2019-2021) were based on
synthesized spatial recordings including real ambient noise and re-
verberation. The data were generated with an elaborate synthesis
process based on real captured multi-room and multi-point room
impulse responses that allowed synthesis of both static and moving

1https://dcase.community/challenge2024/

reverberant sound events [3]. Some of the task aspects that were
considered in these first three SELD challenges were continuous
DOA estimation, varying signal-to-noise and direct-to-reverberant
ratios, moving sound sources, non-target-class interfering direc-
tional sound events, and multiple instances of the same class occur-
ring simultaneously. The top systems of those three first challenges
excelled at addressing these problems by employing improved out-
put representations of the SELD objectives [5–7] or advanced data
augmentation strategies [8].

However, those synthetic datasets lacked some important as-
pects of real sound scenes, mainly that of natural temporal and
spatial occurences and co-occurences that characterize real sound
events and their types as the result of the scene environment and
the actions and interactions of the agents in it. To advance SELD
research towards that direction, the next iterations up to the cur-
rent one (DCASE2022-2024) were based on a new dataset of spa-
tial recordings of real scenes [4, 9]. Annotations of sound event
activities for 13 sound classes were compiled by human listeners
and combined with optical tracking data of the source positions that
generated those sound events. 11 hours of such material were col-
lected in multiple rooms of two different sites. Contrary to the fairly
balanced earlier synthetic datasets, the presence of classes in the
real recordings was highly unbalanced, posing new challenges for
the participants. To cope with the increased difficulty of the task
and the small amount of training data, participants were allowed
to use external data, additional simulations of recordings and pre-
trained audio models. Creative use of such resources [10] together
with more powerful architectures driven by attention mechanisms
[11] allowed the top participants to achieve competitive results with
large gains over the baselines.

Additionally, in the 2023 challenge participants were allowed
to use 360° video input in addition to the typical audio input [4];
an effort to foster multimodal analysis and development towards di-
verse large scale training of SELD systems using video supervision.
Submissions of audiovisual systems did not exhibit a clear improve-
ment using this additional modality, with only one method achiev-
ing better results than using audio-only input. This first iteration of
audiovisual SELD models demonstrated that effective integration
of video information was not trivial and further research and ex-
perimentation was necessary. In this year’s DCASE2024 challenge
the task setup remains the same, as well as the development and
evaluation dataset, but with some important differences introduced
otherwise. In this report, an overview of changes in the SELD task
of DCASE2024 challenge is presented in terms of task objectives,
baseline models, and task evaluation.
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2. DISTANCE ESTIMATION

This year, we introduce a new part of the task, namely sound dis-
tance estimation. Research on DNN-based techniques for SDE has
been largely confined to the binaural format. These studies typically
use a classification method, assigning the source within a very lim-
ited set of distances or positions [12, 13]. A study by Kushwaha et
al. [14] investigated various loss functions for distance estimation
and included an activity detection component for a scenario with a
tetrahedral microphone array. Few works have explored the simul-
taneous estimation of distance and DOA [15–17]. Until recently,
there has been no effort to combine distance estimation with event
detection and localization. In [18], the authors have investigated a
single task and multi-task approach to 3D SELD for the binaural
format and Ambisonics. Following that paper, we include some of
the solutions in this years’ baseline to foster further research in this
area.

To employ the distance estimation task within the 3D SELD
architecture, we use the multi activity-coupled Cartesian Distance
and DOA (multi-ACCDDOA) method as described in [18]. The
method is basically an extension of the multi-ACCDOA output pro-
posed in [19]. Compared with the former, the 3-element DOA vec-
tor is extended to include the distance estimate as well. For N
tracks, C classes, and T frames, the output is defined as ynct =
[anctRnct, Dnct], where n, c, t indicate the output track number,
target class, and time frame, anct ∈ {0, 1} stands for the detection
activity, Rnct ∈ ⟨−1, 1⟩3 is the DOA vector, and Dnct ∈ ⟨0,∞)
corresponds to distance values. The dimensions hold the follow-

Feature Extractor
FOA: 64-band mel energies (4 channels) + Intensity vector (3 channels)

64, 3x3 filters, 2D CNN, ReLU, 5x4 max pool

64, 3x3 filters, 2D CNN, ReLU, 1x4 max pool

64, 3x3 filters, 2D CNN, ReLU, 1x2 max pool

128, GRU, bidirectional

128, GRU, bidirectional

MHSA
Attention size 128, 8 heads

Add and layer norm

2x
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ResNet-50 

applied on each frame
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Figure 1: Audiovisual baseline model architecture.

ing characteristics: a, D ∈ RN×C×T ,R ∈ R3×N×C×T , and
||Rnct|| = 1. We model up to N = 3 and C = 13. The whole
output is linear to contain the range of both DOA and distance val-
ues. The multi-ACCDDOA model is trained using Auxiliary Dupli-
cating Permutation Invariant Training (ADPIT) as in [19]. The final
loss function is defined as:

LADPIT =
1

CT

C∑
c

T∑
t

min
α∈Perm[ct]

lACCDDOA
α,ct , (1)

lACCDDOA
α,ct =

1

N

N∑
n

L(yα,nct, ŷα,nct), (2)

where L(·) is the mean square error loss function, α is one possible
track permutation and Perm[ct] is the set of all possible permuta-
tions.

3. BASELINE

For the audio baseline, we retain the same architecture from the pre-
vious challenge. It is a modified version of the SELDnet presented
in [1]. Last year, we introduced multi-head self-attention blocks in
the SELDnet architecture based on the findings in [20].

For the last year’s audiovisual baseline [4], an object detec-
tor [21] was used to extract visual information. The bounding box
outputs were encoded to vectors along with azimuth and eleva-
tion [22]. The encoded vectors were treated as visual features in
the previous challenge [4]. In this edition of the challenge, the vi-
sual pipeline is simplified. Inspired by the work in [23], we use a
pre-trained ResNet-50 [24] to extract the visual features from each
frame of the video corresponding to the audio input. This visual
representation of the input video is combined with the audio repre-
sentation using audio-visual fusion layers. A transformer decoder
block [25] with 2 layers, having an attention size of 128 with 8
heads is used for the fusion of audio and visual features. The new
audio-visual baseline architecture used in the challenge is shown in
Figure 1.

Differing from previous years, we changed the training proce-
dure to fairly compare the performances of the audio-only model
and the audio-visual model. In the previous iterations of the chal-
lenge, the audio baseline was trained simultaneously on the syn-
thetic dataset and the train split of the STARSS23 development data.
However, it is to be noted that the synthetic data is available only
for the audio data and hence direct comparison of the audio-only
and the audio-visual models was not possible. To this end, we first
trained the audio baseline model on the synthetic dataset and use
it for initializing the weights of the audio feature extraction layers
for both the audio-only and audio-viusal models. As a second step,
we trained both the models on the STARSS23 development dataset.
Generation of synthetic data was switched this year from the pro-
vided code by the task organizers to the more flexible spatialScaper
[26] published recently.

4. EVALUATION METRICS

In previous editions of the challenge, the models were evaluated ac-
cording to four metrics: localization-dependent F-score (F20◦ ) and
error rate (ER20◦ ) and class-dependent localization error (LEc)
and localization recall (LRc), all of them computed in one-second
non-overlapping segments [2, 27]. One of our goals in this edi-
tion was to simplify the evaluation, so we decided to drop the error
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Figure 2: F-score of the 2024 audiovisual baseline system on
the evaluation dataset for different values of relative and absolute
thresholds. The DOA error threshold was set to 20◦ in all the ex-
periments.

rate and the localization recall and keep the localization-dependent
F-score (which focuses on detection) and the class-dependent local-
ization error (which focuses on the DOA estimation) and to add a
new distance estimation metric. In order to make clear that the lo-
calization error only evaluates the DOA estimation without taking
into account the distance estimation, we renamed it to DOA error
(DOAEc).

4.1. Frame-based metrics

The computation of the metrics in one-second non-overlapping seg-
ments done in previous challenges [27] was a common practice for
evaluating SED systems [28], but not for localization and tracking.
It made the metrics and the evaluation code more difficult to inter-
pret and maintain and also prevented them from being extended to
more tracking-based metrics in the future, such as measuring the
identity-switch ratio, which must be computed at frame level (i.e.
for every time output of the system).

Therefore, we decided to compute the metrics at frame level
this year. In table 1 we can see the metrics of the top-5 systems
resulting from re-evaluating the audio-only systems from the previ-
ous challenge at frame level and the comparison with the original
segment-based evaluation. We can see how there are no changes
in the leaderboard and the metrics slightly degrade but without dra-
matic changes.

4.2. Distance estimation evaluation

The main novelty of this year’s challenge was introducing distance
estimation into the SELD task. Since we are now estimating both
DOA and distance, we could have combined both into a 3D posi-
tion estimation and evaluated it just as the Euclidean distance in
meters to the actual source position. However, distance estimation
is a more difficult task than DOA estimation when working with
compact arrays due to the geometrical and physical principles of
the problem, so we could expect the errors of the distance estima-
tion to be quite larger than the ones of the DOA estimation. Hence,
we preferred to keep the evaluation of both estimations separately.

Also due to the geometrical principles of the problem, distance
estimation with compact arrays becomes harder when distance in-
creases (the impact of distance in the phase differences between mi-
crophones reduces) so we decided to evaluate the distance in terms
of relative distance (i.e. the ratio of the difference between the es-
timated and actual distance and the actual distance) instead of in
absolute terms. This also fits most applications, where an absolute
error of a few centimeters is more important if the source is closer
to the microphones than if it is several meters away.

We did not want poor distance estimations to penalize the F-
score too much this year, so we chose a relative error threshold of 1
so only really large errors have an impact on it. Figure 2 shows how
the F-score of the baseline degrades when the distance estimation
error threshold is reduced. In the following editions of the chal-
lenge, we will adjust the threshold according to the performance of
the systems submitted this year.

4.3. Estimate-reference assignment

When we have several estimated and/or reference events of the same
class simultaneously, we need to assign the estimates to the refer-
ences before computing the evaluation metrics. In previous editions
of the challenge, we did this by using the Hungarian algorithm [29]
to find the assignment that minimized the DOA error. As previously
explained, since this year we also have distance estimation, we can
compute the localization error (LE) defined as the Euclidean dis-
tance between the estimate and the reference position, so we could
use the Hungarian algorithm to minimize this metric instead of the
DOAE. However, since we are not using this LE as an evaluation
metric, we decided to maintain the estimate-reference assignment
as in previous editions of the challenge.

Table 2 compares the results of the audio-only baseline model
when the assignment is done to optimize the DOAE and the LE.
We can see how the differences of both approaches are minimal
since this only affects to the situations where there are several con-
current events of the same class, which is not very frequent in the
STARSS23 dataset.

Frame-based Segment-based

Rank Submission ER20◦ F20◦ DOAEc LRc Submission ER20◦ F20◦ DOAEc LRc

1 Du NERCSLIP task3a 1 0.34 59.8% 12.9◦ 67.5% Du NERCSLIP task3a 1 0.33 62.7% 12.9◦ 72.1%
2 Liu CQUPT task3a 2 0.37 54.0% 13.7◦ 61.5% Liu CQUPT task3a 2 0.35 58.5% 13.5◦ 65.7%
3 Yang IACAS task3a 2 0.36 50.2% 16.3◦ 61.0% Yang IACAS task3a 2 0.35 54.5% 15.8◦ 66.7%
4 Kang KT task3a 2 0.41 48.0% 15.3◦ 60.7% Kang KT task3a 2 0.40 51.4% 15.0◦ 63.8%
5 Kim KU task3a 4 0.46 46.1% 14.9◦ 58.1% Kim KU task3a 4 0.45 49.0% 15.0◦ 62.5%

Table 1: Comparison of the frame-based and segment-based metrics applied to the system of the challenge 2023.
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Assignation F20◦ DOAEc RDEc LEc [cm]

DOAE 18.0% 29.6◦ 0.31 137.6
LE 17.9% 29.7◦ 0.31 137.4

Table 2: 2024 audio-only baseline results when the assignment be-
tween estimates and references of concurrent events of the same
class are done to minimize the DOAE or the LE.

5. RESULTS

Incorporating all the changes, Table 3 summarizes the results of the
baseline models on the STARSS23 evaluation dataset trained for
the SELD task along with distance estimation with the new frame-
based metrics using the Multi-ACCDDOA loss. The performance
of the models on both 4-channel ambisonic (FOA) and tetrahedral
microphone array (MIC) audio formats are presented for compari-
son.

Dataset Format F20◦ DOAEc RDEc

Audio FOA 18.0% 29.6◦ 0.31
Audio-visual FOA 15.5% 34.7◦ 0.31
Audio MIC-GCC 16.0% 34.2◦ 0.30
Audio-visual MIC-GCC 15.8% 36.0◦ 0.30

Table 3: Baseline results on STARSS23 evaluation dataset.

Compared with the baselines of the previous edition of the chal-
lenge, we can observe a reduction in the performance of the audio-
only system. This is due to 1. the addition of the distance estimation
task, which makes the problem harder, and 2. the changes in the
training pipeline, where synthetic data was only used to pre-train
the audio feature extraction layers as done in the audio-visual sys-
tem. On the other hand, the performance of the audio-visual system
has clearly improved compared to the previous edition of the chal-
lenge thanks to the changes done in the visual feature extraction, so
we are narrowing the gap between both systems. However, further
research is still needed to really exploit the visual information of the
360◦ video input.

6. CONCLUSIONS

This report highlights the changes introduced in the SELD task of
DCASE2024 challenge. Most of the changes on baseline models,
and task evaluation are associated to the newly-introduced distance
estimation objective of the challenge. Distance estimation with a
single compact array makes the task significantly more challenging
as can be observed from the low baseline results for both audio-only
and audiovisual tracks. Training losses and metrics are adapted in
order to accommodate the new objective effectively. Audiovisual
processing for the currently proposed baseline remains inferior to
the baseline using only audio input.
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ABSTRACT
The massive use of machine learning models, particularly neural
networks, has raised serious concerns about their environmental im-
pact. Indeed, over the last few years we have seen an explosion in
the computing costs associated with training and deploying these
systems. It is, therefore, crucial to understand their energy require-
ments in order to better integrate them into the evaluation of models,
which has so far focused mainly on performance. In this paper, we
study several neural network architectures that are key components
of sound event detection systems, using an audio tagging task as an
example. We measure the energy consumption for training and test-
ing small to large architectures and establish complex relationships
between the energy consumption, the number of floating-point oper-
ations, the number of parameters, and the GPU/memory utilization.

Index Terms— Energy, deep learning, neural networks,
FLOPs, parameters, training, inference, sound event detection

1. INTRODUCTION

Deep learning (DL) has become the principal focus of audio pro-
cessing research, with numerous applications spanning various do-
mains including sound event detection (SED) [1, 2], speech recog-
nition [3, 4] and music generation [5, 6]. As models become in-
creasingly powerful and datasets grow larger, the associated com-
putational costs have exploded [7, 8, 9]. Yet, the true cost of com-
putation often remains obscured, as many computations are carried
out on remote infrastructures or data centers. Nevertheless, these
energy-intensive processes involved in training and deploying high-
performance models have a real environmental footprint linked to
their demand for electricity [10, 11]. This raises significant con-
cerns in the current context of climate change and efforts to limit
global warming to below 2 degrees [12]. Even though models used
in audio processing are smaller than those used in natural language
processing, they still present similar problems [13, 14].

The trends described above are driven by an ongoing pursuit
of outperforming previous state-of-the-art systems, even by a small
margin. Recently, there has been a slight shift towards reporting
and quantifying the environmental costs associated with these ad-
vances [15, 16]. In the audio processing domain in particular, sig-
nificant efforts have been made to balance performance and energy
in the context of sound event detection [17, 18] or speech recogni-
tion [14], and to emphasize the importance of considering quality
metrics alongside energy footprint assessments in speech synthesis
[13]. All of these studies call for a fair and reliable metric to as-
sess the computational footprint that reflects the energy consump-
tion while being hardware independent to enable accurate compar-
isons between models. Although work such as Speckhard et al. [19]
shows a strong correlation between computational cost and energy

consumption during inference for convolution-based models, to our
knowledge similar investigations have not been conducted for train-
ing or for other architectures. Even if a few hundred experiments are
sometimes required to train a model, the cost of the training phase
represents only 10% to 20% of the total CO2 emissions of the asso-
ciated machine learning usage, with the majority occurring during
the inference phase [20]. However, as audio processing researchers,
the majority of our energy consumption lies in the training phase,
and should not be overshadowed.

In this article, we aim to understand the computational factors
that impact the energy consumption for the training or testing deep
learning models that compose SED systems. This study is con-
ducted in the context of the DCASE challenge task 4, where par-
ticipants have been required since 2022 [21] to report their energy
consumption alongside computational factors such as the number of
parameters and the number of operations. Specifically, we seek an
indicator that can estimate the energy consumption based on com-
putational measurements. This would allow us to estimate each sys-
tem’s consumption on the same hardware and provide fair compar-
isons between systems, extending the work of Ronchini et al.[18].
We focus our analysis on well-known architectures such as MLP,
RNN, CNN and CRNN. CRNN is specifically the current architec-
ture used in Task 4 of the DCASE Challenge [22]. We compute
the number of parameters of the models and the number of float-
ing point operations (FLOPs) as two potential candidate factors for
energy consumption estimation. We show that as the number of op-
erations increases, so does the energy consumption across all archi-
tectures during both the test and training phases. However, the rel-
ative increase in energy consumption varies between architectures
and phases. We identify two distinct trends: one for MLP/RNN,
and one for CNN/CRNN. Finally, we identify relationship between
energy consumption and GPU utilization during both training and
testing phases, which could serve as a basis for future research on
computational metrics.

In summary, our key contributions are :

• A comparative analysis of prominent architectures (MLP,
CNN, RNN, CRNN) and their associated energy consumption.

• The identification of two distinct trends in energy consump-
tion based on architecture type, notably distinguishing between
MLP/RNN and CNN/CRNN architectures.

• A relative comparison of power usage between training and test
stages.

2. METHODOLOGY

Computing and monitoring the computational and energy costs of
the two phases of deep learning systems - training and inference
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- is a complex endeavour. We present here our methodology for
assessing both, mentioning previous work in these areas.

2.1. Computational cost

Traditional methods rely on metrics such as the size of the model
(the number of parameters) and the number of floating-point op-
erations (FLOPs) computed by the model to estimate the computa-
tional cost. While computing the number of parameters (or weights)
of a model is straightforward, computing the number of operations
can be a difficult task, especially for complex architectures, and this
number is very sensitive to the size of the input/output. At infer-
ence, only forward calculations are performed, so the number of
operations is the sum of all operations across all layers. We use the
deepspeed profiler [23] to quantify these forward pass operations
accurately. In contrast, training is a more complex process involving
iterative forward and backward calculations. In particular, the back-
ward pass also computes the gradient with respect to the parameters,
the loss and update the weights. However, at the time of writing, no
profiler provided the exact number of backward operations, so we
derive this number using the ratio 2:1 as an approximation [24]. In
total, the number of operations of a training iteration (forward and
backward) is three times the number of operations of an inference
(forward only).

2.2. Energy consumption

Several Python trackers have emerged to facilitate the computation
of energy consumption [25]. In most of the trackers, the total con-
sumption is calculated as the sum of the consumption of each com-
ponent of the computer: GPU, CPU and RAM. In our study, we
focus specifically on analysing the energy consumption of the GPU
given by CodeCarbon [26]. Indeed, preliminary experiments have
led us to conclude that while GPU power fluctuates, CPU power re-
mains stable. Regarding ram energy, CodeCarbon estimates 3 watts
per 8 GB, which also remains constant over time. We made sure
that any increases in GPU power with the python trackers were cor-
related with energy consumption monitored on the system’s base-
board management controller (BMC). We also monitor the GPU
and memory utilization from Nvidia SMI query every 5 seconds to
get the mean uses of the each experiment.

3. EXPERIMENTS

Our objective is to better understand the energy consumption at train
and test and to relate it to computational cost of a given model and
architecture. To achieve this, we evaluate different types and sizes
of architectures for audio tagging systems.1

3.1. Task description

Audio tagging involves assigning one or multiple tags to an audio
signal without any temporal information. For this experiment, we
work on the real part of the DESED dataset [27]. This dataset con-
tains 10-second audio clips recorded in domestic environments. We
convert those recordings into mel-spectrogram representations with
128 bands, an FFT size of 2048 and a hop size of 256. We only take
the first 64 frames as input, which corresponds to approximately
the first 1 second of the audio signal. Although this significantly

1https://github.com/ConstanceDws/toolbox_energy

Model Num Layers Hidden Sizes

MLP
1 512, 1024, 2048
4 1024, 2048, 4096

6, 10, 16, 32 4096

CNN
1 128, 256, 512, 1024
2 128, 256, 384, 512, 768, 1024
6 384, 768

RNN
1 128, 512, 1024, 2048

4, 6 1024, 2048
2, 10, 14 2048

CRNN
[1,1], [2,1], [1,2] [64,64], [256,64], [512, 256]

[2,2] [728, 256]
[1,2], [2,2] [1024, 256]

Table 1: Summary of all the configurations tested in our experiment.
For each number of layer, we tested different hidden sizes. For
CRNN, the configurations first indicate the convolutional layers and
then the recurrent layers.

impacts the performance of the model, it reduce the system’s com-
plexity, allowing for more lightweight experiments, as we do not
focus on performance but only on energy.

3.2. Models

We implement four neural network architectures: multi-layer per-
ceptron (MLP), convolutional neural network (CNN), recurrent
neural network (RNN), and convolutional recurrent neural network
(CRNN). For the MLP, we implement a series of linear layers fol-
lowed by ReLU activation functions. For the CNN, we adopt a se-
quence of Conv2d, ReLU and MaxPool2d layers. For the RNN we
use GRU cells and for the CRNN we start with Conv2d, ReLU and
MaxPool2d layers followed by a GRU cell. All implementations are
completed with a final linear layer and a sigmoid activation func-
tion that outputs a probability vector for the 10 classes. For each
architecture, we systematically increase the number of layers and
adjust the hidden sizes per layer, gradually scaling up to reach the
full GPU memory capacity and utilization, resulting in 43 models.
We present the summary of all the configurations tested in Table 1.
We intentionally chose those configurations to achieve meaningful
variations in the number of FLOPs without conducting redundant
experiments.

3.3. Training and test

Our experiments diverge from the conventional research of accu-
racy performance. Instead, we train all models for a single epoch
on the same Nvidia Tesla T4 GPU and monitor the energy of the
training phase. To focus solely on architectural differences, we use
a consistent batch size of 8. Although the choice of criterion, op-
timizer, and learning rate is crucial for model convergence, it does
significantly impact energy measurements. Therefore, we employ
the cross-entropy function as the criterion, fix the learning rate at
10−3, and use the ADAM optimizer [28]. We did not include any
validation steps in the training routine to isolate the effects of train-
ing. Instead, we measure the energy consumption during the test
phase separately. The test phase involves running the model (infer-
ence) and computing the error. Although inference for such small
models can generally be performed on the CPU, we ensure con-
sistency with the training phase measurements by also running the
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Figure 1: Energy consumption at test for various neural network
architectures and configurations, as a function of FLOPs (top) and
of parameters (bottom). The three columns show: (1) all architec-
tures together, (2) only MLP/RNN (in blue and green), and (3) only
CNN/CRNN (in red and purple).

test phase on the same Nvidia T4 GPU for the entire dataset (corre-
sponding to 1 epochs of training).

4. RESULTS

In this section, we explore the relationship between computational
metrics and the energy consumption. Our analysis aims to identify
trends and discrepancies in energy consumption at train and test
across various architectures and configurations.

4.1. Relationship between energy and computational cost at
test

First, we examine the energy consumption of the test, as existing
research suggests that there is a correlation between FLOPs and en-
ergy consumption for convolutional models [19] on CPU. Figure 1
shows the result of this experiment, where the top row presents the
GPU energy consumption as a function of FLOPs, and the bottom
row the energy consumption as a function of the number of param-
eters. The first row shows that increasing the number of operations
at test leads to an increase in energy consumption for all types of
architecture. A closer examination of each architecture type re-
veals that the relationship between FLOPs and energy consump-
tion exhibits some affine patterns. Examining the number of pa-
rameters in the second row, significant disparities emerge between
MLP/RNN and CNN/CRNN models: the relationship between the
number of parameters and the energy consumption is almost affine
for MLP/RNN (and similar to the relationship with FLOPs), but for
CNN and CRNN the relationship is more chaotic. This discrep-
ancy is mainly due to the architectural elements composing these
networks. Convolutional layers use parameter sharing, which con-
trasts with fully connected layers where each parameter is unique
to its connection. Similarly, in recurrent layers, the connections
between units often have unique weights, although some forms of
parameter sharing can occur as well. Consequently, MLP and RNN
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Figure 2: Energy consumption for training various neural network
architectures and configurations, as a function of FLOPs (top) and
of parameters (bottom). The three columns show: (1) all architec-
tures together, (2) only MLP/RNN (in blue and green), and (3) only
CNN/CRNN (in red and purple).

have a higher number of parameters but a lower number of opera-
tions relative to CNN. These observations suggest that the number
of operations and the number of parameters are not reliable indi-
cators for estimating energy consumption at test, regardless of the
model type, as the affine patterns are not consistent across architec-
tures. However, they could be useful within a single architecture
scenario comparisons.

4.2. Relationship between energy and computational cost at
training

Building on our previous results, we now investigate the energy
consumption associated with training. Figure 2 displays the en-
ergy consumption for training in function of the two computational
metrics arranged as previously described. Regarding the interaction
between energy and FLOPs, we observe two distinct trends. For
MLP/RNN, the data points follow a steep curve on the left side,
while for CNN, the curve smoothly increases and spans the entire
plot. The CRNN architecture appears to exhibit characteristics that
lie between the two aforementioned trends. In some configurations,
the CRNN behaves as a CNN at higher FLOPs and as an RNN
at lower FLOPs. A plausible explanation of this two trends could
be the higher memory exchanges associated with MLP/RNN com-
pared to CNN architectures that would cause higher energy con-
sumption but do not increase the FLOPs. An important result is the
almost affine relationship between FLOPs and energy consumption
for MLP and RNN, suggesting that GPUs handle these architectures
similarly during training causing close energy consumption for the
same FLOPs. However, for CNN and CRNN, FLOPs alone do not
provide a conclusive estimate of the energy consumption. Regard-
ing the number of parameters, we conclude consistent results as
for the test relationship. As a result, for the training consumption,
neither FLOPs nor parameters are good estimators of energy con-
sumption without specific knowledge of the model architecture, and
one hypothesis could comes from the difference between the archi-
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Figure 3: Average power during training (circles) and test (trian-
gles) as a function of FLOPs/S.
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Figure 4: Relationship between the energy consumption and the
GPU utilization (left) and memory utilization (right) for training
and test.

tectural elements of the network.

4.3. Training and test comparisons

To further investigate the link between energy and computation, we
investigate the mean average power at test and train and relate it to
the number of floating points operations per seconds. The average is
calculated as the energy divided by the length of the experiment. We
present the result of this analysis in Figure 3, where the FLOPs/S
is computed as the FLOPs divided by the duration of one epoch for
training and test. We see that there is a nearly-affine relationship be-
tween FLOPs/S and power at test for the MLP/RNN architectures,
as indicated by the aligned triangles. However, this affine relation-
ship is less evident for training, as highlighted by a bend around
20M FLOPs/S. An significant result of this analysis is the disparity
in average power consumption between MLP/RNN at train and test:
circles are positioned higher on the plot, while triangles are lower
and there is no overlap between the two sets. In contrast, for CNN
and CRNN, triangles and circles occupy similar regions, indicat-
ing that MLP and RNN architectures require much more power for
training than for testing compared to CNN/CRNN.

4.4. GPU and memory utilization

During our experiments, we also monitored the GPU and memory
utilization given by Nvidia SMI. Figure 4 illustrates the relation-
ship between the energy and the GPU and memory utilization dur-
ing both training and test phases. Notably, a strong correlation ex-
ists between GPU use and energy. What is noteworthy is that this
correlation remains independent of the phase (train or test) and the
architectures. This results in a metric that is highly recommended
for estimating the energy consumption of a given model, although

it is dependent on the hardware. It would be interesting to find a
combination of the number FLOPs and the number of parameters
that could reflect the GPU utilization. For memory utilization, the
correlation is not as straightforward, but it shows that memory also
has an impact on energy consumption, with a higher dependency on
the architecture type than GPU utilization.

5. DISCUSSION AND FUTURE WORKS

In this article, we specifically study the audio tagging task, using
very simple architectures that are far from current SED models. It
would therefore be interesting to explore more advanced models
in the field and assess whether similar trends persist. In addition,
the training procedure implemented here is one of the most con-
ventional methods of deep learning, but recent advances have in-
troduced much more complex procedures, resulting in higher com-
putational costs and potentially different energy consumption. For
example, using techniques such as teacher-student learning (used in
the baseline) can lead to higher computational costs and therefore
a different energy footprint. It is also important to note that energy
consumption throughout our study is measured for a single epoch,
and is therefore relative to the dataset. Experiments to determine
whether there is a linear relation between data size and energy con-
sumption would be recommended to remove the dependency on the
dataset.

Additionally, we focused here on a single hardware (one Nvidia
Tesla T4). However, analyzing the differences within a single hard-
ware configuration and exploring the variations between different
hardware configurations could provide some additional information
on the energy consumption. This approach could also contribute to
efforts to normalize hardware energy measurements, such as those
proposed by Serizel et al. [17]. Furthermore, our study did not ad-
dress the performance of the models. It’s likely that a CNN and
CRNN may have different performances compared to an MLP or an
RNN. This concept aligns with Douwes et al. [29], emphasizing the
need to explore multi-objective criteria by considering factors such
as model performance, energy consumption, and computational ef-
ficiency simultaneously.

6. CONCLUSIONS

Our study provides a better understanding of the relationship be-
tween computational cost and energy consumption for various neu-
ral networks used in SED tasks. We observed that while the
number of floating-point operations and the number of parame-
ters influenced energy consumption, these metrics were not consis-
tent predictors across all architectures. We identify distinct trends
and discrepancies in energy consumption during both testing and
training phases, with notable differences between MLP/RNN and
CNN/CRNN models. Finally, we establish correlations between
energy consumption and GPU utilization for both training and test
phases, that could lay as a foundation for future research on com-
putational indicators. We hope that this study will contribute to the
development of green AI practices not only in speech processing
but also across other domains.
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ABSTRACT

Query-by-Vocal Imitation (QBV) is about searching audio files
within databases using vocal imitations created by the user’s voice.
Since most humans can effectively communicate sound concepts
through voice, QBV offers the more intuitive and convenient ap-
proach compared to text-based search. To fully leverage QBV, de-
veloping robust audio feature representations for both the vocal im-
itation and the original sound is crucial. In this paper, we present
a new system for QBV that utilizes the feature extraction capa-
bilities of Convolutional Neural Networks pre-trained with large-
scale general-purpose audio datasets. We integrate these pre-trained
models into a dual encoder architecture and fine-tune them end-
to-end using contrastive learning. A distinctive aspect of our pro-
posed method is the fine-tuning strategy of pre-trained models us-
ing an adapted NT-Xent loss for contrastive learning, creating a
shared embedding space for reference recordings and vocal imita-
tions. The proposed system significantly enhances audio retrieval
performance, establishing a new state of the art on both coarse- and
fine-grained QBV tasks1.

Index Terms— audio retrieval, vocal imitation, dual encoder,
contrastive learning, QBV

1. INTRODUCTION

Traditional audio retrieval systems rely on textual descriptions or
keywords to search for audio recordings (e.g., [1, 2, 3, 4]). Those
descriptors are well suited to describe acoustic events on a high
level. However, conveying specific acoustic nuances, such as pitch,
loudness, timbre, or temporal relationships, via textual descriptions
is difficult. For example, non-experts might struggle to find the right
vocabulary to describe specific computer-synthesized sound effects.
However, since most humans can effectively imitate acoustic events
through their vocal tract, Query-by-Vocal Imitation (QBV) becomes
an attractive alternative. In fact, previous work has suggested that
QBV-based search engines actually achieve higher user satisfaction
than text-based search engines [5].

Previous work on QBV systems such as TL-IMINET [6] and
M-VGGish [7] relied on custom or relatively outdated pretrained
audio embedding models and simple (non-contrastive) loss func-
tions for training. Pishdadian et al. [8] showed that simple sig-
nal processing methods based on handcrafted features outperformed
those systems in their experimental setups [8]. In this work, we
leverage contrastive training and the feature extraction capabilities
of a more recent, pre-trained Convolutional Neural Network (CNN)
model in a dual encoder architecture to improve QBV. The approach

1Code at: https://github.com/Jonathan-Greif/QBV

woof
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Figure 1: Two separate audio embedding models ϕa and ϕv project
the reference sounds a and the vocal imitations v into a shared met-
ric space. The contrastive loss increases the similarity of vocal imi-
tations and their corresponding sounds while pushing mismatching
pairs away from each other in this metric space.

is sketched in Figure 1. Experiments conducted on VimSketch [8]
and VocalImitationSet [9] demonstrate that our method outperforms
the previous deep-learning-based approaches and the handcrafted
approach (Sections 4.1 and 4.2). We further conducted an ablation
study in Section 5.3 to measure the impact of each of our proposed
method’s design choices.

2. RELATED WORK

Query-by-Vocal Imitation (QBV) is a special case of
Query-by-Example (QBE) [10]. QBE encompasses various
audio retrieval tasks such as cover song recognition [11],
Query-by-Beatboxing [12], and Query-by-Humming [13, 14].
Unlike these music-related applications, QBV specifically focuses
on general sound search.

Among the most recent advancements in QBV are systems
like TL-IMINET [6] and CR-IMINET [5]. Those are based on
CNN-based dual encoder architectures, which rely on two sep-
arate embedding towers for the two domains (real and imitated
sounds). Instead of comparing the embedding vectors directly,
[5, 6] incorporate a Feedforward Neural Network (FNN) that takes
the embedding vectors as input and outputs an estimate of their
similarity. TL-IMINET distinguishes itself by employing trans-
fer learning, while CR-IMINET incorporates a Recurrent Neu-
ral Network layer. Another noteworthy system used for QBV is
M-VGGish [7], which combines features extracted from interme-
diate layers of VGGish [15]. The model was pre-trained for audio
tagging but not fine-tuned with imitations and reference sounds for
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QBV. M-VGGish assesses similarities by measuring the cosine sim-
ilarity between the embedding vectors. On the VocalSketch [16]
dataset M-VGGish demonstrated superior performance compared
to TL-IMINET, highlighting the feature extraction capabilities of
models pre-trained on large audio tagging datasets [7]. However,
recent work showed that these latest QBV systems perform poorly
compared to simple signal processing (SP) methods in certain set-
tings [8]. The most performant of these SP methods involved con-
verting the signals into the frequency domain using the Constant-
Q Transform (CQT) and further with a 2D Fourier transformation
(2DFT). The resulting representations were then compared using
the cosine similarity.

3. PROPOSED SYSTEM

Similarly to previous methods [6, 5, 7], our system relies on two
separate audio embedding models to project reference sounds ai

and vocal imitations vi thereof, into a shared embedding space (see
Figure 1). In the following, we will denote the model that is used
to embed the reference and the imitated acoustic events as ϕa and
ϕv , respectively. The correspondence between a vocal imitation vi
and a reference sounds ai is determined by their distance in the
embedding space. Our proposed system improves over previous
deep-learning-based QBV solutions in two main aspects, namely,
the audio embedding model and the fine-tuning strategy on refer-
ence sound and imitation pairs using contrastive learning. In Sec-
tion 3.1 we motivate the choice for the audio embedding model and
in Section 3.2 we describe how these models are fine-tuned using
contrastive learning to align vocal imitations and reference sounds
in the shared embedding space.

3.1. Audio Embedding Model
Extracting high-quality audio embeddings is a fundamental build-
ing block of a well-performing QBV system. The quality of these
embeddings extracted by deep learning systems depends both, on
the neural network architecture and the audio dataset it has been
trained on. Previous QBV systems used small, custom architectures
(e.g., TL-IMINET [6] or CR-IMINET [5]), or architectures that are
outdated from today’s point of view (M-VGGish [7]). These ar-
chitectures were either directly trained on vocal imitation-reference
sound pairs [5], pre-trained on smaller domain-specific datasets, and
then fine-tuned on vocal imitation-reference sound pairs [6], or pre-
trained on larger audio tagging datasets [7] but not fine-tuned on
vocal imitation-reference sound pairs.

Our approach uses MobileNetV3 (MN) [17], a modern efficient
CNN pre-trained on AudioSet [18], as an audio embedding model.
AudioSet is a large general-purpose audio dataset, consisting of 2
million 10-second audio clips labeled with 527 sound event classes.
MNs achieve highly competitive performance on AudioSet when
trained with Knowledge Distillation [19] from a large transformer
ensemble [20]. Additionally, pre-trained MNs have been shown to
extract high-quality audio embeddings across music, environmental
sound, and speech tasks [21]. We hypothesize that the general audio
feature extraction capabilities obtained from AudioSet pre-training
renders MN a strong choice for both the reference sound (ϕa) and
the vocal imitation (ϕv) tower in our dual encoder setup.

3.2. Contrastive Learning
Typical training datasets for QBV consist of N pairs, each hold-
ing a recording of a reference sound and its corresponding vocal
imitation, i.e., {(ai, vi)}Ni=1. During training, the two audio em-
bedding networks learn to map inputs into a shared D-dimensionl

space in which vocal imitations live close to their corresponding
reference sounds. This alignment is achieved through contrastive
training, which brings the embeddings of matching pairs (ai, vi)
together while pushing the representations of non-matching pairs
(ai, vj;j ̸=i) apart. The correspondence between a vocal imitation
vi and reference sound ai is determined using the cosine similarity
between the embedded vectors in the shared embedding space:

Sij =
ϕa (ai)

T · ϕv (vj)

∥ϕa (ai)∥2 ∥ϕv (vj)∥2
. (1)

If each imitation corresponds to exactly one reference sound and
vice versa, then the similarity matrix S ∈ RN×N contains the
agreement scores for matching pairs along its diagonal, while the
off-diagonal elements represent the agreement scores for mismatch-
ing pairs. A popular loss function for contrastive training that has
not been explored in the QBV context yet is the NT-Xent [22] loss.
This loss first converts these similarities into a probability distribu-
tion over reference sounds via a temperature-scaled softmax acti-
vation. It then minimizes the cross entropy between the estimated
distribution and a target distribution. In our case, the target distribu-
tion puts the entire probability mass on the reference recording for
a given vocal imitation. The corresponding loss is then defined as
follows:

L = − 1

N

N∑
j=1

log
exp (Sjj/τ)∑N

i=1 exp (Sij/τ)1i̸=j

, (2)

where τ is a temperature hyper-parameter.

4. EXPERIMENTAL SETUP

We investigated our system’s ability to retrieve the correct audio
recording on two levels of granularity: coarse-grained and fine-
grained. The corresponding experimental setups are explained be-
low. This section further details the audio embedding model, the
training procedure, and the evaluation metrics.

4.1. Coarse-grained QBV
In the course-grained setup, we evaluate the system’s ability to
recognize acoustic events (e.g., ”dog barking,” ”paper tearing,” or
”thunderstorm”) and correctly connect them across the two do-
mains. The retrieved audios only need to contain the same event
as the imitation in this setup to count as a match; specific acous-
tic properties like pitch, loudness, timing, etc. are not required to
match.

We relied on the same experimental setup as in [5] to make our
results comparable to theirs. To this end, we trained and evaluated
our method on the VimSketch [8] dataset. This dataset contains
542 reference sounds and between 13 and 37 corresponding vocal
imitations for each of them. As described in [5], we only used 528
reference sounds and their corresponding imitations and split them
into 10 folds, each containing around 52 sound events, for cross-
validation. Since the reference sounds mostly belong to distinct
categories (i.e., two reference sounds typically don’t share the same
acoustic event), this setup is well-suited to measure the system’s
coarse-grained retrieval abilities.

4.2. Fine-grained QBV
In the fine-grained setup, we evaluate the system’s ability to retrieve
a specific audio recording from a set of candidates that all contain
the same acoustic event, e.g., its ability to select the best matching
dog bark from a diverse collection of dog barks.
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We relied on the same experimental setup as Kim et al. [9] to
compare our method to theirs, i.e., we trained the proposed sys-
tem on VocalSketch v1.0.4 [16] and evaluated it on VocalImitation-
Set [9]. VocalSketch v1.0.4 includes 240 unique reference sounds
and around 18 corresponding vocal imitations for each of them; we
used half of the data set for training and the other half for valida-
tion. Since the exact training-validation split used in [9] has not
been made public, we randomly split the data according to their cri-
teria. VocalImitationSet includes 302 unique reference sounds and
around 18 vocal imitations for each. Those imitations were cre-
ated to match their corresponding reference sounds exactly. In ad-
dition, each reference sound is also associated with approximately
nine hard negative examples that contain the same acoustic event
but differ with respect to other acoustic qualities. We relied on these
hard negative examples to asses the systems’ abilities to find exact
matches among the multiple similar candidate recordings.

4.3. Embedding Networks
As discussed in Section 3.1, we chose efficient MobileNetV3 [17],
pre-trained on AudioSet [18], as our embedding model. Specif-
ically, we use a publicly available checkpoint referred to as
mn10 as (available via GitHub2) because it strikes a good balance
between computational efficiency and performance on the AudioSet
benchmark. For audio pre-processing, we match the original feature
extraction pipeline of the pre-trained MN [20] for both the refer-
ence sounds and the vocal imitations. Furthermore, we truncated or
zero-padded all files to a duration of 10 seconds, aligned with MN’s
AudioSet pre-training setup.

4.4. Training & Augmentations
We used the Adam [23] as an optimizer featuring a learning rate
schedule that includes an exponential warm-up (4 epochs), a con-
stant phase (4 epochs), a linear decrease (14 epochs), followed by
a fine-tuning phase (8 epochs). We trained for 30 epochs in total
with a batch size of 16. The learning rate was set to 5e-4 and 7e-5
in the coarse-grained and fine-grained training setups, respectively.
For the NT-Xent loss, we chose a temperature value of τ = 0.07.

To prevent overfitting, we applied multiple data augmentations
on vocal imitations and reference sounds during training. We relied
on the following methods:
• Time shifting: We randomly shift the waveform forward or

backward within a range of 4000 steps.
• Time masking: The mel-spectrogram representations were ran-

domly time-masked with a maximum length of 400 steps.
• Frequency masking: The mel-spectrogram representations

were randomly frequency masked with a maximum of 4 bins.
• Freq-MixStyle [24]: Frequency bands in spectrograms were

normalized and denormalized again with mixed frequency
statistics of other spectrograms from the same batch. With
a probability of 0.3, Freq-MixStyle is applied to a batch and
the mixing coefficient was drawn from a Beta distribution
B(0.4, 0.4).

4.5. Metric
Aligned with [6, 9, 7, 8, 5], we assessed the retrieval performance
with Mean Reciprocal Rank (MRR) [25]:

MRR =
1

|Q|

|Q|∑
i=1

1

rank i
, (3)

2https://github.com/fschmid56/EfficientAT

where Q represents a set of vocal imitation queries and ranki de-
notes the rank of the target sound among all sounds for the i-th
query. MRR values range from 0 to 1, with higher values indicating
better retrieval performance. In addition to the MRR and aligned
with [9] we report the Mean Recall@k for k=1 and k=2 (MR@1 &
MR@2). This metric reflects the proportion of queries that success-
fully retrieved the target sound within the top k items in the search
results.

5. RESULTS & DISCUSSION

This section presents the retrieval performance of our proposed sys-
tem for coarse- and fine-grained QBV and a comparison to selected
systems from the related work. We additionally conducted an abla-
tion study to understand the impact of our design choices better.

5.1. Coarse-grained QBV
We compared results on the coarse-grained benchmark for
M-VGGish, 2DFT, and MN to the results for CR-IMINET and
TL-IMINET reported in [5]. Table 2 shows the results. Our method
achieved the highest MRR of 0.631, substantially outperforming
both hand-crafted approaches like 2DFT [8] (0.308) and previ-
ous deep-learning-based methods like CR-IMINET [5] (0.348),
TL-IMINET [6] (0.325) and M-VGGish [7] (0.228).

We note that TL-IMINET performed much better than M-
VGGish and 2DFT, contrary to previously reported results [7, 8].
This is likely due to the larger training set (476 vs. 120 reference
sounds), which benefits models that are trained on imitation and
reference pairs (i.e., TL-IMINET) but not those that are not (i.e.,
M-VGGish, 2DFT).

5.2. Fine-grained QBV
The performance on the fine-grained benchmark is shown in Ta-
ble 3. We also experimented with training the AudioSet pre-trained
MN further with vocal imitations in the training dataset by pre-
dicting their corresponding sound classes, as an additional training
phase before the contrastive learning stage. When doing so, our
proposed system outperformed previous methods and achieved the
highest MRR of 0.513, surpassing TL-IMINET (0.356), M-VGGish
(0.416), and 2DFT (0.489). Nevertheless, the margin of the sig-
nal processing method is smaller compared to coarse-grained QBV.
When omitting the supervised pre-training, the performance of MN
(0.476) falls behind that of 2DFT. This indicates that the granularity
of the embedding space should be further improved to allow better
discrimination between recordings that contain the same acoustic
event. In the given setup, the methods are not explicitly trained
to distinguish fine-grained details in recordings that belong to the
same concept. Therefore, we hypothesize that optimizing for such
a scenario will result in further performance gains.

5.3. Ablation Study
Our ablation study, detailed in Table 1, demonstrates the effective-
ness of our proposed method’s components in the coarse-grained
setting.

By comparing the MN embeddings of reference sounds and
imitations with cosine similarity (without additional training on
reference–imitation datasets), our system achieved 0.295 MRR
(row 1), which is similar to 2DFT (see Table 2).

This setting also allows a comparison between the pre-trained
audio embedding models; when the MN is replaced with VGGish,
the MRR dropped from 0.295 to 0.228 (compare row 1 in Table 1
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Supervised Pre-Training Contrastive Fine-Tuning Performance
Model Dual AudioSet VimSketch Loss Similarity MRR MR@1 MR@2

MN ✓ ✓ - - cos 0.295 0.175 0.258
MN ✓ ✓ - BCE FNN 0.354 0.183 0.306
MN ✓ ✓ - BCE cos 0.439 0.26 0.43

MN ✓ ✓ ✓ - cos 0.508 0.35 0.497
MN ✓ ✓ ✓ BCE cos 0.582 0.422 0.595

MN ✓ ✓ ✓ NT-Xent cos 0.614 0.463 0.619
MN ✓ ✓ - NT-Xent cos 0.635 0.478 0.649
MN ✓ - - NT-Xent cos 0.493 0.322 0.477

MN - ✓ ✓ NT-Xent cos 0.553 0.399 0.544
MN - ✓ - NT-Xent cos 0.575 0.411 0.583

Table 1: Ablation study of design choices on the coarse-grained QBV setting. Dual refers to using shared or separate encoders for refer-
ence sounds and imitations; Supervised Pre-training indicates whether the encoders were pre-trained on the class labels in AudioSet and/or
VimSketch (vocal imitations only); Loss indicates which loss was used for contrastive fine-tuning (’-’ in this column means no training on
reference–imitation pairs); Similarity of two embeddings was either measured with cosine similarity (cos) or with an FNN.

Model MRR MR@1 MR@2

CR-IMINET* 0.348 ± 0.03 - -
TL-IMINET* 0.325 ± 0.03 - -

M-VGGish 0.228 ± 0.016 0.118 ± 0.018 0.182 ± 0.018
2DFT of CQT 0.309 ± 0.021 0.169 ± 0.016 0.268 ± 0.025

MN (ours) 0.631 ± 0.027 0.479 ± 0.031 0.646 ± 0.034

Table 2: Results for coarse-grained evaluation on VimSketch as de-
scribed in Section 4.1; ranges give the standard deviation across the
ten folds. (*Results taken from [9])

Model MRR MR@1 MR@2

TL-IMINET* 0.356 0.151 0.278
M-VGGish 0.416 0.212 0.364

2DFT of CQT 0.489 0.293 0.451
MN (ours) 0.476 0.278 0.449
MN (ours)� 0.513 0.313 0.493

Table 3: Results for the fine-grained evaluation on VocalImitation-
Set as described in Section 4.2. * denotes results taken from [9] and
� indicates that supervised pre-training on vocal imitations is used.

and row 3 in Table 2). This confirms our hypothesis that MN is the
stronger choice for the dual encoder setup.

Interestingly, fine-tuning the AudioSet pre-trained MN on vocal
imitations (as described in Section 5.2) resulted in an MRR increase
of more than 0.2 (from 0.295 to 0.508) without any contrastive train-
ing involved (compare the first rows in section 1 & 2 of Table 1).

TL- and CR-IMINET used an FNN with a single output and
a Binary Cross Entropy (BCE) loss to learn the similarity between
two embeddings. We tried the same with our architecture, which
only resulted in a relatively small improvement (from 0.295 in row 1
to 0.354 MRR in row 2 in Table 1). Replacing the FNN with cosine
similarity improved the MRR further to 0.439 (row 3 of Table 1),
indicating that using the FNN head is not beneficial.

Replacing the BCE loss with the NT-Xent loss increased the
performance substantially, e.g., from 0.439 to 0.635 MRR when no
supervised training on vocal imitations was used (compare row 3
in section 1 and row 2 in section 3) and from 0.582 to 0.614 with
supervised training on vocal imitations (compare row 2 in section

2 and row 1 in section 3). This is likely because the NT-Xent loss
relies on multiple negative examples in each update.

Interestingly, supervised pre-training with vocal imitations de-
creased performance in combination with pre-training on AudioSet,
NT-Xent loss, and cosine similarity (compare rows 1 & 2 in sec-
tion 3). This indicates that AudioSet pre-training is more beneficial
for coarse-grained retrieval, whereas model parameters addition-
ally pre-trained on vocal imitations in a supervised fashion allow
a more fine-grained distinction (as demonstrated by the results for
fine-grained QBV in Table 3).

Using a shared embedding network for vocal imitations and ref-
erence recordings led to a performance drop (see Section 4). This
is consistent with results reported by Zhang et al. [6], who also sug-
gest that specialized encoders for the two domains are better suited
for feature extraction.

Overall, the results indicate that the combination of pre-training
on AudioSet with two independent embedding networks and con-
trastive training with NT-Xent loss enhances the retrieval accuracy
of QBV systems.

6. CONCLUSION

This paper proposes a Query-by-Vocal Imitation system that im-
proves upon previous approaches by integrating a modern, effi-
cient CNN, pre-trained on large-scale AudioSet, in a dual encoder
setup. The encoders are fine-tuned using contrastive learning with
an adapted NT-Xent loss, aligning vocal imitations with their refer-
ence recordings in a shared embedding space. Our results demon-
strate that the proposed system substantially enhances retrieval per-
formance, establishing a new state of the art on both coarse- and
fine-grained QBV tasks. Unlike previous deep learning-based solu-
tions, the presented system clearly outperforms manually extracted
features. We believe that our proposed system represents a step
forward towards integrating QBV into sound search engines, ulti-
mately making it easier and more intuitive to search for sounds.
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ABSTRACT

Paid crowdsourcing has emerged as a popular method for annotat-
ing diverse data types such as images, text, and audio. However, the
amount of carelessly working annotators has increased as platforms
have become more popular, leading to an influx of spam workers
that answer at random, which renders the platforms unusable. This
paper documents our attempt to annotate the DESED dataset using
Amazon’s Mechanical Turk, and failing to obtain any useful data
after two attempts. Our observations reveal that while the number
of workers performing the tasks has increased since 2021, the qual-
ity of obtained labels has declined considerably. After successful
trials for annotating audio data in 2021 and 2022, in 2024 the same
user interface annotation setup predominantly attracted spammers.
Given the consistent task setup and similarity to previous attempts,
it remains unclear whether the workers are inherently subpar or if
they are intentionally exploiting the platform. The bottom line is
that despite spending a considerable amount of money on it, we ob-
tained no usable data.

Index Terms— Data annotation, crowdsourcing

1. INTRODUCTION

Crowdsourcing is a collaborative online process where a group of
individuals with different skills, knowledge, and backgrounds is
participating to work on some task. Tasks are usually surveys,
data annotations, description collections, or other such assignments
which are difficult for computers but easy for humans [1]. Amazon
Mechanical Turk (AMT) uses the term Human Intelligence Task
(HIT) for a single annotation/answer. Crowdsourcing involves two
key roles: requesters, who create data-collection tasks, and work-
ers, who complete those tasks. In paid crowdsourcing, requesters
compensate workers for their completed assignments. One benefit
of using paid crowdsourcing platforms is their vast pool of work-
ers. However, since the work is done by humans with varying abili-
ties and backgrounds, the crowdsourced results are likely to contain
some amount of errors. Some errors are simply mistakes, but there
are also workers aiming to collect the task rewards without caring
much about their work.

The quality of the crowdsourcing results can be improved by (1)
taking more control of the data collection process itself, and (2) us-
ing different postprocessing and aggregation methods. The former
means checking the correctness of some part of the annotations, and
rejecting incorrect ones and possibly banning the workers from tak-
ing more tasks. In case of a label assigning task, the latter can be
done e.g. by directly optimizing the labels or through estimating the

This work was supported by Academy of Finland grant 332063 “Teach-
ing machines to listen”.

reliabilities of the individual annotators. The study in [1] presents
a good overview of different aggregation methods. In practice, the
two approaches should be used together, but often the purpose of
using crowdsourcing is lost if keeping the annotation process clean
requires too much effort.

The general setting in the crowdsourcing platforms makes the
workers to do invisible labour, meaning that part of the time spent
on the platform does not generate any income. Invisible labour
includes e.g. rejected work, finding new tasks, interacting with
requesters, and managing payments [2]. A study from 2018 re-
ports that the average requester on Amazon Mechanical Turk paid
$11/hour. However, lower-paying requesters were publishing more
work, and as an effect the median wage for workers was approxi-
mately $2/hour [3]. Due to the factors explained above, working on
microtasks can be difficult to make profitable.

There has been some development of guidelines for requesters
on how to make their tasks ethical, e.g by having clear instructions
and examples of good answers for the task, and reasonable reward
for the tasks. Furthermore, Hiippala et.al. argue that human errors
should not be a reason for rejection [2]. This creates a problem for
the requester: how to recognize when something is a human error
and not a bad-faith answer? To be sure to stay on the fair side,
the requester should only reject the most obvious cases, e.g. tasks
done in too short time. This, in turn, opens up the opportunity for
the workers to exploit the requesters by doing the task carelessly
or simply bypassing the task and instead providing a response that
seems correct. The study in [4] shows that the amount of bad survey
data has risen from 2% in 2013 and 5% in 2018 to almost 89% in
2022; the authors bring up the same question of how to distinguish
a bad-faith answer. They also note that the workers were likely to
either co-operate closely with each other or use multiple accounts,
as some of the answers were too similar.

In audio, paid crowdsourcing has been used for creating
datasets of speech transcriptions [5], audio captions [6], positive
and negative audio-caption pairings [7]. However, hearing and clas-
sification of sounds are subjective, and e.g. the annotation context
and the worker’s personal background affects the recognized sounds
[8]. Furthermore, requesters can only recommend but cannot con-
trol the environment and equipment the workers are using for the
tasks, making the distinction between a human error and a bad-faith
answer even more trickier.

This paper documents the efforts we made in 2024 to annotate
part of the DESED [9] data for the DCASE 2024 Sound Event De-
tection Task. Our previous work has repeatedly shown that it is pos-
sible to obtain reliable annotations for sound events. We started with
a study using synthetic data [10]; as the process was shown to work,
we moved on to annotate real data [11]. Unfortunately, it seems that
the process is no longer working as expected. The contributions of
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the paper are: (1) we analyze the quality of annotations obtained
through paid crowdsourcing, observing that it has decreased con-
siderably in a few years, and (2) we show that multi-annotator com-
petence estimation (MACE) [12] is robust against bad-faith annota-
tors, even in large quantities.

2. COLLECTING THE DATA

2.1. Annotation setup

In all the annotation experiments in this paper we followed the pro-
cedure presented in [10]. The main idea was to break down the com-
plicated task of annotating onset and offset times beside the class
labels of sound events into a simple tagging task of highly over-
lapping sound clips. Afterwards, the temporally weak annotations
could be aggregated with the temporal information. The sound clips
used in the experiments were 10-second clips cut out from longer
pieces of audio. The start times for the clips were increased one
second at a time, such that two consecutive clips have nine seconds
of overlapping audio. Each clip was annotated by multiple workers,
5 in the previous work, and 3 in the current experiments. We opted
for the lower number now due to the high number of clips to anno-
tate and therefore high cost. As a consequence of the overlap, each
one-second segment of audio was included in a total of 50 anno-
tation tasks (30 in 2024). Each annotator’s competence value was
estimated using MACE [12], and the labels were reconstructed by
taking weighted averages over all the opinions that included each
one-second segment using the competences as weights [11].

For the first experiment in 2021, the audio was generated by us-
ing the isolated sound events from UrbanSound8k [13]. The events
were sampled from six classes, and the synthesized dataset con-
sisted of 20 3-minute long files [11]. For the following experiments
for MAESTRO Real [14] in 2021 and 2022 we used data recorded
from five different scenes of the TUT Acoustic Scenes 2016 dataset
[15]; for each scene we used six event classes. Due to some overlap
in the classes, the total number of classes of the resulting dataset is
17, but in the HITs the tasks were presented per acoustic scene, i.e.
with only six classes to tag. Finally in January 2024, we aimed to
annotate 556 files for the evaluation set of the Sound Event Detec-
tion task in DCASE 2024 Challenge. For this last annotation task,
the target annotation length was 10 seconds; in order to cover this
length, due to the annotation method explained above, the source
files were 28 seconds long, including 9 extra seconds on each side
of the target segment. Furthermore, the number of event classes was
ten instead of the six used in previous experiments.

We verified that using three annotators per file instead of five is
sufficient by sampling annotations using the data from MAESTRO
Real experiments. Using only three randomly selected annotators
per file gave similar results as the reconstruction based on five an-
notators.

2.2. Task description

The task layout used to collect the annotations contained an au-
dio player, a short list of instructions, and a selector for the event
classes. The instructions advised doing the experiment in a quiet
environment and with good quality headphones. It was mentioned
that the annotators could playback the audio as many times they
wanted. The annotators were asked to select all the sound event
classes they can recognize in the clip from the given list.

In all experiments the files were divided into 15 different
batches based on their start time. The first batch contained all the

clips with start times 0, 15, 30, . . . , the second batch with start times
1, 16, 31, . . . , and so on. By this construction, the gap between two
clips in a batch is always at least 15 seconds.

We required workers to have at least 1000 completed HITs and
at least 90% approval rate. In practice, we accepted almost all anno-
tations. The annotations completed in shorter time than the sound
clip were taken into closer inspection, and the ones tagging clearly
incorrect labels were rejected. However, the rejected tasks annota-
tors were not banned from taking more tasks. One thing we noticed
in the last experiment was that the workers deduced this and simply
spent more time on the task such that these “too fast” annotations
were not anymore present in the later batches.

2.3. Two attempts

In the first DESED annotation (DESED/A1), we introduced fields
for the annotator confidence: for any positive label assigned, the
annotator had to specify how confident they were about the label.
The confidence was given on a six-step scale from 50% to 100%
with 10% increments. The scope was to study the relationship be-
tween estimated competence and self-evaluated confidence of the
annotators.

After the data collection we noticed that the competence esti-
mation resulted in a very skewed distribution, where most of the
competence values were centered close to zero. Furthermore, the
aggregated labels for most of the classes did not agree very well
with the reference annotation1, and aggregating the annotations us-
ing the previously used method resulted in useless data. There was
a large number of annotators doing only a few tasks, hinting that the
task setup was too complicated and driving the workers away. The
number of available HITs was approximately three-fold compared
to the earlier experiments, but the highest number of files annotated
by a single worker in DESED/A1 was 112.

We do not know what caused the high number of bad annota-
tions. Based on the task setup, there are two possible factors. First,
the number of classes was increased from six to ten, making an in-
dividual task more complex. Second, the annotators had to answer
the question about confidence for each positive label, which adds to
the annotators’ work load. We also hypothesized that the reason for
such a unusual competence distribution was that the data was too
sparse for MACE to handle, due to the high number of annotators
doing few HITs. We decided to repeat the process without the con-
fidence question. For the second DESED annotation (DESED/A2)
we reverted to the basic task layout to see if there was any difference
without the question about confidence. Unfortunately, in terms of
label quality, we ended up with similar results as in DESED/A1.

3. SIFTING THROUGH THE DATA

3.1. Analysis of the outcome

We started the analysis of DESED/A1 with the standard approach
by estimating the annotators’ competence values using MACE. The
competences can vary from 0 to 1, and according to MACE the
vast majority of the annotators had extremely low competence val-
ues: the median competence was 0.09 and the fraction of annotators
with a competence value smaller than 0.01 was over 19%. Figure 1
shows the histograms of the competence values in both experiments.
In DESED/A1 the amount of workers annotating at most 5 files was
51%; this number decreased to 36% in DESED/A2. However, the

1Reference annotation available as manually annotated strong labels [9]
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Figure 1: Histograms of the estimated competences.

competence distribution in DESED/A2 was even more skewed than
in DESED/A1. The numbers suggest that removing the question
about confidence made the task more attractive for workers, but
maybe also less engaging.

The annotators often disagreed with each other. In terms of
aggregation, having only three opinions per file instead of five ac-
centuated the problem caused by disagreements. 62% of the clips
in DESED/A1 had completely disjoint class labels from the three
annotators, and this number increased to 87% in DESED/A2. We
observed that annotators also disagreed with themselves: there were
20 annotators who annotated the same file in both DESED/A1 and
DESED/A2, and in 15 of the cases they assigned completely differ-
ent sets of labels. The inconsistencies can be due to changes in the
circumstances, but either the sounds are very hard to recognize, or
the workers did not perform the task genuinely. Nevertheless, these
findings illustrate the randomness of the annotator behavior overall.

Table 1 shows the dataset sizes and numbers of workers, as well
as the time of the data collection. Due to the long gap between the
last MAESTRO Real annotation and DESED/A1, it is understand-
able that 87% of the worker accounts were new in our experiments.
However, between the two DESED experiments there was less than
a five months gap, and still almost half of the annotator accounts in
DESED/A2 were completely new to our tasks.

3.2. Tagging precision and MACE

For some of the scenes there exist temporally strong labels. We con-
verted the available labels into tags of the annotated clips to measure
each annotator’s tagging performance. The tagging performances
over the workers in different scenes are shown in Table 2. To check
the overall quality of the answers, we also calculate the average pre-
cision over HITs. With this, precision in DESED/A1 and A2 drops
to 43.2 and 43.9, respectively. This indicates that the workers com-
pleting more tasks are not producing the better labels.

The worker competence is computed based on the tagging task,
and we expect a connection between the competence and tagging
performance. In Fig. 2 we show the precision on the individual and
combined experiments. The annotators are divided into equally-
sized groups based on their competence values, with the bin borders

Scene Date #Clips #Workers Acc. workers
Synthetic 3/2021 3420 680 680
City center 6/2021 3544 717 1154
Residential area 6/2021 3429 861 1517
Cafe/restaurant 9/2022 3273 1554 2870
Grocery store 9/2022 2840 1509 3450
Metro station 9/2022 3418 1641 3832
DESED/A1 1/2024 10545 3295 6711
DESED/A2 6/2024 10545 3059 8125

Table 1: Annotation dates and numbers of individual sound clips
and annotators. The last column shows the cumulative number of
workers that participated in our data collections.

Scene F-score Precision Recall
Synthetic 72.3 89.3 62.8
City center 50.4 60.9 45.6
Residential area 51.0 57.2 50.0
DESED/A1 37.0 50.9 31.4
DESED/A2 37.8 51.4 31.7

Table 2: Average tagging scores in different experiments.
’

marked on the x-axis. The competence quantiles are very skewed:
in DESED/A1 3/5 of the workers have a competence less than 0.17,
and in DESED/A2 4/5 of the workers have competence less than
0.15. Combining the data from the two flattens the competence dis-
tribution, but adds a few outliers in the plot. These results indicate
that MACE is still able to identify the better performing workers
despite the vast amount of noise in the annotation. Furthermore,
combining the data seems to improve the MACE output. Unfortu-
nately we do not have enough reliable annotations even when the
experiments are combined.

3.3. Comparing aggregated labels against reference data

We compare the reconstructed soft labels to the reference data us-
ing macro soft F-score [16] to avoid the problem of choosing the
threshold value for binarizing the data. Table 3 shows the F-scores
for the scenes we have a reference annotation available. The scores
for both DESED experiments are similar to each other, but also ex-
tremely low. Furthermore, when the annotation data is combined
from the two experiments, the standard method results in worse la-
bels than either of the experiments alone. Table 3 also includes the
average competence Cavg evaluated using MACE for each annota-
tion set. The average competence is not telling the whole truth, as
the weighting is in practice determined by the differences between
the competences related to a single segment. This can also be seen
in the combined case, where the average competence is as high as
0.58.

For further analysis, we can inject the reference annotation into
the competence estimation along with the collected labels to obtain
a competence value Cref for the reference labels. If the reference
labels mostly agree with the annotations, the annotators and the ref-
erence should have a high competence. Similarly, if the reference
labels are mostly different from the annotated labels, MACE inter-
prets the reference as an annotator submitting random labels, result-
ing in a low competence value. Combining the data from the two
experiments improves the MACE results in terms of higher Cavg

and Cref , but does not change much the competence distribution.
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Figure 2: Tagging precision for DESED/A1, DESED/A2, and the combined data. Workers are grouped by their competence values into
equally-sized groups. The skewness of the competence value distributions in the two DESED experiments can be seen in the bin borders.

Scene FM Cavg Cref

Synthetic 63.8 0.73 0.89
City center 45.4 0.43 0.68
Residential area 39.3 0.53 0.57
Cafe/restaurant - 0.43 -
Grocery store - 0.42 -
Metro station - 0.34 -
DESED/A1 31.2 0.31 0.35
DESED/A2 31.0 0.17 0.36
DESED/A1 + A2 29.1 0.58 0.61

Table 3: Soft macro F-scores FM of the reconstructed sound event
labels, average competences of the annotators Cavg , and the refer-
ence annotation competences Cref when injected into the datasets.
For the three scenes without a reference annotation available, only
the average competence is shown.

3.4. Competence value clamping

The reconstructed soft value for a segment is a weighted average of
the annotators labels, using the competence values as weights. For
DESED, MACE estimated a majority of the annotators to have a
competence value close to zero; this might cause some instabilities
in the label reconstruction, if all the annotators for a given segment
have very low competences. Furthermore, MACE uses a stochastic
method, resulting in fluctuation in the output values. However, the
small differences in the competence values can result in unexpect-
edly large differences when weighting the labels, while, intuitively,
if the annotators are equally bad, they should have equal weights.

As an additional experiment, we assume that all low-competent
annotators are equally bad, and clamp the competence values of the
lowest ranking annotators to a small fixed value. We use 10−4 as
the competence value, and set it as the competence of the worst 50%
and 75% of the annotators. Table 4 shows the comparison between
the labels generated from the original competence values and labels
generated from the partially clamped competences, as well as us-
ing equal weights for all annotators. The standard method is better
than not using any weighting, but using the MACE-estimated com-
petences results in a lower F-score than resetting the competences
of the lowest ranking annotators, to different degree for DESED/A1
and DESED/A2; furthermore, while combining the DESED/A1 and
DESED/A2 annotations shows no benefit with the standard pro-
cedure, resetting the lowest competences to the same small value
produces the best scoring soft labels. While having more data in
DESED/A1+A2 results in a wider distribution of competences and
better correspondence with precision, according to Fig. 2, the un-
derlying problem of bad quality labels remains unchanged.

Scene Original R50 R75 EQ
DESED/A1 31.2 32.4 34.3 21.8
DESED/A2 31.0 31.9 32.8 22.0
DESED/A1 + A2 29.1 33.8 34.5 21.8

Table 4: Soft macro F-scores for the reconstructed labels and the
effect of competence value resetting. In R50 and R75, the lowest-
competent 50% and 75% of the annotators, respectively, have com-
petence value reset to 10−4. EQ denotes equal competences.

3.5. Discussion

It is difficult to draw the border between a bad-faith answer and a
simple mistake, especially when the task involves human hearing.
The problem of bad-quality answers is not platform specific [17],
and hence not limited to our experience in using AMT. At the time
of our first annotation experiments, there were already discussions
about the data quality in paid crowdsourcing [18, 19, 20]. However,
in our previous annotation experiments, the amount of low quality
work did not hamper significantly the end result quality, unlike now.
Based on this work, it seems that MACE is able to identify the an-
notators producing good quality labels. The problem arises, though,
when there are no reliable annotations for a segment, in which case
the output annotation ends up having noisy labels.

We speculated that asking annotators’ confidence made the an-
notation somehow annoying or more difficult, causing workers to
abandon it after a few HITs. Removing the confidence question in-
deed decreased the number of annotators who only completed a few
HITs and increased the average task count of the workers, but it did
not improve the label quality.

4. CONCLUSIONS

This paper presented a detailed analysis of the labels produced by
a crowdsourcing process. The approach was to collect temporally
strong labels by dividing the work into simpler subtasks of weak
labeling, a method previously proven to work. Our conclusion is
that the quality of crowdsourced work has worsened considerably,
rendering the process unusable. It is hard to pinpoint the reason
for this decrease in quality, with potential causes being the influx
of workers gaming and exploiting the process, the perceived unfair
difficulty/payment ratio of the task, etc. It may be possible to col-
lect sufficiently good labels by simply using more workers, but the
process gets prohibitively expensive, driving researchers to return
to doing manual annotation themselves.
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ABSTRACT

In this work, we aim to analyze and optimize the EnCLAP frame-
work, a state-of-the-art model in automated audio captioning. We
investigate the impact of modifying the acoustic encoder compo-
nents, explore pretraining with different dataset scales, and study the
effectiveness of a reranking scheme. Through extensive experimen-
tation and quantitative analysis of generated captions, we develop
EnCLAP++, an enhanced version that significantly surpasses the
original.

Index Terms— Automated audio captioning, language-based
audio retrieval, neural audio codec, audio-text joint embedding

1. INTRODUCTION

Automated audio captioning (AAC), a cross-modal translation involv-
ing transcribing audio signals into concise and meaningful natural
language descriptions [1], remains a particularly challenging task
with a substantial performance gap between human and machine.
One significant contributor to the performance gap can be attributed
to the intrinsic complexity of the task, as distinguishing between var-
ious sound events, especially between similar and ambiguous ones,
requires extensive real-world knowledge. Furthermore, the scarcity
of high-quality data, with the most widely used datasets, AudioCaps
[2] and Clotho [3] containing only 50K and 20K captions, respec-
tively, poses an additional challenge. To address these challenges,
prior studies have employed pretrained audio encoders trained on
audio classification tasks [4, 5, 6], leveraged the text generation capa-
bilities of pretrained language models like GPT-2 [7, 8, 9] and BART
[10, 11], and incorporated auxiliary loss terms, including keyword
prediction loss [12] or sentence embedding loss [13], to improve the
semantic quality of captions and provide additional training signal.

Building on the previous line of research, Kim et al. [14] pro-
posed the EnCLAP framework which integrates a set of pretrained
models with an auxiliary training task. Specifically, EnCLAP uti-
lizes two acoustic feature encoders, EnCodec [15] and CLAP [16],
to generate timestep-level and sequence-level representation of the
input audio sequence, respectively. EnCLAP utilizes pretrained
BART as the caption decoder to leverage these features and generate
captions. Furthermore, Kim et al. also introduced masked codec
modeling (MCM), an auxiliary task which involves masking a part
of the input codec sequence and predicting it, to enhance the acoustic
awareness of the caption decoder. The caption decoder was trained
jointly using cross-entropy loss for caption generation and MCM
loss. The combination of these approaches allowed EnCLAP to
achieve state-of-the-art performance on the AudioCaps dataset.

Although EnCLAP exhibits impressive performance, the study
by Kim et al. lacks sufficient experimental evaluation for deter-
mining the optimal models for the model components. Notably,
the authors do not investigate alternative sequence-level acoustic
features beyond CLAP. Furthermore, for timestep-level acoustic
features, while they demonstrate that discrete codec input outper-
forms continuous input, their analysis is restricted to a single setup
using EnCodec, without exploring other options or configurations.
Additionally, Kim et al. acknowledge the issue of overfitting in
larger model variants but do not investigate the use of large-scale
weakly-labeled datasets [17, 6], which contain noisy and model-
generated captions. Therefore, the EnCLAP framework has potential
for further optimization.

In this work, we extend and optimize the EnCLAP framework
through a comprehensive examination of its components. We ex-
plore alternative acoustic feature encoder components and assess
their efficacy. We also investigate the impact of large-scale training
incorporating weakly-labeled datasets on the framework’s perfor-
mance. Furthermore, we adopt a sampling-and-reranking approach
[6] as an alternative to beam search decoding and evaluate its effec-
tiveness. Finally, we conduct a qualitative analysis of the generated
captions to examine the effects of each component on the outputs.
Based on our findings, we present EnCLAP++, an improved version
of the EnCLAP model that achieved second place in the DCASE2024
Challenge Task6. Figure 1 provides an overview of EnCLAP++.

2. EXPERIMENTAL DESIGN

2.1. Timestep-level Acoustic Embedding

Neural audio codecs are autoencoder models designed to encode
waveforms into sequences of discrete codes. Recent advancements
[18, 15, 19] typically employ residual vector quantization (RVQ) for
compression, utilizing multiple codebooks to quantize the residu-
als of preceding codebooks. Ultimately, the input waveforms are
transformed into a set of parallel discrete code sequences, each of
which is associated with a unique codebook. Neural audio codecs
have demonstrated success as the acoustic representation format in
generative audio models [20, 21, 22].

Kim et al. [14] demonstrate that language models achieve supe-
rior performance when used with discrete input sequences compared
to continuous input sequences. However, their study does not ex-
plore the impact of different configurations within the discrete input
sequence setup. To address this limitation, we conduct experiments
to examine the effects of different codec settings on the model per-
formance. Specifically, we investigate the effect of codebook size,
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Figure 1: Overall architecture of EnCLAP++

sample rate, and codec type on the final outcome.
The original EnCLAP employed a version of EnCodec [15] that

compresses a 24kHz audio signal into 16 discrete code sequences
at a rate of 75Hz, with a codebook size of 1024. We experiment
with two additional variants of EnCodec, which yield 8 and 32 code
sequences, respectively, as well as a variant that processes 48kHz
audio signal input. As for the alternative codec, we use a variant of
Descript Audio Codec (DAC) [19] that closely resembles the original
Encodec setup, which transforms 24kHz audio signal into 32 code
sequences at a rate of 75Hz. We opted for DAC as the alternative
codec due to its superior performance in audio compression, as well
as downstream tasks [19, 23].

2.2. Sequence-level Acoustic Embedding

While EnCLAP employs CLAP [16] as its sequence-level acoustic
feature encoder, preceding studies in audio captioning have pre-
dominantly utilized models pretrained on the AudioSet [24] dataset
for audio classification task [4, 5, 6]. In this work, we investigate
alternative candidates for the sequence-level acoustic encoder com-
ponent. Specifically, we examine the sequence-level representation
capabilities of a model pretrained on AudioSet with audio tagging
task and its variants, which have gone through additional audio-text
retrieval training. We compare the audio captioning performance of
these models with the original CLAP setup and assess the impact of
additional retrieval training on downstream performance.

For the baseline sequence-level encoder, we use ConvNext-Tiny
[25] pretrained on AudioSet classification, referred to as CNext,
and three of its variants that have undergone additional training on
datasets of varying scales. Specifically, the three dataset configu-
rations are: (1) Clotho [3], (2) AudioCaps [2] and Clotho, and (3)
WavCaps [17], AudioCaps, and Clotho. We use m-LTM framework
[26] and bge text encoder [27] for retrieval training. We assess the
performance of these models against the original CLAP version.

2.3. Large-scale Pretraining

The original EnCLAP described two versions of the model, denoted
as "base" and "large", based on the size of the underlying BART [10]
model used. The study highlights the issue of overfitting, especially
in the large variant with smaller training datasets. To mitigate this is-
sue, we draw on the recent trend in audio captioning, which involves
leveraging weakly-labeled datasets for pretraining [17, 6]. In partic-
ular, we evaluate a large-scale pretraining setup, where the model
is pretrained on the WavCaps, and finetuned on Clotho, against the
original EnCLAP dataset setup, where the model is pretrained on
AudioCaps and finetuned on Clotho. From WavCaps, we filter out

audio clips that fall outside the 1-30 second duration range, as well
as overlapping clips from AudioCaps and Clotho. We evaluate both
setups using both the base and large variants of our model.

2.4. Generation and Reranking

Previous works, including EnCLAP, have utilized beam search de-
coding for caption generation. However, Wu et al. [6] demonstrates
that the sampling-then-reranking approach yields more diverse and
informative captions. Wu et al. proposes two scores for candidate
reranking: the encoder reranking score and the decoder reranking
score. The encoder reranking score is the cosine similarity score
between the input audio representation and the generated caption rep-
resentation computed using a retriever model. The decoder reranking
score is the log-likelihood of the generated caption given the input
audio. In this study, we explore the benefits of incorporating the
reranking scheme into the EnCLAP framework. Specifically, we
compare the original beam search scheme against three reranking
setups: encoder reranking, decoder reranking, and hybrid reranking.
We use CLAP as the retriever model for computing the encoder
reranking score. We perform a fluency error-based filtering before
the reranking procedure, following Wu et al..

For sampling, we use nucleus sampling with a probability thresh-
old of 0.95 and a temperature of 0.5 to generate 30 candidates. For
hybrid reranking, we rank the candidates by the weighted sum of
the encoder reranking score and the decoder reranking score using
weights of 0.6 and 0.4, respectively.

2.5. Quantitative Evaluation Metric

We adopt both widely used AAC metrics, METEOR, CIDEr, SPICE,
and SPIDEr, and more recently proposed AAC metrics, SPIDEr-FL,
FENSE [28], and Vocab to evaluate various aspects of the generated
captions. All metrics are calculated using the aac-metrics library.
METEOR is a machine translation evaluation metric, based on un-
igram precision and recall. CIDEr and SPICE assess the syntactic
and semantic quality of the generated captions, respectively, while
SPIDEr is a linear combination of them. SPIDEr-FL is SPIDEr score
penalized by the fluency error. FENSE is the combination of the
SentenceBERT similarity score and the fluency error penalty. Vocab
shows the diversity of the vocabularies in the generated captions.

2.6. Qualitative Analysis

Although quantitative metrics provide valuable insights into relative
improvements in model performance, they are inherently limited, par-
ticularly in tasks such as audio captioning, where no single objective
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Table 1: Evaluation Results on Clotho. Ret refers to retrieval finetuning on the datasets listed in parentheses. CL, AC, and WC represent the
Clotho, AudioCaps, and WavCaps datasets, respectively. Base and Large indicate the size of the pretrained BART model.

Model METEOR CIDEr SPICE SPIDEr SPIDEr-FL Vocabulary FENSE
Timestep-level Representations

EnCLAP-base 0.180 0.461 0.128 0.294 0.291 535 0.497
w/ EnCodec, 8 codebooks 0.178 0.444 0.127 0.286 0.283 626 0.497
w/ EnCodec, 32 codebooks 0.180 0.446 0.128 0.287 0.285 658 0.503

w/ EnCodec, 48khz 0.179 0.441 0.125 0.283 0.281 610 0.505
w/ DAC 0.183 0.463 0.131 0.297 0.294 589 0.504

Sequence-level Representations
CLAP + DAC 0.183 0.463 0.131 0.297 0.294 589 0.504
CNext + DAC 0.175 0.426 0.120 0.273 0.269 584 0.488

CNext + Ret(CL) + DAC 0.179 0.431 0.127 0.279 0.274 677 0.497
CNext + Ret(CL+AC) + DAC 0.181 0.454 0.130 0.292 0.287 596 0.500

CNext + Ret(CL+AC+WC) + DAC 0.179 0.452 0.127 0.290 0.286 676 0.508
Large-Scale Pretraining

Base 0.183 0.463 0.131 0.297 0.294 589 0.504
Large 0.184 0.393 0.132 0.262 0.260 571 0.480

Base + WC Pretraining 0.185 0.470 0.134 0.302 0.299 620 0.505
Large + WC Pretraining 0.187 0.464 0.130 0.297 0.293 576 0.500

Generation and Reranking
Beam Search 0.185 0.470 0.134 0.302 0.299 620 0.505

Beam Search without Fluency error 0.185 0.470 0.135 0.302 0.302 619 0.511
Encoder Reranking 0.176 0.396 0.126 0.261 0.261 915 0.520
Decoder Reranking 0.187 0.460 0.139 0.299 0.299 608 0.506
Hybrid Reranking 0.190 0.479 0.142 0.310 0.310 699 0.526

truth exists. Thus, in addition to reporting quantitative metrics, we
perform a qualitative analysis of the generated captions. Specifically,
we identify the examples with the largest improvement in the evalu-
ation metric between the baseline and the best-performing variant
and manually examine the enhancement in the caption quality.

3. RESULTS AND ANALYSIS

3.1. Timestep-level Acoustic Embedding

Table 1 shows that substituting the EnCodec encoder with an alter-
native variant does not enhance the model’s performance and, in
fact, leads to incremental degradation. This indicates that changing
the timestep-level feature encoder across different EnCodec models
has a negligible effect on the performance in the audio captioning
task. Contrastively, replacing the EnCodec encoder with the DAC en-
coder leads to a modest improvement in the model performance. We
believe that the DAC’s superior ability to preserve the information
in the original audio signal contributes to the enhancement. There-
fore, we adopt DAC as the timestep-level acoustic feature encoder in
subsequent experiments.

3.2. Sequence-level Acoustic Embedding

As illustrated in Table 1, the model using CNext as the sequence-level
acoustic encoder falls behind the CLAP variant. However, the results
indicate that additional retrieval training boosts the audio captioning
performance and further, increasing the dataset size narrows the
performance gap relative to the CLAP variant. Nevertheless, none
of the CNext variants fully surpass the CLAP variant in terms of
performance. We attribute the performance gap to the fact that CLAP
was trained on a much larger scale than CNext, even with additional
training, which is consistent with our findings within the CNext
variants. Consequently, we will proceed with the original CLAP
variant in subsequent experiments.

3.3. Large-scale Pretraining

The third section of Table 1 demonstrates the effect of augmenting
the pretraining dataset with a large-scale weakly-labeled dataset.
Notably, our results for the original dataset setup replicate the phe-
nomenon observed in the original EnCLAP work, where the large
variant performs worse than the base variant. While variants with
large-scale pretraining also exhibit this issue, the performance degra-
dation is significantly less pronounced. Given that large-scale pre-
training substantially improves the base variant, we infer that even
the base variant can benefit from larger datasets. Our hypothesis is
that larger datasets are necessary to fully utilize the capabilities of
the large variant models.

3.4. Generation and Reranking

We investigated sampling and reranking techniques using the base
variant pretrained on WavCaps from Sec 3.3. The results are pre-
sented in the last section of Table 1. Our findings indicate that
encoder reranking enhances both the diversity of words and the
semantic content of the generated captions. However, this improve-
ment in semantic quality comes at the expense of syntactic quality. In
contrast, decoder reranking alone yields results comparable to beam
search, while when encoder and decoder reranking are combined,
there is a significant improvement in semantic quality without any
degradation in syntactic quality.

3.5. Qualitative Analysis

Timestep-level Acoustic Embedding. The variant without DAC
tends to focus on the most prominent event in a clip, but frequently
overlooks background and supplementary acoustic events. This
shortcoming can be attributed to the inherent constraint of relying on
a single vector to represent the entire clip, which can lead to a loss
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Table 2: Example of the generated captions.
Timestep-level Representations

w/o DAC w/ DAC Ground Truth
A person walks on a hard A person is walking on a hard surface A person walking down a beach boardwalk with seagulls squawking
surface at a constant pace while birds are chirping overhead and people chatting in the background near the end

A woman is speaking over an A man is speaking on a radio A man is talking on a radio
intercom to a crowd of people with people talking in the background with singing in the background
A door creaks as it is opened A person is walking on a wooden floor Someone walking slowly

and closed several times while birds chirp in the background as birds chirp in the background
Sequence-level Representations

w/o CLAP w/ CLAP Ground Truth
Water is running from A person is walking through Someone is walking outside

a faucet into a sink a pile of leaves on a path covered with dried leaves
The wind is blowing and A group of children are Many children are talking and

a car is driving by yelling and screaming screaming, all at the same time
A heavy rain coming down A saw is being used A saw being used to saw wood that

outside during a storm to cut a piece of wood makes squeaking noises at the end
Generation Scheme

Beam search Reranking Ground Truth
A gun is being fired A hammer is repeatedly hit Someone is repeatedly hitting

at a target with a metal object a hammer onto a wall or a nail
Birds are chirping and people Children are playing, a car is driving, and Children shout and play at the playground as
are talking in the background birds are chirping cars loudly drive by in the background
The engine of a car starts and A motorcycle engine starts up and idles A motorcycle engine starts

then the car drives away for a while before idling down and idling again and idles for a while

Table 3: Result on AudioCaps
Model METEOR CIDEr SPICE SPIDEr FENSE

AL-MixGen [29] 0.242 0.769 0.181 0.475 -
Wavcaps [17] 0.250 0.787 0.182 0.485 -
CoNeTTE [5] 0.253 0.806 0.184 0.495 0.643

EnCLAP-base [14] 0.247 0.780 0.186 0.483 0.650
EnCLAP-large [14] 0.255 0.803 0.188 0.495 0.655
EnCLAP++-base 0.257 0.815 0.188 0.501 0.661
EnCLAP++-large 0.269 0.823 0.197 0.510 0.665

of details. The inclusion of DAC, a timestep-level representation,
enables the model to capture more fine-grained details of the scene.
Sequence-level Acoustic Embedding. While the model without
CLAP generally succeeds in capturing the atmosphere of the acoustic
scene, it tends to confound the overall semantic meaning of the scene.
Thus, its captions describe an event similar to the actual event, but
is actually different. We believe this comes from the lack of world
knowledge to clear up the ambiguity. Thus, the variant with CLAP
does not suffer from this issue. We attribute this to the model’s lack of
world knowledge, which fails to resolve ambiguities. Consequently,
its generated captions describe an event that is similar to, yet distinct
from, the actual event. In contrast, the variant with CLAP does not
suffer from this issue.
Generation and Reranking. The captions produced by beam
search variants are typically shorter and more concise, often omitting
scene details. In contrast, the reranking variant generates more
detailed captions that closely align with the label captions.

3.6. Results on AudioCaps

Based on observations from Section 3, we propose EnCLAP++, an
improved version of EnCLAP that incorporates DAC, large-scale
pretraining, and hybrid reranking. We evaluate EnCLAP++ on the
AudioCaps dataset and present the results in Table 3. The assessment
shows that both EnCLAP++-base and EnCLAP++-large outperform
their respective EnCLAP counterparts, demonstrating the effective-
ness of our mix of optimizations across different datasets.

Table 4: DCASE 2024 Challenge Result on Clotho Evaluation Split
Model METEOR CIDEr SPICE SPIDEr FENSE

DCASE 2024 Baseline 0.186 0.442 0.135 0.288 0.510
Feng et al. [30] 0.192 0.495 0.141 0.318 0.525
Kim et al. [31] 0.189 0.409 0.135 0.272 0.526
Liu et al. [32] 0.195 0.493 0.145 0.319 0.533

Chen et al. [33] 0.194 0.509 0.145 0.327 0.541
Jung et al. [34] 0.172 0.344 0.140 0.242 0.554

EnCLAP++ 0.199 0.480 0.148 0.314 0.544

3.7. Results on DCASE Challenge 2024

We submitted a variant of EnCLAP++ to the DCASE Challenge
2024. This variant employs a large version of BART and is pretrained
on an extensive dataset that combines WavCaps, AudioCaps, and
Clotho-Chatmix [6]. Due to the challenge regulations, we could not
use CLAP because of potential overlap with the evaluation dataset.
Therefore, we adopted CNext from Sec 2.2, which was additionally
trained with text-retrieval on WavCaps, AudioCaps, and Clotho, as
the sequence-level representation.

The overall results are presented in Table 4. Our model achieved
second place in the challenge, which was ranked based on the FENSE
metric. Additionally, our model outperformed all other models on
the METEOR and SPICE metrics.

4. CONCLUSION

This study presents an analysis of the EnCLAP framework and its
components. Our investigation reveals that replacing the EnCodec
encoder with the DAC encoder, augmenting the pretraining dataset
with large-scale weakly-labeled data, and the incorporating of a
reranking scheme enhances the model’s performance in audio cap-
tioning. Notably, our modified variant, EnCLAP++ shows significant
improvement over the original model. Future directions for our re-
search involve extending the EnCLAP framework to incorporate
recent advances in large language models, thereby enhancing its
capabilities.

64



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

5. REFERENCES

[1] K. Drossos, S. Adavanne, and T. Virtanen, “Automated audio
captioning with recurrent neural networks,” in IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2017.

[2] C. D. Kim, B. Kim, H. Lee, and G. Kim, “AudioCaps: Gener-
ating captions for audios in the wild,” in NAACL, 2019.

[3] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: an audio
captioning dataset,” in ICASSP, 2020.

[4] X. M. et al., “Audio captioning transformer,” in DCASE Work-
shop, 2021.

[5] E. Labbé, T. Pellegrini, and J. Pinquier, “Conette: An efficient
audio captioning system leveraging multiple datasets with task
embedding,” arXiv preprint arXiv:2309.00454, 2023.

[6] S.-L. Wu, X. Chang, G. Wichern, J.-W. Jung, F. Germain,
J. Le Roux, and S. Watanabe, “Improving audio captioning
models with fine-grained audio features, text embedding super-
vision, and llm mix-up augmentation,” in ICASSP, 2024.

[7] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever,
et al., “Language models are unsupervised multitask learners,”
OpenAI blog, 2019.

[8] M. Kim, S.-B. Kim, and T.-H. Oh, “Prefix tuning for automated
audio captioning,” in ICASSP, 2023.

[9] S. Deshmukh, B. Elizalde, R. Singh, and H. Wang, “Pengi:
An audio language model for audio tasks,” arXiv:2305.11834,
2023.

[10] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “BART: Denois-
ing sequence-to-sequence pre-training for natural language
generation, translation, and comprehension,” in ACL, 2020.

[11] F. Gontier, R. Serizel, and C. Cerisara, “Automated audio cap-
tioning by fine-tuning bart with audioset tags,” in DCASE
Workshop, 2021.

[12] Y. Koizumi, R. Masumura, K. Nishida, M. Yasuda, and S. Saito,
“A Transformer-Based Audio Captioning Model with Keyword
Estimation,” in INTERSPEECH, 2020.

[13] E. Labbé, J. Pinquier, and T. Pellegrini, “Multitask learning in
audio captioning: a sentence embedding regression loss acts as
a regularizer,” arXiv preprint arXiv:2305.01482, 2023.

[14] J. Kim, J. Jung, J. Lee, and S. H. Woo, “Enclap: Combining
neural audio codec and audio-text joint embedding for auto-
mated audio captioning,” in ICASSP, 2024.

[15] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High fidelity
neural audio compression,” arXiv:2210.13438, 2022.

[16] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and
S. Dubnov, “Large-scale contrastive language-audio pretrain-
ing with feature fusion and keyword-to-caption augmentation,”
in ICASSP, 2023.

[17] X. Mei, C. Meng, H. Liu, Q. Kong, T. Ko, C. Zhao, M. D.
Plumbley, Y. Zou, and W. Wang, “Wavcaps: A chatgpt-assisted
weakly-labelled audio captioning dataset for audio-language
multimodal research,” arXiv:2303.17395, 2023.

[18] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and
M. Tagliasacchi, “Soundstream: An end-to-end neural audio
codec,” IEEE/ACM TASLP, 2021.

[19] R. Kumar, P. Seetharaman, A. Luebs, I. Kumar, and K. Kumar,
“High-fidelity audio compression with improved rvqgan,” in
NeurIPS, 2023.

[20] F. Kreuk, G. Synnaeve, A. Polyak, U. Singer, A. Défossez,
J. Copet, D. Parikh, Y. Taigman, and Y. Adi, “Audiogen: Tex-
tually guided audio generation,” in ICLR, 2022.

[21] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen,
Y. Liu, H. Wang, J. Li, et al., “Neural codec language models
are zero-shot text to speech synthesizers,” arXiv:2301.02111,
2023.

[22] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve,
Y. Adi, and A. Defossez, “Simple and controllable music gen-
eration,” in NeurIPS, 2023.

[23] H. Wu, H.-L. Chung, Y.-C. Lin, Y.-K. Wu, X. Chen, Y.-C. Pai,
H.-H. Wang, K.-W. Chang, A. H. Liu, and H.-Y. Lee, “Codec-
superb: An in-depth analysis of sound codec models,” arXiv
preprint arXiv:2402.13071, 2024.

[24] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Au-
dio set: An ontology and human-labeled dataset for audio
events,” in ICASSP, 2017.

[25] T. Pellegrini, I. Khalfaoui-Hassani, E. Labbé, and T. Masque-
lier, “Adapting a convnext model to audio classification on
audioset,” arXiv:2306.00830, 2023.

[26] M. Luong, K. Nguyen, N. Ho, R. Haf, D. Phung, and L. Qu,
“Revisiting deep audio-text retrieval through the lens of trans-
portation,” in ICLR, 2024.

[27] S. Xiao, Z. Liu, P. Zhang, and N. Muennighof, “C-pack: Pack-
aged resources to advance general chinese embedding,” arXiv
preprint arXiv:2309.07597, 2023.

[28] Z. Zhou, Z. Zhang, X. Xu, Z. Xie, M. Wu, and K. Q. Zhu, “Can
audio captions be evaluated with image caption metrics?” in
ICASSP, 2022.

[29] E. Kim, J. Kim, Y. Oh, K. Kim, M. Park, J. Sim, J. Lee, and
K. Lee, “Exploring train and test-time augmentations for audio-
language learning,” arXiv:2210.17143, 2022.

[30] Q. Feng, Q.and Kong, “Semantic enhancement encoder for
audio captioning and spectrogram-based data augmentation,”
DCASE Challenge, Tech. Rep., 2024.

[31] E. Kim, J. Sim, J. W. Lee, and K. Lee, “Retrieval-augmented
audio captioning with llm fine-tuning,” DCASE Challenge,
Tech. Rep., 2024.

[32] J. Liu and G. Li, “Leveraging ced encoder and large language
models for automated audio captioning,” DCASE Challenge,
Tech. Rep., 2024.

[33] W. Chen, X. Li, Z. Ma, Y. Liang, A. Jiang, Z. Zheng, Y. Qian,
P. Fan, W.-Q. Zhang, C. Lu, J. Liu, and X. Chen, “Sjtu-thu
automated audio captioning system for dcase 2024,” DCASE
Challenge, Tech. Rep., 2024.

[34] J.-w. Jung, D. Zhang, H. C.-H. Yang, S.-L. Wu, D. M. Chan,
Z. Kong, D. Ruifan, Z. Yaqian, V. Rafael, and S. Watanabe,
“Automatic audio captioning with encoder fusion, multi-layer
aggregation, and large language model enriched summariza-
tion,” DCASE Challenge, Tech. Rep., 2024.

65



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

CLAP4SED: TRAINING-FREE MULTIMODAL FEW-SHOT RETRIEVAL FOR REAL-TIME
SOUND EVENT DETECTION ON EMBEDDED DEVICES

Wei-Cheng Lin, Irtsam Ghazi, Ajit Belsarkar, Luca Bondi, Samarjit Das, Ho-Hsiang Wu

Robert Bosch LLC, USA
wei-cheng.lin@us.bosch.com

ABSTRACT
Implementing real-time sound event detection (SED) on embedded
devices poses significant challenges, primarily related to general-
izability and complexity. Existing SED models are predominantly
suited for closed-form recognition, making adaptation to new or un-
seen sound classes difficult. While recent advancements in audio
foundation models (AFM) such as CLAP offer potential for open-
form sound event classification, they often come with substantial
model complexity, rendering them impractical to deploy on em-
bedded devices for real-time tracking. In this study, we introduce
the CLAP4SED framework, a training-free, real-time SED solution
derived from CLAP that can be flexibly deployed across various
open-ended scenarios on embedded devices. Our experimental re-
sults conducted on three publicly available datasets demonstrating
the competitive SED accuracy with less than 100ms latency under
Ambarella CV22 camera chip setup.

Index Terms— sound event detection, few-shot prompt engi-
neering, audio foundation models, embedded AI systems

1. INTRODUCTION

Audio has become a popular sensory modality for monitoring our
environment, it complements vision in better handling of occlu-
sions and can support omnidirectional signal. Audio sensors have
been deployed to real-world environment for applications such as
noise monitoring in urban areas [1], tracking avian diversities [2]
and bird migrations [3]. These sound event detection (SED) [4]
solutions are usually deployed as embedded systems with computa-
tional resource constraints, requiring constant monitoring and han-
dling of input signal streams, and supporting diverse characteristics
of sounds such as gunshot [5], glass breaking, baby crying, and
screaming [6], etc.

Recent advancements in audio foundation models (AFM) pro-
vide a promising solution to bridge the generalization gaps encoun-
tered with unseen acoustic events or conditions. There are two
main campaigns for building AMF: First, contrastive language-
audio pretraining (CLAP) [7], trained with large amount of au-
dio captioning data [8, 9] contrastively, sometimes with the aid of
ChatGPT-assisted caption generation [10]. Second, audio encoders
are trained to adapt towards large language models (LLMs) such
as Pengi [11], listen, think, and understand (LTU) [12], Qwen-
Audio [13], and SALMONN [14]. These AFM unlock free-form
natural language interactions with audio data and provide new av-
enues for embedded audio AI solutions. There has also been a
paradigm shift from collecting data tailored for specific downstream
tasks and training models in a supervised manner to utilizing these
AFM for rapid prototyping with zero-shot capabilities, and further
adapting with few-shot examples [15,16]. However, AFM typically

rely on computational heavy model architectures, especially when
they accompany with additional language models. This imposes
another critical challenge for utilizing AFM under the embedded
device setups [17].

Recently, it has been a surge of interest in adapting the CLAP
model for offline audio analytic techniques, such as zero-shot au-
dio classification or retrieval via natural language prompts [18, 19].
However, there is a noticeable gap in utilizing CLAP for on-device
real-time applications such as SED. To bridge this gap, we pro-
pose CLAP4SED in this study, which is a method that utilizes a
pretrained lightweight CLAP model for real-time SED tasks. This
approach is designed to be executable on embedded devices, fa-
cilitating flexible adaptation of SED to handle various deployment
environments. More specifically, we decouple the query step from
the original CLAP inference stage and devise an offline multimodal
few-shot retrieval pipeline to achieve real-time SED. We experiment
with several prompting strategies from zero-shot to few-shot scenar-
ios and discuss corresponding constraints in practical applications.
We also highlight several design choices and trade-offs deploying
these SED models to real-world embedded devices. The main con-
tributions of this study are:

• We propose a training-free, real-time SED solution based on
the novel multimodal retrieval framework, which aims to be exe-
cutable on embedded devices for practical deployment.
• We provide comprehensive experimental results and highlight
the design choices between the model performance and complex-
ity for CLAP4SED.
• To best of our knowledge, we are the first work that explicitly
leverages CLAP to perform on-device real-time SED.

2. PROPOSED FRAMEWORK

The proposed full framework consists of two main steps: A). build-
ing a backbone AFM optimized for operation on embedded devices,
B). the multimodal few-shot retrieval system to perform real-time
SED predictions.

2.1. CLAP Pretraining

We implement the CLAP model as our AFM for the first step.
The CLAP training involves in audio fA(·) and text fT (·) en-
coders to process incoming pairs of audio sequence Xa and the
corresponding caption descriptions Xt. This results in the audio
Ea = fA(Xa) and text Et = fT (Xt) embeddings, respectively.
The model is then trained to optimize the symmetric similarity con-
trastively (Eq. 1) in a joint multimodal space for audio-text pairs
containing within a mini batch size B, where η is a temperature pa-
rameter to scale the output ranges. More details can be found in [7].

66



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

Figure 1: Overview of the proposed CLAP4SED framework for
real-time SED on embedded device.

L =
1

2B

∑
B

[log diag(softmax(η(Ea · E�
t )))

+ log diag(softmax(η(Et · E�
a )))] (1)

However, existing pretrained CLAP models [10, 20] are ma-
jorly focusing on recognition performance without much consider-
ation of model complexity, which might not be affordable to deploy
on embedded devices. To accommodate this restriction, we substi-
tute the conventional audio encoder from Transformers-based (e.g.,
HTSAT [21]) to lightweight CNN-based (PANNs [22]) family ar-
chitecture. Since compare or compete embedded machine learn-
ing (ML) approaches is not our paper focus, we choose a relatively
naı̈ve method to obtain lightweight encoder for simplicity of the
proposed framework. While beyond the scope of this study, it’s
worth noting that various advanced model compression techniques
such as quantization or distillation [23] could be considered to fur-
ther improve the backbone AFM performance. As it is unavoidable
to balance model efficiency with performance, we present Table 1
to benchmark our retrained lightweight CLAP encoder, providing a
reference for this trade-offs. For other training configurations, we
follow closely the standard recipe of CLAP works [7, 20] and dis-
cuss in Section 3.1.

2.2. CLAP4SED: Multimodal Few-shot Retrieval for SED

The core idea to leverage a retrieval-based AFM for SED is to
decouple the query component from the original CLAP inference
stage. Figure 1 provides an overview of this framework. Specifi-
cally, the desired queries are calculated offline and stored in advance
on the embedded devices. This approach eliminates the model com-
plexity of the entire text modality (i.e., LLMs), thereby substantially
lowering memory and computational demands and enabling opera-
tion on small embedded devices. However, the robustness and rep-
resentativeness of pre-computed queries emerge as the most crucial
factors for accurate SED predictions.

A). Offline Query Preparation: we propose to utilize multi-
modal information for obtaining effective query prototypes (see the
top-left gray box in Figure 1), assuming N few-shot audio sam-
ples are available on hand per interested sound event. For the au-
dio part, the trained audio encoder fA(·) is applied to extract au-
dio embeddings from the given few-shot samples. Following by a
mean-pooling operation to summarize the audio prototypical vector
as the final audio query qA ∈ R1×d, where d represents the dimen-

Figure 2: High-level structure of the embedded hardware setup
based on Ambarella CV22 chip.

sion of hidden space that performs audio-text contrastive learning
in the CLAP model. As for the text query preparation, we first
employ GPT-41 to rewrite the convention CLAP retrieval template
(e.g., ”this is the sound of [class label]”) for enriching text expres-
sions [10] into M different prompts. These gpt-generated retrieval
prompts are then fed into the trained text encoder fT (·) to ob-
tain embeddings. An audio-informed max-pooling operation over
prompts is conducted, which only returns the most relevant (i.e.,
maximum dot-product similarity) prompt embedding to the given
few-shot audio embeddings. This results in the final text query
qT ∈ R1×d. From the high-level standpoint, audio query guides
the specificity of retrieval outcomes while text query enhances ad-
ditional diversity from different modality perspective for better ro-
bustness.

B). Online SED Predictor: only the lightweight audio encoder
(Sec. 2.1) and modality-specific query vectors need to be pre-stored
in the embedded device, as depicted in the top-right blue box in Fig-
ure 1. Upon receiving an input audio streaming data chunk (with
window size L), encoder fA(·) extracts it to generate key embed-
dings k ∈ R1×d, which is then used to calculate a predefined sim-
ilarity criteria with the prepared queries, thereby forming the av-
eraged decision score across modalities. Finally, a simple binary
thresholding is applied to determine the activity of sound event for
that specific timeframe. The minimum real-time prediction time
grid, denoted as τ , depends on the overall latency of the prediction
process.

3. EXPERIMENTAL SETUPS

3.1. Embedded System, Pretraining and Configurations

We use the Ambarella CV22 chip [24] to construct the embedded
system environment, which is typically used for IP cameras. The
CV22 chip comes equipped with a quad core ARM A-53 Linux
enabled processor, 1MB L2 cache, an Neon SIMD accelerator for
digital signal processing (DSP), and a computer vision (CV) flow
vector processor for deep learning matrix operations. The Neon
chip can effectively accelerate the Fast-Fourier transform (FFT) for
spectrogram computations. Figure 2 shows a high-level structure of
the hardware components we used for running computational cost
analysis in Section 4.3.

For the CLAP model pretraining, we use Adam (lr=0.0001) to
optimize the standard contrastive loss (Eq. 1) based on the Audio-
Caps, Clotho, FSD50K, MACS, and WavCaps [10] train datasets.
The default audio encoder fA(·) is PANN10 [22] architecture un-
less specified in the results. We use the pretrained CLIP [25] text en-
coder to extract caption embeddings, the encoder fT (·) is frozen all

1https://openai.com/gpt-4
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the time during the training process. The hidden dimension d of the
joint contrastive space is 512, temperature η is 0.07, and 128 batch
size B training on a single NVIDIA-TESLA-V100 32GB GPU de-
vice. All the models are implemented in PyTorch.

For the real-time SED configurations, the streaming audio input
is a 1 sec length (i.e., the sliding window size L), 16K, mono and
16-bit data chunk. Note that longer lengths require to register more
memory buffer and increase the computational latency. The time
grid of producing SED outputs is set to 0.1 secs (i.e., the window
hop size τ ), since our maximum prediction latency can be less than
100ms under the proposed framework. We assume 5-shot exam-
ples (N ) are available per sound event in default unless specified.
These few-shot samples are randomly selected from the correspond-
ing validation or train data. We prompt GPT-4 with ”what are the
sounds of [class label] ?” to produce 30 (M ) diversified but relevant
enough sound descriptions for each target retrieval class. Cosine
similarity is set as the criteria to measure the decision score.

Since our proposed framework is to perform real-time SED un-
der practical industrial setup (e.g., security camera), the model is not
receiving the full clip (global)-level context to compute advanced
offline metrics such as PSDS scores [26]. Instead, the model only
receives local segment input (e.g., 1 sec streaming chunk) during
each inference period. Therefore, we calculate the area under curve
(AUC) for segment-based precision-recall as our system evaluation
metric, which is more suitable to evaluate on-device real-time SED
and can comprehensively compare overall performance for the full
threshold space.

3.2. Datasets

One important feature of the proposed framework is that we can
quickly adapt the trained AFM towards different application sce-
narios without involving additional finetuning or retraining efforts
on the embedded devices (i.e., training-free approach). Here, we
showcase this flexibility by evaluating it on three diverse datasets
for the domestic environments, urban sounds, and aggression events
monitoring, respectively.

• DESED [27]: is composed of 10 domestic event classes
(i.e., alarm/bell/ringing, blender, cat, dog, dishes, electric
shaver/toothbrush, frying, running water, speech and vacuum
cleaner) originating from the AudioSet [28]. We only utilize
its evaluation set to report the system performance, which
has 692 audio files (fixed 10 secs length for each) in total.

• Urban-SED [29]: synthesizes strong-labeled soundscapes
from UrbanSound8K dataset using the SCAPER [29] tool,
which consists of 10 city sounds (i.e., air conditioner, car
horn, children playing, dog bark, drilling, engine idling, gun-
shot, jackhammer, siren and street music). Its evaluation set
contains 2,000 audio files and each is 10 secs long.

• Aggression-SED: is our own curated evaluation sub-
set by defining the violent or aggressive relevant events
out of the AudioSet. We define 8 classes to be in-
cluded (i.e., smoke/fire/car alarm, ambulance/defense/truck
siren, explosion, fire, gunshot, screaming, shouting and
smash/crash/breaking sound), which has a total of 1,495 au-
dio files extracting from the AudioSet strong evaluation par-
tition2.

2https://research.google.com/audioset/download strong.html

Table 1: Performance summary of our retrained lightweight CLAP
encoders comparing to existing SOTA models. We evaluate the
zero-shot classification (ZS) on UrbanSound8k (US8K) and ESC-
50 based on macro F1 score (F1), as well as the text-to-audio
(T2A) and audio-to-text (A2T) retrieval on Clotho using recall at
10 (R@10) metrics. All the results are in percentage scale.

US8K (F1) ECS-50 (F1) Clotho (R@10)
ZS ZS T2A A2T

PANN14 [7] 73.2 82.6 - -
HTSAT-LAION [20] 77.0 91.0 54.4 65.7
HTSAT-WavCaps [10] 80.6 94.8 50.9 56.6

PANN6 (ours) 68.1 68.9 33.8 35.1
PANN10 (ours) 72.5 78.0 37.8 42.3
PANN14 (ours) 77.7 85.3 42.5 48.1

3.3. Ablation Baselines

We want to highlight that our approach is incomparable to exist-
ing SED models, since we do not rely on any labeled data (ex-
cept for a very limited few-shot audio examples) nor a particu-
lar training framework for SED. Instead, we conduct comparisons
against ablation baselines focusing on the query design component
to demonstrate the advantage of leveraging multimodal information
for retrieval-based SED. Specifically, four single-modality baselines
are compared by preparing the query vector qT or qA in differ-
ent ways while everything else remains the same. These single-
modality retrieval approaches are also commonly adopted from pre-
vious literatures.

• Class Prompt: zero-shot audio retrieval using raw class la-
bels (i.e., ”[class label]”) as input prompt for generating the
text-only query qT , denoted as text-class.

• Template Prompt [7]: zero-shot audio retrieval appending
with natural language-alike template (i.e., ”this is the sound
of [class label]”) to produce the text-only query qT , denoted
as text-temp.

• GPT Prompt [10]: same as we depicted in Figure 1 (the
gray box) but only considers the text-only query qT . We
use mean-pooling operation instead of audio-informed max-
pooling to summarize the query embedding, since we do not
have available audio samples under the single-modality set-
ting to compute the most relevant prompt. We denote this
baseline as text-gpt.

• Audio Prototypes [30]: same as we depicted in Figure 1
(the gray box) but only considers the audio-only query qA to
form an audio-to-audio retrieval task. As qA serves as the
prototypical vector of audios, we denote it as audio-proto.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. System Performance Comparison

Figure 3(a) summarizes the evaluation results of single-modality
baselines (Sec. 3.3) versus proposed CLAP4SED method across
three datasets (Sec. 3.2). There are three major points to focus on:

First, we can observe that the text-gpt approach generally ob-
tains higher performance comparing to other text-only query meth-
ods (i.e., text-class and text-temp), especially for the Aggression-
SED. It might due to LLMs can effectively enrich language diver-
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(a) (b)

PANN6: 4.3M

PANN10: 4.7M

PANN14: 75.5M

(c)

Figure 3: Comparison of system performance under different scenarios and model configurations. (a) Performance across SED scenarios for
different queries. (b) Influence of few-shot numbers. (c) Performance and complexity trade-offs.

sity to incorporate a broader spectrum of common sense knowl-
edge into the query space. This augmentation contributes to a more
comprehensive coverage of sound event scenarios, increasing the
model’s generalizability.

Second, we can see that the audio-proto approach can outper-
form text-only schemes in the cases of DESED and Aggression-
SED. However, its performance significantly deteriorates in the
Urban-SED scenario, indicating a notable issue with robustness.
While few-shot references can offer advantages for specific pro-
totypes (i.e., retrieval specifications), they also impose limitations
on generalization capability as these collected few samples on hand
might not be sufficient to represent the full event space. This com-
promises the model’s robustness against diverse scenarios, limiting
its practical applicability.

Last, the proposed CLAP4SED framework effectively recon-
ciles the trade-offs inherent in both text-only and audio-only ap-
proaches by leveraging the benefits of multimodal fusion. The
text-gpt query qT enhances model generalization, addressing po-
tential representational gaps in the audio-proto qA. Meanwhile,
the audio-proto offers supplementary guidance on recognition pre-
cision, thereby complementing each other’s information. As a re-
sult, CLAP4SED consistently achieves the best system performance
across three datasets over all the single-modality approaches.

4.2. Few-shot Capability Analysis

This section discusses how the few-shot number (N ) impacts on
system performance that involves in utilizing audio samples as
query (i.e., audio-proto and CLAP4SED). Figure 3(b) illustrates
the averaged AUC results across three datasets, and we pick text-
gpt as the benchmark representative since it obtains the most com-
petitive performance among the text-only query approaches. We
can observe a consistent trend where increasing the number of few-
shot audios leads to an improvement in overall SED performance.
Upon gathering 5-shot examples, both audio-proto and CLAP4SED
outperform the text-only query approaches. Interestingly, the pro-
posed CLAP4SED demands significantly fewer audio samples com-
pared to the audio-proto approach. Its performance with 5-shots can
achieve comparable results to 50-shots for audio-proto (this trend
holds true for 1-shot and 3-shots cases as well). This characteristic
has significant importance for practical applications, as it is often in-
feasible to gather as many supervised shots in most cases. With the
advantage to collect just 5 examples for new environments or un-
defined sound events, CLAP4SED can rapidly deploy and adapt to

various real-world scenarios by simply updating the query vectors
without additional training steps, resulting in an effective training-
free solution.

4.3. Computational Trade-Offs

We also provide the computational trade-offs of CLAP4SED based
on the configured embedded system setup (Sec 3.1) as a refer-
ence for future development. Figure 3(c) visualizes the result for
PANN6, PANN10 and PANN14 architectures. The radius of a circle
indicates the model size in number of parameters, x-axis represents
overall prediction latency in milliseconds and y-axis shows the cor-
responding SED performance in averaged AUC. We can see that
there is a clear sweet point of using the PANN10 encoder. It signifi-
cantly improves the overall recognition accuracy from PANN6 with
acceptable model size (4.3M to 4.7M) and latency (45ms to 55ms)
increases. On the other hand, PANN14 only brings a very limited
performance improvement from PANN10, but drastically escalates
the computational requirements (e.g., latency increases from 55ms
to 120ms). Prediction latency is a critical factor that cannot be
compromised in real-time detection setups. Therefore, PANN10
emerges as the most recommended encoder for the CLAP4SED
framework, striking a balance between recognition performance
and computational efficiency.

5. CONCLUSION

In this study, we introduce the CLAP4SED framework, which uti-
lizes the CLAP foundation model to enable real-time SED on em-
bedded devices. The core innovation lies in decoupling the query
component from the CLAP retrieval pipeline. This allows for sig-
nificant reduction in model complexity and flexible adaptation to
various SED scenarios, resulting in an efficient training-free solu-
tion. Notably, our experimental results showcase the effectiveness
of the proposed few-shot multimodal query approach, which effec-
tively combines the advantages of both text and audio modalities,
thereby bridging modality gaps. Additionally, we provide compre-
hensive design choices and trade-offs analysis as a reference for
future development endeavors.
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ABSTRACT

This work introduces a guided captioning system that aims to
produce captions focused on different audio content, depend-
ing on a guiding text. We show that using keywords guid-
ance results in more diverse captions, even though the usual
captioning metrics do not reflect this. We design a system
that can be trained using keywords automatically extracted
from reference annotations, and which is provided with one
keyword at test time. When trained with 5 keywords, the
produced captions contain the exact guidance keyword 70%
of the time, and results in over 3600 unique sentences for
Clotho dataset. In contrast, a baseline without any keywords
produces 700 unique captions on the same test set.

Index Terms— automatic audio captioning

1. INTRODUCTION

Automatic audio captioning (AAC) is a cross-modal task
combining audio signal analysis and natural language pro-
cessing [1]. Captioning differs from other audio analysis
tasks such as detection or classification because it requires
not only identification of the sounds, but also a description
of the relationships between co-occurring events. Textual de-
scriptions provide more information about the audio content
than simple labels, indicating for example which sounds are
more prominent and which ones are background, how sounds
co-occur or follow each other, or describe attributes, e.g. how
loud/quiet or far/near the sound is.

What defines a good caption is subject to the specific sit-
uation. Generally speaking, sensory descriptions have as pri-
mary function transmitting the main information, which for
audio captioning is likely be the main sound event; but the
way this information is included in a caption is very sub-
jective [2]. AAC datasets provide captions for training the
systems, one or multiple captions per clip [3–5], reflecting to
some extent the fact that different descriptions of the same
audio clip are correct, even though not identical.

This work was supported by Jane and Aatos Erkko Foundation under
grant number 200061, “Guided captioning for complex acoustic environ-
ments”. The authors wish to thank CSC-IT Centre of Science Ltd., Finland,
for providing computational resources.

AAC systems are trained in a supervised manner, being
fed with the audio file and its corresponding reference cap-
tions [6, 7]; evaluation is performed by comparing an auto-
matically predicted caption against the reference captions, to
measure how well the predicted caption matches each of the
reference captions. Researchers have questioned the use of
machine translation or image captioning metrics for evaluat-
ing audio captions, because the auditory, temporal and spatial
properties of the sound are not the same as objects’ prop-
erties. As a result, multiple captioning metrics were pro-
posed specifically for AAC, e.g. FENSE [8], SPICE+ [9],
CB-score [10], SPIDEr-max [11]. However, the status quo
in AAC is still dominated by small training datasets, limited
vocabulary, and unclear interpretation of the metrics.

The concept of “guiding text” for captioning has been
investigated in [12]; the authors proposed “conceptual cap-
tions”, where a provided text controls what an image cap-
tioning system should focus on. A similar approach was
used in [13] for AAC; the authors used a transformer with
keyword estimation to generate a caption that contains the
estimated keyword. In [14], the authors used keywords es-
timated from the given audio clip through automatic audio
tagging. Furthermore, Xu et.al. [15] focus on improving di-
versity of the captions without decreasing accuracy. These
works focused on improving AAC performance as evaluated
with the usual AAC metrics. However, captions containing
words from the reference vocabulary will usually have high
scores, even if they do not completely describe the audio con-
tent; moreover, high semantic similarity does not necessarily
reflect the true correspondence with the described sounds, as
observed in [10].

The contributions of this paper are as follows: (1) a
guided captioning system that can be trained with an arbi-
trary list of keywords per audio clip; (2) a systematic study of
the effect of keywords on the predicted captions. Rather than
improving AAC performance in terms of the usual metrics,
as done in previous works, we focus on guiding the system
towards a specific sound event of interest: a user interested
in one particular event will provide a keyword as guidance
in order to obtain a description of the specific event. This
description may be only partial as to the acoustic content of
the clip, but correct and desired by the user. Our experiments
show that given the same audio clip as input, it is possible to
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Input Audio

List of keywords

HTSAT-encoder

word2vec-encoder

Transformer-decoder
Keywords 

embeddings

Audio feature embeddings

People are talking and someone is walking

Figure 1: Guided captioning: keywords and audio are provided to the captioning system to produce a caption that is focused on
the specific event given as keyword.

produce different captions depending on the provided guid-
ance keyword, resulting in a significantly diverse set of cap-
tions compared to a system without keywords.

The paper is organized as follows: Section 2 introduces
the concept of automatic audio captioning with keyword
guidance, Section 3 presents the datasets and experimental
setup; section 4 includes the discussion of the obtained re-
sults; section 5 presents conclusions and future work.

2. CAPTIONING WITH KEYWORDS GUIDANCE

The block diagram of the guided audio captioning system is
presented in Fig 1. The system consists of two encoders, one
for the keywords and another for the audio. The text encoder
receives as input a list of keywords and will provide textual
guidance to the model in the form of text embeddings; the
audio encoder receives as input the raw audio signal to be
transformed into audio feature embeddings. As a text en-
coder we trained a Word2Vec [16] model on the vocabulary
of the dataset used in each experiment. To obtain the feature
embeddings from the raw audio, we use the HTSAT trans-
former model [17] which is pre-trained on AudioSet.

The output of the text encoder, representing the keyword
embeddings, is concatenated at the end of the audio embed-
dings obtained at the output of the audio encoder, forming the
input for the transformer-decoder. The transformer-decoder
has a standard architecture, as in [14], and is followed by
a fully connected linear layer that outputs word probability.
It has two hidden layers with a dimension of 768 and uses
GELU activation functions in the feed-forward process be-
tween the hidden layers. The output of the transformer gen-
erates the captions based on the combined information from
text and audio. The vocabulary used for training the model
was collected from the reference captions for each dataset
separately. KeyBERT [18] was used to extract N keywords
for each clip, representing the words that best describe the
reference captions.

The model was trained from scratch as opposed to using a
pre-trained model, to accommodate for the concatenation of
text embeddings and audio embeddings before decoding. For
testing the model using textual guidance, we used two differ-
ent setups: (1) using N keywords at once for guidance, same

as in the training; and (2) using one keyword at a time. For
the second setup, each clip is tested multiple times, each time
with a different keyword. The keywords used in testing are
obtained from the reference captions using the same proce-
dure as for training, therefore they represent correct acoustic
content for each clip.

3. EXPERIMENTAL SETUP

We use three datasets for our experiments, Clotho [3], col-
lected based on Freesound [19] content, MACS [5], which
contains audio clips of everyday acoustic environments, and
AudioCaps [4], a subset of AudioSet [20].

Clotho contains 5929 recordings of 15 to 30 seconds
long, each audio clip having five reference captions. We
extract five keywords from the captions using KeyBERT
(N = 5). The experiments are run on the development
set of Clotho using the provided training/validation/test split.
MACS contains 3930 recordings from TAU Urban Acous-
tic Scenes 2019 development dataset, from three acoustic
scenes, each file being 10-seconds long. Captions and tags
were collected at the same time for the data. A list of tags
was provided to annotators to indicate what sounds they hear
in the clip, after which they were asked to provide a one-
sentence description. Here, we can use the tags provided by
annotators as keywords (so N varies from 1 to 7 per clip).
The experimental split is created based on the TAU Urban
Acoustic Scenes Development set, with the included clips.
AudioCaps contains 51308 clips, of which only 46721 are
available now1. From these, 886 clips are used for testing.
Because AudioCaps annotators had access to the AudioSet
tags, we have tags available for the clips and can use them to
guide the AAC system.

When using tags as keywords, it is important to note that:
(1) the tags are not necessarily keywords that are extracted
from the captions; (2) the tags can be single words (music)
or compound terms (dog barking); (3) the number of tags per
clip varies, so in this case N words provided as guiding text
will be the number of tags for each clip. For Clotho we use
N = 5 for all clips.

1Audio clips downloaded June 2024.
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Training Guidance BLEU1 BLEU4 CIDEr SPIDEr % exact % synonym unique
keywords keywords captions

None None 56.24 15.19 39.35 26.21 - - 737

kBERT 1 kBERT 1 58.99 17.14 47.02 30.22 47.08 11.77 774
kBERT 5 kBERT 5 66.13 20.65 63.64 40.16 44.30 11.40 944

kBERT 1 1 (all)* 57.73 16.38 41.31 27.14 40.52 10.37 2463
kBERT 5 1 (all)* 56.85 14.30 39.35 25.98 72.94 3.50 3673
* Five keywords extracted with kBERT for a clip are provided as guidance one at a time.

Table 1: Guided captioning results on CLOTHO dataset for different training and test setups: baseline (no keywords) and using
5 keywords extracted with keyBERT (kBERT). The main setup of the guided captioning system is highlighted with light gray.

The datasets differ on the number of unique captions
(Clotho: 29614, MACS: 10594, AudioCaps: 47737), and the
lexical diversity of the datasets also varies. The moving av-
erage type-to-token ratio (MATTR) [21] using a window of
500 tokens is 0.385 for Clotho, 0.302 for MACS and 0.415
for AudioCaps, indicating a richer vocabulary for the latter.

The main setup of the proposed system is to train it with
the available N keywords per clip, and test it with one key-
word as guidance. Each test audio clip is repeatedly tested
with different keywords, and the produced captions are eval-
uated independently. This is marked in the tables in gray. As
an ablation study, we compare the results with different se-
tups. We first construct a baseline system as a plain AAC sys-
tem using the same architecture but trained and tested with-
out any keywords or guidance. We also train and test the sys-
tem with only one keyword per clip, and train and test with
N keywords at once. For MACS and AudioCaps, the abla-
tion experiment also includes using for guidance all available
tags per clip (variable N ) in addition to the experiment with
N = 5 keywords extracted with KeyBERT.

4. RESULTS AND DISCUSSION

The results of the system on Clotho are presented in Table 1.
The performance of the baseline (None/None combination,
on row 1), are aligned with the performance presented in the
DCASE Challenge, placing the system around 6th place in
the 2023 challenge. Training and testing with one keyword
results in a significantly higher CIDEr and SPIDEr than of
the baseline, which is further markedly improved when the
system is trained and guided with 5 keywords at the same
time. When the guidance goes through all keywords one at a
time (lower half in Table 1), the system performs comparable
with the baseline which does not use any guidance. However,
in this experimental setup there are 5 times more test cases,
because each clip is tested 5 times (once with each keyword).
The advantage brought by using the most representative key-
word per clip is lost when the averaging is done over all key-
words, since there is more variety in the n-grams content of

the predictions. Similarly, there is much less overlap in n-
grams between captions containing one keyword compared
to (potentially) five.

However, if we look at the generated captions, we ob-
serve that with different keywords the system produces a
much higher number of unique sentences. To quantify the
effect of the keywords guidance, we include to Table 1 the %
of the times the generated caption contains the exact match
of the guidance keyword or a synonym of it, respectively.
When guided with 5 keywords, the % exact is calculated as
the proportion of keywords present in the caption (so 1 of 5
counts as 20%). The keywords are most often present in the
predicted caption exactly as such, rather than a synonym, due
to the limited vocabulary of the system.

Results for AudioCaps and MACS are presented in Ta-
ble 2. Ablations include the use of tags and KeyBERT pro-
duced keywords as guidance (none and five). When using
tags, the number of keywords is equal to the number of tags
available for each clip. While the numbers differ, the be-
havior is similar to what we observed on Clotho: guidance
with five keywords at test time gives the best AAC metrics
performance, while training with five and guiding with one
keyword has similar AAC performance as the baseline (no
guidance) but a much higher number of unique sentences.
Particularly, for the case of AudioCaps, we achieve a SPI-
DEr score of 62.43% with 875 unique captions for 886 test
audio files. Guiding the captioning process with a single key-
word results in better scores when using tags rather than the
KeyBERT keywords, but produces more repetitive captions,
as shown by the smaller number of unique sentences. For
MACS, the difference is not significant in CiDEr and SPIDEr
score, likely due to the reduced lexical diversity and smaller
vocabulary than the other datasets.

Table 3 provides a few examples of captions generated by
the different setups for a clip in Clotho. It is evident that the
use of keywords results in sentences containing the provided
keywords. While the baseline produces a caption containing
as much information as possible, the guided captions refer to
different aspects of the environment through the keywords:
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Dataset Training Guidance BLEU1 BLEU4 CIDEr SPIDEr % exact % synonym unique
keywords keywords captions

AudioCaps

None None 69.92 27.74 72.50 45.39 - - 608

Tags Tags 71.59 28.47 77.48 48.17 47.50 15.10 612
kBERT kBERT 86.82 33.17 102.4 62.43 75.28 10.34 875

Tags 1 (all)* 70.80 26.90 69.04 43.65 46.82 13.26 1086
kBERT 1 (all)* 51.08 14.50 36.66 23.62 96.27 0.11 1325

MACS

None None 73.38 22.27 29.78 22.87 52.61 2.67 235

Tags Tags 75.61 24.83 32.43 24.44 53.75 2.77 173
kBERT kBERT 73.36 24.66 40.49 28.77 43.02 7.50 523

Tags 1 (all)* 75.10 24.06 28.71 22.16 51.30 3.58 441
kBERT 1 (all)* 69.51 20.32 29.86 22.41 48.60 4.80 1301

* All keywords for a clip are provided as guidance one at a time.

Table 2: Guided captioning results on AudioCaps and MACS datasets for different training and test setups: baseline (no
keywords), using metadata labels (Tags) and using 5 keyBERT extracted labels as keywords (kBERT).

Keyword Generated Caption

- an announcement is made over a loudspeaker while people are talking in the background

crowded people are talking in a crowded area and walking in a crowded area
restaurant people are talking and moving in a restaurant
crowd a crowd of people are talking in an enclosed space
busy people are talking in a busy area with each other in the background
eating a person is eating something and people are talking in the background

Table 3: Example captions generated for je PittsPhipps.wav file in the CLOTHO dataset: baseline (no keywords) and guidance
with 5 different keywords. Two of five reference captions for this clip contain the word “restaurant”.

scene (restaurant), attributes (busy, crowded), sound sources
(crowd, eating). When evaluated with the captioning met-
rics, the caption produced by the baseline has the potential to
being scored higher than the others due to containing more
n-grams. On the other hand, there are specific terms, in this
example “restaurant”, not picked up by the baseline. This is
a good example of guidance, the focus on specific content
instead of producing a generally good description. However,
the guided captions quite often contain repeated keywords;
the system likely requires a more careful optimization of the
training process w.r.t. the length of the generated sentences.
In this work, we kept the training process the same for all the
scenarios, not optimizing them separately.

To verify the effect of random keywords on the guided
captioning system, we feed as guidance five keywords that
are not related to the content of the clip. The SPIDEr scores
for the three datasets with this setup are 18.7 for Clotho,
10.7 for AudioSet and 20.5 for MACS, all smaller than
the equivalents that are guided with correct keywords (the
kBERT/kBERT line in the tables). Furthermore, if the system
is not provided any keyword at test time, its SPIDEr scores

are 18.8, 21.3 and 20.5, respectively, showing that the guid-
ance does have a quantifiable effect on the system output.

5. CONCLUSIONS

This paper presented a guided captioning system to enhance
the relevance of certain audio events in the generated cap-
tion. As a design choice, the system is not optimized for
typical AAC metrics, and instead it focuses on user-provided
keywords, which the AAC metrics fail to adequately eval-
uate. Because describing audio content is subjective to the
annotator perception of the acoustic environment, there may
be multiple correct ways to describe the same content; AAC
metrics evaluate the largest overlap and penalize automatic
captions with lesser content. Our focus on directing the sys-
tem towards user-requested events intends to reduce this re-
quirement. We demonstrated the system’s capability to pro-
duce a diverse set of descriptions aligned with the provided
keyword. Future work will focus on better evaluating the
captioning outputs based on the guidance keyword, since
finding matching n-grams is not sufficient, nor necessary.
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[5] I. Martı́n-Morató and A. Mesaros, “Diversity and bias
in audio captioning datasets,” in Proceedings of the 6th
Workshop on DCASE, Nov. 2021, pp. 90–94.

[6] X. Mei, C. Meng, H. Liu, Q. Kong, T. Ko, C. Zhao,
M. D. Plumbley, Y. Zou, and W. Wang, “WavCaps:
A chatGPT-assisted weakly-labelled audio caption-
ing dataset for audio-language multimodal research,”
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, pp. 1–15, 2024.

[7] F. Gontier, R. Serizel, and C. Cerisara, “Automated
audio captioning by fine-tuning BART with AudioSet
tags,” in Proceedings of the 6th Workshop on DCASE,
Barcelona, Spain, November 2021, pp. 170–174.

[8] Z. Zhou, Z. Zhang, X. Xu, Z. Xie, M. Wu, and K. Q.
Zhu, “Can audio captions be evaluated with image cap-
tion metrics?” in IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), 2022, pp. 981–985.

[9] F. Gontier, R. Serizel, and C. Cerisara, “Spice+: Eval-
uation of automatic audio captioning systems with pre-
trained language models,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2023, pp. 1–5.
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ABSTRACT

Describing audio content is a complex task for an annotator; the
resulting caption depends on the annotator’s language, culture and
expertise. In addition, physiological factors like vision impairment
may affect on how the sound is perceived and interpreted. In this
work, we explore bilingual audio captioning in Finnish and English.
In connection with this study, we release the SiVi-CAFE dataset, a
small-size dataset of Sighted and Visually-impaired Captions for
Audio in Finnish and English, with a collection of parallel annota-
tions for the same clips. We analyze briefly the differences between
captions produced by sighted and visually-impaired annotators, and
train a system to produce captions in both languages that also mim-
ics the style of different annotator groups. Obtaining a CIDEr score
of 34.75% and 28.75% on the English and Finnish datasets, respec-
tively. Furthermore, the system is able to perform a tagging task,
obtaining F-score of 79.73%.

Index Terms— audio captioning, visually-impaired users, cap-
tioning dataset, tagging, Finnish language

1. INTRODUCTION

Automated Audio Captioning (AAC) is a relatively recent re-
searched topic [1], with potential applications that include acces-
sibility aids [2] and content indexing for search engines [3]. While
AAC systems have primarily focused on generating captions in En-
glish, there is a general growing demand for personalized content
in other languages. Recent years have seen development of multi-
lingual methods for image captioning [4], and also a few studies on
multilingual AAC [5, 6]. The mentioned multilingual AAC works
use translated captions, in this case between Chinese and English
[5] and French, German and English [6].

Multilingual AAC can be obtained by generating captions di-
rectly in the target language, or generating captions in English and
automatically translating them to the target language. However,
while generating captions in English and then translating them to
other languages can be faster and more straightforward, some nu-
ances, idiomatic expressions, or cultural references may not trans-
late accurately. Authors of [6] show that direct captioning in the
target language may capture specific language nuances better. How-
ever, this requires language-specific training data, which is not eas-
ily available. Instead, there is the option of translating training data
from English to the target language, though the disadvantages re-
main as pointed out above. Creating training data for AAC is a
complex problem. Each annotator brings their unique style, influ-

This work was supported by Jane and Aatos Erkko Foundation under
grant number 200061, “Guided captioning for complex acoustic environ-
ments”. The authors wish to thank CSC-IT Centre of Science Ltd., Finland,
for providing computational resources.

enced by factors such as age, culture, and language. In general, na-
tive speakers tend to use more precise and expansive language com-
pared to non-native speakers [7]. One complicating factor is that
humans are used to using language to describe visual rather than
other sensory information; this is evident in the fact that languages
often have a more extensive vocabulary for describing visual experi-
ences compared to auditory ones [8], and this may affect the quality
and diversity of captions, particularly when produced in a second
language. Moreover, the annotation procedure affects the reference
data: providing additional hints to annotators who can strongly bias
their wording, as shown in [9]. Other factors can also influence
the way we describe sounds. For example, individuals with vi-
sual impairments naturally pay more attention to auditory cues in
their daily lives, as they need to rely on different sensory cues to
understand their surroundings. Studies show that there are differ-
ences in the assessment of soundscape between visually-impaired
people (ViP) and non-visually impaired ones, in terms of sound-
scape pleasantness or quietness [10]. As a special category of users
with a heightened awareness of auditory cues, we would expect that
visually-impaired annotators create richer audio captions than nor-
mal sighted individuals.

Considering the potential applications for captioning, and in
particular accessibility, we expect that the need for more personal-
ized output will become an important driving factor in development
of captioning systems. To understand the possibility of creating a
single universal captioning system that can produce outputs of dif-
ferent styles and in different languages for different categories of
users, we adopt the approach proposed in [11] that used a task em-
bedding for training an AAC system with different datasets and con-
ditioned it to produce an output in the style of the dataset. In this
work, we investigate a multitask training and conditioning across
different languages and captioning styles, including ViP users.

The main contributions of this work are as follows: (1) a study
of differences in captioning between visually-impaired and normal
sighted users, in Finnish language, and a comparison from a linguis-
tic point of view to parallel data in English; and (2) a multitask sys-
tem trained with different languages and styles: Finnish, English,
visually-impaired, biased, and non-biased captions.

There are a few unique elements in this study. Firstly, the use
of an agglutinative language, in this case Finnish, as a typologically
distant language from English, brings an element of novelty and dif-
ficulty to both the system vocabulary and its evaluation. Secondly,
to the best of our knowledge, this is the first study using visually-
impaired subjects in captioning as a category of annotators. The
work aims to understand if such captions bring any advantage for
training AAC, assuming they are more detailed. In conjunction with
the study, we have published a multi-way annotated dataset that in-
cludes captions in English and Finnish: two sets of Finnish captions,
ViP and sighted, and two sets of English captions, biased and non-
biased in terms of vocabulary. Additionally, the dataset provides
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translations (automatically translated) between Finnish and English
for the different captions sets.

The paper is organized as follows: in Section 2 we present
shortly the data collection process and we analyze the differences
between different types of annotations, focused on the use of lan-
guage between Finnish and English and ViP and non-ViP. In Sec-
tion 3 we introduce the multitask model training procedure, while
in Section 4 we present the experimental results and discussion. Fi-
nally, Section 5 presents the conclusions and future work.

2. CAPTIONS WITH DIFFERENT ANNOTATOR PROFILE

The aim of the data collection process for this study was to obtain
a variety of textual description for the same audio clips, in order
to study how inter-cultural and linguistic differences between users
produce different captions. In addition, we collected data from ViP
users to study how visual impairment affects the descriptions. We
started from the existing MACS dataset and proceeded with addi-
tional annotation tasks that have different annotator profile. The
annotation task was similar for everyone, and followed the method-
ology presented in [9]. Audio clips are 10 seconds long, and the an-
notation was completed using a web-based interface that provided
the clips one by one to be played back and annotated. The anno-
tation process could be paused and continued later by logging in
to the web platform. The complete collection of captions is pub-
lished under the name SiVi-CAFE (Sighted and Visually-impaired
CAptions in Finnish and English)1.

2.1. Four-way data annotation

MACS dataset contains 10-second clips of audio from everyday en-
vironments (airport, public square and park) that were annotated by
university students in a way that facilitated introducing bias in the
captions. Namely, annotators were first given a tagging task, being
asked to indicate what sounds from a given list of 10 classes they
can hear [9]; after this, they were asked to describe the clip in one
sentence. The sentences were found to contain the exact wording of
the tags for 41.78% of the sentences [9]. In the SiVi-CAFE collec-
tion, this set is referred to as English-bias.

The same setup was repeated with another pool of students, this
time without the tagging task. In contrast with the observations on
biasing, the captions produced in this setup have a larger vocabulary
and longer average caption length. In the SiVi-CAFE collection,
this set is referred to as English-nobias.

Finnish language data collection has focused on obtaining cap-
tions from visually-impaired users. The annotation was performed
using a company that employs visually-impaired workers for vari-
ous tasks. We recruited 25 persons, native Finnish speakers, through
Aarnikukko Oy2 and provided them with an accessible web-based
tool for the annotation process. Of the 25 annotators with visual
disability, 14 reported themselves as blind, 9 as partially sighted,
and two did not answer. In addition, 11 participants announced to
have some environmental perception via vision, including 3 of the
blind individuals. Each worker annotated 180 clips, resulting in 900
clips each having 5 captions. We refer to this set as Finnish-ViP.

The same 900 clips were used to collect parallel data in Finnish
from normal-sighted people using volunteers who were native
speakers; this set of captions is referred to as Finnish. This sub-
set is also incomplete, i.e. not all 900 clips have 5 captions.

1https://doi.org/10.5281/zenodo.11505823
2https://www.aarnikukko.fi/

Dataset Audio Unique Sentence Vocab. MATTR
clips sentences length (std) size (std)

English-bias 3930 16262 9.5 (3.89) 2717 0.26 (0.02)
English-nobias 2050 9679 10.2 (3.78) 2685 0.27 (0.02)

Finnish-ViP 900 4458 8.3 (3.25) 4518 0.39 (0.03)
Finnish 900 3592 7.5 (2.79) 3540 0.37 (0.03)

Table 1: Statistics of the collected datasets.

2.2. Analysis of the annotations

The main difficulty in data collection was recruiting sufficiently
many annotators. Some tasks were implemented with student vol-
unteers that received various rewards for their time (e.g. movie
tickets). There was added difficulty in recruiting digitally fluent
visually-impaired workers; for this reason the Finnish-ViP data is
relatively small. Moreover, while the Finnish annotators are native
speakers, the ones providing English annotations are international
students using English in their studies, hence very likely not En-
glish native. As discussed earlier, this probably affects their use
of language for describing the sounds. The English-bias data was
produced by 133 annotators, English-nobias by 89, Finnish-ViP by
25, and Finnish by 42. The sets are each somewhat incomplete, but
there are 3612 captions provided for 900 clips which were anno-
tated by all categories of users, and can be considered as parallel
data. For completeness, all original data was translated into the
other language using the DeepL translation API3, following [6].

The statistics of the different caption sets are provided in Table
1. To characterize the lexical diversity, we use the type-token ratio
(TTR) the ratio between the unique words (types) and total words
(tokens) in each set. To account for the difference in size, we calcu-
late the moving average TTR (MATTR) [12] which calculates TTR
every 500 words, hence MATTR allows comparing texts of differ-
ent lengths. While the two languages are not comparable, the differ-
ence between English-bias and English-nobias shows a difference
in lexical diversity, as does the Finnish-ViP compared to Finnish.

The 3612 captions that form a parallel corpus results in a vo-
cabulary of 1132 and 1328 for the English-bias and English-nobias
sets, respectively, while for Finnish-ViP and Finnish the vocabulary
size is 2142 and 2498, respectively. The Finnish-ViP set has the
richest vocabulary; this is also reflected in the high MATTR.

The most interesting detail is the way annotators describe the
location of the sounds in the audio clips. While all groups in-
dicated sounds as appearing in the background (Fi: taustalla), in
the distance (etäällä), far away (kaukainen), or less often nearby
(Fi: lähempänä, comp.), the visually impaired Finnish speakers de-
scribed egocentric directions by indicating sounds being ‘on the
right’ (oikealla) or ‘on the left’ (vasemmalla). In the Finnish set,
‘on the left’ appears 10 times and ‘from the left’ once, while in the
Finnish-ViP set there are 443 variants for ’left’ (including ‘to the
left’, ‘on the left’, ‘from the left’, ’front left’, ’back left’). Simi-
larly, variations of ’right’ appear 397 times in the Finnish-ViP set,
and only 8 times in the Finnish set. In the English data “on the left”
appears 19 times and “on the right” only 14 times.

3. A UNIVERSAL CAPTIONING SYSTEM

A single model is trained using all the different annotation types,
in order to create a universal captioning system. We employ a task
embedding token as proposed in [11]; each different annotation type
is seen as a task that is assigned a specific token. Figure 1 illustrates

3https://www.deepl.com/pro-api
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Figure 1: Block diagram of the AAC system with task tokens.

how a start token is concatenated at the beginning of the sentence
for each of the different annotation types. The translated datasets
are also considered as separate tasks, to provide the system with the
ability of producing as large variety of styles as possible.

The model follows a standard transformer architecture and a
pre-trained tokenizer. The tokenizer is based on Byte-Pair Encoding
(BPE), and creates a list of unique words with their frequency; a vo-
cabulary size parameter has to be selected beforehand. Before train-
ing the transformer, the first step is to fit the tokenizer. The role of
the tokenizer is to split the sentences into words and then into sub-
words. Finally, those subwords are converted to ids using a look-up
table; this will facilitate generation of words that have not been seen
in the training vocabulary, achievable by breaking unknown words
into smaller units that the tokenizer can recognize. The tokenizer is
trained with the vocabulary of all the datasets, English and Finnish
originals and the translated versions. The maximum vocabulary size
is set to 5000, which was experimentally found to be sufficient to
wrap English and Finnish language. For each dataset we use a start
token as done in [11], indicating to which dataset the caption be-
longs to. The audio is fed to the model after a pre-processing step
where a feature extractor is used. We use the pre-trained encoder
BEATs [13] as feature extractor; the resulting embeddings are used
as inputs to the transformer encoder. We chose BEATS as audio rep-
resentation based on the system that achieved the best performance
in the DCASE 2023 Challenge Audio Captioning task. However,
to reduce the number of input tokens, we average pool the BEATs
embeddings over the time dimension with a factor of 32.

3.1. Experimental setup and evaluation

The system is evaluated in a 10-fold manner, because the distribu-
tion of the data is unbalanced among datasets; the smaller dataset
(Finnish) is used as norm for splitting the data into folds based on
the 10 cities where the data has been recorded. We report results
using BLEU [14] (a measure of n-gram overlap between generated
and reference captions) and CIDEr-D [15] (consensus-based mea-
sure from image captioning), as language-agnostic measures. We
also use sentence-BERT cosine similarity (sBERTsim) [16] as a
more meaning-oriented metric that compares the captions at sen-
tence level. For the Finnish captions we calculate this metric us-
ing TurkuNLP sbert [17], shown to perform better on the Finnish
language tasks than a multilingual version; for English we use
paraphrase-multilingual-mpnet-base-v2 as used in [6].

Dataset BLEU1 CIDEr sBERTsim

English-bias 45.65 20.95 60.15
English-nobias 48.40 21.61 60.13
Finnish-ViP 29.98 9.97 72.88
Finnish 26.80 12.38 74.64

Table 2: Human-to-human evaluation of captions. One caption is
randomly selected as predicted and compared with the other cap-
tions available for the same clip.

3.2. Human-to-human evaluation

To analyze the connection between system predictions and human-
produced annotations, we calculate the human-to-human compari-
son for the datasets using the same metrics. Their values for the
original (annotated) data are presented in Table 2. Unigram over-
laps, shown by BLEU1, are strong for the English datasets and less
for Finnish; based on CIDEr, Finnish-ViP has the least consensus in
descriptions between annotators. sBERTsim is very similar for the
English sets, while Finnish-ViP has a somewhat higher sBERTsim

than Finnish, indicating that ViP annotations are more similar in
meaning, even though their wording differs.

4. EXPERIMENTAL RESULTS

4.1. Captioning results

Table 3 shows the AAC metrics for the multitask model, includ-
ing cross-testing in which we generate the caption with a specific
task token, and evaluate against a different reference set of the same
language. For the English-bias data, the model achieves a CIDEr
score of 34.72%, which is, surprisingly, almost 14 points higher
than the human performance. This can be attributed to the fact
that the models typically generate rather repetitive captions, more so
than the human annotators. We verify this by inspecting the top 3-
grams: “in the background” appears 607 and 887 times in English-
bias and English-nobias, respectively, while in the predicted out-
puts they appear 167 times and 372 times for the English-bias and
English-nobias captioning style, respectively. The next most com-
mon 3-grams in the predicted captions are “talking and walking”,
appearing 210 and 154 times, respectively; and “people are talk-
ing”, 71 and 235 times. For the Finnish dataset we achieve a CIDEr
of 17.31%, while for Finnish-ViP we achieve a CIDEr of 13.88%,
both higher than the human-to-human evaluation.

For comparison, we trained monolingual models as multi-
task models but using only the data from a single language, in-
cluding the automatically translated captions from the other lan-
guage. In general the monolingual models had a slightly worse
performance, being trained with less data. For English-bias we
achieve BLEU1 63.80%; CIDEr 33.95% and sBERTsim 60.36%,
while for Finnish, we achieve BLEU1 42.97%; CIDEr 15.99% and
sBERTsim 74.18%.

Comparing the predicted captions against reference captions
with a different style produces lower scores, with a few exceptions:
Finnish vs Finnish-ViP has a good BLEU1, showing a high over-
lap in unigrams; all cross-evaluations for Finnish language have a
very similar sBERTsim, showing that the descriptions are similar
in meaning, although not in the exact wording. English sets always
score much lower when evaluated against another style.
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Prediction Reference BLEU1 BLEU4 METEOR CIDEr sBERTsim

English-bias English-bias 67.07 18.32 20.60 34.72 61.64
English-bias English-nobias 62.03 14.58 17.86 25.01 59.46
English-nobias English-nobias 69.16 21.40 21.69 33.66 59.28
English-nobias English-bias 58.64 13.80 18.66 26.04 57.63

Finnish-ViP Finnish-ViP 51.30 4.85 14.63 13.88 73.73
Finnish-ViP Finnish 43.64 4.54 13.50 15.17 74.01
Finnish Finnish 46.29 5.28 14.02 17.31 75.04
Finnish Finnish-ViP 50.30 5.55 13.90 13.63 74.40

Table 3: Results on all the datasets using the multitask model, with evaluation across same language reference sets.

GT Pred GT Pred 

English-bias English-nobias

FinnishFinnish-ViP

N V Adj Adv Adp Pro Par Num OtherDet

Figure 2: Pie charts showing the POS analysis of the English and
Finnish datasets. N (Noun), V (Verb), Adj (Adjective), Adv (Ad-
verb), Adp (Adposition), Pro (Pronoun), Par (Particle), Num (Nu-
meral). GT stands for Ground truth; Pred stands for predicted cap-
tions from the multitask model.

4.2. Generated language analysis

We investigate the sentence structure in the reference and predicted
captions by performing a Part-Of-Speech (POS) analysis and visu-
alize the proportions of POS as pie charts in Fig. 2; for English we
use the spaCy4 toolbox, for Finnish the Finnish-tagtools software5.
We easily notice that captions are mainly formed using nouns and
verbs, with nouns dominating the sentences; the reference annota-
tions also contain a non-negligible percentage of adverbs and ad-
jectives. The charts show a clear difference between the languages:
English datasets make more use of verbs, prepositions and deter-
minants, while the Finnish datasets use more nouns, adverbs and
pronouns. The predicted captions on the other hand contain almost
no adverbs or adjectives, which is an interesting observation that
holds for both languages. The system produces a good proportion
of adpositions for English and pronouns for Finnish, but overall the
model is mostly generating nouns and verbs. The difference be-
tween English-bias and English-nobias is reflected in the predicted
captions: “adults talking”, “children voices” and “birds singing”
are mentioned 154, 58 and 183 respectively for English-bias style,
while they do not appear in this exact form at all in English-nobias.
This comes from the training data, where they appear 2179, 443
and 1241 times, and only 20, 1 and 113 times in English-bias and
English-nobias, respectively.

4.3. Tagging system

As a different annotation type indicated by the start token, it is also
possible to use the multitask model as a tagging system. In this

4https://spacy.io/
5http://urn.fi/urn:nbn:fi:lb-2021101101

GT tags Predicted caption

adults talking, traffic noise, music “music is playing and people are talking”
children voices, footsteps “birds singing and children voices”
birds singing, traffic noise “traffic noise and birds singing”
adults talking, footsteps “people are talking and walking”

Table 4: Examples of English-bias predicted captions and the refer-
ence tags for the respective clips; tags exact matches are in bold.

case, instead of the caption, the system receives in training the con-
catenated tags, seen as a sentence, though it is not a grammatically
correct one. The English-bias dataset has tags available that were
collected during the same annotation process as the caption, as ex-
plained in [9]. With the task token we indicate that we require sim-
ilar “sentences”. The model achieves an overall micro-F1 score of
of 79.73% (Precision 77.01% and Recall 82.64%) for tagging.

Tags also allow evaluating if the predicted captions match the
sound events tagged in the reference for each clip. If we evalu-
ate the predicted English-bias-style captions against the reference
tags as captions, we obtain BLEU1 27.66%, CIDEr 17.07% and
sBERTsim 67.14%; for English-nobias-style captions BLEU1 is
10.40%, CIDEr is 4.16% and sBERTsim is 57.40%. This evalua-
tion setup illustrates well the induced bias, i.e. the annotators being
hinted the tags while listening the clip for recognizing the sounds.

Finally, we calculate to what extent the reference tags are
present in the predicted captions, obtaining that 51.3% of the pre-
dicted captions with the English-bias task token have at least one
correct n-gram. A few examples are shown in Table 4. Only ex-
act matches can be easily identified; however, we can observe that
captions may contain very similar words to the tags, e.g.“people
are talking” matching in meaning “adults talking” in the provided
examples.

5. CONCLUSIONS

This paper presented a more linguistically-oriented study to AAC,
focusing on a parallel corpus of linguistically-different references.
The work introduced a dataset comprised of captions in English and
Finnish, including annotations provided by visually-impaired users.
We designed a multitask system that can produce captions in all re-
quired styles, including tags. The dataset analysis shows differences
between languages and user types, which were well modeled by the
proposed method. Most importantly, the proposed captioning sys-
tem was capable to learn from a collection of tasks that share some
information, i.e. the audio content, but are at the same time very dif-
ferent, i.e. the language or style. We have also successfully shown
that the system can be combined with more simplified tasks, in this
case audio tagging, paving the way for developing linguistically-
mixed systems that can handle multiple languages and multiple sen-
tence styles.
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ABSTRACT
In this paper, we propose using a domain-incremental learning ap-
proach for coping with different devices in acoustic scene classifi-
cation. While the typical way to handle mismatched training data is
through domain adaptation or specific regularization techniques, in-
cremental learning offers a different approach. With this technique,
it is possible to learn the characteristics of new devices on-the-go,
adding to a previously trained model. This also means that new de-
vice data can be introduced at any time, without a need to retrain
the original model. In terms of incremental learning, we propose
a combination of domain-specific Low-Rank Adaptation (LoRA)
parameters and running statistics of Batch Normalization (BN) lay-
ers. LoRA adds low-rank decomposition matrices to a convolu-
tional layer with a few trainable parameters for each new device,
while domain-specific BN is used to boost performance. Experi-
ments are conducted on the TAU Urban Acoustic Scenes 2020 Mo-
bile development dataset, containing 9 different devices; we train
the system using the 40h of data available for the main device, and
incrementally learn the domains of the other 8 devices based on 3h
of data available for each. We show that the proposed approach
outperforms other fine-tuning-based methods, and is outperformed
only by joint learning with all data from all devices.

Index Terms— Domain-incremental learning, Low-Rank
Adaptation, Batch Normalization, acoustic scene classification,
mismatched devices

1. INTRODUCTION

Deep learning models have recently shown impressive results for
acoustic scene classification (ASC) tasks from in-domain static
data. However, in realistic scenarios, new data comes in sequen-
tially. This new data may be from a different domain than the data
used to optimize the model. Incremental or continuous learning of
such a sequence of mismatched domains (i.e., locations, devices,
or other acoustic conditions) deteriorates the model performance on
previously learned domains when learning a new one, which means
catastrophic forgetting [1] occurs in the absence of the previous
domain’s data. Mismatched conditions in continuously evolving
domains introduce domain shift or bias in the feature distribution,
which is the main reason for performance degradation.

In this work, we propose to use the domain-incremental learn-
ing (DIL) [2] approach for learning ASC tasks from different do-
mains (devices) without forgetting the acoustic scenes from previ-
ously seen domains.

This work was supported by Jane and Aatos Erkko Foundation grant
230048 “Continual learning of sounds with deep neural networks”. The
authors wish to thank CSC-IT Centre of Science Ltd., Finland, for providing
computational resources.

DIL was successfully applied to detect objects from road scenes
in different locations [3] and in different weather conditions [2] for
images, and acoustic scenes from different locations [4]. We aim to
develop a practical DIL model to effectively classify acoustic scenes
from all recording devices seen so far by going through the stream
of data only once, in online learning mode.

DIL is different than existing domain adaptation (DA) methods
for ASC from different devices [5–7]. DA setup typically includes
two domains: source and target. It transfers the knowledge from the
source to the target domain and only focuses on the accuracy of the
target domain. DA requires access to the data of the source domain
to match the distribution with the target domain. In comparison to
DA, the DIL setup includes multiple domains over time that the sys-
tem needs to adapt to; it focuses on the overall accuracy of all the
domains seen so far; takes additional measures to alleviate the for-
getting; and typically does not have access to the previous domain’s
data.

Our previous work adapts the model for the new locations se-
quentially by updating only the running statistics i.e., running mean
and variance of BN layers in an online domain incremental learning
(ODIL) setup [4]. In this work, we propose to add Low-Rank Adap-
tation (LoRA) parameters to the convolutional layers of the model,
and update only these LoRA parameters and running statistics of the
BN layers to adapt to the incrementally occurring new devices for
effective ASC. LoRA is a parameter-efficient fine-tuning (PEFT)
method widely used as a fine-tuning strategy for transformer-based
Large Language Models (LLMs) [8]. LoRA is also used with vision
transformers for continual learning of images [9] and also applied to
convolutional layers for DA [10] and segmentation [11] of images.

The use of LoRA with CNN-based models for ODIL in the con-
text of audio devices is yet to be explored. Unlike conventional
fine-tuning, in which all the parameters of the model are updated
to adapt to a new domain, LoRA fixes the other parameters of the
current model and only updates the trainable low-rank matrices on
the new domain, sequentially. LoRA parameters are significantly
less than the total parameters of the original model.

The main contributions of this work are as follows,

• We propose using LoRA parameters for ODIL to learn acoustic
scenes incrementally from mismatched devices.

• We investigate the combination of LoRA and BN statistics in
classifying acoustic scenes in both online and offline settings.

• We also investigate the ability of the proposed approach trained
on a device with enough data to adapt to incoming mismatched
devices with limited data. It verifies the suitability of LoRA in
low-data scenarios.

The rest of the paper is organized as follows: Section 2 presents the
notations, baselines, and the proposed LoRA and BN combination
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Figure 1: Overview of the proposed approach for incremental learn-
ing of acoustic scenes from different devices in sequence. Inputs
to the model are the test sample and the device ID. The frozen
model M uses domain-specific LoRA parameters and BN statis-
tics to classify the acoustic scenes from a particular device such as
A, B, C, S1, and so on.

for ODIL of acoustic scenes. Section 3 introduces the datasets, im-
plementation details, and results. Finally, conclusions are given in
Section 4.

2. INCREMENTAL LEARNING OF DEVICE DOMAINS

2.1. Incremental learning setup and notations

In our incremental learning setup, a sequence of ASC tasks is pre-
sented to the model; these tasks represent the datasets from differ-
ent domains: D1,D2, ...,Dt. The model learns each task, i.e., Dt

in our case, at incremental time step t. A domain Dt is an acoustic
scene dataset recorded with a particular device, composed of audio
clips and corresponding class labels. All domains share the same
classes. We aim to train a single-model M that learns to classify
the same acoustic scenes when domain or data distribution changes.
Initially, we train the M on a relatively larger dataset D1 offline
and this model is a base model for incremental tasks. During the
training of incremental tasks, M follows a realistic setting where it
sees a stream of samples only once, online, and quickly adapts to
the new domain on the fly, i.e., ODIL. More importantly, the per-
formance of the M does not degrade on previous domains when it
learns a new domain, unlike the domain adaptation case, in which
the performance on the previous domain does not matter. Note that
in this work we refer to Dt as task, domain, device, and dataset
interchangeably.

2.2. Baselines

We construct a few standard baselines to compare with the proposed
approach: (1) Feature extraction (FE): the feature extractor com-
ponent of the base model is frozen after learning D1. The classi-
fier is updated in each incremental domain; (2) Conventional Fine-
tuning (FT): a model trained on the previous domain is fine-tuned
on the new domain at each incremental time step with all its param-
eters. The model is being trained incrementally; (3) Disjoint: a base
model is trained separately on each domain. (4) Joint: a base model
is retrained from all the data of the domains seen so far in each in-
cremental time step, breaking one of the constraints of the DIL. For
a fair comparison, the base model on D1 is trained offline and on
other domains trained online in incremental steps for all methods.

2.3. Online domain-incremental learning of devices using
LoRA-BN combination

We propose to compute domain-specific LoRA parameters and BN
statistics for ODIL. At the initial time step t = 1, the base model
M is trained on dataset D1. At each incremental time step i, M is
frozen and we only update its LoRA parameters and BN statistics
using new dataset Di as explained below.

Low-Rank Adaptation parameters

For a weight matrix Wbase ∈ Rm×n of a convolutional layer of the
base model M, LoRA adds trainable rank decomposition matrices
A and B as:

Wbase +∆W = Wbase +AB, (1)

where A ∈ Rm×r is a down-projection matrix, B ∈ Rn×r is a
up-projection matrix and rank r is much smaller than the size of the
inputs m and outputs n, i.e., r ≪ min(m,n). The forward pass of
the network with LoRA changes from Wbasex to:

h = Wbasex+ABx, (2)

where x is the input and h is the hidden output. During incremental
learning of a new domain, Wbase is frozen and only the domain-
specific weights of A and B are updated and stored in the model.

Statistics of Batch Normalization layer

BN normalizes the input activations of each layer using mini-batch
statistics, i.e., running mean and variance. The behavior of the BN
layer is different in the training and inference phases. During train-
ing, statistics of the BN layer are updated using training data for-
warded through the network. During inference, statistics obtained
from the training phase are fixed and used to standardize each layer
of the network. BN performs well only when training and testing
data come from the same domain. Therefore, we compute statistics
for each domain separately and store into the model during training.

During inference at each incremental time step, domain-specific
LoRA parameters and BN statistics are applied to base model M to
classify acoustic scenes from the current domain, as shown in Fig. 1.
Input to the model is a combination of the device ID and test sam-
ple, similar to task-incremental learning [12]. Device ID locates the
LoRA parameters and BN statistics of the corresponding device be-
fore classifying the test sample. We only update additional LoRA
parameters and statistics of the BN layers; all other parameters of
the M are fixed. This allows us to recover the original performance
of M for each device by replacing the corresponding LoRA param-
eters and BN statistics. Therefore, M does not suffer from forget-
ting previous devices when it learns a new device. Hereafter, we
refer to our proposed approach as LoRA-BN.

3. EVALUATION AND RESULTS

3.1. Dataset and training setup

Experiments are conducted on the TAU Urban Acoustic Scenes
2020 Mobile development dataset [13], containing audio recordings
from 3 real devices: denoted as A, B, and C, and additional S1-S6
devices simulated from device A. The domain D1 is composed of
40 hours of audio data from device A; the other 8 domains D2 to
D9 include 3 hours of data each from devices B, C and S1-S6. We
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Table 1: Device-specific accuracy of the different methods on each current domain.

Method D1

A
D2

B
D3

C
D4

S1
D5

S2
D6

S3
D7

S4
D8

S5
D9

S6

Base 67.2 37.2 36.1 19.1 18.9 21.7 26.6 23.5 22.4
ODIL-BN [4] 67.2 40.8 44.7 23.1 22.5 26.0 30.5 31.2 25.4
LoRA-BN 67.2 47.0 52.3 37.0 37.4 39.7 42.4 43.3 34.6

Table 2: Average accuracy of the different methods over current and all previously seen domains.

Method D1

A
D2

B
D3

C
D4

S1
D5

S2
D6

S3
D7

S4
D8

S5
D9

S6

FE 67.2 46.5 43.6 33.3 24.7 30.3 33.6 33.6 34.0
FT 67.2 48.0 48.4 37.7 33.1 39.0 43.9 43.4 44.0
Disjoint 67.2 48.0 46.6 35.3 29.1 35.9 36.2 34.9 36.9
LoRA-BN 67.2 57.1 55.5 50.9 48.2 46.8 46.2 45.8 44.7

Joint 67.2 60.3 59.7 56.3 56.1 55.0 56.4 56.7 54.7

follow the official training and testing split provided in the dataset
to generate the data for each domain/device1.

Initially, the model is trained on the domain D1 and it adapts
to the remaining domains in incremental time steps. We follow the
standard procedure in incremental learning, where the model is only
trained on the current domain, without any data from previous do-
mains, and evaluated on all previously seen domains.

3.2. Implementation details and evaluation metrics

We use the 6 convolutional blocks as a feature extractor and the
layers specifications of each block are the same as PANNs CNN14
[14]. The global pooling is applied to the last convolutional layer
to get a fixed-length input feature vector to the classifier. The en-
tire network is trained from scratch on the first domain D1 as the
base model. This base model is adapted to the other domains in
incremental time steps. Input audio recordings are resampled to 32
kHz and log mel spectrograms are computed using default settings
provided in [14].

The model is trained using the Adam optimizer [15] with a
learning rate of 0.0001 and a mini-batch size of 32. The number
of epochs to train the model on D1 is set to 120. The LoRA-BN
and baselines are trained at incremental time steps for one epoch
only. CosineAnnealingLR [15] scheduler updates the optimizer in
every epoch. The rank r is set to 2 for minimal trainable parameters
and the original kernel weight is 3.

We evaluate the performance of the model on the current do-
main and all previously seen domains at each incremental step us-
ing average accuracy and forgetting (Fr) as defined in [4]. Average
accuracy is the average of accuracies of the method over the current
and all previously seen domains. Average forgetting (Fr) is the aver-
age difference between the accuracy of the model for each domain
at its learning iteration (the first time the model learns this domain)
and the accuracy of the model for the same domain at the current
iteration (after learning the current domain). A higher average ac-
curacy and lower Fr are better.

1For S4-S6 the 3 hours of training data was not included in the official
DCASE challenge train-test split, but is provided in the dataset.

3.3. Results

The base model trained on data from real device A achieved an ac-
curacy of 67.2% for domain D1. In Table 1, we compare the accu-
racy of proposed LoRA-BN on the current domain with other meth-
ods, in which all the parameters are frozen or only a few device-
specific parameters are updated in incremental steps and therefore
not suffer from forgetting.

To check the severity of the mismatch between domain D1 and
other incremental domains D2 to D9, we use the base model to clas-
sify the acoustic scenes of other domains without updating its pa-
rameters (no training). The base model does not adapt to the incre-
mental domains, resulting in a drastic performance drop, especially
from simulated domains, D4 to D9, as seen in Table 1.

ODIL-BN computes the domain-specific running statistics of
the BN layers to classify acoustic scenes from each domain [4].
ODIL-BN does not change any other parameters of the base model
and does not forget previous domains. However, this alone im-
proves the performance of the base model only slightly in most
of the incremental domains. The proposed LoRA-BN computes
the domain-specific LoRA parameters for each convolutional layer
and domain-specific running statics for each BN layer. The addi-
tional combined LoRA parameters and running statistics help the
base model to effectively adapt to the incremental domains. It can
be seen that LoRA-BN improves the performance for D2 by 9.8%p
(percentage point), D3 by 16.2%p, D4 by 17.9%p, D5 by 18.5%p,
D6 by 18.0%p, D7 by 15.8%p, D8 by 19.8%p, D9 by 12.2%p, com-
pared to the base model.

We also compare the performance of the proposed LoRA-BN
method with other popular baseline methods in terms of average ac-
curacy over current and previous domains in Table 2. Accuracy in
the current domain and average forgetting over previous domains is
also shown in Fig. 2. Results of FE compared to FT show that adapt-
ing the layers of the feature extractor to an incremental domain is
better than freezing them. One can observe from Fig. 2a and 2b that
higher forgetting of previous real domains D1 to D3 happens when
the model starts learning the simulated domains, specifically D4 and
D5 due to highly mismatched domains. The poor performance of
FT in classifying the acoustic scenes from D1 after learning D5 can
also be seen in Fig. 3b. This leads to a lower average accuracy for
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Figure 2: Accuracy at the current domain and average forgetting over previous domains of FE (a), FT (b) and disjoint (c) methods.
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Figure 3: Confusion matrices of a base model on domain D1 (a), FT
on domain D1 after learning the simulated domain D5 correspond-
ing to S2 (b). The 10 classes are, AI: airport, BU: bus, ME: metro,
MS: metro station, PA: park, PS: public square, SM: shopping mall,
SP: pedestrian street, ST: street with traffic, and TR: tram.

FE and FT for simulated domains D4 and D5, as seen in Table 2.
However, FT uses all layers to adapt to the simulated devices after
D5 ,and performs better overall after learning all domains.

The disjoint approach fine-tunes the base model trained on D1

to a current domain and performs well on real domains D2 and D3,
maybe due to similar feature distributions. However, fine-tuning the
base model directly to each simulated domain reduces the perfor-
mance of the disjoint method as compared to FT, in which previous
knowledge of the simulated domain is used to classify the acoustic
scenes from the current domain.

The proposed LoRA-BN outperforms all other methods with-
out forgetting any of the previously learned domains and its perfor-
mance is close to the baseline joint which trains the model from the
data of all previously seen domains. The number of LoRA param-
eters for each domain is 124434, which is only a 0.17% increase
to the total parameters 75497930 of the base model. It shows that
LoRA-BN is more suitable for practical scenarios because it only
stores inexpensive LoRA parameters and running statistics.

We also compare the performance of LoRA-BN and other base-
line systems in offline settings. Baseline systems suffer from over-
fitting and lead to decreased performance. However, LoRA-BN
converges effectively over an increasing number of epochs with lim-
ited training data in incremental domains, as seen in Fig. 4. Further,
we test the performance of all the methods by changing the order of
the domains. We found that the devices S1 and S2 are more chal-
lenging to adapt in any order than other devices.

In comparison to the results of the DCASE Challenge 20202,

2https://dcase.community/challenge2020/
task-acoustic-scene-classification#subtask-a-3
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Figure 4: Accuracy of the LoRA-BN over increasing number of
epochs.

the baseline achieves an average accuracy of 54.1%, being trained
for 200 epochs on combined data of devices A-S3, with S4-S6 not
included in the training. This result is aligned with the joint base-
line in this paper, which achieves 54.7% using online training of all
devices using the base model. DCASE baseline reports lower per-
formance on simulated devices S1-S3, being trained offline, non-
incrementally. Our proposed LoRA-BN achieves comparable re-
sults on S1-S3 when trained for 30 epochs, only on data of one
device sequentially. However, our method follows a completely dif-
ferent learning procedure and is therefore not fully comparable with
the DCASE baseline.

4. CONCLUSION

In this paper, we propose a combination of LoRA parameters and
running statistics of the BN layer for ODIL of acoustic scenes
from different devices over time. Results show that highly mis-
matched simulated devices, especially starting devices S1 and S2
are more difficult to adapt by a model trained on real devices.
ODIL-BN achieves poor performance on simulated devices and
baselines severely forget acoustic scenes from previous real de-
vices when these start learning simulated devices. The proposed
LoRA-BN adapts effectively to the new domain and increases the
performance of the base model by a large margin without forget-
ting acoustic scenes from any of the previously leaned devices. The
performance of the LoRA-BN is further improved by increasing
the number of iterations over the training data. LoRA-BN stores
and uses inexpensive parameters and is more suitable for realistic
applications. Future works include the development of a domain-
agnostic approach that does not require device ID to classify acous-
tic scenes.

84



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

5. REFERENCES

[1] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,”
Neural networks, vol. 113, pp. 54–71, 2019.

[2] M. J. Mirza, M. Masana, H. Possegger, and H. Bischof, “An
efficient domain-incremental learning approach to drive in all
weather conditions,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022, pp.
3001–3011.

[3] P. Garg, R. Saluja, V. N. Balasubramanian, C. Arora,
A. Subramanian, and C. Jawahar, “Multi-domain incremen-
tal learning for semantic segmentation,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, 2022, pp. 761–771.

[4] M. Mulimani and A. Mesaros, “Online domain-incremental
learning approach to classify acoustic scenes in all loca-
tions,” in European Signal Processing Conference (EU-
SIPCO). IEEE, 2024.

[5] S. Gharib, K. Drossos, E. Cakir, D. Serdyuk, and T. Virta-
nen, “Unsupervised adversarial domain adaptation for acous-
tic scene classification,” in Workshop on Detection and Clas-
sification of Acoustic Scenes and Events (DCASE), 2018, pp.
138–142.

[6] K. Drossos, P. Magron, and T. Virtanen, “Unsupervised adver-
sarial domain adaptation based on the wasserstein distance for
acoustic scene classification,” in IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics (WASPAA).
IEEE, 2019, pp. 259–263.

[7] A. I. Mezza, E. A. Habets, M. Müller, and A. Sarti, “Unsu-
pervised domain adaptation for acoustic scene classification
using band-wise statistics matching,” in 28th European Signal
Processing Conference (EUSIPCO). IEEE, 2021, pp. 11–15.

[8] E. B. Zaken, Y. Goldberg, and S. Ravfogel, “Bitfit: Simple
parameter-efficient fine-tuning for transformer-based masked
language-models,” in Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 2:
Short Papers), 2022, pp. 1–9.

[9] M. Wistuba, L. Balles, G. Zappella, et al., “Continual learning
with low rank adaptation,” in NeurIPS Workshop on Distribu-
tion Shifts: New Frontiers with Foundation Models, 2023.

[10] S. Aleem, J. Dietlmeier, E. Arazo, and S. Little, “Convlora
and adabn based domain adaptation via self-training,” arXiv
preprint arXiv:2402.04964, 2024.

[11] Z. Zhong, Z. Tang, T. He, H. Fang, and C. Yuan, “Convo-
lution meets lora: Parameter efficient finetuning for segment
anything model,” in The Twelfth International Conference on
Learning Representations (ICLR), 2024.

[12] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE
Transactions on pattern analysis and machine intelligence,
vol. 40, no. 12, pp. 2935–2947, 2017.

[13] T. Heittola, A. Mesaros, and T. Virtanen, “Acoustic scene
classification in dcase 2020 challenge: generalization across
devices and low complexity solutions,” in Workshop on De-
tection and Classification of Acoustic Scenes and Events
(DCASE), 2020, pp. 56–60.

[14] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.
Plumbley, “PANNs: Large-scale pretrained audio neural net-
works for audio pattern recognition,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 28, pp.
2880–2894, 2020.

[15] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient de-
scent with warm restarts,” in International Conference on
Learning Representations (ICLR), 2017.

85



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

PRE-TRAINED MODELS, DATASETS, DATA AUGMENTATION
FOR LANGUAGE-BASED AUDIO RETRIEVAL
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ABSTRACT

We investigate the impact of pre-trained models, datasets, and data
augmentation on language-based audio retrieval. Despite the high
interest in cross-modal retrieval and the introduction of various
datasets, powerful encoders, and data augmentation techniques, it
remains unclear which approaches are most effective for language-
based audio retrieval. We focus on which should be selected to
build a retrieval model. First, we investigate the performance gain
by four audio encoders, PaSST, CAV-MAE, BEATs, and VAST, and
three text encoders BERT, RoBERTa, and T5. Second, we prepare
massive datasets of over 670k audio-text pairs including ClothoV2,
AudioCaps, WavCaps, MACS, and Auto-ACD. Third, we inves-
tigate the combination of data augmentation methods to enhance
the retrieval performance including mixup-contrast and text token
masking. In addition, we also explore inference time augmentation
by paraphrasing textual queries using Chat-GPT to achieve robust
retrieval performance. Our final results achieve 39.79 points with
a single model and 42.22 points with the ensemble models in the
mean average precision among the top 10 results on the evaluation
split of ClothoV2.

Index Terms— Language-based audio retrieval, Pre-trained
model, Data augmentation,

1. INTRODUCTION

Language-based audio retrieval systems take a textual query as in-
put and retrieve the corresponding audio from a database. The main-
stream approach projects both audio and text data into a joint em-
bedding space calculates their similarity, and ranks the audio based
on this similarity [1] (Figure 1). To obtain this joint space, models
are trained from audio-text pairs. Contrastive learning is a dominant
training method, where positive audio-text pairs are given higher
similarity scores and negative pairs lower scores [2].

This task shares common characteristics with text-to-
image/video retrieval because both tasks involve processing lan-
guage inputs and employ contrastive learning to train the dual
encoders. In text-to-image/video retrieval, researchers have ex-
plored various encoders (e.g., CLIP [3], VideoBERT [4], BERT [5],
RoBERTa [6]) trained on massive datasets with data augmentation
methods (e.g., Mixco [7]). As with the visual domain, in the audio
domain, the encoders, datasets, and data augmentation have been
proposed [8, 9]. However, it remains unclear which approaches are
most effective for audio retrieval. This motivates us to focus on
which should be selected to train the retrieval model.

To address this, we investigate the impact of pre-trained models,
datasets, and data augmentation on language-based audio retrieval.
For pre-trained models, we use five audio encoders and three text
encoders that have achieved state-of-the-art performance in down-
stream tasks. Specifically, we adopt PaSST [10], BEATs [11], CAV-

Text
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Text emb. 1

Audio
emb. 2Audio emb. 1

Retrieval model Joint embedding space

Positive
pair

Negative pairsText
encoder

Audio
encoder

Text 1

…
 

Text 2

Audio 1

…
 

Audio 2

Figure 1: An overview of the conventional language-based audio
retrieval system based on contrastive learning. Through contrastive
learning, positive pairs of audio-text embeddings have similar val-
ues, while negative pairs have less similar values.

MAE [12], and VAST [13] for the audio encoder and BERT [5],
RoBERTa [6], and T5 [14]. For datasets, we prepare a massive
dataset containing over 670k audio-text pairs. The dataset in-
cludes both manually annotated data such as ClothoV2 [1], Audio-
Caps [15], MACS [16], and WavCaps/Auto-ACD[17, 18] that uti-
lize large language models (LLMs) to generate pseudo audio-text
pairs. For data augmentation, we apply multiple data augmentation
methods, mixup-contrast [7], and text token masking for further im-
provement of the retrieval performance. In addition, we also explore
inference time augmentation by paraphrasing textual queries using
Chat-GPT to achieve robust retrieval performance.

In our experiments, we conduct thorough comparative studies
on encoders, datasets, data augmentation, and inference time aug-
mentation. As a result, we provide the following three insights.
First, in terms of encoders, VAST and RoBERTa yield the best per-
formance. The performance of audio encoders aligned with the
performance in the AudioSet classification task except for PaSST,
which adopts patch-out, a regularization technique. Second, for the
datasets, we observe that it is important to improve the text annota-
tion quality, rather than increase the pseudo audio-text pairs gener-
ated from LLMs. Third, data augmentation approaches, both train-
ing and inference augmentation, contribute to the performance gain.
As a result of combining these techniques, the model with PaSST
and RoBERTa yields the best performance, achieving 39.79 mean
average precision (mAP) on the ClothoV2 evaluation split. An en-
semble of multiple models reaches 42.26 mAP.

2. MODEL OVERVIEW

As with recent cross-modal retrieval, our training approach is based
on contrastive learning. The retrieval model has audio and text
encoders to project the audio and text onto the joint embedding
space. The input audio X(A) and text X(T ) is projected onto D-
dimensional joint space as Z(A) and Z(T ) by audio/text encoders
fA and fT as follows:

Z(A) = fA(X
(A)), (1)

Z(T ) = fT (X
(T )). (2)
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Based on (Z(A),Z(T )), the model is trained to discriminate positive
and negative from each pair of B audio and text samples based on
InfoNCE [2] loss. Specifically, let i-th audio and j-th text be Z

(A)
i

and Z
(T )
j , where i = j is positive and i ̸= j is negative. The loss is

written as the cross-entropy loss with the softmax as follows:

LCE
(
Z,Z′

k,Z
′
:

)
= − log

exp (S(Z,Z′
k)/τ)∑

Z′∈Z′
:
exp (S(Z,Z′)/τ)

, (3)

LA→T
infoNCE =

∑
i

LCE

(
Z

(A)
i ,Z

(T )
i ,Z(T )

:

)
, (4)

LT→A
infoNCE =

∑
j

LCE

(
Z

(T )
j ,Z

(A)
j ,Z(A)

:

)
, (5)

LinfoNCE = LA→T
infoNCE + LT→A

infoNCE, (6)

where Z′
: is the set of Z′

1, ...,Z
′
B , S is the cosine similarity, and τ

is a trainable temperature parameter.
In the inference stage, the textual query and audio in the

database are projected onto the joint embedding space, and their
similarity is calculated to rank the audio. The audio ranked at posi-
tion k in the database X

(A)
k is obtained by sorting the cosine simi-

larities as follows:

X
(A)
k = argmaxk

X(A)∈X
(A)
DB

S(fA(X
(A)), fT (X

(T ))), (7)

where argmaxk is the operation of extracting the k-th largest ele-
ment and X

(A)
DB is the set of audio in the database.

3. AUDIO AND TEXT ENCODERS

3.1. Audio Encoder

The first focus of this study is encoders. For the audio side,
we investigate four audio encoders: PaSST [10], BEATs [11],
VAST [13], and CAV-MAE [12]. These models are variants of
ASTs [19] that apply Vision Transformers [20] to audio spectra.
PaSST [10] enhances the AST by incorporating the patch-out tech-
nique that improves the generalization and accelerates the train-
ing by dropping the parts of the input sequence. Additionally, it
employs distinct positional encodings for the time and frequency
dimensions, leading to performance enhancements. We used the
weights pre-trained on the AudioSet classification task. The stride
size for the frequency and time was 16 and the patches were not
overlapped. Only for this model, we apply patch-out [10] with 2
and 15 patches for the frequency and time directions during train-
ing.
CAV-MAE [12] extends the AST into an audio-visual model by
integrating the outputs of AST and Vision Transformer [21]. This
combined output is fed into a subsequent transformer that captures
the interrelationships between audio and visual modalities through
self-attention mechanisms. A multi-task loss that combines con-
trastive learning and masked autoencoder loss on both AudioSet and
VGGSound datasets is used in the training. We used the scale++
model.
BEATs [11] introduces a discrete audio tokenizer to the AST frame-
work, leveraging SSL. AST-based SSL model and the audio tok-
enizer are trained alternately in a repeated manner. Notably, BEATs
demonstrated its high performance by being employed in the best
system for the audio captioning task of the DCASE 2023 Challenge.
We used the weights fine-tuned on the AudioSet classification task.

VAST [13] is a multi-modal model that integrates vision, audio,
and texts into a unified framework using BEATs for the audio en-
coder. It is trained on the VAST-27M dataset, which includes 27
million video clips with vision-text or audio-text. The model trained
with the dataset for various tasks such as retrieval, captioning, and
question answering. VAST has demonstrated state-of-the-art per-
formance on multiple cross-modality benchmarks. We used two
different weights only pre-trained based on SSL and fine-tuned for
the audio captioning task.

3.2. Text Encoder

For the text side, we investigate three text encoders: BERT [5],
RoBERTa [6], T5 [14]. These models are based on Transformer
architecture [22] trained with large-scale crawled text corpora. We
use pre-trained weights of the large model of these encoders pub-
licly available on HuggingFace.
BERT [5] is the bidirectional transformers encoder to improve un-
derstanding ability of the context of words in a sentence. This model
is pre-trained based on masked language modeling (MLM) and next
sentence prediction (NSP) with English Wikipedia and BookCor-
pus [23] containing over 3500 million words. We used the large
model.
RoBERTa [6] is an optimized version of BERT pre-trained with
diverse corpora of 160 GB. It removes NSP and focuses solely on
MLM objectives. We used the large model.
T5 [14] is the transformer-based encoder and decoder architecture,
which formulates a wide range of tasks such as sentence predic-
tion. This model is trained based on SSL using multiple objective
functions with C4 dataset [14], a web-crawled corpus of about 750
GB.

4. DATASET AND AUGMENTATION

4.1. Datasets

The second focus is the dataset. We prepare six datasets to
investigate which one contributes to the retrieval performance:
ClothoV2 [1], ClothoV2-GPT [24], MACS [16], AudioCaps [15],
WavCaps [17], and Auto-ACD [18]. Note that all texts are prepro-
cessed by removing punctuation and converting it to lowercase. In
our evaluation, we use the ClothoV2 evaluation split and AudioCaps
test split.
ClothoV2 [1] contains audio recordings ranging from ten to 30 sec-
onds in length. The dataset is divided into training, validation, and
test splits with 3840, 1045, and 1043 recordings, respectively. Each
audio recording in the dataset is associated with five human-written
captions containing eight to 12 words.
ClothoV2-GPT [24] is an augmented version of Clotho v2, where
the original manually annotated text is expanded by five additional
texts generated by OpenAI’s GPT3.5-turbo. Five additional cap-
tions are generated by GPT based on the original audio’s captions
and keywords from metadata.
MACS [16] is extracted from the TAU Urban Acoustic Scenes 2019
and contains approximately 3,900 samples, each ten seconds long,
totaling around 47 hours of audio. The captions are manually cre-
ated, with roughly five captions per audio clip. The vocabulary size
is 2803 words.
AudioCaps [15] is created by manually annotating a subset of The
available subset of the dataset divided into training, validation, and
test splits with 46163, 457, and 911 recordings, respectively. Most
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of the clips are 10 seconds long. The captions are manually created,
with one caption per audio clip. The vocabulary size is 5129 words.
WavCaps [17] includes samples from FreeSound, BBC Sound Ef-
fects, SoundBible, and AudioSetSL. It contains around 400k sam-
ples in total. The clip lengths vary from ten seconds to several min-
utes, with an average length of 67 seconds, totaling approximately
7500 hours of audio. Captions are automatically generated using
GPT based on existing metadata (tags, etc.) and different prompts
are used for each source dataset. Each audio clip has one caption,
with a vocabulary size of 28721 words.
Auto-ACD [18] comprises samples from AudioSet and VG-
GSound [25]. We used the subset from VGGSound because it per-
forms better on Clotho. It contains 180k samples generated from
the YouTube video data of VGGSound. The text was generated
by OpenAI’s GPT leveraging existing tags and object recognition
results from videos. Most clips are 10 seconds long, totaling ap-
proximately 500 hours of audio. Each audio clip has one caption,
with a vocabulary size of 8157 words.

4.2. Training Data Augmentation

The third focus is the data augmentation. We use the following two
approaches: Mix-up contrast (Mixco) [7] and text token masking.
Mixco [7] is a data augmentation method for contrastive learning.
It was originally used for text-to-image retrieval and achieved sig-
nificant performance gain. Mixco introduces the semi-positive pair,
which is the pair of an image generated by mixing two images and
their corresponding texts. To enable the model to learn better rep-
resentations, the target labels for semi-positive pairs in the cross-
entropy loss are set as soft labels rather than hard ones. To apply
Mixco to language-based audio retrieval, we mix the i-th audio in
the batch X

(A)
i and another audio X

(A)

ϕ(i) in the waveform and trans-
form it as follows:

X
(A′)
i = λX

(A)
i + (1− λ)X

(A)

ϕ(i), (8)

Z
(A′)
i = AudioEncoder(X

(A′)
i ), (9)

where ϕ(i) is a randomly selected index for i and λ ∈ (0, 1) is
a random variable sampled from the uniform distribution. From
the embeddings of the mixtures, the additional loss of Mixco is ob-
tained by the weighted sum of the infoNCE loss to discriminate
semi-positive and negative pairs similar to Eq. (4) and Eq. (5) as
follows:
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∑
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Lmixco = LA→T
mixco + LT→A

mixco . (12)

We use the same temperature parameter for Eq. (3). In our exper-
iment, we use the combination of the original info NCE loss and
Mixco loss: L = LinfoNCE + Lmixco.
Text token masking is a data augmentation method for the input
text to mitigate overfitting. The text tokens are randomly replaced
with [MASK] token for BERT and RoBERTa, and <extra id 0>
for T5. We set the replace probability to 15%.

Table 1: Performance by the audio and text encoders. The columns
for mAP@10 represent the average and standard deviation achieved
by the three models

ID Audio Text mAP@10
encoder encoder ClothoV2 AudioCaps

A PaSST RoBERTa 39.77± .07 52.45± .32

B CAV-MAE RoBERTa 38.57± .77 51.52± .95
C BEATs RoBERTa 39.25± .14 54.70± .10
D VAST (captioning) RoBERTa 39.68± .09 55.49± .06
E VAST (vanilla) RoBERTa 39.79± .14 55.22± .31

F PaSST T5 36.06± .10 50.76± .23
G PaSST BERT 36.27± .20 49.03± .16

Table 2: Performance by the training dataset. The second column
represents the number of audio-text pairs. The third column repre-
sents how the text data was created.

Training datasets # of mAP@10
samples ClothoV2 AudioCaps

1. ClothoV2 19k 27.30± .43 23.16± .28
2. ClothoV2-GPT 19k 27.36± .55 24.75± .51
3. AudioCaps 46k 23.59± .25 49.28± .18
4. WavCaps 401k 34.14± .38 44.22± .47
5. MACS 17k 8.30± .41 9.59± .42
6. Auto-ACD 185k 21.79± .26 28.82± .36

1 & 3 & 4 473k 38.40± .24 50.81± .36
2 & 3 & 4 473k 38.21± .09 51.05± .21

1 & 3 & 4 & 5 484k 38.80± .34 51.30± .07
1 & 3 & 4 & 6 651k 38.88± .33 51.92± .14

1 & 3 & 4 & 5 & 6 670k 39.09± .43 52.18± .17

4.3. Inference Time Augmentation

In addition to the training data augmentation, we also devise an in-
ference time query augmentation method by paraphrasing textual
queries using Chat-GPT to achieve robust retrieval performance.
For example, a query of “A man walking who is blowing his nose
hard and about to sneeze.” is paraphrased to “A man walks while
blowing his nose loudly” and “A man blows his nose hard as he
walks.” Since ClothoV2-GPT is generated only for the training
split, we generated the same format dataset of the ClothoV2 evalu-
ation split and AudioCaps test split using the same prompt of [24]
except for not using the keywords. The text encoder projects the
original and the additional queries and then the embeddings of each
query are averaged.

5. EXPERIMENT

We conduct five experiments to confirm the effect of the encoders,
datasets, training data augmentation, inference time augmentation,
and the model ensemble.

5.1. Experimental Setting

The dimension of the joint embedding space is set to 1024. The
number of training epochs and batch size are 15 and 128, respec-
tively. The optimizer is AdamW [26]. The learning rate was
changed by iterations using a cosine scheduler with 1 warm-up
epoch and the maximum learning rate was 1 × 10−5. The ini-
tial value of the temperature parameter τ used in Eq (3) was 0.02.
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Table 3: Performance with and without data augmentation.

Mixco Text token mAP@10
masking ClothoV2 AudioCaps

- - 39.09± .43 52.18± .17
✓ - 39.01± .27 49.25± .89
- ✓ 39.33± .10 52.83± .22
✓ ✓ 39.77± .07 52.45± .32
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Figure 2: The relationship between the retrieval performance and
the number of additional queries. The lines and areas represent the
Average and standard deviation of mAP@10, respectively.

To avoid learning unexpected relationships between the audio and
text caused by the difference among the datasets, we generate each
batch from the same dataset. In the training, we conducted vali-
dation by 20% of each epoch and saved the model weight. After
training, the weights of the models that achieved the top 10 in vali-
dation mAP@10 of ClothoV2 are averaged to form the final model
weights. For the inference time augmentation, we generate five ad-
ditional captions for ClothoV2 and the evaluation dataset of this
challenge. The replacement probability of the original caption to the
generated caption of ClothoV2-GPT is set to be 0.3 as with [24].
The preprocess and sampling rate of the audio follows the original
implementation of each audio encoder. Audio clips are trimmed to
10 seconds if they are longer and padded if they are shorter. To
mitigate performance variations due to initialization, we train all
models three times. We performed the model ensemble by averag-
ing the cosine similarity calculated by each model. In addition, to
increase the diversity of the ensemble without additional training,
two embeddings are obtained from a single model with or without
inference time augmentation.

5.2. Results

Which encoders are the best? Table 1 shows the performance
when changing the audio and text encoders. Note that in this ex-
periment, we use all of the datasets, data augmentation, and infer-
ence time augmentation. We observe that RoBERTa achieves the
best performance on both datasets and the two weights of VAST
achieved the best performance on each dataset. In terms of the
audio encoder, the performance in the AudioCaps is aligned with
the performance in the AudioSet classification task. However,
the performance in ClothoV2 is not aligned and PaSST is com-
parable to VAST. An important difference between PaSST and the
other encoders is patch-out, encouraging PaSST to avoid overfitting.
Among the text encoders, the performance of T5 is significantly
worse than other models. This suggests that bi-directional text en-
coders (e.g., BERT and RoBERTa) are desirable for the language-
based audio retrieval, rather than the uni-directional model (e.g.,
T5).
Which datasets have a significant impact on performance? Ta-
ble 2 shows the performance when changing the training dataset.
Note that in this experiment, we do not use data augmentation,
and the audio/text encoders are PaSST and RoBERTa, respectively.
When comparing models trained on ClothoV2 and ClothoV2-GPT,
there was no significant performance difference, whether they were

Table 4: Performance of the ensembles of the multiple models

Model mAP@10
ClothoV2 DCASE eval.

Ensemble of A, B, C, D, E 42.22 39.2
Our system of DCASE 2024 42.26 38.8

The best system of DCASE 2024 41.90 41.6
The best system of DCASE 2023 41.42 40.1

used as a single dataset (rows 1 and 2) or as subsets of multiple
datasets (rows 7 and 8). The model trained only with MACS and
Auto-ACD did not perform well (rows 5 and 6). In contrast, the
model with WavCaps shows high performance for both evaluation
datasets (row 4). When comparing the improvement of MACS and
Auto-ACD (rows 8 and 9), despite the large difference in the num-
ber of samples, the difference in the performance was lower than 0.1
point for ClothoV2. When comparing Auto-ACD and WavCaps, the
performance gap can be attributed to the fact that Auto-ACD does
not implement the multiple filtering processes used by WavCaps.
This suggests that acquiring high-quality text is crucial for training
effective audio retrieval models.
Which training data augmentation is the best? Third, we an-
alyze the effect of the data augmentation and the summary is de-
scribed in Table 3. In this experiment, we used all datasets, and
the audio/text encoders are PaSST and RoBERTa. We obtain two
findings. First, we separately conduct experiments on text token
masking and Mixco and observe that text token masking slightly
improves the performance yet Mixco does not. This may be be-
cause Mixco does not add new training text patterns, leading to the
model’s overfitting. Second, the combination of Mixco and text to-
ken masking significantly improves the performance. This result
indicates that text token masking prevents the model from overfit-
ting, enabling Mixco to be effective.
How many queries are necessary for inference time augmenta-
tion? Figure 2a and 2b show the performance change when varying
the number of additional queries on ClothoV2 and AudioCaps. The
results suggest that the number of additional queries depends on
the datasets. In ClothoV2, five additional queries achieve the high-
est performance, whereas only one additional query has a negative
impact. Based on these, we can say that the additional query supple-
ments the missing information in the original query. In AudioCaps,
this method degrades the performance even if we add five queries.
This result implies that the text queries of AudioCaps already in-
clude enough keywords for the retrieval task.
Ensemble model performance. We measure the performance of
the ensemble of A, B, C, D, and E that have different audio en-
coders, which is similar to our system of the DCASE 2024 Chal-
lenge. Although our model is comparable with the best system of
the DCASE 2024 Challenge for ClothoV2, do not outperform it for
the evaluation data of the DCASE Challenge. This result shows that
we cannot avoid overfitting by merely using the large-scale dataset
and encoders.

6. CONCLUSION

This report shows the impact of the audio and text encoders,
datasets, and data augmentation methods. In our experiments, the
single model achieved 39.79 points and the ensemble of the mod-
els achieved 42.22 points in mAP@10 on average for the ClothoV2
benchmark. Our future work includes the training strategy for large-
scale datasets and pre-trained that can avoid overfitting.
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ABSTRACT

The task of Acoustic Scene Classification (ASC) is to cate-
gorize short audio recordings into predefined scene classes. The
DCASE community hosts an annual competition on ASC with
a special focus on real-world problems such as recording device
mismatches, low-complexity constraints, and limited labelled data
availability. Solutions like Knowledge Distillation (KD) and task-
specific data augmentations have proven effective in tackling these
challenges, as demonstrated by their successful application in top-
ranked systems. This paper contributes to the research on the real-
world applicability of ASC systems by analyzing the effect of Au-
dioSet pre-training on downstream training sets of different sizes.
We study the impact of extensive data augmentation techniques, in-
cluding Freq-MixStyle, device impulse response augmentation, Fil-
terAugment, frequency masking, and time rolling on different train-
ing set sizes. Furthermore, the effectiveness of Bayesian Ensemble
Averaging over traditional mean ensembling in KD is investigated.
The results demonstrate that the proposed methods improve the per-
formance over the DCASE baseline system substantially, with a par-
ticularly large gain on the smallest training set, lifting the accuracy
by more than 7 percentage points on the development-test split. 1

Index Terms— Acoustic Scene Classification, CP-Mobile,
Knowledge Distillation, AudioSet pre-training, Bayesian Ensem-
ble Averaging, Device Impulse Response augmentation, Freq-
MixStyle, FilterAugment

1. INTRODUCTION

Acoustic Scene Classification (ASC) systems aim to categorize au-
dio recordings into predefined scene classes. The Data-Efficient,
Low-Complexity ASC task of the DCASE 2024 challenge [1] fo-
cuses on the real-world applicability of ASC systems by addressing
three major problems, including recording device mismatch, low-
complexity constraints, and limited training data availability. The
task uses the TAU Urban Acoustic Scenes 2022 Mobile develop-
ment dataset (TAU22) [2], consisting of 1-second audio recordings
from 10 different scenes. The audio is recorded with three real de-
vices, and six additional devices are simulated, with three of the
simulated devices being only available in the test split, highlight-
ing the importance of device generalization. The low-complexity
constraints limit the model size to 128 kB and the computational
complexity to 30 million multiply-accumulate operations (MACs),
ensuring applicability on edge devices. The 2024 edition of this
challenge addresses the real-world scenario of limited labelled data,

*These authors contributed equally to this work
1Source Code: https://github.com/SchilcherPatrick/

DCASE24_Task1

requiring systems to maintain high accuracy with restricted training
data across five scenarios: 5%, 10%, 25%, 50%, and 100% of the
audio clips in the full training dataset. Systems must be trained ex-
clusively on these subsets and explicitly allowed external resources,
such as AudioSet [3].

This paper contributes to the research on the practical appli-
cation of ASC systems by studying the effect of pre-training the
student model on AudioSet. We examine the influence of vari-
ous data augmentation techniques, such as Freq-MixStyle [4], de-
vice impulse response augmentation (DIR) [5], FilterAugment [6],
frequency masking, and time rolling (shifting audio and wrapping
segments that exceed the end back to the start) on different train-
ing set sizes. Additionally, the study evaluates the effectiveness of
Bayesian Ensemble Averaging (BEA) compared to traditional mean
ensembling in the context of Knowledge Distillation (KD). The pro-
posed systems achieved the second rank in Task 1 of the DCASE
2024 challenge.

We review related work in Section 2, followed by a description
of teacher and student architectures in Section 3. We then present
the data-efficient training pipeline in Section 4. In Sections 5 and 6,
we present the experimental setup and the results, respectively, and
the paper is concluded in Section 7.

2. RELATED WORK

ASC Architectures: Convolutional Neural Networks (CNNs)
have consistently proven to be leading models for low-complexity
ASC [7, 8]. Restricting the receptive field of CNNs, known as
Receptive Field Regularization [9, 10], has been shown to no-
tably improve the generalization performance, with successful im-
plementations in BC-ResNet [11] and CP-ResNet [9]. Inspired
by efficient CNN architectures from the vision domain [12, 13],
CP-Mobile (CPM) is a low-complexity, receptive-field regularized
CNN for ASC, constructed of efficient inverted residual blocks.
CPM achieved the top rank in the 2023 edition and a slightly sim-
plified version of this architecture, excluding GRN [14], is used as
the baseline system in the 2024 edition of this challenge. Recently,
Audio Spectrogram Transformers (AST), such as the Patchout faSt
Spectrogram Transformer (PaSST) [15], have shown state-of-the-
art performance on various downstream tasks in the audio domain,
including ASC.

Low-Complexity Techniques: Besides developing efficient ar-
chitectures, several model compression techniques have been used
in the context of ASC to meet the complexity requirements. In
this regard, Pruning [16], Quantization [17], and, most importantly,
KD [18] have become popular for further reducing system com-
plexity. KD can be pointed out as the single most important tech-
nique for reducing the complexity of ASC systems, as it has been
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consistently used in top-ranked systems submitted to the challenge
[19, 20, 21, 22, 8].

Recording Device Generalization: To tackle the device mis-
match and generalization problem, various techniques have been
explored, including Domain Adaptation [23, 24], training device
translators [25], adjusting device sampling frequency [26], and nor-
malizing data [4]. Among these, Freq-MixStyle [4] and DIR [5]
augmentation techniques have proven to be particularly effective in
boosting performance on unseen devices.

Data augmentation: Data augmentation is a widely used tech-
nique in ASC to improve model generalization and prevent overfit-
ting, especially when dealing with small datasets and device mis-
matches. Some commonly used techniques include Mixup [27],
SpecAugment [28], Freq-MixStyle [4], and DIR augmentation [5].

3. ARCHITECTURES

In this section, we present the teacher and student model architec-
tures used in the KD-based training pipeline presented in Section 4.

3.1. TEACHER MODELS: PaSST, CP-ResNet, CP-Mobile

The Patchout faSt Spectrogram Transformer (PaSST) [15] is a
self-attention-based AST model that excels in capturing global au-
dio context and has achieved state-of-the-art performance on var-
ious downstream tasks in the audio domain [15]. By introducing
the patchout mechanism for improved generalization and computa-
tional efficiency, PaSST has been shown to be an excellent teacher
for low-complexity ASC models [29, 5].

CP-ResNet [9], a receptive-field regularized CNN, has been a
successful model in previous ASC tasks [29, 9]. This fully convo-
lutional architecture incrementally builds local features over a spa-
tially restricted area. Receptive-field regularization has been shown
to be important for improved generalization in ASC [9, 10].

CP-Mobile [30] (the student model in our setup; as described in
the following section) is also included in the teacher ensemble, as
described in Section 5.4.

3.2. STUDENT MODEL: CP-Mobile

Inspired by CP-ResNet, CPM is a factorized CNN architecture
designed for low-complexity ASC, enhancing both representation
capability and efficiency. The core innovation of CPM is the
CPM block [22], a computationally efficient alternative to the clas-
sical convolutional layer that implements an inverted bottleneck
block [12]. Each CPM block includes three factorized convolutional
layers integrated with batch normalization and ReLU activation, tar-
geting efficiency, and high representation capability, making CPM
ideal for inference on edge devices.

4. DATA-EFFICIENT TRAINING PIPELINE

In this section, we introduce our proposed data-efficient training
pipeline. We experiment with training the low-complexity student
model, CPM, in three stages: Firstly, we pre-train CPM on Au-
dioSet (Section 4.1), secondly, we train CPM on the respective train
split of the TAU dataset (Section 4.2), and finally, we fine-tune CPM
on the respective TAU split using KD (Section 4.3).

4.1. AudioSet Pre-Training

We hypothesize that pre-training the student model on a large
general-purpose audio dataset, such as AudioSet [3], can reduce

the need for extensive labelled data on downstream tasks. AudioSet
contains over 2 million human-labeled 10-second sound clips across
527 distinct sound categories. This dataset provides a comprehen-
sive resource for training and evaluating audio recognition mod-
els. General knowledge about acoustic events may improve perfor-
mance on downstream tasks with limited training sets.

Following the training routine in [31], we train the CPM on
AudioSet using KD from a large transformer ensemble of nine
PaSST [15] models. Despite the high task complexity, the low-
complexity network achieves a reasonable mean average precision
performance of 0.194.

4.2. Pre-Training on Acoustic Scenes

Before distilling the knowledge from the teacher ensemble into the
low-complexity student model, we train the student on the allowed
TAU train split. The hypothesis is that pre-training on both Au-
dioSet and TAU would provide a robust initialization by leveraging
the diversity of AudioSet and the specific characteristics of TAU.
It may also be beneficial for the learning process of the student to
gain knowledge on acoustic scene data, before being exposed to the
predictions of larger teacher ensembles.

4.3. Knowledge Distillation Fine-Tuning

KD compresses knowledge from a large, high-performing teacher
model into a more compact student model while maintaining robust
performance. Following [5], we train the student using both the
soft targets (probability distributions over classes) from the teacher
and hard labels (standard one-hot encoded labels). The overall loss
function is defined as:

Loss = λLl(δ(zS), y) + (1− λ)τ2Lkd(δ(zS/τ), δ(zT /τ)) (1)

Here, the hard label loss (Ll) is the cross-entropy loss, and the
distillation loss (Lkd) is the Kullback-Leibler divergence between
the teacher’s and student’s soft targets. zS and zT are the logits of
the student and teacher models, respectively, and y represents the
hard labels. The temperature parameter (τ ) controls the distribution
sharpness, and the factor τ2 is a scaling factor for the distillation
loss. The contributions of both losses are balanced using a weight
λ. This dual training approach allows the student model to cap-
ture both explicit label information and the generalized knowledge
represented in the teacher’s soft targets.

In this KD fine-tuning phase, we indirectly make use of Au-
dioSet [3] a second time, by using KD with an AudioSet pre-trained
teacher model, namely, the transformer PaSST [15].

4.3.1. Bayesian Ensemble Averaging

Ensembling teacher models is a common strategy to improve KD.
By integrating diverse insights from the teachers, typically done by
averaging their logits [5], this technique enhances the robustness
and generalization of the student model.

Bayesian Ensemble Averaging (BEA) [32] extends simple av-
eraging of logits by using a probabilistic framework. Inspired by
BEA, we implemented a simplified interpretation without explicit
distributional assumptions for model outputs. We used the average
prediction of the teacher models as the expected prediction (µtl) and
the logit-wise variance (σ2

tl) across teacher models for each sample
independently as a proxy for uncertainty. The aggregated prediction
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(Etl) combines the mean with a scaled variance to adjust the uncer-
tainty impact based on the number of models (ntl), ensuring proper
moderation.

Etl = µtl +
σ2
tl

ntl
(2)

5. EXPERIMENTAL SETUP

5.1. Audio Preprocessing

For all models, we downsample audio to a 32 kHz sampling rate.
For the student, we compute Mel spectrograms using 256 frequency
bins. The Short Time Fourier Transformation (STFT) is applied
with a window size of 96 ms and a hop size of 16 ms. For the
PaSST [15] teacher model, we follow its original AudioSet pre-
training configuration and for CP-ResNet, the preprocessing re-
mains the same as that of the CPM student except for the hop size
being 24 ms.

5.2. Optimization

The student model is pre-trained on TAU using the Adam optimizer
for 150 epochs. The training parameters include a weight decay of
0.0001, a learning rate of 0.005, and a warm-up phase of 2000 steps
for the scheduler.

For the pre-training experiments, we shortened the KD training
to 75 epochs and decreased the learning rate to 0.0025 as the model
converged faster, due to prior knowledge of the domain. In other ex-
periments, we applied the same hyperparameters for KD fine-tuning
as those used in the student’s pre-training on TAU.

As for CP-ResNet, the hyperparameters remain largely the
same, with key differences being a learning rate of 0.001 and a
weight decay of 0.001.

For PaSST, the learning rate and weight decay values are set
to 0.00001 and 0.001, respectively. We use a patch out of 6 on
the frequency dimension. The KD ensemble experiments including
PaSST were trained using a learning rate of 0.0025

5.3. Data Augmentation

For all models, we use frequency masking of up to 48 frequency
bins, time rolling of up to 0.1 seconds, and linear FilterAugment
augmentation from 3 to 6 Mel bands in the range of -6 to 6 dB. Other
augmentation hyperparameters fine-tuned for the different models
are detailed in Table 1.

5.4. Knowledge Distillation

By default, we use an ensemble of one CPM and four CP-ResNet
teachers for KD, with their predictions aggregated by BEA. The
CP-ResNet teachers receive the same input as the student. In con-
trast, the PaSST teacher operates on its own spectrograms, which
are independently subjected to frequency masking. Notably, Freq-
MixStyle and FilterAugment are not applied to PaSST inputs. How-
ever, the time-domain augmentations, time-rolling and DIR, remain
consistent for the PaSST teachers, the student, and the CP-ResNets.

We use temperature parameter τ = 2 and Kullback-Leibler di-
vergence with a high weight of λ = 0.02 as our loss function.

Training lr DIR p FMS p FMS α
CPM 0.005 0.6 0.6 0.4
CP-ResNet 0.001 0.6,0.7,0.8 0.6, 0.7, 0.8 0.3
PaSST 0.00001 0.6 0.4 0.4

Table 1: Hyper-parameters settings for different models. For the
student, we use the same hyperparameters both for pre-training on
TAU22 and for KD. For CP-ResNet, some hyperparameters differed
among the teachers (indicated by multiple values in one cell), cre-
ating a diverse ensemble. FMS abbreviates Freq.-MixStyle [4], p
stands for the probability that the respective augmentation is ap-
plied. α stands for the mixing alpha [4].

6. RESULTS

In this ablation study, we systematically add or remove specific
system components to assess their impact on overall performance.
This approach helps us understand each component’s contribution
to the model’s accuracy and efficiency. The results reported are
averages over three independent experiments.

Effect of Pre-training the Student Model: We evaluated the in-
fluence of pre-training the student model before KD by training
it in three scenarios: without any pre-training (Student with no
pre-training), pre-trained on the respective TAU split (Student pre-
trained TAU), and pre-trained on both AudioSet and TAU (Student
pre-trained on AudioSet and TAU). The results in Figure 1 and
Table 2 with over 3% accuracy improvement on the smallest data
split and over 1% on average across all splits, approve our hypoth-
esis( 4.2) and indicate that pre-training substantially enhances the
model’s performance. In contrast, the model trained without pre-
training exhibits the lowest accuracy, underscoring the importance
of pre-training. Pre-training on both AudioSet and TAU achieves
the highest accuracy for the smallest datasets, while its impact is
less pronounced in larger datasets, highlighting the effectiveness of
AudioSet pre-training in handling minimal data in ASC.

Impact of Teacher Aggregation Methods in Knowledge Dis-
tillation: We investigated the impact of teacher aggregation meth-
ods in KD, comparing BEA (KD-BEA) and mean averaging for CP-
ResNet and CP-Mobile teachers (KD-Mean). The results in Fig-
ure 2 and Table 3 suggest that BEA improves upon mean averag-
ing across all TAU subsets when distilling knowledge to the student
model pre-trained on the AudioSet and TAU split subset.

Contribution of including PaSST in the Teacher Ensemble:
We evaluated the impact of including PaSST in the teacher ensem-
ble alongside CP-ResNet and CP-Mobile teachers by examining
three aggregation scenarios. The first scenario applied BEA to all
teachers (KD-BEA with PaSST). The second used mean averaging
for all teachers (KD-Mean with PaSST). The third scenario applied
BEA for CP-ResNets and CP-Mobile and used mean averaging for
the output of the BEA and the PaSST teacher logits (KD-Mixed with
PaSST). The results in Figure 2 and Table 3 indicate that while
both (KD-BEA with PaSST) and (KD-Mean with PaSST) perform
similarly across all training subsets, the combination of BEA and
mean aggregation (KD-Mixed with PaSST) methods demonstrates
an overall superior performance. However, incorporating PaSST
in all scenarios did not lead us to any performance improvements,
likely due to resource limitations and the low number of training
epochs for PaSST.
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Effect of Various Data Augmentation Techniques on Stu-
dent Model Generalization: We investigated the effect of various
data augmentation techniques. As described in Figure 3 and Ta-
ble 4, using FilterAugment instead of frequency masking (Using
FilterAugment, No Frequency Masking) resulted in decreased per-
formance across all training subsets. However, incorporating both
FilterAug and frequency masking (Using FilterAugment), although
not outperforming the proposed model system, demonstrated higher
performance than alternating between the two. Removing fre-
quency masking (No Frequency Masking) entirely led to higher
performance in all but one subset compared to the default system.
Freq.-MixStyle (No Frequency Mixstyle) showed improved perfor-
mance in smaller subsets, while removing DIR (No DIR) caused an
overall decrease in performance.

7. CONCLUSION

This paper introduces a data-efficient ASC system and examines
various design choices concerning training sets of different sizes.
We show that pre-training substantially boosts student model per-
formance in a KD fine-tuning stage and can reduce the need
for larger labelled datasets in downstream tasks. Pre-training on
comprehensive datasets like AudioSet transfers general knowledge
about acoustic events, enhancing model performance on down-
stream tasks with small training sets. Our simplified BEA can
surpass mean aggregation in teacher ensembling. We explore the
PaSST transformer’s effectiveness for small training sets and as-
sess various data augmentation techniques on model generaliza-
tion. Our system improves performance over the DCASE 2024
baseline, achieving a 7 percentage point accuracy increase on the
development-test split, especially with the smallest training set.

Figure 1: Effect of Pre-training the Student Model on AudioSet

Mode 5% 10% 25% 50% 100% Avg.

- 46.49±.29 51.72±.12 56.34±.27 59.34±.48 61.11±.18 55.00
TAU 49.52±.15 53.68±.17 57.96±.31 60.53±.19 62.13±.27 56.76
AS, TAU 50.22±.10 53.74±.11 57.58±.20 60.29±.03 61.58±.11 56.68

Table 2: Impact of applying pre-training. AS and TAU indicate pre-
training on AudioSet [3] and TAU, respectively, and Avg. denotes
the average accuracy across all data splits.

Figure 2: Impact of teacher aggregation methods

Figure 3: Effects of various data augmentation techniques

Mode 5% 10% 25% 50% 100% Avg.

BEA 49.02±.48 52.85±.63 56.99±.36 59.39±.57 61.05±.78 55.86
Mean 49.12±.28 52.89±.45 56.62±.18 59.05±.39 60.81±.46 55.70
BEA+P 48.97±.28 52.64±.25 56.66±.14 58.68±.13 59.86±.35 55.36
Mean+P 48.72±.14 52.53±.03 56.54±.05 58.41±.13 60.06±.14 55.25
Mix+P 49.46±.28 52.82±.14 56.85±.21 59.07±.07 60.32±.17 55.71

Table 3: Impact of different KD variants and combinations. P indi-
cates the inclusion of a PaSST model, and Avg. denotes the average
accuracy across all data splits.

Method 5% 10% 25% 50% 100% Avg.

All but FA 49.02±.48 52.85±.63 56.99±.36 59.39±.57 61.05±.78 55.86
+ FA 49.07±.24 53.23±.08 56.92±.07 59.25±.13 61.11±.10 55.92
- DIR 49.73±.41 53.37±.19 57.03±.12 59.33±.20 61.97±.37 56.29
- FM 49.78±.04 53.96±.10 57.66±.10 60.17±.16 62.64±.09 56.84
- FMS 49.64±.21 53.77±.22 57.23±.02 59.99±.10 62.45±.04 56.62
+ FA, - FM 49.32±.15 53.00±.13 56.25±.07 59.19±.06 60.80±.15 55.71

Table 4: Impact of different data augmentations. FA, FM, and FMS
are abbreviate FilterAugment [6], frequency masking and Freq.-
MixStyle [4], respectively, and Avg. denotes the average accuracy
across all data splits.
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ABSTRACT

To tackle sound event detection (SED), we propose frequency de-
pendent networks (FreDNets), which heavily leverage frequency-
dependent methods. We apply frequency warping and FilterAug-
ment, which are frequency-dependent data augmentation methods.
The model architecture consists of 3 branches: audio teacher-
student transformer (ATST) branch, BEATs branch and CNN
branch including either partial dilated frequency dynamic convolu-
tion (PDFD conv) or squeeze-and-Excitation (SE) with time-frame
frequency-wise SE (tfwSE). To train MAESTRO labels with coarse
temporal resolution, we applied max pooling on prediction for
the MAESTRO dataset. Using best ensemble model, we applied
self training to obtain pseudo label from DESED weak set, un-
labeled set and AudioSet. AudioSet pseudo labels, filtered to fo-
cus on high-confidence labels, are used to train on DESED dataset
only. We used change-detection-based sound event bounding boxes
(cSEBBs) as post processing for ensemble models on self training
and submission models. The resulting FreDNet was ranked 2nd in
DCASE 2024 Challenge Task 4.

Index Terms— frequency dynamic convolution, audio pre-
trained models, coarse prediction pooling, label filtering, sound
event bounding boxes

1. INTRODUCTION

In this work, we address the problem of sound event detection
(SED) with heterogeneous datasets, including Domestic Environ-
ment Sound Event Detection (DESED) and Multi-Annotator Esti-
mated STROng labels (MAESTRO) [1, 2, 3]. Since SED is a very
delicate task requiring classification with time localization, the dif-
ference between two datasets must be carefully addressed. While
DESED uses hard labels with fine temporal resolution (base unit of
one millisecond) and includes ten target sound events those occur
in domestic environment, MAESTRO uses soft labels representing
confidence with coarse temporal resolution (base unit of one sec-
ond) and includes seventeen target sound events those occur on out-
door environments. There are only few target sound events overlap-
ping. For the target sound events those do not overlap, target sound
events from one dataset might exist in the other dataset but they are
not explicitly labeled. This arouses the problem of potentially miss-
ing labels [1]. To tackle this problem, DCASE2024 Challenge Task

∗This work was supported by the Institute of Civil Military Technology
Cooperation funded by the Defense Acquisition Program Administration
and Ministry of Trade, Industry and Energy of Korean government under
grant No. UM22409RD4, and Korea Research Institute of Ships and Ocean
engineering a grant from Endowment Project of “Development of Open Plat-
form Technologies for Smart Maritime Safety and Industries” funded by
Ministry of Oceans and Fisheries(PES5230).

4 baseline is designed to train both datasets using single model ar-
chitecture to output for 27 classes, while masking the classes from
one dataset when training for the other dataset [1].

Our primary approach is to build strong classifier that works on
both datasets. To achieve this, we applied two frequency-dependent
data augmentations: frequency warping and FilterAugment [4, 5].
Then, we applied advanced variants of frequency dynamic convo-
lution (FDY conv) to CNN branch of the baseline [6, 7, 8]. We
also used squeeze and excitation (SE) with time-frame frequency
wise SE (tfwSE) to CNN branch [9]. In addition to CNN and
BEATs branch, we added audio teacher student transformer (ATST)
branch to form three-branched models [4, 10, 11]. In order to match
the granularity of strong prediction tailored for DESED to MAE-
STRO strong labels, we pooled strong predictions. Since frequency-
dependent methods are heavily used, we call above network archi-
tecture as Frequency Dependent Networks (FreDNets). We used
change-detection-based sound event bounding boxes (cSEBBs) as
post processing [12]. With ensemble of FreDNets post-processed
by cSEBBs, we produced pseudo labels on AudioSets, and used
them to train new FreDNets [13].

The main contributions of this paper are as follows:
1. Proposed Frequency dependent networks (FreDNets) heav-

ily utilizes frequency-dependent methods to outperform the
baseline by 15.1% without ensemble.

2. Proposed coarse prediction pooling successfully harmonizes
the temporal resolution difference between the datasets.

3. Partial dilated frequency dynamic convolution (PDFD conv)
is lighter than FDY conv or DFD conv providing various
models, thus proven to be advantageous upon ensemble.

2. METHODS

2.1. Frequency-Dependent Data Augmentations
In addition to mixup applied in the baseline [1, 14], we added fre-
quency warping and FilterAugment [4, 5]. The sequence of opera-
tion is as follows: mixup, frequency warping then FilterAugment.
Frequency warping is random resize crop applied only along fre-
quency dimension to zoom into frequency dimension with random
proportion. As it also works as frequency shift, we did not apply
frequency shift. Then, we applied linear type FilterAugment with
dB range from -3 dB to +3 dB. This is narrower range compared to
the setting in [5]. FilterAugment applies random weights over dif-
ferent frequency ranges to simulate different acoustic environments.
Data augmentation is only applied to CNN branch as shown at the
top of Fig. 1, because the other two branches are not trainable.

2.2. Frequency-Dependent CNN Methods
To further enhance the capacity of the network, CNN and RNN
channels are doubled. Either variants of frequency dynamic convo-
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Figure 1: An illustration of framework for training and self training FreDNets.

Figure 2: An illustration of partial dilated frequency dynamic con-
volution (PDFD conv). It involves a dynamic DFD conv branches
and a static 2D convolution branch.

lution (FDY conv) or squeeze-and-excitation (SE) are used to make
CNN modules leverage frequency-dependent attention methods.

FDY conv applies frequency-adaptive convolution kernel to
release translational equivariance along frequency axis of time-
frequency features [6]. To lighten FDY conv, we applied partial
frequency dynamic convolution (PFD conv) with proportion of one
over eight [8]. To expand and diversify the basis kernels, we applied
dilated frequency dynamic convolution (DFD conv), which applies
frequency-wise dilation to four basis kernels of PFD conv. We re-
fer to this method as partial dilated frequency dynamic convolution

(PDFD conv), which is illustrated in Fig. 2. Using different dilation
sizes to PDFD conv resulted in various models which are advanta-
geous on model ensemble [15]. While multi-dilated frequency dy-
namic convolution (MDFD conv) yields in the best performance, we
used PDFD since it offers best cost-performance balance [8]. In ad-
dition to PDFD conv, we also used SE with time-frame frequency-
wise SE (tfwSE) for model variety upon ensemble [9, 15].

2.3. Transformer-based Pre-trained Audio Models
In addition to CNN branch, two transformer-based pre-trained au-
dio models are used: BEATs and ATST-frame. Frame-wise fea-
ture of BEATs and ATST-frame are used to optimally enhance SED
which needs to give frame-wise predictions. Embeddings extracted
for both methods are pooled into same frame size as output by CNN
module output, then concatenated with the output from CNN mod-
ule along channel dimension, and then processed by fully connected
layers along channel dimension. Then the output is fed to RNN
module. Note that since transformer-based Audio models divide
mel spectrogram into patches and then apply positional encoding
to the patches, they implicitly apply frequency-dependent process-
ing. Thus two audio models can be regarded frequency-dependent
methods as well. Fine tuning of ATST is not used in this work as it
negatively affects MPAUC on MAESTRO [4].
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2.4. Coarse Prediction Pooling
In order to address the different temporal resolution of DESED
and MAESTRO, we applied coarse prediction pooling for MAE-
STRO data. While FreDNets’ predictions have temporal resolution
of 64ms per frame (156 frames for 10 seconds), MAESTRO la-
bel has temporal resolution of 1s per frame (10 frames for 10 sec-
onds). To make fine predictions into coarse predictions, we apply
max pooling on FreDNets’ MAESTRO prediction. To be more spe-
cific, we zero-padded 2 frames before and after the prediction and
max pooled with filter size and stride of 16. Although this is not
precise pooling, this choice was made to quickly and simply imple-
ment the idea.

2.5. Sound Event Bounding Boxes
Polyphonic sound detection score (PSDS) applies various thresh-
olds to the SED prediction to obtain threshold-independent evalua-
tion values [16, 17]. However, as threshold differs, onset and offset
of sound events also varies. To make onset and offset of sound
events independent of the thresholds, sound event bounding boxes
(SEBBs) are proposed to combine confidence values with very fine
onset and offset values into representative confidence, onset and
offset values [12]. In this work, change-detection-based SEBBs
(cSEBBs) are used.

2.6. Self Training using AudioSet
To obtain pseudo labels on DESED weak set, DESED unlabeled
set and AudioSet, we used ensemble of FreDNet using PDFD-CNN
modules with varying dilation size sets, SE+tfwSE-CNN and PFD-
CNN with varying seeds and then applied cSEBBs [15, 18]. As
DESED weak set is given with weak labels, pseudo label for weak
set is masked with given weak labels as in [19]. Since AudioSet has
inconsistent label quality, we applied self training on whole dataset
to obtain confidence from our ensemble FreDNet. For AudioSet,
we filtered data files having pseudo label values (confidence) above
0.7 on 27 target events to focus on labels with high confidence. we
discarded event labels with confidence value below 0.01 to reduce
pseudo label metadata size, and removed the files of which events
above 0.7 are only composed of subset of (speech, people talking,
children voices) to reduce the data imbalance toward speech. The
count of filtered AudioSet files is 153,977.

Upon use of AudioSet pseudo label, both soft label and hard
label obtained by thresholding with 0.5 are used to train SED model.
For mean square error (MSE) loss and binary cross entropy (BCE)
loss are used for soft and hard labels respectively as shown in red
dashed line box in Fig. 1. Only 10 target sound events for DESED
are trained using filtered AudioSet as it degraded MPAUC when
trained on MAESTRO target sound events, although it was meant
to train on 17 target sound events in MAESTRO as well.

2.7. Ensemble
Ensemble model averaged predictions from various models. To
maximize the effect of ensemble, we used different models in-
cluding PFD-CRNN, PDFD-CRNN with different dilation size sets,
SE+tfwSE-CRNN, and PFD-CRNN with different seeds. For each
model setting, the student and teacher models with the best sum
score (PSDS1+MPAUC) are selected for ensemble. The model
combinations used for each ensemble setting is shown in Table 1.
Ensemble 1 is used to extract pseudo labels from AudioSet. En-
semble 2 and 3 are used for DCASE Challenge submission. While
PFD-CRNNs with different seeds are generally worse than models

Table 1: Components models of ensemble models. 1/8 denotes that
1/8 of PFD conv or PDFD conv output channel is from FDY conv
or DFD conv. Sd, ds and st implies seed, dilation sizes and self
training. For model names, CRNN is omitted for brevity.

ensemble models
1 PFD(1/8), PFD(1/8, sd=2),

PFD(1/8, sd=12), PFD(1/8, sd=16),
PFD(1/8, sd=27), PFD(1/8, sd=34),

PDFD(1/8, ds=1/1/2/2), PDFD(1/8, ds=1/1/3/3),
PDFD(1/8, ds=2/2/3/3), PDFD(1/8, ds=1/1/2/3),
PDFD(1/8, ds=1/2/2/3), PDFD(1/8, ds=1/2/3/3)

2 PFD(1/8), PFD(1/8, sd=16),
PDFD(1/8, ds=1/1/2/2), PDFD(1/8, ds=1/1/3/3),
PDFD(1/8, ds=1/1/2/3), PDFD(1/8, ds=1/2/2/3),

PDFD(1/8, ds=1/2/3/3),
st-PFD(1/8), st-PFD(1/8, sd=2),

st-PFD(1/8, sd=12), st-SE+tfwSE,
st-PDFD(1/8, ds=1/1/2/2), st-PDFD(1/8, ds=1/1/2/3),
st-PDFD(1/8, ds=1/2/2/3), st-PDFD(1/8, ds=1/2/3/3)

3 PFD(1/8), PFD(1/8, sd=16), SE+tfwSE,
PDFD(1/8, ds=1/1/2/2), PDFD(1/8, ds=1/1/3/3),
PDFD(1/8, ds=1/1/2/3), PDFD(1/8, ds=1/2/2/3),

PDFD(1/8, ds=1/2/3/3),
st-PFD(1/8), st-PFD(1/8, sd=2),

st-PFD(1/8, sd=12), st-PFD(1/8, sd=27),
st-SE+tfwSE,

st-PDFD(1/8, ds=1/1/2/2), st-PDFD(1/8, ds=1/1/2/3),
st-PDFD(1/8, ds=1/2/2/3), st-PDFD(1/8, ds=1/2/3/3),

with seed of 42, models with different seeds do help enhancing en-
semble performance.

3. EXPERIMENTAL SETTINGS

3.1. Implementation Details
DESED and MAESTRO data are processed to be 10 seconds clip
with 16kHz sampling rate [1, 3, 20]. Mel spectrogram is used for
input feature. The network is composed of three-branched ATST-
BEATs-CNN modules which are then fed to RNN module and Fully
Connected layers as shown in Fig. 1. The Mean Teacher method
is employed to train FreDNets using the DESED unlabeled set
[20, 21]. Binary cross entropy (BCE) loss is used to train strong
prediction for DESED strong set and its strong label, weak predic-
tion for DESED weak set and its weak label, and strong prediction
of MAESTRO and its soft label. Note that strong prediction goes
through coarse label prediction before the loss function to match the
granularity of prediction and label. For consistency loss for strong
and weak predictions of DESED sets, mean square error (MSE) loss
is used. For pseudo labels for DESED weakly labeled set, unlabeled
set and AudioSet, both BCE and MSE losses are used. Default seed
is set to 42. GPU used for training is NVIDIA RTX A6000. For
post-processing, we use either cSEBBs or a median filter as reported
in Table 2. The median filter refers to class-independent 7-frames-
sized median filter.

3.2. Evaluation Metrics
True PSDS1 was used to evaluate SED performance on DESED
[16, 17]. While previous DCASE challenge task 4 used two types
of PSDS (PSDS1 favoring time localization and PSDS2 favoring
accurate classification), only PSDS1 is used in this year as PSDS2
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Table 2: Performance of FreDNets.
models pre-trained models post-processing self training PSDS1 MPAUC sum # submission

Baseline [1] BEATs median filter - 0.520 0.637 1.157 -
PFD-CRNN(1/8) ATST + BEATs median filter - 0.516 0.775 1.293 -

PFD-CRNN(1/8, sd=2) ATST + BEATs median filter - 0.502 0.766 1.268 -
PFD-CRNN(1/8, sd=12) ATST + BEATs median filter - 0.514 0.765 1.279 -
PFD-CRNN(1/8, sd=16) ATST + BEATs median filter - 0.514 0.772 1.286 -
PFD-CRNN(1/8, sd=27) ATST + BEATs median filter - 0.514 0.763 1.277 -
PFD-CRNN(1/8, sd=34) ATST + BEATs median filter - 0.508 0.769 1.276 -
PDFD-CRNN(1/8, 1122) ATST + BEATs median filter - 0.519 0.773 1.292 -
PDFD-CRNN(1/8, 1133) ATST + BEATs median filter - 0.523 0.767 1.290 -
PDFD-CRNN(1/8, 2233) ATST + BEATs median filter - 0.515 0.772 1.287 -
PDFD-CRNN(1/8, 1123) ATST + BEATs median filter - 0.518 0.776 1.294 -
PDFD-CRNN(1/8, 1223) ATST + BEATs median filter - 0.526 0.772 1.298 -
PDFD-CRNN(1/8, 1233) ATST + BEATs median filter - 0.518 0.774 1.292 -

SE+tfwSE-CRNN ATST + BEATs median filter - 0.507 0.773 1.280 -
Ensemble 1 ATST + BEATs median filter - 0.527 0.790 1.317 -
Ensemble 1 ATST + BEATs cSEBBs - 0.577 0.790 1.367 -

PFD-CRNN(1/8) ATST + BEATs median filter True 0.539 0.773 1.312 -
PFD-CRNN(1/8, sd=2) ATST + BEATs median filter True 0.534 0.766 1.300 -
PFD-CRNN(1/8, sd=12) ATST + BEATs median filter True 0.534 0.753 1.287 -
PFD-CRNN(1/8, sd=27) ATST + BEATs median filter True 0.531 0.750 1.287 -
PDFD-CRNN(1/8, 1122) ATST + BEATs median filter True 0.530 0.774 1.304 -
PDFD-CRNN(1/8, 1133) ATST + BEATs median filter True 0.535 0.761 1.296 -
PDFD-CRNN(1/8, 1123) ATST + BEATs median filter True 0.537 0.775 1.312 -
PDFD-CRNN(1/8, 1223) ATST + BEATs median filter True 0.533 0.772 1.305 -
PDFD-CRNN(1/8, 1233) ATST + BEATs median filter True 0.532 0.772 1.304 -

SE+tfwSE-CRNN ATST + BEATs median filter True 0.525 0.767 1.292 -
PFD-CRNN(1/8) ATST + BEATs cSEBBs True 0.551 0.773 1.324 1

PDFD-CRNN(1/8, 1123) ATST + BEATs cSEBBs True 0.557 0.775 1.332 2
Ensemble 2 ATST + BEATs median filter True 0.537 0.788 1.325 -
Ensemble 3 ATST + BEATs median filter True 0.536 0.789 1.325 -
Ensemble 2 ATST + BEATs cSEBBs True 0.575 0.788 1.363 3
Ensemble 3 ATST + BEATs cSEBBs True 0.574 0.789 1.363 4

is rather an audio tagging metric [12, 19]. For MAESTRO perfor-
mance evaluation, MPAUC is used [1]. We optimized the model
based on average score of PSDS1 + MPAUC on 4 independent
training runs. The scores reported in the table are from the mod-
els with best sum scores among 4 independent training runs within
each model setting.

4. RESULTS

The results are summarized in Table 2, highlighting the perfor-
mance improvements achieved by our proposed methods. The
PSDS and MPAUC values are obtained on real validation sets of
DESED and MAESTRO respectively. As shown in the results,
PFD-CRNN and PDFD-CRNNs do not significantly vary in their
performance. However, as their roles differ from each other, en-
sembling differently dilated PDFD-CRNNs results in decent per-
formance. Likewise, although slightly worse than PDFD-CRNNs,
SE-tfwSE-CRNN and PFD-CRNNs with different seeds do help for
ensemble. From the results, it could be inferred that use of FreDNet
including frequency-wise data augmentation, PDFD conv, BEATs,
ATST-frame, coarse prediction pooling enhances MPAUC by large
margine while PSDS is not significantly improved. Rather, use of
cSEBBs and self training improves PSDS significantly. Final best
score without ensemble model outperforms the baseline by 15.1%
and best score with ensemble outperforms the baseline by 18.2%.

While ensemble 1 model slightly outperforms ensemble 2 and 3
those outperformed the baseline by 17.8%, submission was made
with latter two as they contain self-trained models thus are expected
to retain better generalization capability.

5. CONCLUSION

In this study, we presented Frequency Dependent Networks (FreD-
Net) for SED. FreDNet leverages frequency-dependent data aug-
mentation techniques, frequency warping and FilterAugment, and
incorporates advanced neural network architectures such as fre-
quency dependent CNNs and transformer-based pre-trained models.
Experiments show that the proposed FreDNet architecture, when
combined with PDFD conv, SE, and coarse prediction pooling, sig-
nificantly improves SED performance especially on MPAUC. The
use of cSEBBs further enhances performance by refining onset and
offset predictions on PSDS. The ensemble models, integrating var-
ious FreDNet settings, achieved substantial performance gains over
the baseline, with the best ensemble model outperforming the base-
line by 18.2%. Our approach shows promise for robust SED in
diverse environments, highlighting the effectiveness of frequency-
dependent methods and the importance of ensemble strategies in
improving model performance. The model described in this work
was ranked 2nd in DCASE 2024 Challenge Task 4.
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A. Mesaros, and R. Serizel, “Dcase 2024 task 4: Sound event
detection with heterogeneous data and missing labels,” arXiv
preprint arXiv:2406.08056, 2024.

[2] N. Turpault, R. Serizel, A. Parag Shah, and J. Salamon,
“Sound event detection in domestic environments with weakly
labeled data and soundscape synthesis,” in Workshop on De-
tection and Classification of Acoustic Scenes and Events,
2019.
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ABSTRACT

Domain shifts are a major obstacle to the deployment of automated 
bioacoustic monitoring tools to new recording environments or 
habitats. Invariance regularisation is one approach for dealing with 
these shifts, in which the feature distributions of data from differ-
ent domains are encouraged to match (by minimising some meas-
ure of statistical distance). However, in a deep learning setup, the 
statistical distance is only computed over small minibatches of 
data at a time. Inevitably, small samples have poor representation 
of their underlying distributions, resulting in extremely noisy dis-
tance estimates. In this paper, we propose that promoting wider 
distribution coverage, by inducing diversity in each sampled min-
ibatch, would improve these estimates, and hence the generalisa-
tion power of the trained model. We describe two options for di-
versity-based data samplers, based on the 𝑘𝑘-determinantal point 
process (𝑘𝑘-DPP) and the 𝑘𝑘-means++ algorithm, which can func-
tion as drop-in replacements for a standard random sampler. We 
then test these on a domain shift task based on humpback whale 
detection, where we find both options improve the performance of 
two invariance regularisation algorithms, as well as standard train-
ing via empirical risk minimisation (ERM).

Index Terms— domain shift, bioacoustics, invariance regu-
larisation, determinantal point process

1. INTRODUCTION

Machine learning methods often underperform on data lying out-
side the training distribution. The sensitivity to distributional shifts 
(also called domain shifts) is currently a severe limitation to the 
widespread deployment of AI to real-world problems. This issue 
manifests widely, and significant research effort has already been 
invested towards achieving better out of distribution (OOD) gen-
eralisation [1, 2].

Invariance regularisation (also referred to as invariant feature 
learning or distribution alignment) is possibly the dominant ap-
proach in this field. Given meta-data which groups samples ac-
cording to certain characteristics or contexts (referred to as do-
mains), the technique aims to learn feature representations which 
are invariant to these characteristics, in the hope that this increases 
the generalisation power of the learned model. If unlabelled data 
from the test domain is included, this technique is referred to as 
unsupervised domain adaptation (UDA).

In practice, invariance regularisation has manifested in two 
main ways:

1) as an additional (differentiable) term in the loss function
describing the statistical distance between data batches from dif-
ferent domains, which is minimised alongside the standard objec-
tive of empirical risk (ERM). Such distance measures include 
squared differences in second order statistics (mean and covari-
ance) [3] or the maximum mean discrepancy (MMD) [4].

2) via domain-adversarial training [5, 6], in which a discrim-
inator network is trained to predict which domain the features be-
long to, and the feature extractor is tuned to maximise discrimina-
tor error, alongside the loss on the main task. Depending on the 
exact formulation, it has been shown that adversarial networks 
minimise the Jensen-Shannon divergence or Wasserstein distance 
between domains [7].

Although these techniques employ clever tricks that circum-
vent having to estimate the distributions directly, the distance 
measures still require the samples to properly capture their under-
lying distributions. In this context, where the feature space is high-
dimensional and the sample sizes are small, this becomes all the 
more important. In practice, and possibly because of this, invari-
ance regularisation has frequently been found to have a negligible 
or even negative impact on training compared to vanilla ERM [1, 
2, 8–10].

In this paper, we propose that minibatches that better cover 
the support of their underlying distribution would give higher
quality distance estimates, and thus increase the effectiveness of 
invariance regularisation methods. We propose to achieve this by 
inducing diversity in each sampled minibatch – corresponding to 
the datapoints being “spread out” (pairwise dissimilar) in the 
learned model’s feature space.

We note that this approach can also be interpreted as a gener-
alisation of class-balancing. Inevitably, complex real-world acous-
tic scenes have a far richer ontology than the fixed set of class la-
bels provided for the specific learning task (which may only be 
binary). So, this method can be motivated by the same logic as 
why classes are normally balanced prior to training: to ensure 
equal representation of all sound events.

Thus, the requirement is for a fast, scalable sampler which 
can stochastically draw independent, diverse minibatches of fixed 
cardinality from the corpus. It should also be possible to weight 
each instance to bias its selection probability based on prior 
knowledge, e.g., the label distribution – although, note, we are not 
interested in explicitly class-balancing the data, as doing so is at 
odds with the objective of diversity: some classes (e.g., “not a 
humpback whale”) may have far greater variety than others. Also 
note that, given feature-label continuity, inducing diversity does 
tend to implicitly class-balance the data anyway [11].

We identify two options which satisfy these desiderata: the 
𝑘𝑘-determinantal point process (𝑘𝑘-DPP) and the 𝑘𝑘-means++ algo-
rithm, which are discussed next.This work was supported by grants from BAE Systems and the En-

gineering and Physical Sciences Research Council.
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1.1. Determinantal point process (DPP)

Given a set of feature embeddings 𝒳𝒳 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}, 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 , a
point process on 𝒳𝒳 is a probability measure over “point configura-
tions” (i.e., subsets) of 𝒳𝒳. Sampling a point process is thus equiva-
lent to randomly drawing a subset of 𝒳𝒳. For a determinantal point 
process (DPP) [12], the probability of drawing subset 𝒜𝒜 is propor-
tional to the determinant of a likelihood kernel 𝐿𝐿𝒜𝒜 describing pair-
wise similarities between its elements. Specifically:

ℙ[𝒮𝒮] = det 𝐿𝐿𝒜𝒜
det [𝐼𝐼 + 𝐿𝐿] , ∀𝒮𝒮 ⊆ 𝒳𝒳, (1)

where 𝐿𝐿 ∈ ℝ𝑛𝑛×𝑛𝑛 is the kernel over all 𝒳𝒳. When the DPP is condi-
tioned to a fixed cardinality |𝒜𝒜| = 𝑘𝑘 ≤ rank(𝐿𝐿), this is known as 
a 𝑘𝑘-DPP.

As a result of (1), large off-diagonal entries in 𝐿𝐿 imply low 
probability of co-occurrence in 𝒜𝒜; this makes DPPs a common 
tool for inducing diversity. Previous use cases of DPPs in bioa-
coustics include to facilitate the exploration of large corpuses [13],
and to implicitly class-balance unlabelled data for semi-supervised 
learning and unsupervised domain adaptation [11].

To apply weights 𝑤𝑤 = [𝑤𝑤1, … , 𝑤𝑤𝑛𝑛]𝑇𝑇 to each instance, we can
define 𝐿𝐿 based on a similarity matrix 𝑆𝑆 , with each element 
weighted by the corresponding pair of weights: 𝐿𝐿𝑖𝑖𝑖𝑖 = √𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖.

Thus, the 𝑘𝑘-DPP is now restricted to 𝑘𝑘 ≤ rank(𝑆𝑆). An appro-
priate choice of similarity measure should ensure that 𝑆𝑆 is full rank 
(that is, the kernel should be strictly positive-definite), so as not to 
limit the minibatch size we can use. For example, the commonly-
used linear kernel 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖

𝑇𝑇𝑥𝑥𝑖𝑖 results in at best 𝑘𝑘 ≤ 𝑑𝑑 , but this
could well be lower if the features are not all linearly independent. 
Therefore, in this paper, we propose to use the radial basis function 
(RBF) kernel instead. Specifically, adopting a common heuristic
for the bandwidth parameter 𝛾𝛾 [4], we use an RBF mixture kernel
defined by

𝑆𝑆𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒−𝛾𝛾‖𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗‖2

𝛾𝛾∈𝒢𝒢
(2)

with 𝒢𝒢 = {0.001, 0.01, 0.1, 1, 10}. That the RBF is always strictly 
positive-definite is a well-known result [14].

1.2. 𝒌𝒌-means++

𝑘𝑘-means++ [15] is an algorithm originally envisioned as an initial-
isation for k-means clustering, designed to select a subset of highly 
dissimilar points from a corpus. Again, weights can easily be ap-
plied to each instance. The algorithm is as follows:

1) Choose an initial point at random from 𝒳𝒳 with probabili-
ties weighted by 𝑤𝑤. Remove the point from 𝒳𝒳 and append to 𝒜𝒜.

2) For each 𝑥𝑥𝑖𝑖 ∈ 𝒳𝒳 , compute 𝐷𝐷(𝑥𝑥𝑖𝑖) = min
𝑥𝑥′∈𝒜𝒜

‖𝑥𝑥𝑖𝑖 − 𝑥𝑥′‖ , the
distance between 𝑥𝑥𝑖𝑖 and the closest point in 𝒜𝒜.

3) Choose the next point with probability ∝ 𝑤𝑤𝑖𝑖𝐷𝐷(𝑥𝑥𝑖𝑖)2.
4) Repeat steps 2 and 3 until 𝑘𝑘 points are chosen.

1.3. Training strategy

Ideally, the samplers would have access to up-to-date feature em-
beddings for every draw. However, recomputing 𝒳𝒳 (not to men-
tion 𝑆𝑆) at every training iteration would be slow. Instead, we pro-
pose to only update the samplers periodically every 𝑡𝑡 iterations; 𝑡𝑡
is thus a trade-off between training speed and the quality of the 

similarity information in 𝑆𝑆. Where no pretrained feature extractor 
is available, the first 𝑡𝑡 iterations are performed with standard 
(weighted) random samplers, although we posit that using the di-
versity-based samplers with features from a newly-initialised net-
work with random weights would have an equivalent effect.

2. EXPERIMENTS

In this section, we evaluate the proposed method on a real-world 
domain shift problem, namely, the detection of humpback whale 
calls across data from different acoustic monitoring programs [8].
The dataset comprises 43,385 samples split roughly equally across 
4 recording locations (Madagascar, UK, Hawaii, and Australia).
Each sample is a PCEN-normalised [16] mel-spectrogram of a 4-
second audio clip sampled at 10 kHz, labelled as either “humpback 
whale” or “not humpback whale”. Some exemplar spectrograms 
are shown in Figure 1 (note, these images are linear-scaled and 
pre-PCEN). A simple 4-layer CNN architecture is used as the core 
model, with 16 filters per layer and RELU activations.

Figure 1: Some exemplar spectrograms of sounds in the dataset (5
kHz bandwidth, time axis scales variable). Top row: sperm whale 
clicks, pilot whale clicks, seal vocalisations. Second row: minke 
whale boings, right whale calls in strong vessel noise, electrical 
interference. Third row: dolphin whistles, dolphin creaks, right 
whale calls. Bottom row: three humpback whale calls.

Experiments are conducted using the DomainBed framework 
[1]. This means 3 locations (“domains”) are used at a time for 
training and the remaining domain for testing. Models are trained 
for 2,000 iterations, with the samplers updated every 400. Hy-
perparameters are chosen via random search of size 40 using an 
oracle validation set (i.e., a set following the same distribution as 
the test set) as this provides the greatest stability for hyperparam-
eter tuning and reduces the noise in the results from this source.
Experiments are repeated 5 times for reproducibility, using differ-
ent random seeds for hyperparameters, weight initialisations, and 
dataset splits. All other options follow the DomainBed defaults.

We use the DPPy Python package [17] for 𝑘𝑘-DPP sampling
(specifically, the exact spectral sampler) and the scikit-learn [18]
implementation of 𝑘𝑘-means++. The features used for sampling are 
the same features used by the distribution alignment methods (i.e., 
the activations from the last convolutional layer of the model). See 
[8] for more model and dataset details and [1] for further training
and hyperparameter details.
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2.1. Impact on generalisation performance

First, we compare the effect of the samplers on the generalisation 
power of the trained models. We do this for 2 invariance regulari-
sation algorithms: correlation alignment (CORAL) [3] and do-
main-adversarial neural networks (DANN) [5], in both adaptive 
(UDA) and non-adaptive (domain generalisation, DG) paradigms.
In the DG setting, these are used only to align the 3 training do-
mains to each other. For UDA, in addition to this, the training do-
mains are also aligned to an unlabelled, held-out subset of the test 
domain (that is, not the same samples that are used to determine 
accuracy, nor tune hyperparameters). We also test ERM, which 
does not explicitly perform domain alignment and by its nature is 
DG only.

In addition to our 2 proposed diversity-based data samplers 
(𝑘𝑘-DPP and 𝑘𝑘-means++), we compare a baseline of standard class-
weighted random sampling. Our performance metric is average
model accuracy across the 4 test domains, reported in Table 1,
along with the standard error across the 5 repeats.

Firstly, our results reproduce findings from previous work [1, 
2, 8–10]: with standard random samplers, invariance regularisa-
tion performs poorly, underperforming ERM by as much as 10%.
The results clearly show that using diversity-based sampling im-
proves these methods, with consistent accuracy gains of 4 to 5 per-
centage points. Interestingly, ERM is also slightly improved, sug-
gesting a general benefit to ensuring equal representation of all 
sound events.

Despite these gains, both CORAL and DANN still underper-
form ERM in the DG setting, showing just how difficult the DG 
problem is – as well as how strong the ERM baseline is. However, 
in the UDA setting, diversity-based sampling enables CORAL to
finally exceed ERM, achieving the highest performance out of all 
the methods we test.

On average, accuracy is slightly higher with 𝑘𝑘-means++ than
with the 𝑘𝑘-DPP, although this is within margin of uncertainty. In 
addition, 𝑘𝑘-means++ is computationally faster, easier to scale, and 
perhaps also more intuitive to understand and implement, making
it the more favourable method overall.

So, we have shown that inducing diversity allows models 
trained with invariance regularisation to generalise better to new 
domains. In Section 1, we claimed that this is because diverse sam-
ples are more representative of their underlying distributions, and 
that this reduces error when estimating the distances between dis-
tributions. We test both parts of this claim next.

2.2. Improved distribution coverage

Recall our aim is to choose subsets 𝒜𝒜 which are more representa-
tive of the full set 𝒳𝒳. This can be recognised as the problem of 
vector quantisation. Thus, a measure of the “representativeness”
of 𝒜𝒜 is a low value of the quantisation error (QE)

QE = ∑ min
𝑥𝑥′∈𝒜𝒜

‖𝑥𝑥𝑖𝑖 − 𝑥𝑥′‖2
𝑥𝑥𝑖𝑖∈𝒳𝒳

, (3)

that is, the sum of squared distances between each 𝑥𝑥𝑖𝑖 and the clos-
est point in 𝒜𝒜.

Table 2 compares the average QE of the 3 samplers over 1000 
independent draws of 𝒜𝒜 from each domain, with 𝑘𝑘 = 32 , and 
based on the features extracted by the ERM models from Section 
2.1. The QE of the 𝑘𝑘-DPP and 𝑘𝑘-means++ are shown to be greatly
reduced compared to the random sampler, by 36% and 65% re-
spectively. Given the direct connection between (3) and the 𝑘𝑘-
means++ selection criterion, it is perhaps unsurprising that the QE 
is so much lower for the latter, although this has not translated into 
greater generalisation power to the same extent.

Table 2: Average quantisation error for each sampler.

Sampler QE
Random 6861 ± 23
𝑘𝑘-DPP 4418 ± 12
𝑘𝑘-means++ 2425 ± 6

2.3. Lower-error distance estimates

Finally, we test the claim that diverse sampling improves distance 
estimation between distributions. To do this, we compare the esti-
mation error of a popular distance estimate (the MMD) applied to 
the features of our multi-domain dataset.

Let ℱ = ℝ𝑑𝑑 be the feature space induced by our model. The
MMD is computed on the basis of a positive-definite kernel 𝜅𝜅 ∶
ℱ × ℱ → ℝ and is defined as the distance between distribution 
means embedded in the reproducing kernel Hilbert space ℋ asso-
ciated with 𝜅𝜅. For 2 distributions ℙ1,ℙ2 ∈ 𝒫𝒫, we have

MMD(ℙ1, ℙ2) = ‖𝜇𝜇(ℙ1) − 𝜇𝜇(ℙ2)‖ℋ, (4)
where 𝜇𝜇 ∶ 𝒫𝒫 → ℋ is the mean map operation

𝜇𝜇(ℙ) = 𝔼𝔼𝑋𝑋~ℙ[𝜙𝜙(𝑋𝑋)] ≅
1
𝑛𝑛∑𝜙𝜙(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
(5)

and 𝜙𝜙 ∶ ℱ → ℋ is the implicit mapping associated with ℋ. It has 
been shown that for certain characteristic kernels, including the 
RBF, 𝜇𝜇 is injective, meaning every possible feature distribution
ℙ ∈ 𝒫𝒫 is uniquely represented in ℋ and the MMD is 0 if and only 
if the distributions are identical [19].

Concretely, the method is as follows. We train a model by 
ERM on 3 domains at a time, as in Section 2.1. Our target is to 
compute the average pairwise MMD between these 3 domains,
based on features extracted from the model and the same RBF mix-
ture kernel defined in (2). We compute a set of 1000 MMDs using 
only 32 examples per domain, drawn stochastically using each of 
the 3 samplers. We measure the error of these w.r.t. a “ground-
truth” MMD computed using all the available data (~8000 exam-
ples per domain). We can do this because (5) is a consistent 

Table 1: Test domain accuracy (%) for each sampler and training algorithm.

DG UDA
Sampler ERM CORAL DANN CORAL DANN Average

Random 91.3 ± 0.7 86.2 ± 0.2 82.1 ± 1.2 90.4 ± 0.8 81.7 ± 1.6 86.3 ± 0.5
𝑘𝑘-DPP 91.6 ± 0.4 90.6 ± 0.2 87.7 ± 0.9 94.0 ± 0.2 85.2 ± 1.1 89.8 ± 0.3
𝑘𝑘-means++ 92.9 ± 0.7 91.5 ± 0.7 87.3 ± 1.6 93.8 ± 0.2 86.6 ± 1.7 90.4 ± 0.5
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estimator of the embedded distribution mean: thus, an estimate
computed with a larger sample will (in expectation) be closer to 
the true value of the MMD. Specifically, we compute the mean 
absolute percentage error (MAPE) in the MMDs, defined as

MAPE = 100% 1
1000𝐷𝐷 ∑|𝐷𝐷 − �̂�𝐷𝑟𝑟|

1000

𝑟𝑟=1
(6)

where 𝐷𝐷 is the “ground-truth” MMD computed using the full da-
taset and �̂�𝐷𝑟𝑟 are the MMDs computed using only 32 examples per 
domain. As before, we do this for all 4 combinations of training 
domains, and repeat 5 times for reproducibility. The results are 
shown in Table 3.

The results show that both diversity-based samplers reduce 
the MAPE in the small-sample MMD estimates compared to the 
random sampler, for all but one of the training domain combina-
tions. It is unclear to us why this pattern is reversed for Domain 2;
however, the average over all domains is nonetheless favourable.
In this case, we can see that the 𝑘𝑘-DPP has produced significantly 
better MMD estimates than 𝑘𝑘 -means++ (despite having higher 
QE), but, again, this has not directly translated into higher model 
accuracy.

Overall, these results substantiate our hypothesis that the im-
proved generalisation seen when using invariance regularisation is
due to the higher-quality distance estimates generated by diverse
samples, but this is of course by no means conclusive proof, and 
several peculiar phenomena in the results remain to be answered.

3. DISCUSSION

This paper introduced a novel use-case of diversity, in the form of 
enhancing the generalisation power of neural networks trained 
with invariance regularisation. We demonstrated that training on 
diverse minibatches enabled an adaptive invariance-regularised 
model to surpass the performance of ERM, a result that could not 
be achieved using standard random sampling methods. Our analy-
sis supported the claim that this was due to the improved distance 
estimates attained by increasing the distribution coverage of the
minibatches.

Regardless of the mechanism by which the performance gain
occurs, the notion of a generalised balancing that is not bound by 
the available labels remains attractive, especially given that per-
formance of the ERM-trained model also improved. It is interest-
ing to note that inducing diversity tends to upweight the im-
portance of outliers in the training set, which is at odds with a com-
mon notion in machine learning that outliers should in fact be re-
moved. Specifying relevance or “quality” weights, as was done 
here for class weights, offers a way to regulate this trade-off. Fur-
ther exploration of this in the contexts of domain generalisation, 
invariance regularisation, and their application to bioacoustic 
monitoring, would form a good basis for future work.
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ABSTRACT

First-shot anomalous sound detection (ASD) is a task de-
signed to challenge a system’s applicability to new data based
on the needs of real-world application scenarios. This pa-
per describes new ToyADMOS2 data to evaluate the first-
shot compliant systems for the DCASE2024 Challenge Task
2, First-Shot Unsupervised Anomalous Sound Detection for
Machine Condition Monitoring. The new data is designed
to differ from the previous in the new machine sounds, in-
cluding HoveringDrone, HairDryer, ToyCircuit, and Tooth-
Brush, as well as in that each sound has a different back-
ground noise. The HairDryer and ToothBrush sounds are
also designed as examples of ASD application scenarios in
factory pre-shipment inspections, and we confirm their po-
tential in the evaluation. We detail these data and show the
baseline performance for reference in future studies.

Index Terms— DCASE 2024 Challenge Task 2, First-
Shot Anomalous Sound Detection, ToyADMOS dataset

1. INTRODUCTION

Anomalous sound detection (ASD), which uses sound as a
cue to detect anomalies, has been actively studied for appli-
cations such as factory automation. To facilitate the research,
the annual Detection and Classification of Acoustic Scenes
and Events (DCASE) Challenge hosts an ASD task that has
been drawing the attention of various participants.

The ASD challenges (the DCASE 2020-24 Challenge
Task 2) [1, 2, 3, 4, 5] take a task setting that provides only
normal samples for training while using normal and anoma-
lous samples to evaluate the detection systems at test time
(unsupervised ASD). This setting reflects the real-world sit-
uation where anomalous samples are hardly available or the
available data cannot cover the distribution of the possible
anomalies.

As we found new directions, the focus of the challenges
transitioned from the ASD problem itself in 2020 [1] to a
domain-shift condition in 2021 [2], a domain generalization
in 2022 [3], and a first-shot condition in 2023 [4]. The first-
shot condition reflects the demand for the rapid deployment

(a) (b)

(c) (d)

Figure 1: ToyADMOS2# includes two toys (a) ToyCircuit
and (b) HoveringDrone and two home electrical appliances,
(c) HairDryer, and (d) ToothBrush, bringing the evaluation
setting closer to the real-world problem.

of ASD systems for new machine sounds. While the conven-
tional ASD setting uses the same machine sounds for both
the development and evaluation phases, it uses only the new
machine sounds for evaluation. In addition, it limits the use
of training data other than the target machine sounds. There-
fore, it forces the detection systems to do the first-shot solu-
tion on the new data.

The 2024 challenge (DCASE2024T2) [5] extends the
first-shot condition and limits the availability of the sample
attribute information for some machines. This reflects the
trend in ASD solutions where the outlier exposure (OE) ap-
proach [6, 7, 8] typically perform better. The OE approach
uses sounds from different machines or attributes as anoma-
lies; however, in real-world scenarios, we cannot always ob-
tain machine attribute information.

For the 2020–2023 challenges, the developed datasets
include: ToyADMOS [9], MIMII [10], ToyADMOS2 [11],
MIMII DUE [12], MIMII DG [13], and ToyADMOS2+ [14].
This paper introduces new data for the ToyADMOS family,
ToyADMOS2# (two sharp), that meets the first shot require-
ment of the DCASE2024T2.

The previous ASD sounds are mainly targeted at detect-
ing failures in operating machines, such as production ma-
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Table 1: ToyADMOS data history.

Machine type DCASE usage Product type Mobility Recorded sounds

(i) ToyADMOS/ToyADMOS2/ToyADMOS2+
ToyCar 2020-24 dev. & 2020-22 eval. Toy Fixed Running while fixed at a stand
ToyTrain 2020-24 dev. & 2020-22 eval. Toy Mobile Circling on a railroad track
ToyConveyor 2020 dev. & eval. Toy Fixed Conveying small cargo
Vacuum 2023 evaluation Appliance Fixed Vacuuming at a fixed point
ToyTank 2023 evaluation Toy Mobile Moving back and forth
ToyNscale 2023 evaluation Toy Mobile Circling on a railroad track
ToyDrone 2023 evaluation Toy Mobile Taking off and landing

(ii) ToyADMOS2#
ToyCircuit 2024 evaluation Toy Mobile Circling on a circuit track
HoveringDrone 2024 evaluation Toy Stationary Hovering with rotation at a fixed point
HairDryer 2024 evaluation Appliance Fixed Blowing at a fixed point
ToothBrush 2024 evaluation Appliance Fixed Brushing at a fixed point

chines in a factory. In contrast, to show the possibility of an
ASD application to the production process in a factory, we
have two sound settings of typical home electrical appliances
as examples of pre-shipment inspection. ToyADMOS2#
provides the additional training and evaluation datasets of
the DCASE2024T2 with four machine sounds described in
Fig. 1. The dataset is available at Zenodo [5, 15, 16].

2. PREVIOUS TOYADMOS DATASETS

The ToyADMOS family has released three datasets, and Ta-
ble 1(i) lists all the data they provided to the past DCASE
Challenge Task 2. The first release, ToyADMOS [9], con-
tains three miniature machine (toy) sounds with various
anomalous sounds. It uses toys as machine sound sources
and simulates anomalies by breaking parts of them to ad-
dress the difficulty of collecting anomalous sounds. ToyAD-
MOS2 [11], released in 2021, contains a wider variety of
sounds of two toys and enables the generation of datasets
that simulate domain shift conditions. ToyADMOS2+ [14]
recorded the sounds of new machines to enable first-shot
ASD and provided them as an evaluation set in the DCASE
2023 Challenge Task 2 [17]. It also features a home electri-
cal appliance as one of the machines, introducing a new ASD
setting of the everyday sounds around us.

3. TOYADMOS2#: NEW DATA FOR THE
DCASE2024 CHALLENGE TASK 2

ToyADMOS2# adds data for the four machines shown in Ta-
ble 1(ii) for evaluation under the new first-shot ASD condi-
tion. To distinguish them from the previous data, we used
the sounds of two home electrical appliances and different
background noises for all of them. We specifically designed
HairDryer and ToothBrush as example scenarios of ASD ap-
plications in product pre-shipment inspections of home elec-
trical appliances.

ToyCircuit: The sound of the ToyCar (TAMIYA Mini
4WD) driving on a circuit track, characterized by the
sound of friction with the track lanes and the change in
distance from the microphone.

HoveringDrone: The sound of the drone (DJI Tello) hov-
ering at one point and rotating. Unlike the ToyDrone last
year, we made the distance from the microphone almost
constant.

HairDryer: The sound of the dryer (Panasonic/Koizumi)
airflow to evaluate the detection of anomalous sound
when airflow is obstructed, such as when unintended for-
eign matter adheres to the dryer during the production
process.

ToothBrush: The sound of the electric toothbrush
(Brown DB5510) brushing teeth to evaluate the detec-
tion of anomalies, such as brushes manufactured with de-
fects. We maintained constant pressure between the brush
against the teeth to avoid changes in sound due to pres-
sure differences.

Table 2 summarizes the details of each machine, espe-
cially the speed/mode and background noise characterizing
the differences between them. Domain shift settings com-
monly changed from source to target: ID from A and B to
C, and microphone from 1 to 2. We changed the speed and
mode for each machine and basically assigned the unused
values in the source to the target.

Table 3 details the anomalous conditions for each ma-
chine. ToyCircuit differs from ToyCar in that the anoma-
lous sounds are also produced by friction with the run-
ning surface. HoveringDrone assumes that the adhesion of
foreign objects occurs during use. Anomalous conditions
for HairDryer and ToothBrush also assume adhesion while
further assuming that defects in the manufacturing process
of these products cause anomalous sounds and that future
ASD systems detect them in product pre-shipment inspec-
tions. For example, future ASD systems could be combined
with optical inspection (e.g., toothbrushes in the MVTec AD
dataset [18]) to improve factory product inspection perfor-
mance. Fig. 2 showcases the anomalous condition examples
of ToothBrush used in the recordings.

3.1. Recording control details

The sounds were recorded in a controlled environment by
following the recording layouts and microphone arrange-
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Table 2: ToyADMOS2# data details.

Settings and parameter variations Domain shift settings Samples

Machine type ID Dur. Speed/mode Background noise Source→target Training Eval.

(a) ToyCircuit A, B, C 8 s 1: 1.3 V, 2: 1.4 V, 3: 1.5 V, 4: 1.6 V Large air conditioner ID: A,B→C, Mic: 1→2 Src. 990 Src. 100
outdoor unit outlet noise Speed: 1, 2, 3→1, 4 Trg. 10 Trg. 100

(b) HoveringDrone† A, B, C 8 s 1: Rotate CW 180◦ and CCW 180◦, City noise near a river ID: A,B→C, Mic: 1→2 Src. 990 Src. 100
2: Rotate CW 180◦ and CW 180◦, under a highway bridge Mode: 1, 2→3 Trg. 10 Trg. 100
3: Rotate CCW 180◦ and CCW 180◦

(c) HairDryer A, B, C 7 s 1: 92 V, 2: 96 V, 3: 100 V, 4: 104 V Running water sound in ID: A,B→C, Mic: 1→2 Src. 990 Src. 100
a drainage ditch in a park Speed: 2,3→1,4 Trg. 10 Trg. 100

(d) ToothBrush† A, B, C 6 s 1: Lower teeth/ 2.7 V, 2: Lower teeth/ 2.8 V, Home air purifier ID: A,B→C, Mic: 1→2 Src. 990 Src. 100
3: Upper teeth/ 2.8 V, 4: Lower teeth/ 2.9 V, outlet noise Mode: 2, 3, 4, 5→1, 6 Trg. 10 Trg. 100
5: Upper teeth/ 2.9 V, 6: Lower teeth/ 3.0 V

†The actual parameters (sample attributes) were not provided in the data files following the focus of the DCASE2024T2.

Table 3: Anomaly conditions for each machine type.

(a) ToyCircuit (b) HoveringDrone
Part Condition Part Condition

Tire Foreign objects Arm Foreign object
Scratches Propeller Foreign object/one side

Shaft No grease Foreign object/two sides
Gear Locked gear Body Offset weight

(c) HairDryer (d) ToothBrush
Part Condition Part Condition

Outlet Foreign object Brush hair Damaged brush hair
Inlet Foreign object Foreign object stuck
Vane Foreign object Partially missing brush hair

Chipped vane Brush head Half-insertion of brush head

ments shown in Figs. 3 and 4 and by automating the ma-
chines’ controls. The system used optical sensors to man-
age the laps of the ToyCircuit, image recognition to control
the HoveringDrone, and automatic control of the main power
supply for the appliances. The resulting sounds should reflect
the differences in hardware, actual mechanical movements,
and course and drive/flight conditions.

While in the controlled sound recording environment, we
limited the number of samples obtained in a single record-
ing to make the data distribution closer to the intrinsic nature
of the machine’s data distribution. In particular, the record-
ing of the AC-powered HairDryer can continuously provide
many samples at once; however, it ends up with many sim-
ilar samples and cannot cover the data distribution gained
by the differences in installation, assembly, time, and natu-
ral degradation. Therefore, we avoided continuous operation
and switched to recording under physically different condi-
tions for no more than 30 samples.

3.2. Data sample details

All the operating sound and noise samples were recorded
with 48-kHz sampling, 24 bits for each channel, and then
downsampled to 16-kHz, 16 bits, monaural in the final data
samples. Sample duration varied from 6 s to 8 s, depending
on the machine type, as shown in Table 2.

The training data (Additional training dataset) for each

(i)

(ii)

(iii)

(iv)

Figure 2: Anomalous condition examples of ToothBrush:
(i) Damaged brush hair, (ii) foreign object stuck in the brush,
(iii) partially missing brush hair, and (iv) half-insertion of the
brush head.

machine type has 1000 normal samples, 990 from the source
domain and 10 from the target domain. The evaluation data
(Evaluation dataset) for each machine type consists of 50
normal and 50 anomaly samples from each source and tar-
get domain, for a total of 200 samples. The total of these
data provides 4800 samples with 580 minutes of recordings.
The data are available at the Zenodo links [15, 16] under the
Creative Commons Attribution 4.0 International Public Li-
cense [19].

4. BENCHMARKS

We show the evaluation results obtained using the
DCASE2024 Challenge Task 2 baseline system in Table
4. The baseline is a reconstruction-based ASD system us-
ing Autoencoder and has two operating modes: First-shot-
compliant Simple Autoencoder mode and Selective Maha-
lanobis Autoencoder mode. The former calculates the dis-
tance between the input sample and the reconstruction using
MSE (mean squared error), while the latter does based on
Mahalanobis’s distance [20]. The results are the area under
the receiver operating characteristic curve (AUC) and partial
AUC (pAUC), where the pAUC measures performance in a
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1
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1

1
1

Microphone ch. #

(b) HoveringDrone

(a) ToyCircuit

(c) HairDryer

(d) ToothBrush
0.8 m0.8 m 0.9 m

5 cm

5 cm

5 cm

20 cm

13 cm

12 cm

Loudspeaker

4.1 m

4.6 m

6.5 m 4.0 m

Figure 3: Recording-room layouts and microphone arrangements: (a) ToyCircuit, (b) HoveringDrone, (c) HairDryer, and (d)
ToothBrush.

(c) HairDryer (d) ToothBrush

(b) HoveringDrone(a) ToyCircuit

Ch. 2

Ch. 1
Ch. 2

Ch. 1

Ch. 1

Ch. 1

Ch. 2

Ch. 2

Ch. 1 Ch. 2

Ch. 3

Figure 4: Microphone arrangements: (a) ToyCircuit, (b)
HoveringDrone, (c) HairDryer, and (d) ToothBrush.

low false-positive rate (FPR) range [0, p] with a p of 0.1. For
the details, see [20, 21].

The results show that for all machine types, the baseline
performs well in the source domain while generalization to
the target domain is difficult, a trend similar to that for data
through 2023. The exception for ToothBrush is that the base-
line also performs well on the target domain data, suggesting
that the degree of domain shift is small. The performance of
the machines simulating a product pre-shipment inspection
scenario (HairDryer and ToothBrush) shows a similar trend
to that of the other two machines, implying the potential for
future ASD applications in the scenario.

Table 4: Benchmark results

Machine type AUC [%] pAUC [%]

Source Target

(i) First-shot-compliant baseline: Simple Autoencoder mode
ToyCircuit 77.50± 0.82 51.25± 1.22 50.12± 0.17
HoveringDrone 85.93± 0.77 47.87± 4.30 51.05± 1.46
HairDryer 64.94± 3.40 43.75± 2.09 50.56± 1.01
ToothBrush 73.80± 1.08 70.14± 4.92 54.19± 1.73
(ii) First-shot-compliant baseline: Selective Mahalanobis Autoencoder mode
ToyCircuit 69.67± 1.72 42.34± 2.11 49.23± 0.03
HoveringDrone 84.07± 1.10 48.50± 3.64 58.95± 2.76
HairDryer 64.23± 3.44 56.71± 1.97 55.12± 0.71
ToothBrush 63.17± 2.43 57.55± 3.59 49.81± 1.29

5. CONCLUSION

This paper introduced new ToyADMOS2 data to evaluate
the first-shot compliant systems for the DCASE2024 Chal-
lenge Task 2, First-Shot Unsupervised Anomalous Sound
Detection for Machine Condition Monitoring. The first-
shot anomalous sound detection (ASD) is a task designed to
challenge a system’s applicability to new data based on the
needs of real-world application scenarios. The new sounds
include HoveringDrone, HairDryer, ToyCircuit, and Tooth-
Brush, and they are mixed with four different environmental
noises to enhance their differences from the previous sounds.
We specifically designed two sounds, HairDryer and Tooth-
Brush, as example scenarios of ASD applications in prod-
uct pre-shipment inspections of home electrical appliances
and confirmed their potential in the evaluation. The Toy-
ADMOS2# dataset (DCASE 2024 Challenge Task 2 Addi-
tional Training Dataset and Evaluation Dataset) is available
at [5, 15, 16] with the Creative Commons Attribution 4.0 In-
ternational Public License [19].
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ABSTRACT
We present the task description of the Detection and Classification
of Acoustic Scenes and Events (DCASE) 2024 Challenge Task 2:
“First-shot unsupervised anomalous sound detection (ASD) for ma-
chine condition monitoring”. Continuing from last year’s DCASE
2023 Challenge Task 2, we organize the task as a first-shot problem
under domain generalization required settings. The main goal of the
first-shot problem is to enable rapid deployment of ASD systems for
new kinds of machines without the need for machine-specific hyper-
parameter tunings. For the DCASE 2024 Challenge Task 2, sounds
of new machine types were collected and provided as the evaluation
dataset. In addition, attribute information such as the machine oper-
ation conditions were concealed for several machine types to simu-
late situations where such information are unavailable. We received
96 submissions from 27 teams, and an analysis of these submissions
has been made in this paper. Several novel approaches, such as new
ways of utilizing pre-trained models and pseudo-label classification
approaches, have been used to beat the baseline system.

Index Terms— anomaly detection, acoustic condition monitor-
ing, domain shift, first-shot problem, DCASE Challenge

1. INTRODUCTION
Anomalous sound detection (ASD) [1–7] is the task of identify-
ing whether the sound emitted from a target machine is normal or
anomalous. This leads to automatic detection of mechanical fail-
ures, which is vital in the fourth industrial revolution with AI-based
factory automation. Using machine sounds for prompt detection of
machine anomalies is useful for machine condition monitoring.

A major challenge concerning the application of ASD systems
is that both the number and variety of anomalous samples can be
inadequate in training. In 2020, we held the first ASD task in De-
tection and Classification of Acoustic Scenes and Event (DCASE)
Challenge 2020 Task 2 [8]; “unsupervised ASD” which aimed to
detect unknown anomalous sounds using only normal sound sam-
ples as training data. Following this task, handling of domain shifts
was additionally tackled in the DCASE Challenge 2021 Task 2 [9]
and 2022 Task 2 [10] for the wide spread application of ASD sys-
tems. Domain shifts are differences between the data in the source
and target domains, which are caused by shifts in the operational
conditions of the machine or environmental noise. The DCASE
Challenge 2021 Task 2 [9] mainly focused on the use of domain

adaptation techniques, whereas the DCASE Challenge 2022 Task
2 [10] focused on the use of domain generalization techniques.

In the DCASE Challenge 2023 Task 2 [11], ”first-shot unsuper-
vised ASD,” real-world scenarios were explored even further as a
”first-shot” ASD task. This is a task that requires solving UASD
against completely novel machine types, without access to data
from similar machine types that can be used for model training or
hyperparameter tuning. This scenario is typically encountered in
real-world situations where the rapid deployment of ASD systems
is required and collecting a variety of training or test data is infea-
sible. To realize this problem setting, the evaluation dataset was
created by completely new machine types unseen in the develop-
ment dataset. This setup prevented participants from performing
handcrafted tunings which are difficult to implement in many real-
world applications. For example, hyperparameter tuning for each
machine type using the development dataset or training ASD sys-
tems with the same machine type sounds has become infeasible.

To further deepen the techniques that are useful for this problem
setting grounded on real-world scenarios, we designed the DCASE
Challenge 2024 Task 2 ”First-shot unsupervised anomalous sound
detection for machine condition monitoring” by closely aligning to
the problem setting established in the previous year. The main mod-
ifications from DCASE 2023 Task 2 are that the evaluation dataset
is updated with new machine types unseen in the previous DCASE
ASD challenges, and that attribute information such as the machine
operation conditions are concealed for several machine types. The
second modification concerns situations where such information is
unavailable, with the aim of expanding the range of applicable sce-
narios in real-world settings.

2. FIRST-SHOT UNSUPERVISED ANOMALOUS SOUND
DETECTION UNDER DOMAIN SHIFTED CONDITIONS

Let the L-sample time-domain observation x ∈ RL be an audio clip
that includes sounds emitted from a machine. The goal of the ASD
task is to determine a given machine as either normal or anomalous
by computing an anomaly score Aθ(x) using an anomaly score cal-
culator A with parameters θ. The input of A can be the audio clip
x or x with additional information such as labels indicating the op-
eration condition of the machine. The machine is then determined
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to be anomalous when Aθ(x) exceeds a pre-defined threshold ϕ as

Decision =

{
Anomaly (Aθ(x) > ϕ)
Normal (otherwise). (1)

The primary difficulty in this task is to train the anomaly score cal-
culator with only normal sounds (unsupervised ASD). The DCASE
2020 Challenge Task 2 [8] was designed to address this issue, and
all the following tasks stand on this unsupervised ASD setting.

The domain-shift problem also needs to be solved for practi-
cal applications of ASD. Domain shifts are variations in conditions
between training and testing phases that change the distribution of
the observed sound data. These shifts can arise from differences in
operating speed, machine load, heating temperature, environmental
noise, microphone arrangement, and other factors. Two domains,
the source domain and the target domain, are defined: the for-
mer refers to the original condition with sufficient training data and
the latter refers to another condition with only a few samples. This
year’s task follows the 2022 and 2023 Task 2 [10,11] setting, where
the domain information is assumed to be unknown in the test phase
and anomalies from both domains have to be detected with a single
threshold. In this case, domain generalization is required to achieve
good performance.

To further pursue the rapid development of ASD systems in
real-world scenarios, solving ASD (a) against completely novel ma-
chine types (b) with only one section of training data (c) without
handcrafted tunings that depend on test data, are highly important.
This is because in real-world scenarios, customers may only pos-
sess a single novel machine, and collecting test data for handcrafted
tuning may be infeasible. This problem setting was named as the
“first-shot problem”, and the 2023 Task 2 [11] was organized based
on this problem setting. Specifically, the first-shot problem was re-
alized by adding two features to the dataset: (i) Completely differ-
ent sets of machine types between the development and evaluation
dataset and (ii) Only one section for each machine type. Note that
until 2022 Task 2, the data provided included multiple sections for
each machine type, with the development and evaluation datasets
sharing the same machine types.

While solving the first-shot problem under the domain general-
ization setting should be sufficient for many real-world applications,
the results from the previous year suggested that there is still poten-
tial for further improvement in the solutions [11]. For this reason,
we designed the DCASE Challenge 2024 Task 2, ”First-shot unsu-
pervised anomalous sound detection for machine condition moni-
toring” by closely aligning to the problem setting designed in the
previous year. The main modifications from 2023 Task 2 are that
the evaluation dataset consists of newly recorded sounds of new
machine types and that attribute information are concealed for sev-
eral machine types. By mostly following the same problem setting
as in DCASE 2023 Task 2, the organizers aim to further deepen the
techniques that are useful for first-shot ASD.

3. TASK SETUP
3.1. Dataset
The data for this task comprises three datasets: development
dataset, additional training dataset, and evaluation dataset. The
development dataset includes seven machine types, whereas the ad-
ditional and evaluation dataset includes nine machine types, each
having one section per machine type. Machine type means the
type of machine such as fan, gearbox, etc. Section is a subset or
whole data within each machine type.

Each recording is a single-channel audio with a duration of 6
to 10 s and a sampling rate of 16 kHz. We mixed machine sounds
recorded at laboratories with environmental noise recorded at fac-
tories and in the suburbs to create each sample in the dataset. For
the details of the recording procedure, please refer to the papers on
ToyADMOS2 [12] and MIMII DG [13].

The development dataset consists of seven machine types (fan,
gearbox, bearing, slide rail, valve, ToyCar, ToyTrain), and each ma-
chine type has one section that contains a complete set of the train-
ing and test data. Each section provides (i) 990 normal clips from
a source domain for training, (ii) 10 normal clips from a target do-
main for training, and (iii) 100 normal clips and 100 anomalous
clips from both domains for the test. We provided domain infor-
mation (source/target) in the test data for the convenience of par-
ticipants. For four machine types (fan, bearing, valve, ToyCar),
attributes that represent operational or environmental conditions are
also provided in the file names and attribute csvs. For the other three
machine types, attributes are concealed. The additional training
dataset provides novel nine machine types (3D-printer, air com-
pressor, brushless motor, hairdryer, hovering drone, robotic arm,
scanner, toothbrush, ToyCircuit). Each section consists of (i) 990
normal clips in a source domain for training and (ii) 10 normal clips
in a target domain for training. For five machine types (3D-printer,
hairdryer, robotic arm, scanner, ToyCircuit), attributes are provided
in this dataset. For the other four machine types, attributes are con-
cealed. The evaluation dataset provides the test clips that corre-
spond to the additional training dataset, e.g. data of the same ma-
chine types as the additional training dataset. Each section consists
of 200 test clips, none of which have a condition label (i.e., normal
or anomaly), domain information, or attribute information.

Participants must train a model for a new machine type using
only one section per machine type, without hyperparameter tuning
using test datasets obtained from the same machine type, and for
some of the machine types, without utilizing attribute information.

3.2. Evaluation metrics
We used the area under the receiver operating characteristic
curve (AUC) to evaluate overall detection performance and the par-
tial AUC (pAUC) to measure performance in a low false-positive
rate range [0, p], where we set p = 0.1. To evaluate each system
under the domain generalization setting, we compute the AUC for
each domain and pAUC for each section as

AUCm,n,d =
1

N−
d N+

n

N−
d∑

i=1

N+
n∑

j=1

H(Aθ(x
+
j )−Aθ(x

−
i )), (2)

pAUCm,n =
1
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n ⌋N+
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j=1
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j )−Aθ(x

−
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where m and n represent the index of a machine type and a section
respectively, d ∈ {source, target} represents a domain, ⌊·⌋ is the
flooring function, and H(y) returns 1 when y > 0 and 0 otherwise.

Here, {x−
i }

N−
d

i=1 are the normal test clips in domain d in section n

of machine type m and {x+
j }

N+
n

j=1 are all the anomalous test clips in
section n of machine type m. N−

d , N−
n , N+

n represent the number
of normal test clips in domain d, normal test clips in section n, and
anomalous test clips in section n, respectively.
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The official score Ω is given by the harmonic mean of the AUC
and pAUC scores overall machine types and sections:

Ω = h
{
AUCm,n,d, pAUCm,n |

m ∈ M, n ∈ S(m), d ∈ {source, target}} , (4)

where h {·} represents the harmonic mean, M is the set of given
machine types, and S(m) represents the set of sections for machine
type m. Specifically, S(m) = {00} for the dataset in 2024.

3.3. Baseline systems and results
The task organizers provide a baseline system based on Autoen-
coders (AEs), featuring two distinct operating modes. This baseline
system is the same system employed as the baseline in 2023 Task
2. Although both modes employ Autoencoder for training, they
diverge in the computation of anomaly scores. In this paper, we in-
troduce the baseline system along with its detection performance.
For further information, please refer to [14].

3.3.1. Autoencoder training
The AE is first trained for both operating modes. First, the log-
mel-spectrograms of each training sound clips X = [X1, . . . , XT ]
are calculated, where Xt ∈ RF for t = 1, . . . , T are the frame-
wise feature vectors at frame t, F = 128 is the number of mel-
filters and T is the number of time-frames. For the input of the
AE, P = 5 consecutive frames taken from X are concatenated as
ψt = [XT

t , . . . , X
T
t+P−1]

T ∈ RD for each t, where D = P ×F =
640. The model parameters are optimized by minimizing the mean
squared error (MSE) between the input ψt and the reconstructed
output rθ(ψt) for all inputs created from the training data.

3.3.2. Simple Autoencoder mode
In this mode, the anomaly score is calculated as the average of the
MSE for all input features created from that sound clip, e.g.,

Aθ(X) =
1

DK

K∑
k=1

∥ψk − rθ(ψk)∥22, (5)

where K = T − P + 1, and ∥ · ∥2 represents ℓ2 norm.

3.3.3. Selective Mahalanobis mode
In this mode, the Mahalanobis distance between the system input
and reconstructed feature is used to calculate the anomaly score.
The anomaly score is given as

Aθ(X) =
1

DK

K∑
k=1

min{Ds(ψk, rθ(ψk)), Dt(ψk, rθ(ψk))}, (6)

Ds(·) = Mahalanobis(ψk, rθ(ψk),Σ
−1
s ), (7)

Dt(·) = Mahalanobis(ψk, rθ(ψk),Σ
−1
t ), (8)

where Σ−1
s and Σ−1

t are the covariance matrices of rθ(ψk) − ψk

for the source and target domain data of each machine type, respec-
tively.

3.3.4. Results
Tables 1 show the AUC and pAUC scores for the two baselines on
the development dataset. The average and standard deviations of
the scores from five independent trials of training and testing are
shown in the tables.

Table 1: Baseline results for development dataset.

Machine type Mode AUC [%] pAUC [%]
Source Target

ToyCar MSE 66.98 ± 0.89 33.75 ± 0.81 48.77 ± 0.13
MAHALA 63.01 ± 2.12 37.35 ± 0.83 51.04 ± 0.16

ToyTrain MSE 76.63 ± 0.22 46.92 ± 0.80 47.95 ± 0.09
MAHALA 61.99 ± 1.79 39.99 ± 1.37 48.21 ± 0.05

bearing MSE 62.01 ± 0.64 61.40 ± 0.26 57.58 ± 0.32
MAHALA 54.43 ± 0.27 51.58 ± 1.73 58.82 ± 0.13

fan MSE 67.71 ± 0.70 55.24 ± 0.91 57.53 ± 0.19
MAHALA 79.37 ± 0.44 42.70 ± 0.26 53.44 ± 1.03

gearbox MSE 70.40 ± 0.58 69.34 ± 0.82 55.65 ± 0.44
MAHALA 81.82 ± 0.33 74.35 ± 1.21 55.74 ± 0.35

slider MSE 66.51 ± 1.66 56.01 ± 0.29 51.77 ± 0.35
MAHALA 75.35 ± 3.02 68.11 ± 0.63 49.05 ± 1.00

valve MSE 51.07 ± 0.88 46.25 ± 1.30 52.42 ± 0.50
MAHALA 55.69 ± 1.44 53.61 ± 0.19 51.26 ± 0.47

4. CHALLENGE RESULTS
We received 96 submissions from 27 teams. Ten teams outper-
formed the simple Autoencoder baseline, and eleven outperformed
the selective Mahalanobis baseline, which indicates the difficulty of
the task. The number of teams outperforming the baselines was also
close to that in 2023’s task. Figure 1 shows the AUC values for the
top 10 teams. In the source domain, many teams successfully im-
proved the AUC values for half of the machine types, but showed
lower AUC values than the baseline in the other half. As a result,
the harmonic mean of the AUC values in the source domain was
very close to the baselines for all teams. In the target domain, most
of the top ten teams outperformed the baselines in most machine
types. The order of the harmonic mean in the target domain was
mostly aligned with the order of the official ranks, which means the
performance on this domain was the key to achieve higher ranks.

Figure 2 compares the AUC values of the top 20 teams between
the development and evaluation datasets. As can be seen, achieving
high AUC values in the development dataset does not necessarily
imply high AUC values in the evaluation dataset. This trend is seen
especially in the first shot problem setting; The correlation coeffi-
cients between the mean AUCs of the development and evaluation
dataset were higher for non-first shot tasks, e.g., 0.82 for 2021 and
0.83 for 2022, and lower for the first shot tasks, e.g., 0.62 for 2023
and 0.14 for 2024. This clarifies the difficulty of the first shot prob-
lem setting. As a result, teams that achieved high AUC values in the
evaluation dataset (especially in the target domain, as noted above,)
achieved higher ranks. Finally, in Figure 3, we compare the AUC
values of the top 20 teams between machine types in which attribute
information was provided and those in which attribute information
was concealed. The number of teams that beat the baseline only for
attribute-concealed machines (1) was fewer than that for attribute-
available machines (6), which reveals that hiding the attribute has
made the problem more challenging to some extent. Nevertheless,
many high-ranking teams were able to surpass the baselines for both
groups, indicating that those teams’ solutions were capable of han-
dling this new problem setting.

We summarize approaches used by top-ranked teams below.

a. Use of appropriate pre-trained models with fine-tunings
Using classification tasks such as machine type, domain or at-

tribute classification as an auxiliary task to train a feature extrac-
tor remained to be a popular solution this year [15–18], following
last year’s trend [11]. Among them, several new attempts at using
pre-trained models have achieved comparatively high scores this
year. The 1st [15] and 2nd ranked team [16] both fine-tuned pre-
trained models BEATs [19] and EAT [20] using low-rank adaptation
(LoRA) [21], which may have prevented the model from overfitting
by reducing the number of parameters to train. In addition, instead
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Figure 1: Evaluation results of top 10 teams in ranking. Average source-domain AUC (top) and target-domain AUC (bottom) for each machine
type. Labels “A” and “M” on x-axis denote simple Autoencoder mode and selective Mahalanobis mode, respectively. “*” on machine type
names indicates that attributes are hidden.

Figure 2: Comparison of average AUC for development and evalu-
ation dataset across teams.

Figure 3: Comparison of average AUC for attribute available and
attribute concealed machine types (development and evaluation
dataset) across teams. “label gen.” refers to pseudo label or aux-
iliary label generation approaches.

of just ensembling fine-tuned models by adding anomaly scores,
both teams created a single model that has two pre-trained mod-
els in two branches and fine-tuned them simultaniously. This can
automatically balance the influence of the two models on the out-
put. Overall, enhancing ASD performance in this approach could
be achieved by investigating deeper into the selection of pre-trained
models and the training methodology.

b. Pseudo or auxiliary attribute labeling

Among the classification approaches that proved useful in
ASD [11], attribute classification could not be used for nearly half
of the machine types this year because attribute information was
concealed. To deal with this situation, several teams in the top
rankings generated pseudo or auxiliary labels and used them for the

auxiliary classification task [15, 22–26]. The 1st ranked team [15]
applied agglomerative hierarchical clustering to the audio embed-
dings, whereas the 9th team [25] proposed and used a bottom-up
clustering method to obtain pseudo labels. The 3rd, 5th, and 13th
teams [22, 23, 26] also applied clustering methods to spectrograms
or statistical features. The 7th team [24] combined the training data
with data from the attribute-available machines and used those at-
tribute labels for the classification target.

As shown in Figure 3, teams using these strategies generally
had higher AUC values for machines with concealed attributes, indi-
cating the effectiveness of such strategies. However, these strategies
mostly worked better only for certain machine types such as Slider
or BrushlessMotor, which caused these high average AUC values.
This limitation in the effective machine types might be because of
the difficulty in distinguishing the sound of the target machine from
the background noise only from the audio data. This difficulty can
lead to wrongly created pseudo labels based on background noise
differences, which does not help models learn the unique features
of the target machine. To make this approach more widely effec-
tive for various machines, further investigation on how to generate
labels, the usable conditions, and what assumptions can be helpful
for these strategies is needed.

c. Other novel approaches
Using multiple types of input features such as the log-mel spec-

trogram and the power spectrum or other features has been intro-
duced by the 4th, 7th, 9th, and several other teams [18, 24, 25, 27].
Several teams carefully selected external datasets and used them for
pre-training their model. For example, the 5th and 6th team [17,23]
selected machine-related data or excluded human speech data from
AudioSet [28] to make the pre-training data close to the target
datasets. The 9th team applied a core-set selection method to Au-
dioSet that selects samples with low anomaly scores as pre-training
data, after manually selecting some machine-related classes [25].

5. CONCLUSION

We presented an overview of the task and analysis of the solutions
submitted to the DCASE 2024 Challenge Task 2. The task’s aim
was to develop ASD systems that work for a novel machine type
with a single section for each machine type, where the attribute in-
formation was concealed for several machine types. We discussed
several new approaches that helped improve ASD performance, in-
cluding ways of using pre-trained models and creating pseudo la-
bels. We hope that all technical reports will contribute to advance-
ments in the academic field and the industrial application of first-
shot unsupervised ASD.
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ABSTRACT
Audio-text models trained via contrastive learning offer a practical
approach to perform audio classification through natural language
prompts, such as “this is a sound of” followed by category names. In
this work, we explore alternative prompt templates for zero-shot au-
dio classification, demonstrating the existence of higher-performing
options. First, we find that the formatting of the prompts signif-
icantly affects performance so that simply prompting the models
with properly formatted class labels performs competitively with
optimized prompt templates and even prompt ensembling. More-
over, we look into complementing class labels by audio-centric de-
scriptions. By leveraging large language models, we generate tex-
tual descriptions that prioritize acoustic features of sound events
to disambiguate between classes, without extensive prompt engi-
neering. We show that prompting with class descriptions leads to
state-of-the-art results in zero-shot audio classification across ma-
jor ambient sound datasets. Remarkably, this method requires no
additional training and remains fully zero-shot.

Index Terms— Zero-shot audio classification, audio-text mod-
els, contrastive language-audio pretraining, in-context learning

1. INTRODUCTION

Multimodal contrastive pretraining has been used to train multi-
modal representation models on large amounts of paired data. This
approach leverages contrastive learning to align representations
across different modalities, promoting a shared embedding space
that improves semantic understanding across modalities. Examples
include Contrastive Language-Image Pretraining (CLIP) [1], which
aligns visual and textual representations, and the more recent Con-
trastive Language-Audio Pretraining (CLAP), which extends these
principles to align audio and textual representations [2, 3, 4, 5].

Following pretraining, CLAP exhibits a well-structured feature
space, yielding robust, general-purpose representations well-suited
for downstream training. Moreover, it also demonstrates excep-
tional transferability as evidenced by its impressive zero-shot per-
formance across classification, captioning, retrieval, and generation
tasks [3, 6, 7].

Extensive research on CLIP has revealed that classification
scores are significantly influenced by alterations in prompt formula-
tion and language nuances. For instance, varying the description of
a concept, using synonyms, or modifying the grammatical structure
or wording, substantially affects performance outcomes [8, 9, 10].
Besides, prompts offering more context or specificity tend to yield
more accurate results [11, 12, 13].

Similarly, CLAP inherits sensitivity to prompting from its con-
trastive pretraining approach. Yet, the systematic exploration of

This work was supported by the Audible project, funded by French BPI.

prompt robustness in CLAP remains limited, despite few works
highlighting the sensitivity of classification to prompt variations
[14, 15]. These works, primarily conducted on the ESC50 dataset
and limited to up to five prompt templates, shed initial light on these
variations. However, robustness to prompt changes is likely to vary
across different datasets. Addressing this gap, recent efforts have
explored alternative approaches, such as prompt tuning strategies
and lightweight adapters, to mitigate the reliance on manually en-
gineered prompts [16, 17] with an explicit focus on adapting CLAP
to downstream tasks or new domains.

In this work, we propose a tuning-free approach that prompts
CLAP models with descriptions of class labels to enhance zero-shot
audio classification. While using keywords such as “audio,” “hear,”
and “sound” in prompt templates primes the text encoder to focus on
audio-related concepts, we hypothesize that enriching prompts with
explicit class descriptions can further enhance the model’s ability to
clarify the meaning of class labels, particularly in scenarios where
labels are ambiguous. Ambiguity stems from both the textual and
audio aspects of the data. Textual ambiguity arises from homonyms,
where words possess multiple meanings, and from the lack of con-
textual clues (e.g., ”bat” as both an animal and sports equipment).
On the audio side, ambiguity arises from acoustically similar sound
categories, such as distinguishing between bird vocalizations (e.g.,
raven vs. crow calls) and musical instruments (e.g., violin vs. vi-
ola). Thus, detailed prompts may clarify sounds heavily reliant on
context, and help disambiguate acoustically similar sounds. Such
descriptions can also disambiguate abstract sounds such as “white
noise” and compensate for knowledge gaps or limited exposure to
certain terms. For instance, clarifying “Geiger counter”, as “a de-
tection device that clicks or beeps when detecting radiation” could
improve correlations of audio and text features.

To validate our hypothesis, we leverage Large Language Mod-
els (LLMs) for their knowledge of sound semantics. Specifically,
we used Mistral1 to describe the acoustic properties of class labels.
Our study demonstrates that using audio-centric descriptions of
class labels as prompts helps CLAP better ground acoustic features
with semantic descriptions, significantly boosting zero-shot classifi-
cation scores across major environmental sound datasets. Remark-
ably, our method even outperforms learnable prompt strategies, all
without the need for additional training, while remaining entirely
zero-shot.

2. METHODOLOGY

We first describe the zero-shot audio classification task, then our
adaptive class selection strategy and finally we motivate our LLM-
generated class descriptions.

1https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
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Class Base Context Ontology

Mandolin A stringed musical instrument, played
with a plectrum, characterized by its
small size, high-pitched sound, and dis-
tinctive twang.

A stringed musical instrument with a distinctive, twangy
sound, often associated with folk or bluegrass music. Typi-
cally played by plucking or strumming the strings, producing
a bright, melodic tone.

A stringed musical instrument with a distinctive,
twangy sound, often used in folk and pop music.

Rail
transport

The sound of trains moving on rails,
characterized by the clacking of wheels
and the rumbling of engines.

The sound of trains moving along rails, characterized by a
steady, rhythmic clacking or clicking noise. Often heard in
urban or rural areas with rail infrastructure.

The rumbling and clanking sounds produced by
trains moving on rails, characterized by their
speed and intensity, classified under transportation-
related sounds.

Toot A short, high-pitched sound produced by
blowing air through a small opening, of-
ten used as a signal or warning.

A short, sharp sound, typically produced by blowing air
through a small opening, such as a whistle or a musical in-
strument.

A short, high-pitched sound produced by a whistle
or other musical instrument, often used as a signal
or warning.

Stream A continuous flow of water or other liq-
uid, often characterized by its sound as it
flows over rocks or other obstacles.

A continuous flow of water, often heard in natural environ-
ments like rivers, lakes, or waterfalls, characterized by the
sound of water flowing over rocks or other surfaces.

A continuous flow of sound, often characterized by
its rhythmic patterns and timbre, belonging to the
category of natural environmental sounds.

Table 1: Example descriptions of randomly sampled class labels from the datasets considered in this work, generated with Mistral-7B [18].

2.1. Zero-shot audio classification

Given a set of target categories C and a query audio sample a, the
zero-shot audio classification protocol in CLAP defines the classi-
fication problem as a nearest neighbor retrieval task. The predicted
category ĉ is determined as follows:

ĉ = argmax
c∈C

sim(ϕA(a), ϕT(c)), (1)

where C represents the set of class labels, a denotes the input audio,
and ϕA and ϕT are the audio and text encoders, respectively. The
function sim(·, ·) corresponds to the similarity metric, typically the
cosine similarity.

To enhance zero-shot audio classification, we propose using
both class labels and their descriptions to resolve ambiguities.
Given a set of target categories C, definitions D, the predicted cat-
egory c̃ is determined by:

c̃ = argmax
c∈C

sim(ϕA(a), ϕT(c+ dc))), (2)

where dc ∈ D is the description corresponding to class c, and the
+ operator denotes the textual combination of the class label c and
its description dc.

2.2. Adaptive class description selection

We devise an adaptive strategy that incorporates descriptions selec-
tively for classes potentially ambiguous to the text encoder. Let
Pclass-only and Pclass-description represent the classification performance
for class c using setups involving classes only or classes with de-
scriptions as in Equations (1) and (2), respectively. We decide for
class c which setup to apply through the decision function M(c):

M(c) =

{
ĉ if Pclass-only ≥ Pclass-description

c̃ if Pclass-description > Pclass-only.
(3)

The function M(c) decides whether a class should include a
description based on cross-validation of results.

2.3. Generation of audio-centric descriptions with LLMs

Given audio event class labels, we propose to use Large Language
Models (LLMs) to generate audio-centric descriptions for them au-
tomatically, as manual collection of descriptions entails a labor-
intensive endeavor. LLMs, trained on vast text data, have a deep
understanding of language, which we exploit for their knowledge
of sound semantics. Our method, adapted from [19], involves three

steps. First, we provide a general description of the task. Second,
we combine these instructions with in-context demonstrations, in-
cluding a few paired label-description examples. Finally, we pro-
vide the LLM with the class labels, heuristic constraints, and spe-
cific output format details to generate audio-centric descriptions.

Using this method, we generated three types of descriptions:
base descriptions, context-aware descriptions, and ontology-aware
descriptions. All are audio-centric. Base descriptions reflect the
acoustic properties and characteristic sounds of the class labels.
Context-aware descriptions add details about the typical locations
and circumstances of encountering the sounds, including the phys-
ical environment, associated objects, and the function of the sound
within its context. Ontology-aware descriptions capture the acous-
tic properties and characteristic sounds of each class label while
also considering their relationships with coarse high-level concepts.
Table 1 provides a few examples of the generated descriptions. The
complete list of class descriptions and the prompts used to generate
them are available on our companion website.2

3. EXPERIMENTAL SETUP

We detail our experimental approach, including model and dataset
selection, evaluation metrics, and experiments to explore different
prompt strategies and their impact on classification.

3.1. Models

We adopt two state-of-the-art audio-text models pre-trained via con-
trastive learning, namely LAION-CLAP (LA) and Microsoft CLAP
2023 (MS). The former utilizes RoBERTa [20] as its text encoder,
while the latter leverages GPT-2 [21]. Both models rely on HTS-AT
[22] as their audio encoder.

3.2. Datasets and evaluation metrics

Downstream datasets. We select six major environmental sound
datasets tailored for either single-class or multi-label classification.
These include: ESC50 [23], which contains 50 environmental
sound classes with 2k labeled samples of 5 seconds each; US8K
[24], comprising 10 urban sound classes and 8k labeled sound
excerpts of 4 seconds each; TUT2017 [25], consisting of 15
acoustic scenes classes and 52k files of 10 seconds each; FSD50K
[26], featuring 51K audio clips of variable length (from 0.3 to 30
seconds each) curated from Freesound and comprising 200 classes;

2https://github.com/tpt-adasp/a-sound-description
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AudioSet [27], a large-scale dataset encompassing 527 classes,
with over 2 million human-labeled sound clips of 10 seconds from
YouTube videos; and DCASE17-T4 [25], a subset of AudioSet
focused on 17 classes related to warning and vehicle sounds,
containing 30k audio clips of 10 seconds each.

Evaluation setup and metrics. In our evaluation we consider
all available splits (train/val/test) or folds, except for AudioSet,
where only the test set was used. Note that some datasets do not
allow for a fully zero-shot approach, as some audio files used in
the evaluation were part of the pretraining data of the considered
frozen CLAP models (e.g., AudioSet and FSD50K). We believe
that it is still interesting to analyse the corresponding results,
bearing this fact in mind during the discussion. We use accuracy
as the metric for single-class classification datasets (ESC50, US8K
and TUT2017) and mean Average Precision (mAP) for multi-label
classification datasets (FSD50K, AudioSet and DCASE17-T4).
For experiments involving class-specific descriptions, a 5-fold
cross-validation setting is employed. These folds were constructed
on the data considered for evaluation i.e., all splits/folds for all
datasets, except for AudioSet where the test set is used. In this
approach, training folds are used to derive the mapping M from
Equation (3), while test folds are used to assess its generalization.
Directly evaluating the mapping without cross-validation would
yield overly optimistic results due to overfitting.

3.3. Zero-shot audio classification experiments

Prompting with class labels only We explore zero-shot audio
classification using prompts with sanitized class labels (i.e., replac-
ing underscores in original labels with spaces, e.g., dog barking
becomes dog barking). This is motivated by the fact that in
our early experiments we observed that this strategy performs
competitively compared to prompting with “This is a sound of”,
which has been preferred in the literature [14, 4]. Here, we sys-
tematically study the impact of using only class labels as prompts
on classification performance. We examine four different formats
to construct the start and end of a prompt: uppercase with a period
(e.g., Dog barking.), uppercase without a period (e.g., Dog bark-
ing), lowercase with a period (e.g., dog barking.), and lowercase
without a period (e.g., dog barking). The format yielding the high-
est performance for each model, termed as CLS, was selected as
a reference for subsequent experiments involving class descriptions.

Prompting with templates. Inspired from CLIP [1], we ex-
plore a set of prompt templates as plausible alternatives to “This
is a sound of”, all tailored for the zero-shot audio classification
task. We curated a set of 33 distinct prompts, drawing some from
prior studies [14, 4, 15]. Our objective is to systematically evaluate
the performance of these alternative prompts and their ensemble
across multiple datasets. Each prompt follows the format Template
+ class label, e.g., “A sound clip of dog barking.”. We thus analyse
the performance of three prompt configurations: PTBaseline: The
baseline prompt template “This is a sound of”. PTBest: The most
effective prompt template identified among the 33 manually crafted
alternatives. PTEnsemble: Ensembling text embeddings from all
considered prompt templates. Each prompt template begins with
an uppercase letter and concludes with a period.

Prompting with class-specific descriptions. We investigate
the impact of combining class labels and their descriptions gen-
erated by LLMs. The experimental setups include: CLS: Class

label only. CDBase: Audio-centric definitions generated by Mistral.
CDContext

3: Context-aware descriptions. CDOntology: Ontological
information related to the class label. CDDictionary: Definitions (non
audio-centric) sourced from the Cambridge Dictionary of English.4

4. RESULTS AND DISCUSSION

In this section, we present and discuss the outcomes of our experi-
ments, shedding light on the impact of various prompting strategies
and the role of class descriptions in classification performance.

4.1. Sensitivity to prompt format

In Table 2, we report the average classification results across all
evaluation datasets to examine the sensitivity of zero-shot classifi-
cation performance to subtle variations in the input prompt format.
We see surprising differences in performance due to minor alter-
ations such as capitalization and punctuation, consistent with find-
ings in [15]. A recent work on LLM behavior confirm that these
seemingly minor changes in prompt format influence the model’s
internal representations, leading to distinct transformations within
the embedding space that alter the output probability distribution in
ways that affect classification performance [28]. We observe that,
for both models, prompt variations in punctuation, irrespective of
capitalization, significantly affect performance more than variations
in capitalization without punctuation. Notably, the performance gap
between the most and least effective formats was 5.46% for model
LA and 8% for model MS, pointing out how critical it is to se-
lect an optimal format to maximize classification scores. Conse-
quently, subsequent experiments adopted the best-performing for-
mat for each model.

Prompt format
Model

LA MS
class label (e.g., dog barking) 0.5059 0.5256

class label. (e.g., dog barking.) 0.5524 0.5735

Class label (e.g., Dog barking) 0.5110 0.49344
Class label. (e.g., Dog barking.) 0.5605 0.5395

Table 2: Average model performance scores across all datasets for
different input prompt formats.

4.2. Comparison of prompting strategies

In Table 3, top-panel, we show results that assess the impact on clas-
sification performance when prompting CLAP models using only
the class label and various prompt templates and an ensemble of
these prompts. Our findings reveal that using the class label alone
(CLS) often yields superior performance compared to the prompt
template ”This is a sound of” (PTBaseline). Specifically, CLS demon-
strates better results than PTBaseline on the majority of datasets, with
model MS showing an absolute improvement of 1.07%. However,
for model LA, CLS showed a slight underperformance of 0.67%,
largely due to lower scores on the TUT2017 and DCASE17-T4
datasets.

3We did not consider context-aware descriptions for TUT2017 be-
cause these were very similar to base descriptions. Unlike other datasets,
TUT2017 comprises labels that refer to acoustic scenes. This explains the
similarity, as both type of descriptions indicate context.

4When definitions where not available in the Cambridge Dictionary, def-
initions were sourced from WordNet, Wikipedia, and FreeBase.
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Method
ESC50 US8K TUT2017 DCASE17-T4 FSD50K AudioSet Average

LA MS LA MS LA MS LA MS LA MS LA MS LA MS
CLS 0.9280 0.9280 0.7980 0.8737 0.4242 0.5717 0.4443 0.3772 0.5409 0.5137 0.2277 0.1764 0.5605 0.5735
PTBaseline 0.915 0.893 0.7747 0.7855 0.4890 0.4547 0.4670 0.4674 0.5308 0.5052 0.2269 0.2708 0.5672 0.5628
PTBest 0.9415 0.9585 0.8133 0.8624 0.5041 0.6192 0.5220 0.4583 0.5765 0.5372 0.2855 0.2708 0.6071 0.6176
PTEnsemble 0.9295 0.95 0.7893 0.8506 0.4944 0.6111 0.4851 0.4075 0.5744 0.5424 0.2560 0.2063 0.5881 0.5946

Adaptive class description selection (mean scores across five folds)
CDDictionary 0.9535 0.9205 0.8632 0.8891 0.5770 0.5630 0.4704 0.3776 0.5623 0.4972 0.2727 0.1924 0.6165 0.5733
CDBase 0.9480 0.9505 0.8336 0.8926 0.5790 0.6219 0.4705 0.3911 0.5654 0.5039 0.2803 0.1963 0.6128 0.5927
CDContext 0.9455 0.9595 0.8597 0.8782 - - 0.4742 0.3801 0.5720 0.5128 0.2891 0.2022 0.6281 0.5865
CDOntology 0.9495 0.9635 0.8480 0.9017 0.5030 0.5670 0.4589 0.3748 0.5676 0.5074 0.2830 0.1998 0.6017 0.5857
CDAll 0.9491 0.9485 0.8511 0.8904 0.5530 0.5840 0.4685 0.3809 0.5668 0.5053 0.2813 0.1976 0.6142 0.5845

SOTA 0.96 [15] 0.8526 [17] 0.5438 [17] - 0.52 [15] 0.102 [17] -

Table 3: Zero-shot classification scores across 6 downstream tasks. Evaluation metrics: Accuracy for ESC50, US8K and TUT2017; mean
Average Precision (mAP) for DCASE17-T4, FSD50K and AudioSet.

We report the best-performing prompt template, PTBest, among
those considered as plausible alternatives to PTBaseline for each
dataset. On average, PTBest outperformed PTBaseline, with an ab-
solute improvement of 3.99% and 5.48% for LA and MS, respec-
tively. The relevance of this result brings to light the existence of
better manually crafted prompt templates than This is a sound of.
Table 4 lists the best-performing prompt template for each evalu-
ation dataset. Interestingly, the absence of a “universal” template
calls for customization to specific datasets and models to optimize
performance, given that certain templates may align better with par-
ticular dataset labels. Additionally, prompt ensembling (PTEnsemble)
outperformed individual prompts like CLS and PTBaseline, but did
not exceed PTBest, which can be attributed to less effective prompts
in the ensemble, potentially diminishing its overall efficacy.

Dataset
Models

LA MS
ESC50 Listen to A recording of
US8K I can hear Listen to an audio of

TUT2017 This is a sound track of Listen to an audio recording of
DCASE17-T4 A sound clip of This is a sound of

FSD50K A sound recording of This is
AudioSet This is an audio clip of This is a sound of

Table 4: Best-performing prompt templates per dataset.

4.3. Impact of class-specific descriptions

In Table 3, middle-panel, we assess the impact of class-specific de-
scriptions on classification performance through our adaptive selec-
tion strategy, which determines which classes benefit from explicit
descriptions. Our findings indicate that introducing class descrip-
tions is indeed beneficial for disambiguating difficult classes, with
audio-centric descriptions generally outperforming dictionary defi-
nitions. Focusing on model LA, class descriptions with contextual
information (CDContext) yielded the best results on average. While
model MS also benefited from class-specific descriptions, it showed
modest gains across datasets, likely due to its pretraining on a larger
volume of data, including more audio-caption pairs. For model
MS, base audio-centric descriptions of class labels CDBase were
the most effective, but still could not outperform prompt template-
based methods in the top-panel for datasets such as DCASE17-T4,

FSD50k and AudioSet. However, our adaptive strategy incorporat-
ing all types of descriptions (CDAll) did not generalize as effectively
compared to individual setups, which was somewhat disappointing.

A comparison with state-of-the-art zero-shot audio classifica-
tion scores reported in the literature, as shown in bottom line of Ta-
ble 3, reveals that our approach outperforms these benchmarks, in-
cluding those utilizing prompt tuning strategies such as [17], across
all evaluated datasets. The improvements are particularly notable
for the US8K, TUT2017, FSD50K, and AudioSet datasets.

4.4. Disambiguation of classes through descriptions

In Table 5, we show the top-3 classes with the greatest absolute im-
provement in classification using base descriptions compared to the
simple use of class labels for the AudioSet and FSD50K datasets.
We observe some words are ambiguous in meaning, for which an
explicit description is beneficial as indicated by the large absolute
improvements. A full list of relative improvements for all datasets
is available on our companion website.

Dataset Class label ∆ Improvement [%]

AudioSet
Bagpipes +40.12

Fire engine, fire truck (siren) +39.79

Gargling +36.34

FSD50K
Fowl +67.75

Scratching (performance technique) +67.21

Purr +60.49

Table 5: Top-3 classes with highest absolute improved classification
for model MS on AudioSet and FSD50K datasets using base audio-
centric descriptions.

5. CONCLUSION

We demonstrated that prompt templates and class-specific descrip-
tions can significantly impact the performance of zero-shot audio
classification. While simple class labels can be highly effective,
carefully crafted prompt templates and context-aware descriptions
offer substantial improvements. Our findings advocate for a nu-
anced approach to prompt engineering, where the choice of format,
content, and contextual information are tailored to the specific re-
quirements of the model and dataset. Future work could explore au-
tomated methods for generating optimal prompts and descriptions,
to further boost zero-shot audio classification scores.
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ABSTRACT

Dual-encoder-based audio retrieval systems are commonly opti-
mized with contrastive learning on a set of matching and mismatch-
ing audio–caption pairs. This leads to a shared embedding space in
which corresponding items from the two modalities end up close to-
gether. Since audio–caption datasets typically only contain match-
ing pairs of recordings and descriptions, it has become common
practice to create mismatching pairs by pairing the audio with a cap-
tion randomly drawn from the dataset. This is not ideal because the
randomly sampled caption could, just by chance, partly or entirely
describe the audio recording. However, correspondence informa-
tion for all possible pairs is costly to annotate and thus typically un-
available; we, therefore, suggest substituting it with estimated cor-
respondences. To this end, we propose a two-staged training proce-
dure in which multiple retrieval models are first trained as usual, i.e.,
without estimated correspondences. In the second stage, the audio–
caption correspondences predicted by these models then serve as
prediction targets. We evaluate our method on the ClothoV2 and
the AudioCaps benchmark and show that it improves retrieval per-
formance, even in a restricting self-distillation setting where a sin-
gle model generates and then learns from the estimated correspon-
dences. We further show that our method outperforms the current
state of the art by 1.6 pp. mAP@10 on the ClothoV2 benchmark.

Index Terms— Language-based Audio Retrieval, Audio–
Caption Correspondences

1. INTRODUCTION

Language-based audio retrieval systems search for audio recordings
based on textual descriptions. Such systems are of practical inter-
est because they allow users to intuitively specify arbitrary acous-
tic concepts of interest (such as acoustic events, qualities of sound,
and temporal relationships) without relying on a predefined set of
tags or categories. However, language-based retrieval is difficult
from a technical perspective because it requires deriving compara-
ble semantic representations for raw audio signals and sequences of
words. Typical audio retrieval systems [1, 2, 3, 4] achieve this via
a dual-encoder architecture that projects the textual query and the
candidate audio recordings into a shared multi-modal metric space
where the audio recordings are then ranked based on their distance
to the textual query (for a different approach, see previous work by
Labbé et al. [5]).

Previous studies have explored multiple directions to improve
language-based audio retrieval systems, such as using better pre-
trained embedding models [6], augmentation techniques for both
audio and text [7], artificial captions generated with large language

Stage 1

Lsup
ϕa

ϕc

parameter transfer

target predicted

Stage 2

ϕa

ϕc

target predicted

Ldist

Figure 1: Audio and descriptions are transformed into the shared
audio–caption embedding space via the audio and description em-
bedding models ϕa and ϕc, respectively. In stage 1, we assume that
audio ai and caption cj do not match if i ̸= j and train the model
with contrastive loss Lsup. Stage 2 uses predictions ensembled from
several Stage 1 models (bottom left) to estimate the correspondence
between ai and cj ; those estimates then serve as prediction targets
instead of the ground truth from stage 1. Stage 2 model parameters
are initialized with stage 1 parameters, and the corresponding loss
is denoted as Ldist.

models [8, 9, 6], or hybrid content and metadata based retrieval sys-
tems [10]. In this work, we expand on the previously proposed idea
of utilizing non-binary audio–caption correspondences for train-
ing retrieval models [11]. However, instead of relying on crowd-
sourced correspondences, our method estimates them via an ensem-
ble of audio retrieval models. To this end, we propose a two-step
training procedure that is illustrated in Figure 1. In the following
sections, we motivate and describe the proposed two-stage training
strategy; we then detail the experimental setup and present results
on ClothoV2 [12] and AudioCaps [13]. When trained with large
audio–caption datasets, our method outperforms the current state of
the art on ClothoV2 by around 1.6 pp. mAP@10. Our submis-
sion to the DCASE Challenge 2024 [14], based on the proposed
method, took the first rank in task 8. Our implementation, model
checkpoints, predictions, and examples are available on GitHub1.

1https://github.com/OptimusPrimus/salsa
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2. TEXT-BASED AUDIO RETRIEVAL

Language-based retrieval systems typically consist of two modal-
ity encoder networks, one for audio and one for caption embed-
ding, denoted as ϕa(·) and ϕc(·), respectively. These encoders learn
to embed recordings and descriptions into a shared D-dimensional
embedding space such that representations of matching audio snip-
pets and captions are similar. The agreement between audio ai and
description cj at training or inference time is estimated via the nor-
malized dot product in the multi-modal embedding space:

Cij =
ϕa(ai)

T · ϕc(cj)

∥ϕa(ai)∥2 ∥ϕc(cj)∥2

Previous research typically relied on contrastive learning to train
audio retrieval models. A usual choice is an adapted version of the
Normalized Temperature-scaled cross-entropy (NT-Xnt) loss [15],
which converts those agreements into conditional probability distri-
butions over audio snippets and captions via a temperature-scaled
softmax operation, where

qa(ai | cj) =
eCij/τ

∑N
i=1 e

Cij/τ

gives the estimated probability that audio ai corresponds to a given
caption cj , and

qc(cj | ai) =
eCij/τ

∑N
j=1 e

Cij/τ

gives the estimated probability that caption cj corresponds to a
given audio ai. The training objective is then to minimize the cross-
entropy (denoted as H) between the estimated and the actual corre-
spondence probabilities, q and p, respectively.

Lsup = H(pa, qa) +H(pc, qc)

However, the true correspondence probabilities p for audio ai and
caption cj with i ̸= j are not generally available because audio
retrieval datasets (e.g., [12, 13, 8]) typically only provide a set of
N matching audio and caption pairs {(ai, ci)}Ni=1, but no corre-
spondence annotations for the case i ̸= j. Previous studies thus
assumed that cj does not describe ai if i ̸= j, which is reasonable
if the dataset holds a large variety of recordings with very specific
descriptions. Using this assumption, the target probability distribu-
tions p for recordings and captions can then be defined as follows:

pa(ai | cj) := 1i=j and pc(cj | ai) := 1i=j

Similar to Xie [11], we argue that relying on this assumption is not
ideal, mainly for two reasons:

1. It is only valid if each caption in the dataset describes ex-
actly one recording, which is not the case for popular audio
retrieval datasets such as ClothoV2, AudioCaps, and Wav-
Caps, as demonstrated in [14].

2. Binary correspondences are limited to modeling exact
matches between audio recordings and captions. However,
we believe that incentivizing the model to place partially
matching captions closer to the corresponding audio record-
ing in the multi-modal embedding space is beneficial.

Xie et al. [11] crowdsourced pairwise correspondence scores
of audios snippets and captions in a previous study but did not find
significant benefits when incorporating binarized versions of those
scores during training. We still hypothesize that additional corre-
spondence annotations can provide useful guidance during training;
however, there are no large-scale datasets with complete correspon-
dence annotations due to the high cost associated with annotating
N2 audio–caption pairs for large N .

3. PROPOSED METHOD

To obtain audio–caption correspondences without relying on human
annotators, we suggest estimating them with an ensemble of M in-
dependently pre-trained audio retrieval models. We chose to train
those models as described in the previous section; however, other
approaches like the method proposed in [5] might lead to compa-
rable results. In our setup, the predicted pairwise agreements are
ensembled as follows:

Ĉij =
1

M

M∑
m=1

Cm
ij

We use a softmax operation to convert those agreements to an esti-
mate of the true correspondence probabilities of recordings given a
caption

p̂a(ai | cj) :=
eĈij/τ

∑N
i=1 e

Ĉij/τ

and an estimate of the true correspondence probabilities of captions
given an audio

p̂c(cj | ai) :=
eĈij/τ

∑N
j=1 e

Ĉij/τ

These two probability distributions then serve as prediction targets
instead of the deterministic correspondence probabilities pa and pc
in the NT-Xent loss. We refer to the corresponding loss as distilla-
tion loss

Ldist = H(p̂a, qa) +H(p̂c, qc)

due to the conceptual similarity to knowledge distillation [16].

4. EXPERIMENTAL SETUP

4.1. Datasets & Benchmarks

We experimented with two popular audio-retrieval benchmark
datasets, namely ClothoV2 [12] and AudioCaps [13]. We addition-
ally use WavCaps [8] for training to compare our method to the
current state of the art. We briefly describe the datasets below.

ClothoV2 [12] contains 15-30 second recordings and captions
that are between 8 and 20 words long. The provided training, val-
idation, and test split contain 3840, 1045, and 1045 recordings, re-
spectively; each recording is associated with five human-generated
captions.

AudioCaps [13] consists of 51, 308 audio recordings taken
from AudioSet [17]. Each training and validation recording is asso-
ciated with one and five human-written captions, respectively. The
audio recordings’ length is roughly 10 seconds, and the captions
are, on average, 9.8 words long.

WavCaps [8] is currently the largest audio–caption dataset
available; it contains 403, 050 audio recordings and has been used
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audio ClothoV2 AudioCaps
embedding p̂ M mAP@10 R@1 R@5 R@10 mAP@10 R@1 R@5 R@10

PaSST ✗ - 28.93 18.11 43.54 57.57 55.30 40.74 75.89 86.28
PaSST ✓ 3 31.25 19.52 46.49 61.30 57.61 42.55 79.04 88.74
PaSST ✓ 1 30.18 18.95 45.28 59.43 56.67 41.66 78.00 88.21

ATST ✗ - 28.26 17.36 42.58 56.25 55.86 42.47 74.06 84.26
ATST ✓ 3 31.01 19.29 46.33 61.07 59.37 45.43 78.02 88.51
ATST ✓ 1 29.83 17.75 43.73 57.81 57.72 43.89 77.17 86.96

MN ✗ - 28.72 17.57 43.73 57.82 55.16 40.26 74.06 87.11
MN ✓ 3 30.25 18.49 46.11 59.81 57.06 41.83 77.92 88.45
MN ✓ 1 28.96 17.80 44.59 57.84 54.95 39.62 76.66 88.32

hybrid MN [10] ✗ - 29.88 18.39 45.04 58.62 58.61 43.47 79.38 90.16

Table 1: Retrieval performance on the AudioCaps and Clotho benchmarks. Each section corresponds to a different Audio Embedding Model.
Results in the first row in each section correspond to results without estimated audio–caption correspondences (i.e., ✗ in column p̂ ). The
second row gives results of models fine-tuned with the estimated audio–caption correspondences (i.e., ✓ in column p̂ and M = 3). The third
row gives results in the self-distillation setting (i.e., ✓in column p̂ and M = 1).

successfully in previous studies to reach state-of-the-art retrieval
performance [8, 18, 6]. Each audio file in WavCaps is associated
with a synthetic audio caption that was created by instructing the
GPT3.5-turbo model to extract relevant sound events from meta-
data and output a single-sentence description. The generated cap-
tions are, on average, 7.8 words long. In order to avoid information
leakage between the training and evaluation sets, we excluded the
overlapping recordings between WavCaps and the evaluation sub-
sets of ClothoV2.

4.2. Pretrained Embedding Models

We experimented with three audio embedding models (PaSST
[19], ATST [20], and MN [21]) and one text embedding model
(RoBERTa [22]); below, we briefly describe how we used them for
audio and text embedding.

4.2.1. Audio Embedding

PaSST [19] has a positional encoding for inputs of up to 10 sec-
onds; we thus cut the up to 30-second long inputs into non-
overlapping 10-second snippets and averaged their embeddings.
We used the version of PaSST without patch overlap and ap-
plied structured patchout of 2 and 15 patches over frequency and
time dimensions, respectively. We used the checkpoint denoted
as passt s p16 s16 128 ap468 in our experiments, which is
available via GitHub2.

ATST-Frame [20] (denoted only as ATST in the following) has
a positional encoding that is also limited to 10 seconds; we again
cut the audio recordings into non-overlapping 10-second snippets
and averaged their embeddings to obtain a single embedding vec-
tor. During training, we used frequency warping [20] where at most
10% of the higher frequency bins were dropped. We used a publicly
available checkpoint of ATST (called atst as2M.ckpt) that was
further fine-tuned on the weak labels of AudioSet3.

EfficientAT MobileNetV3 [21] (referred to as MN in the fol-
lowing) is particularly well suited for experiments with ClothoV2

2https://github.com/kkoutini/PaSST
3https://github.com/Audio-WestlakeU/ATST-SED

because the CNN architecture can handle audio recordings of arbi-
trary length as input. We used the model with ID mn40 as ext in
our experiments. The checkpoint is available on GitHub4.

4.2.2. Sentence Embedding

Roberta large [22] was used for sentence embedding because it gave
the best performance in our previous comparison of text embed-
ding models [6]. RoBERTa is a bi-directional self-attention-based
sentence encoder that underwent self-supervised pretraining on the
BookCorpus [23] and WikiText datasets [24]. The RoBERTa large
model has around 354 million parameters.

4.3. Optimization

During pre-training (stage 1), both modality encoders were jointly
optimized using gradient descent with a batch size of 64 for PaSST
and ATST and 32 for MN. We used the Adam update rule [25] to
minimize Lsup for 20 epochs, with one warmup epoch. Thereafter,
the learning rate was decayed from 2 × 10−5 to 10−7 using a co-
sine schedule. The hyperparameters of the optimizer were set to
PyTorch’s [26] defaults.

Fine-tuning (stage 2) was done by minimizing Ldist. Model pa-
rameters in stage 2 were initialized with the parameters from stage
1. The training schedule and learning rate were chosen to be the
same as in Stage 1 (however, they might benefit from additional
tuning). Audio–caption correspondence estimates were obtained by
assembling the similarity scores of all three models (M = 3) as
described in Section 3. We set τ to a constant value of 0.05 in all
our experiments.

We used the benchmarks’ validation sets to select checkpoints
and report results on the test sets here. Our main evaluation crite-
rion for hyperparameter selection was the mean Average Precision
among the top-10 results (mAP@10) which is the metric used for
ranking systems in the DCASE Challenge. In the results section, we
additionally report the recall among the top-1, top-5, and top-10 re-
trieved results, which allows more detailed analysis and comparison
with additional previous work.

4https://github.com/fschmid56/EfficientAT
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5. RESULTS & DISCUSSION

Table 1 summarizes the retrieval performance of our method on
the AudioCaps and ClothoV2 benchmarks. Each section in Ta-
ble 1 corresponds to one of the three audio embedding models. We
chose to experiment without external data first to demonstrate the
effectiveness of our method. In Section 5.3, we will then show
that our method establishes new state-of-the-art performance on
the ClothoV2 benchmark when paired with a large audio–caption
dataset.

5.1. Does fine-tuning with estimated correspondences lead to
improved retrieval performance?
We first pre-trained the three retrieval models without estimated cor-
respondence and report the results in the first row of each section
of Table 1. The resulting models were then fine-tuned using the
ensembled audio–caption correspondence estimates of all three re-
trieval models from stage 1. The results are given in the second row
of each section in Table 1. We note a substantial increase across
all performance metrics for both ClothoV2 and AudioCaps, which
indicates that using estimated correspondences has a positive effect.

We additionally compare the proposed method to our recent
hybrid content and metadata-based retrieval system [10], denoted
as hybrid MN in Table 1 (last section). We find that using the
estimated correspondences leads to similar improvements on both
benchmarks, but without relying on additional audio metadata such
as descriptive tags for retrieval. We hypothesize that combining
these two approaches could lead to further performance gains.

5.2. Ablation Study: Is a diverse ensemble required to achieve
improvements with estimated audio–caption correspondences?

In the previously described experiments, we relied on ensembled
predictions from three diverse models (M = 3) to derive the audio–
caption correspondences. We want to understand if the performance
improvement is a result of distilling from an ensemble of multiple
models or if similar results can be achieved in a self-distillation set-
ting. To this end, we dropped the ensembling of multiple models
when deriving the correspondences, i.e., we used the same model to
generate and then learn from the estimated correspondences. The
results are given in the third row of each section in Table 1. We
observe that PaSST and ATST benefitted even in this limiting self-
distillation setting. However, we also note that MN’s performance
did not generally improve over the pretraining performance. We hy-
pothesize that this could be fixed with the additional hyperparameter
tuning for the second stage. We further observe that using ensem-
ble predictions led to an additional performance improvement over
the self-distillation approach (compare rows two and three in each
section). We thus recommend using ensembled predictions to es-
timate audio–caption correspondences whenever additional models
are available.

5.3. Comparison to state-of-the-art systems

Current state-of-the-art audio retrieval systems [6, 18] train on mul-
tiple audio–caption datasets to increase their performance. To com-
pare our method to these systems under fair conditions, we also
increased the size of the training set. To this end, we combined Au-
dioCaps, ClothoV2, and WavCaps (as done in [7]) and pretrained
the three previously introduced systems on the merged dataset. The
resulting models were fine-tuned on ClothoV2 by minimizing a lin-
ear combination of Lsup and Ldist. We conducted a grid search over

the linear combination’s weight, the learning rate, and possible en-
semble combinations and selected the best PaSST model on the
ClothoV2 validation set.

The first section in Table 2 compares the performance of models
before and after fine-tuning on ClothoV2. Stage 1 training on the
scaled-up dataset (first row in Table 2) already led to better results
than training only on ClothoV2. When this model was fine-tuned
on ClothoV2 without the estimated correspondences (second row
in Table 2), the mAP@10 improved by around 0.9 pp; when the
estimated correspondences were used during fine-tuning (third row
in Table 2), the mAP@10 increased even more, namely by around
4.6 pp.

The second section in Table 2 compares our method to current
state-of-the-art audio retrieval systems. Our proposed method out-
performs last year’s best single system submission to the DCASE
Challenge (Submission 2 of [27]) by around 1.6 pp. without using
text augmentations and synthetic captions. The results also show
that our approach achieves a higher recall compared to VAST [18],
a vision–audio–text model that was trained on 27 million videos.

ClothoV2
method p̂ mAP@10 R@1 R@5 R@10

PaSST (stage 1) ✗ 35.46 23.64 51.44 64.98
PaSST (stage 2) ✗ 36.33 24.31 52.84 65.63
PaSST (stage 2) ✓ 40.14 27.69 57.03 70.39

DCASE23 [27] ✗ 38.56 26.07 55.27 69.30
VAST [18] - - 26.9 53.2 66.1

Table 2: First section: Performance of our method on the ClothoV2
benchmark when models were pre-trained on WavCaps, Audio-
Caps, and ClothoV2. A ✓ in column p̂ indicates that estimated
correspondences were used when fine-tuning on ClothoV2 in stage
2. Second section: Performance of current state-of-the-art audio-
retrieval models.

6. CONCLUSION

In this work, we have explored the use of estimated audio–caption
correspondences to train language-based audio retrieval models.
We proposed a two-stage training procedure that first estimates the
correspondences and then uses those estimated correspondences
for training. We showed that ensemble correspondence estimates
lead to improved retrieval performance on both AudioCaps and
ClothoV2. We further experimented with using the same model to
generate and then learn from the estimated correspondences, which
led to improved performance for two out of the three investigated
retrieval systems. Finally, we scaled up our approach by combin-
ing multiple datasets; the resulting model outperforms the previous
state-of-the-art on ClothoV2 by around 1.6 pp. mAP@10.
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ABSTRACT
In recent years, text-to-audio models have revolutionized the field
of automatic audio generation. This paper investigates their ap-
plication in generating synthetic datasets for training data-driven
models. Specifically, this study analyzes the performance of two
environmental sound classification systems trained with data gen-
erated from text-to-audio models. We considered three scenarios:
a) augmenting the training dataset with data generated by text-to-
audio models; b) using a mixed training dataset combining real and
synthetic text-driven generated data; and c) using a training dataset
composed entirely of synthetic audio. In all cases, the performance
of the classification models was tested on real data. Results indi-
cate that text-to-audio models are effective for dataset augmenta-
tion, with consistent performance when replacing a subset of the
recorded dataset. However, the performance of the audio recogni-
tion models drops when relying entirely on generated audio.

Index Terms— Text-to-audio generative models, synthetic
dataset, environmental sound classification, data augmentation

1. INTRODUCTION

In the past few years, Text-To-Audio (TTA) models have become
the new state-of-the-art for what concerns machine learning-based
sound synthesis. TTA models are deep learning generative systems
designed to generate audio samples based on textual descriptions,
commonly referred to as prompts, which are given as input to the
models. Several TTA models have been proposed to generate high-
quality, realistic audio samples. Pioneering models include Audio-
Gen [1], an auto-regressive generative model, and AudioLDM [2],
based on a latent diffusion model [3]. AudioLDM2 [4], a more
sophisticated version of AudioLDM, has been recently proposed.
Other TTA systems include Tango [5], Make-an-Audio [6], and Au-
diobox [7].

Thanks to the high-quality generated audio and ease of use,
TTA models have been applied to a wide variety of diverse do-
mains such as augmented and virtual reality [8], foley sound gen-
eration [9], among others. The versatility of these models makes
them potentially applicable to the task of synthetic dataset gener-
ation or data augmentation for deep learning models, particularly
in cases where data collection is challenging due to privacy con-
cerns or limited data availability. In fact, one limitation of data-
driven approaches is the need for large amounts of labeled train-
ing data to reach good performances. Unfortunately, dataset ac-
quisition and labeling are time-consuming and biases-prone proce-
dures [10]. Several studies in the field of sound recognition have
shown that augmenting the original dataset with synthetic data dur-
ing the training phase improves system generalization and enhances
performances [11, 12, 13, 14, 15]. The synthetic data considered

in previous works were generated using signal-processing-based
or audio-mixing tools for synthesizing soundscapes, such as Sca-
per [11] or Pyroadacoustics [16]. These techniques require the man-
ual tuning of different parameters of the sound generation proce-
dure [11, 16], potentially making the process even more cumber-
some and error-prone. The introduction of TTA models could be
beneficial as they have the potential to overcome these limitations
by allowing the generation of the desired audio content through nat-
ural language. However, the literature related to the use of TTA for
dataset generation is still limited. In [17], Kroher et al. trained a
music genre classifier on a fully artificial music dataset generated
with MusicGen [18], a text-to-music generation model. The study
focused on 5 music genres and the results show that the classifier
effectively generalized features learned from artificial data to real
music recordings. In [19], the authors fine-tuned AudioLDM to
generate both normal and anomalous sounds, which were included
in the training dataset for the anomalous sound detection task. The
results indicate that generative sounds are promising to achieve per-
formances comparable to state-of-the-art models.

Motivated by these positive preliminary findings [17, 19], this
paper investigates how to leverage TTA models in the field of Envi-
ronmental Sound Classification (ESC) [20]. ESC refers to the task
of classifying environmental sounds that can be presented in an au-
dio clip. In our opinion, ESC is an ideal application area to inves-
tigate the possibility of including TTA-generated synthetic data for
two reasons: TTA models can generate all the sound types present
in most ESC datasets; ESC can be considered between the sim-
plest scenarios among the ones considered by the DCASE commu-
nity. Therefore, it is naturally the first one to address before tackling
more complex tasks.

Concurrently to our work, a similar research study addressed
the problem applied to speech modeling and audio recognition [21];
here we specifically focus on the ESC task. We consider two state-
of-the-art deep learning models for ESC and analyze how their per-
formances vary when TTA-generated data are included as part of the
training dataset according to different methodologies: 1) using TTA
to perform data augmentation; 2) using TTA data as the sole source
of training data; 3) mixing TTA-generated and real data. Audio
samples and the code used for this study are available on GitHub1.

2. EXPERIMENTAL PROCEDURE

In this section, we briefly introduce the TTA models selected for the
dataset generation, the prompt strategies for generating it, and the
dataset generation process. Sec. 2.4 briefly introduces the used ESC
model architectures.

1https://ronfrancesca.github.io/Text-to-Audio-ESC/
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Figure 1: US8K dataset classes distribution per each fold. Colors
represent the different sound classes, specified in the legend.

2.1. Text-to-Audio models

We selected two pre-trained models for generating the dataset: Au-
dioGen [1] and AudioLDM2 [4].

AudioGEN is an auto-regressive model that learns a discrete
representation of raw audio through an auto-encoding procedure.
It then generates audio using a transformer model applied to the
learned representation, conditioned on textual features [1].

AudioLDM2 is a continuous latent-diffusion model condi-
tioned via CLAP [22], which removes the need for paired audio-text
data during the training process.

2.2. Synthetic dataset generation process

UrbanSound8K (US8K) [23] is the dataset selected for this study.
Along with ESC-10 and ESC-50 [24], they serve as the primary
datasets used as benchmarks for ESC tasks. The size of US8K
makes it more appropriate for training deep learning models com-
pared to ESC-10 and ESC-50, mainly used for evaluation. US8K
contains 8732 labeled sounds of 4 s maximum duration of urban
sounds from 10 classes. The dataset is divided into 10 folds, used
for leave-one-out cross-validation at evaluation time. Fig. 1 re-
ports the sound classes and their distribution in folders. We gen-
erated four versions of the US8K dataset: two with AudioLDM2
and two with AudioGen. For each of them, we first generated the
total amount of data and then randomly divided it into 10 folds,
following the same distribution of US8K.

2.3. Prompt templates

We generated the dataset using two prompt strategies. Both strate-
gies employ a single-instruction sentence containing a sound gen-
eration instruction in an urban context, specifying the desired au-
dio class. We explored various templates and informally listened
to the generated audio to determine which prompt was the most
effective. The first strategy’s template is: “A clear sound of a
<class to generate> in an urban context.” The template and the
adjective choice are based on suggestions from the AudioLDM2
authors’ guidelines2 and studies related to prompt tuning for sound
classification [25]. Notably, the use of the adjective clear is sup-
ported by frequency counts of training data and by its use in other
studies [26]. The second strategy uses ChatGPT 3.5 Large Lan-
guage Model (LLM), which is asked to generate a single sen-
tence to be used as input for a TTA model. Different studies have

2https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2

Table 1: Data augmentation comparison between signal-processing-
based and TTA-based strategies.

Data aug. method Accuracy (CNN) Accuracy (CRNN)

US8K-PS 66.49 (0.60) 65.01 (0.95)
US8K-TS 64.14 (0.80) 62.63 (1.80)
US8K-AudioGen 68.42 (0.71) 65.18 (0.87)
US8K-AudioGengpt 68.88 (0.50) 65.39 (0.63)
US8K-AudioLDM2 68.04 (0.63) 63.41 (0.99)
US8K-AudioLDM2gpt 69.64 (0.91) 64.69 (0.53)

US8K (Baseline) 64.68 (0.82) 62.70 (0.65)

shown that using an LLM provides diverse and contextually rich
prompts [27, 28]. The prompt template suggested by the LLM
was: “Generate a realistic audio representation of the sound of a
<class to generate> in an urban environment”. For AudioLDM2
we also used “Low quality” as a negative prompt, following the au-
thors’ guidelines and implementations in other domains [29]. De-
pending on the sound class, the templates were adapted to include
repetitive sounds for consistency with the study’s padding strategy
(e.g., dog bark or car horn) or to better specify a sound that might
confuse its generation (e.g., siren). The same templates were used
for AudioGen to ensure consistency. However, AudioGen does not
involve the use of a negative prompt. We are conscious of the fact
that handcrafted prompts proposed to generate the data could be a
limitation of the current study [30]. Alternative prompt strategies
will be considered in future works.

2.4. Model Architectures

We purposely select two simple, yet still relevant, architectures for
ESC classification since our objective is to focus as much as pos-
sible on the quality of the data and not on the complexity of the
architectures. Specifically, we considered a Convolutional Neural
Network (CNN) and a Convolutional Recurrent Neural Network
(CRNN) as ESC models. The CNN is implemented following a
similar structure as the one presented in [31]. It is composed of
three convolutional layers, each followed by a max-pooling opera-
tion, except the last layer. The kernel size, max pooling operation,
and dropout parameters are the same as [31]. The CRNN is inspired
by [32]. It is composed of seven convolutional blocks followed by
a bidirectional GRU layer and a dense layer that generates the final
output. We used the same parameters and configuration proposed
in [32]. For consistency, the input of both networks consists of TF
patches of 3 s taken from the log mel-spectrogram computed from
the audio input, as in [31]. All the sounds of US8K have been re-
sampled to 16 kHz, being this the frequency at which the selected
TTA models generate sounds. We computed the STFT considering
a Hann window of 1024 samples, and 2048 frequency points. We
used 64 mel-bands for the log mel-spectrogram with a frequency
range between 0 Hz and 8000 Hz. Both networks have been trained
for 100 epochs, with batch size of 128 and an early stop condition
with patience on the validation loss of 15 epochs. We considered
Adam optimizer with a learning rate of 0.001. Samples shorter than
4 s have been padded by repeating the sample until reaching the de-
sired time length. Our implementation of the networks is slightly
different than the originals so, as is common in practice, results will
not be exactly the same as the original paper.
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Figure 2: Classification accuracy when varying the size of the TTA-
generated augmentation dataset. Error bars represent 95% confi-
dence intervals over 5 runs of the experiment.

3. EXPERIMENTS AND RESULTS

This section describes the experiments designed to understand to
what extent the TTA-generated dataset impacts the performance of
ESC learning-based models. All results are averaged over 5 differ-
ent runs of the whole 9-fold cross-validation. When referring to the
baseline, we mean the ESC models trained with the original version
of the US8K dataset.

3.1. Can TTA-augmented datasets increase the accuracy of
ESC models?

This first experiment aims to understand how the integration of
TTA-generated audio samples as a data augmentation technique af-
fects the accuracy of the considered ESC systems. Data augmen-
tation is a common technique used in ESC tasks to increase and
diversify the dataset and improve the performance. Different tech-
niques have been proposed in previous years [31, 33] using signal
processing-based methods.

To investigate this, we trained the two networks with the orig-
inal US8K dataset by augmenting it with one version of the TTA-
generated datasets. We also compared the results with two signal
processing data augmentation techniques: Time Stretching (TS),
which is the process of changing the speed of an audio signal with-
out affecting its pitch, and Pitch Shifting (PS), which is the process
of changing the pitch without affecting the speed of the audio sam-
ple. While it would have been possible to compare with several
augmentation techniques, we chose TS and PS since they are well
established in the literature [33]. For this study, we considered the
same range of values of PS1 and TS in [31]. In all experiments, for
each file, we randomly select only one PS and TS value between
the four values proposed in [31] to double the USK8 size. Table 1
reports the accuracy results for the data augmentation techniques
considered. USK-PS and USK-TS stand for PS and TS applied to
the US8K dataset, respectively. The last row indicates the accuracy
of the ESC systems trained with only the original US8K dataset.
The results show that almost all the TTA-based augmentation tech-

Table 2: Models accuracy when trained only with synthetic data.

Training dataset Accuracy (CNN) Accuracy (CRNN)

AudioGen 40.32 (0.29) 38.79 (1.24)
AudioGengpt 46.04 (0.71) 43.96 (1.36)
AudioLDM2 38.81 (0.56) 36.11 (1.11)
AudioLDM2gpt 38.49 (1.21) 32.86 (1.01)

US8K (Baseline) 64.68 (0.82) 62.70 (0.65)

niques reach higher performances compared to the signal process-
ing ones. For both models, the best accuracy scores are reached
when GPT-based datasets are considered as data augmentation. The
CNN model yields its optimal performance when augmented with
AudioLDM2gpt, achieving nearly a 5% increase in accuracy over the
baseline. For the CRNN model, the best results are obtained using
AudioGengpt, reaching a 3% enhancement compared to the baseline.
Signal processing data augmentation techniques consistently yield
inferior or comparable performances. These findings suggest that
incorporating TTA-generated audio samples as a data augmentation
technique enhances the performance of the ESC system.

Motivated by these results, we perform a further experiment
to understand if increasing the size of the TTA-generated dataset
leads to a corresponding increase in performance. We consecutively
double the size of the data used for augmentation, up to 400% the
original size. We increased the size of the dataset following the
same distribution of US8K. Results are reported in Fig. 2, where
100% corresponds to the previous experiment.

Although the CRNN shows improved performance when the
original dataset is augmented by 200% to 300% with data from one
of the two AudioGen-generated versions, no clear trend is observed
for either model. These results suggest that using TTA models for
data augmentation is not trivial and requires further investigation.

3.2. Can we rely on only TTA-generated data to train an ESC
system?

Motivated by previous results, we explore if TTA-generated data
alone can effectively train an ESC system. We trained the ESC
models with the different TTA-generated versions of the dataset
and tested the models on real data. Table 2 reports the accuracy
for the different cases compared with the baseline. The baseline
achieves the best performance. However, it is worth noticing that
both ESC models (when trained with synthetic data) achieve their
highest accuracy when using AudioGengpt dataset. This emphasizes
the preference for AudioGen as a TTA model as a dataset genera-
tor for ESC. In contrast, using AudioLDM2 results in inferior per-
formance. However, the results suggest that depending solely on
TTA-generated datasets is not yet feasible. Our intuition is that do-
main adaptation between the TTA-generated used for training and
real data used for testing impacts the performances and this will be
explored in future investigations.

As for the previous experiment, we analyzed if the threshold for
achieving baseline performance might be influenced by the quantity
of data used at training. Also in this case, we incrementally dou-
bled the dataset size to train models with up to 400% of synthetic
data. As reported in Fig. 3, increasing the number of audio data
is useful up to 2-3 times the original dataset size, confirming the
previous case experiment. Also in this case, both networks achieve
higher performances when trained with AudioGen dataset versions,
suggesting that AudioGen has the capabilities of generating more
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Figure 3: Classification accuracy when varying the size of the train-
ing dataset composed of only TTA-generated data. Error bars: 95%
confidence intervals over 5 experiment repetitions.

realistic audio data that can be used to train ESC models that will
then be able to better generalize to real-world data.

3.3. To what extent real data can be safely replaced by synthetic
data generated through TTA models?

Previous findings showed that datasets generated through TTA
models can enhance performance when used for data augmentation,
but solely using synthetic data is not sufficient for effectively train-
ing an ESC model. These observations make us wonder if there is
a threshold at which synthetic data can effectively replace real data,
allowing an ESC model to achieve baseline or better performance
while requiring less real data. To investigate this, we conducted
several experiments where we incrementally replaced one or more
folders of the real US8K dataset with corresponding TTA-generated
synthetic folders. Starting with replacing one folder and progressing
up to eight folders, we ensured that at least one folder of real data
was always included in the training dataset. The folder to be re-
placed was randomly selected for each iteration of the single exper-
iment. Results are reported in Fig. 4. The straight line indicates the
baseline performance. Both ESC models have a similar trend: with
up to nearly 20% of real data replaced by synthetic data, the perfor-
mance is comparable and slightly better for the CRNN. However,
beyond this point and up to almost 50% replacement, the accuracy
begins to decrease, losing nearly 10%. A noticeable drop in perfor-
mance occurs beyond the 50% replacement level, with the decline
becoming steeper as more real audio files are replaced, ultimately
reaching a performance level similar to the experiment described in
Section 3.2 when 8 out of 9 folders are replaced. It is worth not-
ing that the AudioGengpt version of the dataset allows the model to
maintain comparable performance even when about 40% of the data
is synthetically generated.

4. DISCUSSION

The results show that when training ESC models, TTA-generated
data are useful when used to augment or replace part of the real
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Figure 4: Classification accuracy when incrementally replacing
US8K folders using TTA-generated data. Error bars: 95% confi-
dence intervals over 5 experiment repetitions.

dataset, but they are not ready to completely replace it. While a
complete analysis of the reason behind this is out of the scope of
this paper and would require further investigations, we report here a
few anecdotal causes that we encountered. TTA models do not gen-
erate audio related to all the classes with the same effectiveness. For
example, a dog barking is better reproduced compared to an audio
clip of street music; hammer and air conditioning sounds might be
too similar, etc. This is probably part of the reason why the perfor-
mance drastically drops when only generated data are used during
training. We also conducted a preliminary experiment by remov-
ing the street music class from the dataset (both training and eval-
uation), which is the most problematic class. However, no better
results were obtained.

Interestingly, the results of this study are in line with the out-
come of a parallel study that came out at the time of writing [21],
where it is reported a consistent drop in performances when using
only synthetic data for similar tasks.

5. CONCLUSIONS AND FUTURE WORKS

This paper investigates the impact of incorporating Text-To-Audio-
generated datasets into the training process of ESC systems. We
conducted various experiments to explore different methods of in-
tegrating and replacing the original dataset with additional training
data generated with TTA models. The results show that generated
datasets are beneficial when used as data augmentation techniques,
but are not ready to be used as the only source of data during train-
ing. When replacing part of the real dataset with synthetically gen-
erated data, the results are comparable to the baseline up to 10-20%
of the data, depending on the ESC model and TTA used. We be-
lieve that the obtained results motivate further investigations on the
topic. In fact, as the quality of TTAs increases, it is likely that such
a training set synthesis approach will be more and more beneficial.
Future works will include the exploration of more advanced prompt
engineering strategies and the investigation of fine-tuning methods
to improve the generation capabilities of TTA models.
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J. Copet, D. Parikh, Y. Taigman, and Y. Adi, “Audiogen: Tex-
tually guided audio generation,” in ICLR, 2022.

[2] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic,
W. Wang, and M. D. Plumbley, “Audioldm: Text-to-audio
generation with latent diffusion models,” arXiv:2301.12503,
2023.

[3] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Om-
mer, “High-resolution image synthesis with latent diffusion
models,” in Proc. IEEE/CVF CVPR, 2022.

[4] H. Liu, Q. Tian, Y. Yuan, X. Liu, X. Mei, Q. Kong, Y. Wang,
W. Wang, Y. Wang, and M. D. Plumbley, “Audioldm 2: Learn-
ing holistic audio generation with self-supervised pretraining,”
arXiv:2308.05734, 2023.

[5] D. Ghosal, N. Majumder, A. Mehrish, and S. Poria, “Text-to-
audio generation using instruction-tuned llm and latent diffu-
sion model,” arXiv:2304.13731, 2023.

[6] R. Huang, J. Huang, D. Yang, Y. Ren, L. Liu, M. Li,
Z. Ye, J. Liu, X. Yin, and Z. Zhao, “Make-an-audio: Text-
to-audio generation with prompt-enhanced diffusion models,”
in ICML. PMLR, 2023.

[7] A. Vyas, B. Shi, M. Le, A. Tjandra, Y.-C. Wu, B. Guo,
J. Zhang, X. Zhang, R. Adkins, W. Ngan, et al., “Audiobox:
Unified audio generation with natural language prompts,”
arXiv:2312.15821, 2023.

[8] R. Nordahl, L. Turchet, and S. Serafin, “Sound synthesis and
evaluation of interactive footsteps and environmental sounds
rendering for virtual reality applications,” Trans. Vis. Comput.
Graph., 2011.

[9] Y. Chung, J. Lee, and J. Nam, “T-foley: A controllable
waveform-domain diffusion model for temporal-event-guided
foley sound synthesis,” arXiv:2401.09294, 2024.

[10] F. Ronchini, R. Serizel, N. Turpault, and S. Cornell, “The im-
pact of non-target events in synthetic soundscapes for sound
event detection,” in DCASE Workshop, 2021.

[11] J. Salamon, D. MacConnell, M. Cartwright, P. Li, and J. P.
Bello, “Scaper: A library for soundscape synthesis and aug-
mentation,” in Proc. WASPAA. IEEE, 2017.

[12] F. Ronchini and R. Serizel, “A benchmark of state-of-the-art
sound event detection systems evaluated on synthetic sound-
scapes,” in Proc. ICASSP. IEEE, 2022.

[13] F. Gontier, V. Lostanlen, M. Lagrange, N. Fortin, C. La-
vandier, and J.-F. Petiot, “Polyphonic training set synthe-
sis improves self-supervised urban sound classification,” The
Journal of the Acoustical Society of America, 2021.

[14] S. Damiano, L. Bondi, S. Ghaffarzadegan, A. Guntoro, and
T. van Waterschoot, “Can synthetic data boost the training of
deep acoustic vehicle counting networks?” in Proc. ICASSP,
2024.

[15] K. M. Ibrahim, A. Perzo, and S. Leglaive, “Towards improv-
ing speech emotion recognition using synthetic data augmen-
tation from emotion conversion,” in Proc. ICASSP, 2024.

[16] S. Damiano and T. van Waterschoot, “Pyroadacoustics: a road
acoustics simulator based on variable length delay lines,” in
Proc. 25th Int. Conf. Digital Audio Effects, 2022.

[17] N. Kroher, H. Cuesta, and A. Pikrakis, “Can musicgen create
training data for mir tasks?” arXiv:2311.09094, 2023.

[18] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve,
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ABSTRACT

The acoustic environment induces emotions in human listeners.
To describe such emotions, ISO-12913 defines pleasantness and
eventfulness as orthogonal properties that characterise urban sound-
scapes. In this paper, we study different approaches for automati-
cally estimating these two perceptual sound qualities. We empha-
size the comparison of three sets of audio features: a first set from
the acoustic and psychoacoustic domain, suggested in ISO-12913; a
second set of features from the machine listening domain based on
traditional signal processing algorithms; and a third set consisting
of audio embeddings generated with a pre-trained audio-language
deep-learning model. Each feature set is tested on its own and
in combination with ground-truth labels about the sound sources
present in the recordings to determine if this additional informa-
tion improves the prediction accuracy. Our findings indicate that
the deep-learning representation yields slightly better performance
than the other feature sets when predicting pleasantness, but all of
them yield similar performance when predicting eventfulness. Nev-
ertheless, deep-learning embeddings present other advantages, such
as faster calculation times and greater robustness against changes in
sensor calibration, making them more effective for real-time acous-
tic monitoring. Furthermore, we observe a clear correlation be-
tween the sound sources that are present in the urban soundscape
and its induced emotions, specially regarding the sensation of pleas-
antness. Models like the ones proposed in this paper allow for an
assessment of the acoustic environment that goes beyond a char-
acterisation solely based on sound pressure level measurements and
could be integrated into current acoustic monitoring solutions to en-
hance the understanding from the perspective of the induced emo-
tions.

Index Terms— Urban soundscapes, acoustic monitoring, emo-
tions, machine-learning, perception

1. INTRODUCTION

Environmental noise regulations are primarily based on sound pres-
sure level (SPL) measurements. For example, the current European
Environmental Noise Directive proposes several SPL-based metrics
(like Ld, Le, Ln and their combination, Lden) to determine permit-
ted noise levels [1]. The limit values depend on factors such as the
time of the day and the designated noise sensitivity of the evaluated
area. However, other perspectives argue that SPL is insufficient to
reliably characterise the acoustic environment [2]. Some psychoa-
coustic parameters such as loudness and sharpness [3], or episodic
memory and visual perception [4], also play a role in shaping the
perception of an acoustic environment. In this field of research, the

concept of soundscape is key, defining the perceptual and emotional
construct related to a physical phenomenon (the acoustic environ-
ment). The study of soundscapes constitutes a big challenge due to
the intrinsic nature of emotions: they are triggered, brief and uncon-
scious [5]. Addressing these difficulties, the ISO-12913 [6, 7, 8] de-
termines a framework to enable international consensus on the defi-
nition and conceptual foundation of soundscapes. The standard pro-
poses a model with pleasantness and eventfulness as main orthogo-
nal axes to characterise soundscape emotional responses, based on
the evidence that physiological responses to all types of stimuli can
be organized along the dimensions of valence and arousal [9, 10],
or pleasantness and eventfulness when applied to soundscapes [11].

In this study, we focus on exploring different approaches for
automatically estimating the two aforementioned perceptual sound
qualities in urban soundscapes. We put emphasis on the compar-
ison of three feature sets for sound representation: the acoustic
and psychoacoustic features suggested in ISO-12913, a set of fea-
tures from the machine listening domain based on traditional signal
processing algorithms, and a third set consisting of the audio em-
beddings generated by a pre-trained language-audio deep-learning
model. Each feature set is tested independently and in combination
with ground-truth labels about the sound sources present in each
recording to determine if this additional information improves the
prediction accuracy. Additionally, we examine the models’ suit-
ability for real-time acoustic monitoring applications. Our findings
indicate that the deep-learning representation yields slightly better
performance than the other feature sets when predicting pleasant-
ness, but all of them yield similar results when predicting eventful-
ness. Nevertheless, deep-learning embeddings present other advan-
tages, such as presumably faster calculation times and greater ro-
bustness against changes in sensor calibration, making them more
effective for real-time acoustic monitoring. Furthermore, the addi-
tion of sound source information improves the prediction accuracy,
especially regarding the sensation of pleasantness, indicating a clear
correlation between the sound sources present in the urban sound-
scape and its induced emotions. Models like the ones proposed in
this paper allow for an assessment of the acoustic environment that
goes beyond a characterisation solely based on SPL measurements
and could thereby contribute to the development of more accurate
acoustic monitoring techniques, enhancing the understanding of the
evaluated environment from an emotional perspective.

The rest of the paper is structured as follows: Section 2 in-
troduces the related work. Section 3 describes the methods used,
detailing the dataset and the features employed. Section 4 describes
the evaluation process and Section 5 presents the results of our anal-
ysis. Finally, Section 6 consists of a discussion of the findings and
their implications, followed by a conclusion in Section 7.
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2. RELATED WORK

In recent years, many studies have focused on the two-dimensional
model for soundscape emotion assessment, resulting in the cre-
ation of datasets and the experimenting of algorithms on them. Fan
et al.[12] present diverse valence/arousal classifications using their
own dataset EMO-SOUNDSCAPES [13, 14]. In an analogous way,
ATHUS (Athens Urban Soundscape) [15], created by the authors of
[16], is a dataset for urban soundscape quality recognition which in-
cludes pleasantness and unpleasantness annotations. Similarly, the
ARAUS (Affective Responses to Augmented Urban Soundscapes)
dataset [17], combines real urban soundscape recordings with dif-
ferent audio maskers including traffic, construction, water, wind,
bird, and silence, creating a large-scale dataset of augmented sound-
scapes labelled with pleasantness and eventfulness scores obtained
from listening tests developed according to the ISO-12913 [18].
Using psychoacoustic features, the authors run preliminary experi-
ments for the estimation of pleasantness.

Existing research on automatic sound classification provides
insights which are also useful for addressing soundscape qual-
ity assessment. As an example of early work, Salamon et al.
[19] present a set of classification experiments using traditional
machine-learning algorithms applied to their own developed urban
soundscape datasets [20, 21]. Later sound classification works
adopted deep neural networks to address more complex classifica-
tion problems (e.g., [22]). However, the most recent approaches
involve the use of large pre-trained models to extract audio embed-
dings (i.e. representations) that can be used to address different
classification problems and other sound-related tasks such as sound
similarity [23]. In particular, Contrastive Language-Audio Pre-
training (CLAP) models [24, 25, 26, 27] use contrastive learning
to bring audio and text descriptions into a joint multimodal space,
and generate sound representations that capture semantically repre-
sentative information from the audio.

The studies above provide a good framework for research on
urban soundscape characterisation. Nevertheless, two important as-
pects remain unexplored. Firstly, despite existing research showing
that the sound sources present in an acoustic environment contribute
to its perceived qualities (e.g. natural sounds contribute positively
to the pleasantness of an acoustic environment while construction or
traffic noise contributes negatively [11, 18]), there is a lack of exper-
iments incorporating such information as an input for automatically
characterising soundscapes. Secondly, none of the studies validates
the suitability and robustness of the models in real-time contexts,
which is essential for the eventual incorporation of the emotional
dimension into acoustic monitoring techniques.

3. METHODS

The core methodology for studying different approaches for pre-
dicting the perceptual qualities of pleasantness and eventfulness in
urban soundscapes involves data selection, feature extraction, and
model training. Our main objective is to evaluate the performance
of three different feature sets, and determine which one delivers the
best results in terms of accuracy and suitability for real-time appli-
cations.

3.1. Dataset

We choose the ARAUS dataset for our experiments because it is the
most comprehensive available dataset with pleasantness and event-

fulness annotations. ARAUS consists of a set of 25,440 unique
and 30s-length augmented audios, created by digitally adding au-
dio maskers (see Section 2) to real urban soundscape recordings.
They are organised in a five-fold cross-validation set and an in-
dependent test set. Based on the soundscape study methodology
suggested in the ISO-12913, the audio clips are individually la-
belled with 1-5 ratings on how pleasant, annoying, eventful, un-
eventful, vibrant, monotonous, chaotic and calm they are according
to the participants of a listening test. From these ratings, a global
value of pleasantness and eventfulness per recording can be calcu-
lated as defined in the standard. These values range from -1 to 1,
where negative values indicate unpleasantness or uneventfulness,
respectively. Additionally, the ARAUS dataset includes, for each
augmented soundscape, pre-calculated acoustic and psychoacoustic
features recommended by the ISO-12913. These features are cal-
culated with ArtemiS SUITE 1, which is a proprietary software not
easily available to researchers. As part of our work, we provide an
open-source Python implementation of such features facilitating the
reproducibility of the experiments2.

3.2. Features

What follows is a description of the three aforementioned feature
sets that we consider for our experiments.

Psychoacoustic features The standard ISO-12913 suggests a set
of acoustic and psychoacoustic features to characterise urban
soundscapes: sharpness, loudness, fluctuation strength, rough-
ness, tonality, LAeq and LCeq. We compiled existing open
source implementations for these features, and wrote custom
implementations for the missing ones. For each feature, we use
the statistics mean, maximum, and the 5th, 10th, 20th, 30th,
40th, 50th, 60th, 70th, 80th, 90th, and 95th percentiles calcu-
lated over time. Additionally, replicating ARAUS, the band
powers summed over third-octave bands (5Hz to 20kHz) are
included. This results in a total of 117 features. It should be
noted that these features should not be computed directly on the
WAV signal, but on the peak-Pascals pressure signal that results
after applying a gain correction to the raw waveform. Thus, the
waveform represents the SPL at which the signal was recorded,
or, in this case, the level at which it was played in the listening
tests. The Leq value, provided in the ARAUS dataset, is used to
calculate the mentioned calibration factor (designated as wav
gain). This feature set is referred to as ARAUS features.

Signal processing features This set includes features typically
used in traditional machine listening systems. Freesound Ex-
tractor algorithm from the Essentia audio analysis library3 gen-
erates an extensive set of features from which we use: average
loudness; loudness EBU-128; dynamic complexity; spectral
flatness, roll-off, flux, skewness, spread, kurtosis and centroid;
energy per bands (low, middle-low, middle-high, high); 13th
first MFCCs; dissonance; zero-crossing rate; temporal cen-
troid, kurtosis, skewness and spread; log attack-time; inhar-
monicity; and bpm. For each feature, we compute the statistics
mean, variance, and the 20th and 80th percentiles over time,
resulting in a total of 139 features. Contrary to the set above,
these features are directly linked to the raw audio signal. How-
ever, a gain adjustment is performed to ensure that the signal

1https://www.head-acoustics.com/products
2https://github.com/MTG/soundlights
3https://essentia.upf.edu
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amplitude proportions between different audio clips reflect the
volume at which they were played during the listening tests.
To achieve this, we apply the corresponding wav gain to each
audio and then divide by a common normalization factor to
prevent clipping. This set is referred to as Freesound features.

CLAP embeddings This set of features consists of the 512-
length audio embedding generated using LAION-AI’s CLAP
model [24]. Since this model is trained using audio-text pairs,
the resulting vector is expected to capture semantic information
from the audio. This is unlike the ARAUS and Freesound fea-
ture sets, which only represent acoustic information from the
sounds. The same scaling procedure used for the Freesound
feature set is applied in this case. This representation is re-
ferred to as CLAP features.

The above feature sets are tested independently, but also
in combination with information about which sound sources are
present in the urban soundscape. Ideally, this information should in-
clude the predominant sound source. However, no dataset contains
realistic urban soundscape sounds with both this source information
and the pleasantness/eventfulness annotations. The ARAUS dataset
provides the maskers (see Section 2) that were used to generate each
augmented soundscape. Even though these sound sources might
not always be predominant, it is guaranteed that they are present.
Therefore, we use the maskers’ information as a proxy for sound
source information, and represent it with one-hot vectors. These six
features are referred to as sources features.

3.3. Models

The emphasis of this work is not on the models to be trained but
on the feature sets. Nevertheless, a number of preliminary experi-
ments were carried out in which the performances of some classic
machine-learning regression models were compared (like Support
Vector Regression, Multi-layer Perceptron Regressor or regression
based on K-Nearest-Neighbours). In these experiments, the best re-
sults were obtained by an Elastic Net model (as used in [18]), and a
Random Forest Regressor. Therefore, these two models are imple-
mented in our experiments using the Scikit-Learn library 4.

4. EVALUATION

To evaluate the predictive performance and robustness of the feature
sets and models, we design a multi-faceted evaluation framework
which not only includes the use of ARAUS data folds for cross-
validation and model testing but it also involves the creation of a
new testing set with data not present in the original dataset. Ad-
ditionally, the analysis of models’ robustness against sensor cali-
bration is evaluated by introducing controlled variations in audio
signals. Mean Absolute Error (MAE) is used as the main evaluation
metric because it allows for a straightforward interpretation that rep-
resents the average absolute difference between the predicted and
the ground-truth values.

4.1. Data folds

ARAUS includes five folds of augmented soundscapes for cross-
validation and one test fold of 48 audios, reported under the labels
Val and fold-0 in Table 1, respectively. In addition, we create a
complementary testing fold using 25 urban recordings downloaded

4https://scikit-learn.org

Feature
set

Sound
sources
info

Model Train Val Test
fold-
0

Test
fold-
Fs

Var.
%

PLEASANTNESS - MAE

ARAUS no RFR 0.29 0.30 0.24 0.21 4.31yes RFR 0.29 0.29 0.26 0.18

Freesound no EN 0.29 0.30 0.22 0.19 2.19yes EN 0.29 0.29 0.22 0.19

CLAP no RFR 0.10 0.28 0.22 0.14 0.53yes RFR 0.10 0.28 0.22 0.14

EVENTFULNESS - MAE

ARAUS no EN 0.30 0.30 0.15 0.20 1.57yes EN 0.30 0.30 0.14 0.20

Freesound no RFR 0.13 0.29 0.16 0.22 0.02yes RFR 0.13 0.29 0.16 0.22

CLAP no RFR 0.10 0.29 0.20 0.18 -0.41yes RFR 0.10 0.29 0.20 0.18

Table 1: MAE results for the best performing models for the cross-
validation folds and the two testing folds. The MAE variation per-
centage is included in the last column, representing the mean per-
centage variation in MAE when adding the sound sources informa-
tion to the feature set (a positive percentage indicates an improve-
ment in prediction). Note: EN and RFR stand for Elastic Net and
Random Forest Regressor, respectively.

from Freesound5. The selection was carried out manually by the
authors and consists of 30-second excerpts of real urban environ-
ment recordings that include sources such as traffic, construction,
rain, wind, voices, and music. Following ISO-12913, a listen-
ing test was carried out where 22 participants rated the 25 audios
with 1-5 scales on how pleasant, annoying, eventful, uneventful,
vibrant, monotonous, chaotic and calm the soundscapes were per-
ceived. From those ratings, ground-truth pleasantness and event-
fulness metrics were calculated following the same standard. The
audios were calibrated and played at appropriate and varied Leq val-
ues, regardless of the audio content. We refer to this fold as fold-Fs.

4.2. Robustness analysis

As has been mentioned, to evaluate the robustness of the studied
models against different input signal calibration conditions, five
controlled variations of the testing fold fold-0 are generated by
modifying the audio signals with wav gain adjustments of -6dB,
+6dB, +12dB and +18dB; and a fifth variation with random wav
gain within a fixed range [0-20dB].

5. RESULTS

Table 1 presents the MAE scores for the different combinations of
models and feature sets evaluated. For pleasantness, the CLAP rep-
resentation outperforms the other two feature sets in both test folds,
reaching an MAE of 0.14 in fold-Fs. This indicates that, on a scale
of [-1, 1], the predictions deviate by an average of 0.14. In terms
of MAE variation resulting from the inclusion of the source fea-
tures, the CLAP representation shows the smallest improvement,

5https://freesound.org
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with just 0.53%, compared to 4.31% for ARAUS features and 2.19%
for Freesound features. Regarding eventfulness, ARAUS features
outperform the others when taking into account both test folds, but
the smallest MAE for fold-Fs, 0.18 points, is achieved by CLAP
features. When examining the MAE percentage variation, the in-
clusion of sound sources information has a smaller impact, with
percentages closer to zero than those observed for pleasantness.

Figure 1: Increase in MAE value provoked by each fold-0 variation
with respect to the original and unvaried fold-0 MAE.

Furthermore, all controlled calibration variations generated of
fold-0 result in higher MAE values. Figure 1 illustrates the in-
crease of MAE only for the best-performing model for each feature
set. The first noticeable observation is that the impact is greater on
eventfulness, where the MAE increase is more pronounced. Also,
it can be noted that the ARAUS feature set is more negatively af-
fected in both cases, whereas the CLAP feature set appears to be
the least affected. Among the variations, the 6dB increase in wav
gain caused the smaller impact.

In terms of calculation time, CLAP features is the fastest set,
taking 0.5s to calculate the embeddings for a 30s-long stereo au-
dio file (sampled at 48kHz, run in a MacBook Pro M3). Freesound
features and ARAUS features take 8x and 144x longer, respectively.
Note that this comparison is limited as these feature sets are imple-
mented in different frameworks and languages.

6. DISCUSSION

The experimental results indicate that, for predicting pleasantness,
CLAP features outperform the other two sets, achieving an MAE of
0.22 and 0.14 for fold-0 and fold-Fs, respectively. These results
occur both when CLAP features are used alone and when com-
bined with sources features, with only a 0.53% difference in per-
formance between the two scenarios. Since CLAP embeddings in-
trinsically contain semantic information about the audio, additional
sound source information is redundant. Conversely, for feature sets
that lack this semantic data, including the source information pos-
itively impacts the accuracy in the prediction of pleasantness: the
performances of ARAUS and Freesound feature sets improve by
4.31% and 2.19%, respectively. These findings suggest a clear cor-
relation between the sound sources that are present in the urban
soundscape and the perceived sensation of pleasantness. In fact,
these results coincide with those obtained in the listening test. A
quantitative analysis, which can be seen in Figure 2, shows a clear
source-class separation on the pleasantness scale depending on the
predominant sound source: construction and traffic noises are posi-
tioned on the negative side of the axis, while natural sounds are on
the positive side.

For predicting eventfulness, all feature sets perform similarly,

Figure 2: Two-dimensional Kernel Density Estimate plot of the
pleasantness(P) and eventfulness(E) values reported from the an-
swers to the listening test.

with ARAUS features showing slightly better results when consid-
ering the MAE mean of both test sets. Besides, the impact of the
inclusion of source features is negligible, being smaller than 2% for
ARAUS features, and close to zero for Freesound and CLAP fea-
ture sets. This indicates a weaker correlation between the sound
sources present in the soundscape and the sensation of eventful-
ness, coinciding again with the data extracted from the listening
test, where there is more overlap between class groups when seen
from the eventfulness axis (see Figure 2).

In terms of robustness against changes in sensor calibration,
none of the trained models demonstrate strong capabilities, as MAE
increases notably in every fold-0 variation case. Nevertheless, pre-
dictions of eventfulness are more negatively affected, potentially
indicating a correlation between SPL, or loudness, and the percep-
tion of eventfulness. Moreover, models trained with CLAP features
seem to be slightly less impacted by the calibration changes. In
addition to this, their rapid generation time suggests that CLAP fea-
tures are adequate for real-time contexts.

7. CONCLUSION

This research shows that CLAP embeddings generated by LAION-
AI’s CLAP model demonstrate high performance as input to models
for predicting pleasantness and eventfulness perceptual sound qual-
ities. Even though the sound representation does not present strong
robustness to variations in sensor calibration, it can be computed
rapidly, making it suitable for real-time applications. Moreover,
our study indicates a clear correlation between the sound sources
present in an urban soundscape and its sensation of pleasantness.
Future research directions could include evaluating the developed
models in the context of a real-world acoustic sensor network and
incorporating sound classification and source separation technolo-
gies to improve the models’ accuracy and capabilities for meaning-
ful soundscape characterisation and monitoring.
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ABSTRACT

This article describes the Data-Efficient Low-Complexity Acoustic
Scene Classification Task in the DCASE 2024 Challenge and the
corresponding baseline system. The task setup is a continuation
of previous editions (2022 and 2023), which focused on record-
ing device mismatches and low-complexity constraints. This year’s
edition introduces an additional real-world problem: participants
must develop data-efficient systems for five scenarios, which pro-
gressively limit the available training data. The provided baseline
system is based on an efficient, factorized CNN architecture con-
structed from inverted residual blocks and uses Freq-MixStyle to
tackle the device mismatch problem. The task received 37 sub-
missions from 17 teams, with the large majority of systems out-
performing the baseline. The top-ranked system’s accuracy ranges
from 54.3% on the smallest to 61.8% on the largest subset, corre-
sponding to relative improvements of approximately 23% and 9%
over the baseline system on the evaluation set.

Index Terms— DCASE Challenge, Acoustic Scene Classifica-
tion, data-efficiency, low-complexity, multiple devices

1. INTRODUCTION

Acoustic Scene Classification (ASC) aims at detecting the environ-
mental context in which audio was captured, based on a short ex-
cerpt [1]. The environmental context is given as a set of pre-defined
acoustic scene classes such as Metro station, Urban park, or Pub-
lic square. Since its inception, the ASC task has been an integral
part of the DCASE Challenge. Each year’s edition focused on one
or multiple challenging machine-learning aspects in addition to the
supervised classification task itself. These aspects include open-set
classification [2], constraints on the model’s size and computational
complexity [3–5], and generalization across different recording de-
vices [3,6]. These additional problems target the real-world applica-
bility of ASC systems; for instance, the methods should be robust to
diverse recording devices and sufficiently lightweight to be deploy-
able on embedded devices. In the 2024 edition1 of the ASC task, an
additional challenging real-world aspect is addressed: the limited
availability of training data. This setting intends to spark research
on data-efficient learning methods capable of achieving high classi-
fication performance given only a small number of labeled acoustic
scene examples for training.

1Task Description Page: https://dcase.community/challe
nge2024/task-data-efficient-low-complexity-acous
tic-scene-classification

Figure 1: Overview of Data-Efficient Low-Complexity Acoustic
Scene Classification. Submitted systems must be trained on five
datasets of varying sizes, they must generalize to unseen recording
devices, and they are required to be lightweight enough for infer-
ence on an embedded device (ED).

Figure 1 shows an overview of the task setup. The ASC systems
must be trained on subsets of a fixed training set that progressively
limit the number of training samples, where the smallest subset only
contains 5% of the audio snippets in the full training set (see Section
3.2). The training procedure is not limited in terms of complexity
and may be executed on high-end GPU hardware. However, aligned
with real-world requirements, the system must be lightweight for
inference such that it can be deployed on embedded devices (see
Section 3.3). Additionally, the developed ASC system must be
robust to unseen recording devices. To test this ability, the test set
includes audio clips recorded by new devices that are not available
in the training sets (see Section 3.2).

The rest of this paper is structured as follows: Section 2 briefly
discusses the role of low-complexity constraints and the device gen-
eralization problem in previous editions of the task. Section 3 intro-
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duces the setup for Data-Efficient Low-Complexity Acoustic Scene
Classification in the DCASE 2024 Challenge; the baseline system
is presented in Section 4. The outcome of the challenge is analyzed
in Section 5 and the paper is concludes in Section 6.

2. PREVIOUS EDITIONS

The low-complexity aspect has already been investigated in previ-
ous DCASE challenges and has undergone several refinements. In
the 2020 [3] and 2021 [4] editions, systems were limited with re-
spect to model size, allowing 500 kB and 128 kB for non-zero pa-
rameters, respectively. In the 2022 edition [5], the complexity con-
straint additionally included computational complexity, allowing a
maximum of 30 MMACs (million multiply-accumulate operations),
modeled after Cortex-M4 devices. The maximum number of pa-
rameters was 128K, with the variable type fixed to INT8. The 2023
edition took this one step further and included model size and com-
putational complexity as part of the ranking metric, requiring par-
ticipants to tune the system’s performance–complexity trade-off. In
response to the low-complexity requirements, training techniques
such as Sparsification [7], Pruning [8], Quantization [9], or Knowl-
edge Distillation [10] have been extensively studied, and efficient
factorized CNN architectures [11–13] have been designed.

Besides low-complexity techniques, substantial research has
been conducted on the device mismatch problem. Efforts to im-
prove device generalization involved suppressing device informa-
tion via normalization [9] and domain adaptation [14], balancing the
devices by changing the sampling distribution [15] and augmenting
audio segments with device translators [9], Freq-MixStyle [10, 16],
and device impulse response augmentation [17].

3. TASK SETUP

While low complexity and generalization across different record-
ing devices are well-studied topics, the specific aspect of interest
in the 2024 edition is the limited availability of acoustic scene data
for training. Specifically, participants were encouraged to develop
data-efficient systems and study techniques that can alleviate the
data scarcity problem, such as using extensive audio augmenta-
tion methods, transferring knowledge from general-purpose audio
datasets, or incorporating well-suited inductive biases.

3.1. Dataset
The task builds on top of the TAU Urban Acoustic Scenes 2022
Mobile dataset [3,6], which was used in the 2022 and 2023 editions
of the task [5]. The dataset provides one-second audio snippets with
a sampling rate of 44.1 kHz in single-channel, 24-bit format and
consists of recordings from ten distinct acoustic scenes.

The audio was recorded in multiple European cities with four
recording devices in parallel. The primary device, referred to as
device A, is a high-quality binaural device, while B, C and D are
commonly available consumer devices. Additionally, 10 simulated
devices (S1-S10) are created using audio from device A and a set of
impulse responses from mobile devices. For details on the dataset
creation and the exact distribution of devices, please refer to [3].

The data is split into a development and an evaluation set. The
development set, consisting of 64 hours of audio, contains 3 real
devices (A, B, C) and 6 simulated devices (S1–S6). The evaluation
set comprises five unseen devices (D and S7-S10) and two unseen
cities, in addition to devices and cities overlapping with the devel-
opment set. The evaluation set is used to rank submissions and

therefore comes without corresponding scene labels. Device and
city information is not provided for recordings in the evaluation set.

3.2. Data-Efficient Evaluation
The development set used for the 2024 challenge is the same one
as used in the previous two years and described above. It comes
with the same pre-defined split into a development-train and a
development-test partition. The development-train set contains six
devices (A, B, C, S1-S3), leaving three unseen devices (S4-S6) for
the development-test set to measure the device generalization per-
formance.

For the evaluation of data efficiency, this year’s setup intro-
duces five pre-defined subsets that progressively limit the available
training data and contain 100%, 50%, 25%, 10%, and 5% of the
recordings in the development-train set. The distribution of acous-
tic scenes, cities, and recording devices is kept similar across all
subsets. The smaller subsets are fully included in the larger ones,
corresponding to the idea of progressively collecting more data.

Participants are allowed to submit up to three different systems
that may be specialized for the different training set sizes. Each sys-
tem must be trained on all five subsets, and the performances on the
development-test set must be reported. A system is considered to
be the same if its architecture and design choices (such as building
blocks, features, data augmentation techniques, decision-making,
etc.) remain the same. However, basic hyperparameters like the
number of update steps, learning rate, batch size, or regularization
strength may vary for training on the different subsets.

All systems must be trained only on the respective subset
and the explicitly allowed external resources. The allowed exter-
nal resources include general-purpose audio datasets, such as Au-
dioSet [18] or FSD50K [19], but no datasets specific to acoustic
scenes.

The leaderboard ranking score is computed as follows. First,
class-wise macro-averaged accuracies for all P = 5 development-
train subsets and all N submissions are computed. The accuracy of
the n-th submission on the p% subset is denoted as ACCn,p. The
scores are then aggregated by choosing the best-performing system
for each subset and averaging the resulting accuracies.

score :=
1

P

∑
p∈{5,10,25,50,100}

max
n∈{1,...,N}

ACCn,p (1)

The outlined setup encourages research into the following sci-
entific questions: how does the performance of systems vary with
the number of available labeled training samples? how can systems
be adapted to better cope with the limited availability of labeled
training data? how can general-purpose audio datasets be exploited
to mitigate the need for larger amounts of acoustic scenes?

3.3. System Complexity Requirements
The system complexity is limited in terms of model size and
MMACs. The maximum memory allowance for model parameters
is 128 kB, with no requirement regarding the numerical represen-
tation. That is, participants can trade off the number of parame-
ters and the numerical representation. For example, the memory
limit translates to 128K parameters when using 8-bit quantization,
or 32K parameters when using 32-bit precision. The computational
complexity is limited to 30 MMACs for the inference on a one-
second audio segment. These complexity limits are modeled after
Cortex-M4 devices (e.g., STM32L496@80MHz or Arduino Nano
33@64MHz).
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System Label Score Team Rank Size MACs Architecture Complexity Dev. Gen. External

Han SJTUTHU task1 2 58.2 1 126kB 29M SSCP-Mobile fp16, KD, prun. FMS PaSST
Shao NEPUMSE task1 1 57.2 3 107kB 16M IRMamba int8, KD FMS, DIR PaSST
MALACH24 JKU task1 1 57.0 2 122kB 29M CP-Mobile fp16, KD FMS, DIR AudioSet
Yeo NTU task1 2 56.1 5 122kB 29M CP-Mobile fp16, KD FMS, DIR PaSST
Cai XJTLU task1 3 56.0 4 126kB 29M TF-SepNet int8, KD FMS, DIR AudioSet
Park KT task1 2 55.4 6 126kB 26M GhostRes2Net fp16, KD FMS, DIR PaSST, EAT
OO NTUPRDCSG task1 1 54.8 7 116kB 29M MofleNet int8 FMS, DIR -
Werning UPBNT task1 1 54.4 8 122kB 29M CP-Mobile fp16, KD FMS AudioSet
Truchan LUH task1 1 53.1 9 94kB 29M Isotropic fp16 FMS, DIR -
Yan NPU task1 1 52.9 10 124kB 29M MAR-CNN fp32 FMS -

Baseline 50.7 122kB 29M CP-Mobile fp16 FMS -

Table 1: This table lists the top-ten teams’ best systems according to their evaluation set performance. Team Rank indicates the team’s
overall rank, which is based on multiple submitted systems, and Score is the average accuracy across all splits of the respective system listed
in the table. int8, fp16, and fp32 refer to the numerical precision of model parameters for inference, corresponding to 8, 16, and 32 bits,
respectively. KD, FMS, and DIR are abbreviations for Knowledge Distillation, Freq.-MixStyle, and Device Impulse Response augmentation,
respectively, and the column External indicates external resources used.

4. BASELINE SYSTEM

The baseline system is a simplified version of the top-ranked system
submitted to the 2023 edition [20]. It is based on a receptive-field-
regularized, factorized CNN design. Audio input is resampled to
32 kHz and converted to mel spectrograms using a 4096-point FFT
with a window size of 96 ms and a hop size of approximately 16 ms,
followed by a mel transformation with a filterbank of 256 mel bins.
The system is trained for 150 epochs using the AdamW optimizer
and a batch size of 256. Freq-MixStyle [10, 16] is applied to tackle
the device mismatch problem, and time rolling of the waveform
and frequency masking are used to augment the training data. The
baseline system requires 29.4 MMACs for the inference on a one-
second audio clip. The memory required for the model parameters
amounts to 122.3 kB, resulting from the 61,148 parameters used in
16-bit precision (fp16).

The baseline’s accuracy on the development-test split ranges
from 42.40% for the smallest training subset (5%) to 56.99% ac-
curacy for the full set (100%). The performance increases mono-
tonically as the number of audio segments available for training in-
creases. The code and a detailed description of the baseline system
are available online2.

5. CHALLENGE RESULTS

The task received 37 submissions from 17 teams and is therefore the
second most popular task in the 2024 edition of the DCASE chal-
lenge. The slight decrease in popularity compared to the previous
year’s edition is likely due to the more complex setup. 16 out of 17
teams outperformed the baseline system and for most of the teams,
the performance on the development-test split aligns well with the
performance on the evaluation set. The challenge website contains
detailed results and descriptions on all submitted systems3.

Table 1 presents the best systems submitted by the ten top-
ranked teams and lists details in terms of architectures, complex-
ity handling, device generalization, and usage of external resources.

2Source Code: https://github.com/CPJKU/dcase2024_t
ask1_baseline/tree/main

3Results: https://dcase.community/challenge2024/ta
sk-data-efficient-low-complexity-acoustic-scene-c
lassification-results

Score denotes the average accuracy across all five training set splits
on the evaluation set. Note that a team’s rank depends on all three
allowed submissions, rather than only on the system achieving the
highest score (which is why the Team Rank column of Table 1 is not
perfectly sorted).

5.1. Architectures
In response to the low-complexity constraints and following the
trend observed in the previous edition of this task [5], the large ma-
jority of systems are based on factorized CNN architectures. Most
prominently, factorization is realized via inverted residual blocks, as
used in the baseline architecture. Table 1 shows that four out of the
ten best systems are based on modified versions of the CP-Mobile
architecture [20]. The top-ranked system [21] further reduces CP-
Mobile’s complexity by factorizing the spatial convolutions with a
3x3 kernel into two separate convolutions with 1x3 and 3x1 kernels.
Team Shao NEPUMSE [22] enhances an inverted residual block-
based architecture with parallel Mamba blocks [23], a derivative
of state space models. Teams Cai XJTLU [24] and Park KT [25]
use modified versions TF-SepNet [26] and BCRes2Net [9], re-
spectively, both of which achieved high ranks in previous edi-
tions of this task and decouple spatial convolutions over frequency
and time dimensions. Team OO NTUPRDCSG [27] introduces
MofleNet by enhancing the CP-Mobile architecture with channel
shuffle operations; Team Truchan LUH [28] uses an isotropic con-
volutional architecture following a patch embedding layer; and
Team Yan NPU [29] presents MAR-CNN, an asymmetric multi-
branch convolutional architecture.

5.2. System Complexity
Knowledge Distillation (KD) can be identified as the most promi-
nent technique to tackle the low-complexity constraints, with the six
top-ranked teams using KD. The most popular teacher model is the
audio spectrogram transformer PaSST [30]. Among other models
that proved to be successful teachers are CP-ResNet [31] (Teams
MALACH24 JKU [32] and Shao NEPUMSE [22]), BEATs [33]
(Team Cai XJTLU [24]), EAT [34] (Team Park KT [25]) and
DyMN [35] (Team Bai JLESS [36]). Regarding numerical repre-
sentation of parameters, both 8-bit and 16-bit precision solutions are
among the top-ranked systems. To convert parameters to 8-bit pre-
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Figure 2: Performance of the best systems from the five top-ranked
teams on the evaluation set for training on the five subsets (5%,
10%, 25%, 50%, 100%) of the development-train split.

cision, Teams Shao NEPUMSE [22] and OO NTUPRDCSG [27]
use Quantization-Aware-Training, while Team Cai XJTLU [24]
shows that also Post-Training Static Quantization can lead to
good results. In addition to KD, the top-ranked system by Team
Han SJTUTHU [21] uses pruning. They construct a large version
of SSCP-Mobile by increasing the number of channels, apply prun-
ing to meet complexity constraints, and then fine-tune the pruned
model using KD.

5.3. Device Generalization
The majority of teams tackle the device mismatch with dedicated
data augmentation techniques. In this regard, Freq-MixStyle [10,
16], which is also integrated into the baseline system, is used by
all of the ten top-ranked teams. Additionally, seven out of the ten
top-ranked systems use device impulse response augmentation, im-
plemented using convolution with 66 freely available impulse re-
sponses from MicIRP4. An interesting alternative is presented by
Team Truchan LUH [28] using an adversarial device classifier that
forces the feature extractor to learn device-invariant representations.

5.4. Limited Training Data
Figure 2 shows that the top systems submitted to the challenge per-
form similarly when trained on the 100% train split. However, the
smaller the size of the training set, the larger the performance dif-
ferences, underscoring the large impact of creating data-efficient
systems. In fact, the top-ranked system does not achieve the high-
est accuracy for the 50% and 100% training splits, but it surpasses
other systems on the 5%, 10%, and 25% subsets. In particular, on
the smallest training set, it outperforms all other teams’ systems by
more than 2 percentage points in terms of accuracy.

In the following, we describe approaches by participants to
counteract the performance dropoff for small training sets.

General-Purpose Audio Datasets: Very commonly, partici-
pants make use of large general-purpose audio datasets, in partic-
ular, AudioSet [18], to alleviate the data scarcity problem. This is
achieved in three different ways: (1) by fine-tuning a large, pre-
trained model on ASC and using it as a teacher model in a KD
setup; (2) by directly pre-training a low-complexity model on Au-
dioSet; and (3) by extracting audio clips from AudioSet as ad-

4http://micirp.blogspot.com/

ditional training data. The effectiveness of (1) is underlined by
the fact that most of the top-ranked teams use an AudioSet pre-
trained transformer model as a teacher in a KD setup. For ex-
ample, Team Cai XJTLU [24] achieves an accuracy of 55.7% on
the development-test set when fine-tuning multiple BEATs [33]
models on the 5% training subset, which is higher than the Base-
line system’s accuracy using 10 times as much training data. Re-
garding (2), the team with the second-best performance on the
5% and 10% subsets, Team MALACH24 JKU [32], pre-trains CP-
Mobile on AudioSet and reports a large performance gain for fine-
tuning on smaller training subsets. Concerning (3), Team Wern-
ing UPBNT [37] trains a dataset domain classifier to extract audio
clips from AudioSet that are similar to the samples in the respective
training sets and uses these as additional samples for KD. Addition-
ally, Team Surkov IMTO [38] selects AudioSet clips from specific
event classes such as Bus or Train and uses them as additional un-
labeled samples in a mean-teacher approach.

Extensive Data Augmentation: Besides Freq-MixStyle and
DIR augmentation, extensive data augmentation is applied to im-
prove generalization performance on the small training sets. In
this regard, Team MALACH24 JKU [32] uses FilterAugment [39],
Team Shao NEPUMSE [22]) experiments with audio playback,
Team Chen SCUT [40] uses Spectrum Modulation. SpecAugment,
time rolling, and Mixup are widely used throughout submissions.

Model Size and Architecture: Team Yeo NTU [41] investi-
gated the relationship between model size and performance on small
training splits and found that models of reduced complexity gener-
alize better for small training splits. Team Park KT [25] enhanced
their network with Snake activation functions and showed that the
introduced inductive bias on periodicity leads to a large perfor-
mance gain on smaller training sets.

6. CONCLUSION

This paper has presented an analysis of Task 1 in the DCASE 2024
challenge, which focused on the real-world deployment of ASC sys-
tems with low-complexity constraints, device mismatch, and train-
ing data scarcity being the main hurdles to overcome. The task
remained the second most popular in the DCASE 2024 challenge,
underscoring the high interest in the task despite the increasingly
challenging setup. Multiple strategies have been proposed to tackle
the limited availability of training data; most highly-performing
systems transferred knowledge from a large general-purpose audio
dataset to the ASC task, either in the form of pre-trained models or
by extracting additional ASC-related audio clips for training. Data
augmentation remained a highly important aspect, not only to ad-
dress device generalization but also to improve generalization capa-
bilities, with only a small training set available. Other solutions to
the data scarcity problem involve adapting the model’s complexity
or building inductive biases into the model architecture. Summariz-
ing the output of the task, several promising techniques have been
proposed that can boost performance on downstream tasks when
only a small training set is available.
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ABSTRACT

A central problem in building effective sound event detection sys-
tems is the lack of high-quality, strongly annotated sound event
datasets. For this reason, Task 4 of the DCASE 2024 challenge
proposes learning from two heterogeneous datasets, including au-
dio clips labeled with varying annotation granularity and with dif-
ferent sets of possible events. We propose a multi-iteration, multi-
stage procedure for fine-tuning Audio Spectrogram Transformers
on the joint DESED and MAESTRO Real datasets. The first stage
closely matches the baseline system setup and trains a CRNN model
while keeping the pre-trained transformer model frozen. In the sec-
ond stage, both CRNN and transformer are fine-tuned using heavily
weighted self-supervised losses. After the second stage, we com-
pute strong pseudo-labels for all audio clips in the training set using
an ensemble of fine-tuned transformers. Then, in a second itera-
tion, we repeat the two-stage training process and include a distilla-
tion loss based on the pseudo-labels, achieving a new single-model,
state-of-the-art performance on the public evaluation set of DESED
with a PSDS1 of 0.692. A single model and an ensemble, both
based on our proposed training procedure, ranked first in Task 4 of
the DCASE Challenge 2024.1.

Index Terms— DCASE Challenge, Sound Event Detection,
ATST, BEATs, PaSST, DESED, MAESTRO Real, pseudo-labels

1. INTRODUCTION

The goal of Sound Event Detection (SED) is to identify specific
acoustic events and their timing within audio recordings. Reliable
SED systems enable applications in numerous domains, for exam-
ple, in security and surveillance [1], smart homes [2], or health
monitoring [3]. A main driver of research in this field is the annual
DCASE Challenge, particularly Task 4, which focuses on SED.

State-of-the-art SED systems are based on deep learning ap-
proaches, requiring a substantial amount of annotated data. Their
performance is mainly limited by the lack of strongly annotated
real-world sound event datasets [4]. Hence, previous editions of
Task 4 focused on learning from weakly labeled data [5], semi-
supervised learning strategies [6], and utilizing synthetic strongly
labeled data [7]. While Task 4 has been based on the DESED
dataset [7] in previous years, the key novelty of the 2024 edition
is a unified setup including a second dataset, MAESTRO Real [4].
As domain identification is prohibited, the goal is to develop a sin-
gle system that can handle both datasets despite crucial differences,
such as labels with different temporal granularity and potentially
missing labels. In fact, because of the lack of strongly annotated,

1Code: https://github.com/CPJKU/cpjku_dcase24

high-quality real-world data, the hope is that learning from two
datasets in parallel has a synergetic effect and eventually increases
the generalization performance on both datasets.

The main contributions of this work are as follows: (1) We
introduce a multi-iteration, multi-stage training routine for fine-
tuning pre-trained transformer models on SED using heterogeneous
datasets. (2) We demonstrate that combining fine-tuned transform-
ers – ATST [8], PaSST [9], and BEATs [10] – into a diverse en-
semble to generate pseudo-labels, and using these pseudo-labels in
a subsequent training iteration, significantly enhances single-model
performance, yielding a relative increase of 25.9% in terms of poly-
phonic sound detection score [11,12] (PSDS1) on DESED and 2.7%
in terms of segment-based mean partial area under the ROC curve
(mpAUC) on MAESTRO, compared to the baseline system. (3) We
conduct an ablation study to analyze the impact of the heteroge-
neous datasets and design choices related to them.

On DESED, we set a new state of the art on the public evalua-
tion set, raising single-model performance from 0.686 [11] to 0.692
in terms of PSDS1. A single model and an ensemble, both based
on our proposed training procedure, ranked first in the respective
categories in Task 4 of the DCASE Challenge 2024 [13].

2. RELATED WORK

SED Architectures: Since the 2018 edition [14], the base-
line system is based on a Convolutional Recurrent Neural Network
(CRNN). A large increase in performance happened in the 2023
edition, as the baseline used BEATs [10] embeddings concatenated
with CNN embeddings, which were then fed to the RNN, with a
relative increase of almost 50% in PSDS1 score. Top-ranked sys-
tems in the 2023 edition improved over the baseline architecture
with variations of frequency-dynamic convolution [15]. Recently,
Shao et al. [16] proposed a procedure to fine-tune large pre-trained
transformers on the DESED dataset with a two-stage training proce-
dure, establishing a new state of the art. They showed that the key to
avoiding overfitting is placing a large weight on the self-supervised
losses to take advantage of the larger amount of unlabeled data.

Data Augmentation: As strongly annotated data is very lim-
ited, data augmentation is an important strategy to improve the gen-
eralization of SED systems. In this regard, Filter-Augment [17]
simulates variations in the acoustic environment by applying dif-
ferent weights to frequency bands, forcing the model to extract in-
formation from wider frequency regions. Strategies for recording
device generalization in Acoustic Scene Classification apply simi-
lar frequency weighting mechanisms: Frequency-MixStyle [18, 19]
mixes the frequency information of two audio clips in the dataset,
and Device-Impulse augmentation [20] convolves an audio clip with
an impulse response of a real recording device. Recently, Fre-
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Figure 1: Overview of System Architecture. Blue are the pre-
trained transformers; the red blocks together comprise the CRNN.

quency Warping [8], which stretches or squeezes spectrograms in
the frequency dimension, was shown to be an integral part when
fine-tuning transformers on the DESED dataset [16].

Pseudo-labels: Both of the top-ranked approaches in the 2022
and 2023 editions of Task 4 computed pseudo-labels. Ebbers
et al. [21] use a multi-iteration self-training procedure in which
pseudo-labels, predicted by an ensemble, are iteratively refined.
Kim et al. [22] employ a two-iterations setup in which strong
pseudo-labels for weakly labeled, unlabeled, and AudioSet [23]
clips are computed from an ensemble of models from the first train-
ing iteration. The computed pseudo-labels are converted into hard
labels and used as additional targets in a second training iteration.

3. SYSTEM ARCHITECTURE

Figure 1 gives an overview of our SED system. It consists of two in-
dependent audio embedding branches (CNN and transformer), the
outputs of which are pooled to the same sequence length. A Recur-
rent Neural Network (RNN) derives strong predictions from these
combined sequences. Compared to the baseline [13] we experi-
ment with two additional Audio Spectrogram Transformers besides
BEATs [10], namely, ATST [8] and PaSST [9]. In addition to adap-
tive average pooling, we experiment with linear and nearest-exact
interpolation to align transformer and CNN sequence lengths. In
the following, we briefly describe the transformer models used in
our setup. We refer the reader to [24] for more details.

ATST-Frame [25](denoted ATST in the following) was specif-
ically designed to produce a sequence of frame-level audio embed-
dings. The architecture of ATST is based on the Audio Spectrogram
Transformer (AST) [26]; it is pre-trained in a self-supervised man-
ner on AudioSet. In our experiments, we use a checkpoint of ATST
that is fine-tuned on the weak labels of AudioSet.

fPaSST: The Patchout faSt Spectrogram Transformer
(PaSST) [9] is an improved version of the original AST [26]
that shortens the training time and improves the performance via
patchout regularization. We adapt PaSST to return frame-level
predictions and call the resulting model Frame-PaSST (fPaSST).
We pre-train fPaSST on the weakly annotated AudioSet using
Knowledge Distillation [27], obtaining a mAP of 0.484.

BEATs: Likewise, BEATs [10] is also based on the AST [26]
architecture; it was trained in an iterative, self-supervised procedure
on AudioSet, where the BEATs encoder and tokenizer were alter-
nately updated. In our experiments, we rely on the checkpoint of
BEATs after the third iteration, where both the tokenizer and the
encoder were fine-tuned on the weak labels of AudioSet.

4. TRAINING PIPELINE

In this section, we describe the pre-training routine on AudioSet
strong and how the pre-trained models are fine-tuned on the Task 4
datasets in the proposed multi-iteration, multi-stage training proce-
dure. An overview of the full training pipeline is shown in Figure 2.
The full system architecture, depicted in Figure 1, is involved in
all iterations and stages of Figure 2. The pre-trained transformers

Figure 2: Training Pipeline. The snow flake symbol denotes frozen
parameters, the flame that a model is trained in a particular stage.

(blue block in Figure 1) are used as frozen audio embedding mod-
els in Stage 1 and fine-tuned together with the CRNN (red blocks
in Figure 1) in Stage 2. The pseudo-labels are generated from an
ensemble after Iteration 1 and used as additional prediction targets
in Stage 1 of Iteration 2. In the following, we abbreviate Iteration
{1,2} and Stage {1,2} as I{1,2} and S{1,2}, respectively.

4.1. Pre-Training on AudioSet strong
We hypothesize that the transformer models would benefit from ad-
ditional pre-training on a large dataset strongly annotated for vari-
ous acoustic events. To this end, we add a BiGRU block with 1024
units that processes the output of the transformer. We pre-train for
10 epochs on AudioSet strong [28], a subset of AudioSet that holds
around 86,000 strongly labeled examples with annotations for 456
event classes. While ATST and, in particular, fPaSST benefit from
this pre-training, there was no effect on the downstream task perfor-
mance of BEATs; therefore, we only pre-train ATST and fPaSST on
AudioSet strong. We select the checkpoint with the highest PSDS1
score on the AudioSet strong validation set for downstream training.

4.2. Multi-Stage Training
Inspired by [16], I1 and I2 are both split into two training stages. In
S1, the CRNN (CNN + BiGRU) is trained from scratch while the
large transformer model is frozen. This setup corresponds to the
training of the baseline system with slightly different hyperparame-
ters and additional data augmentations (as shown in Table 1).

In S2, the CRNN is initialized with pre-trained weights from
S1, and both the CRNN and the transformer model are fine-tuned.
As the system already performs well in its initial state, the trans-
former can rely on a high-quality self-supervised loss computed on
the larger unlabeled set. Aligned with [16], in S2, we compute the
interpolation consistency (ICT) loss [29] in addition to the mean
teacher (MT) loss [30]. In both stages, we choose the best model
based on the validation set by computing the sum of PSDS1 on the
strongly labeled synthetic data, PSDS1 on external strongly labeled
real data, and mpAUC on the MEASTRO validation set.

4.3. Multi-Iteration Training
After completing I1, we build an ensemble (see Ensemble Stage 2
in Table 2) of multiple ATST, fPaSST, and BEATs models. This en-
semble is used to compute strong pseudo-labels for all audio clips in
the training set by averaging the frame-wise logits of the individual
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Aug. Method Target HP Pipeline

DIR [20] All p=0.5 I{1,2}.S2
Wavmix [33] Str. p=0.5,α=0.2 I{1,2}.S{1,2}

Freq-MixStyle [18] All p=0.5,α=0.3 I1.S{1,2},I2.S2
Mixup [33] All p=0.5,α=0.2 I{1,2}.S{1,2}
Time-Masking DES. Str. s=[0.05,0.3] I{1,2}.S2
FilterAugment [17] All linear,p=0.8 I1.S{1,2},I2.S2
Freq-Warping [8] All p=0.5 I{1,2}.S2

Table 1: The table lists data augmentation methods, the data subset
they are applied to (Target), hyperparameters (HP), and the respec-
tive iteration and stage they are used in (Pipeline). p is the proba-
bility for applying the augmentation method; α parameterizes Beta
distributions; s specifies the masking ratio interval; and (DES.) Str.
refers to strongly annotated audio clips (from DESED).

models. In S1 of I2, we then use the pseudo-labels as additional pre-
diction targets. We found that BCE is superior to MSE for comput-
ing the pseudo-label loss, and interestingly, using the pseudo-label
loss only improves performance in S1 of I2 (see Table 4).

5. EXPERIMENTAL SETUP

5.1. Audio Pre-processing and Augmentation
For all models, we convert audio clips to 10 seconds in length at a
16 kHz sampling rate. For the CNN, we match the baseline settings
and compute Mel spectrograms with 128 Mel bins using a window
length of 128 ms and hop size of 16 ms. For the transformers, we
use their original feature extraction pipelines [9, 10, 25].

Table 1 details all the data augmentation methods used in our
training pipeline. In contrast to the baseline, we apply Cross-
Dataset Mixup and Cross-Dataset Freq-MixStyle. That is, we mix
audio clips from MAESTRO and DESED instead of keeping them
separate. In the case of Mixup, we allow the loss to be calcu-
lated for all partially active classes, irrespective of the audio clip’s
dataset origin (see Section 5.3). For Wavmix and Mixup, we mix
the pseudo-labels accordingly.

5.2. Datasets and Optimization
We use the DESED [7] and MAESTRO [4] datasets as provided
for Task 4 in the DCASE 2024 challenge and, additionally, ap-
proximately 7,000 strongly annotated clips extracted from AudioSet
strong according to [31]. We refer the reader to [24] for a detailed
description of the data setup.

The training data can be seen as the union of five subsets: MAE-
STRO strong and DESED: real strong, synthetic strong, weakly an-
notated, and unlabeled. We draw batches of (12, 10, 10, 20, 20)
and (56, 40, 40, 72, 72) samples from these datasets in S1 and S2,
respectively. The model is trained to minimize BCE loss on all
(pseudo-)labeled audio clips and MSE loss for the self-supervised
MT [30] and ICT [29]methods. We compute a weighted sum of all
losses and tune the individual weights for all iterations and stages.
AdamW [32] with weight decays of 1e-2 and 1e-3 is used in S1 and
S2, respectively. Learning rates are listed in Table 2.

5.3. Handling Heterogeneous Sound Event Classes
The DESED and MAESTRO datasets are annotated with two differ-
ent sets of sound event classes. We adopt the baseline [13] strategy,
in which the loss for an audio clip is calculated only on the dataset-
specific event classes and mapped event classes, as explained in

the following: To exploit the fact that the DESED and MAESTRO
classes are not fully disjoint but partly represent the same concepts,
the baseline introduces class mappings. For example, when the
classes people talking, children voices, or announcement are ac-
tive in a MAESTRO clip, the corresponding DESED class Speech
is set to the same confidence value. In addition, we also include a
mapping from MAESTRO to DESED classes. Specifically, we set
the values of the MAESTRO classes cutlery and dishes and people
talking to 1 if the DESED classes Dishes and Speech are present.
This is also performed for weak class labels.

5.4. Postprocessing
For model selection and hyperparameter tuning, we stick with the
same class-wise median filter used in the baseline system [13]. Af-
ter selecting the best configurations for each model, we apply the
recently introduced Sound Event Bounding Boxes (SEBBs) [34]
method for postprocessing. We use class-wise parameters and tune
them by using linearly spaced search grids (8 values) for step fil-
ter length (0.38 to 0.66), relative merge threshold (1.5 to 3.25), and
absolute merge threshold (0.15 to 0.325).

6. RESULTS

In this section, we present the results of the described models (Sec-
tion 3) in the introduced training pipeline (Section 4). Table 2 lists
the best configuration and the corresponding results on the test set
for each architecture in both iterations and stages. The table lists
the sequence pooling method (Seq.) and the CNN (lr cnn), RNN
(lr rnn), and Transformer (lr tf) learning rates. lr dec indicates the
layer-wise learning rate decay for the transformers as used in [16].

In I1.S1, in which the transformers are frozen, BEATs seems to
extract the embeddings of the highest quality, followed by fPaSST
and ATST. I1.S1 with BEATs is very similar to the baseline [13] and
achieves a similar rank score with a slight performance increase in
our setup. Compared to I1.S1, all three transformers demonstrate a
large increase in rank score when fine-tuned on the Task 4 datasets
in I1.S2. Notably, the three transformers have different strengths,
with ATST and BEATs achieving the best scores on MAESTRO and
DESED clips, respectively. Ensemble Stage 2 denotes an ensemble
of 46 models resulting from I1.S2, including ATST, fPaSST, and
BEATs trained in different configurations. We use Ensemble Stage
2 to generate strong pseudo-labels for all audio clips in the dataset.

The additional pseudo-label loss in I2.S1 boosts performance
substantially, with all three transformers achieving a higher rank
score compared to I1.S2. The top rank scores for all models are
achieved in I2.S2, with ATST obtaining the highest rank score.

Table 3 presents the top configurations of ATST, fPaSST, and
BEATs from I2.S2 with the state-of-the-art postprocessing method
cSEBBs [34] applied. ATST and ATST DT, a variant of ATST that
is trained on all available audio clips included in the Task 4 devel-
opment set, were submitted as single models to the challenge. ATST
DT using cSEBBs postprocessing achieves a PSDS1 of 0.692 on the
public evaluation set of DESED, improving over the previous state
of the art (0.686 PSDS1) [34].

6.1. Ablation Study
Table 4 shows the results of ATST for I2.S1 and I2.S2 trained in
different configurations to analyze the design choices related to
the heterogeneous datasets and the pseudo-label loss. For settings
- DESED and - MAESTRO, the proposed system is trained only on
MAESTRO and DESED data, respectively. We find that training on
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Model lr cnn lr rnn lr tf lr dec Seq. mpAUC PSDS1 Rank Score

Iteration 1

Stage 1
ATST 1e-3 1e-3 - - int. lin. 0.702 ± 0.008 0.493 ± 0.012 1.195 ± 0.012
fPaSST 1e-3 1e-3 - - int. nearest 0.709 ± 0.021 0.502 ± 0.010 1.212 ± 0.027
BEATs 1e-3 1e-3 - - int. nearest 0.719 ± 0.004 0.509 ± 0.003 1.228 ± 0.006

Stage 2
ATST 1e-4 1e-3 1e-4 0.5 int. nearest 0.739 ± 0.017 0.520 ± 0.005 1.259 ± 0.020
fPaSST 1e-4 1e-3 1e-4 1 int. nearest 0.726 ± 0.021 0.514 ± 0.008 1.24 ± 0.027
BEATs 1e-4 1e-3 1e-4 1 int. lin. 0.713 ± 0.002 0.539 ± 0.004 1.252 ± 0.003

Ensemble Stage 2 - - - - mix 0.735 0.569 1.303

Iteration 2

Stage 1
ATST 5e-4 5e-4 - - avg. pool 0.741 ± 0.017 0.536 ± 0.006 1.277 ± 0.012
fPaSST 5e-4 5e-4 - - int. nearest 0.722 ± 0.011 0.526 ± 0.004 1.248 ± 0.012
BEATs 5e-4 5e-4 - - int. nearest 0.724 ± 0.011 0.537 ± 0.005 1.262 ± 0.010

Stage 2
ATST 1e-5 1e-4 1e-4 0.5 avg. pool 0.750 ± 0.004 0.548 ± 0.004 1.298 ± 0.006
fPaSST 5e-5 5e-4 1e-4 1 int. nearest 0.719 ± 0.013 0.539 ± 0.003 1.259 ± 0.015
BEATs 5e-5 5e-4 1e-4 1 int. nearest 0.729 ± 0.005 0.557 ± 0.005 1.286 ± 0.009

Table 2: The table presents the results of ATST, fPaSST, and BEATs for both iterations and stages on the official development test set. For
each model, we list the best configuration in terms of the sequence length adaptation method (Seq.), where int. lin., int. nearest, avg. pool,
and mix denote linear and nearest-exact interpolation, adaptive average pooling, and a mixture of these methods, respectively. Ensemble Stage
2 is used to generate the pseudo-labels for Iteration 2. Rank Score denotes the sum of mpAUC and PSDS1.

Model mpAUC PSDS1 MF PSDS1* Ev. PSDS1*

ATST 0.750 0.548 0.617 0.684
fPaSST 0.719 0.539 0.601 0.681
BEATs 0.729 0.557 0.622 0.683

ATST DT ✗ ✗ ✗ 0.692

Table 3: Results for best single-model configurations of ATST,
fPaSST, and BEATs from I2.S2. PSDS1 lists results with a me-
dian filter; PSDS1* results using cSEBBs postprocessing [34]; and
Ev. PSDS1* lists results on the DESED public evaluation set with
cSEBBs postprocessing. ATST DT denotes the best ATST configu-
ration trained on the full development set.

DESED and MAESTRO simultaneously is beneficial for the per-
formance on both datasets, which coincides with the finding re-
ported for the baseline system [13]. For both stages of I2, exclud-
ing MAESTRO clips when calculating the self-supervised losses
(- SSL MAESTRO) and not mapping event classes from MAESTRO
to DESED (- MAESTRO-DESED Map., see Section 5.3) leads to a
performance decrease. However, we find no clear answer to the
question of whether the SSL loss should be calculated on all classes
or only on the dataset-specific classes of an audio clip (+/- SSL class
mask); S1 and S2 benefit from different settings. Interestingly, using
the pseudo-label loss in I2.S2 (+ Pseudo Loss) does not increase the
rank score. Therefore, the setup in I1.S2 and I2.S2 remains identi-
cal, which demonstrates that a well-trained CRNN from S1 can have
a large impact on the performance achieved in S2. We also tried
to use separate heads for predictions on DESED and MAESTRO
classes and realized this with an additional single BiGRU layer per
dataset (+ Separate RNN layer), which resulted in a performance
decrease. Further obvious choices, such as thresholding the pseudo-
labels by 0.5 (+ Hard Pseudo) and calculating the pseudo-label loss
on all classes (+ Pseudo All Classes) instead of only dataset-specific
classes, are inferior to our proposed strategy as well.

7. CONCLUSION

This paper presented a multi-iteration, multi-stage training routine
for fine-tuning transformers on the SED task with heterogeneous
datasets. We showed that the performance of all tested systems

System mpAUC PSDS1 Rank Score

ATST I2.S1 0.741 0.536 1.277

- DESED 0.724 - -
- MAESTRO - 0.531 -

- SSL MAESTRO 0.741 0.535 1.276
- MAESTRO-DESED Map. 0.717 0.530 1.247

+ SSL class mask 0.740 0.530 1.27
+ Separate RNN layer 0.714 0.531 1.244

+ Hard Pseudo 0.706 0.538 1.244
+ Pseudo All Classes 0.717 0.534 1.25

ATST I2.S2 0.750 0.548 1.298

- SSL MAESTRO 0.743 0.546 1.289
- MAESTRO-DESED Map. 0.749 0.547 1.297

- SSL class mask 0.749 0.544 1.293
+ Pseudo Loss 0.746 0.552 1.297

Table 4: Ablation Study on design choices related to the heteroge-
neous datasets and the pseudo-label loss used in I2.S1. The study
is performed on the top single model, ATST, trained in I2.S1 (upper
part) and in I2.S2 (lower part).

monotonously increases throughout both iterations and stages. The
proposed method led to a new state-of-the-art performance of 0.692
in PSDS1 on the DESED public evaluation set and achieved the top
rank in Task 4 of the DCASE 2024 challenge. We specifically stud-
ied design choices related to the heterogeneous datasets and found
that simultaneously training on DESED and MAESTRO leads to
a performance increase on both datasets compared to training the
system on a single dataset.
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ABSTRACT

The detection of anomalous sounds in machinery operation
presents a significant challenge due to the difficulty in generalizing
anomalous acoustic patterns. This task is typically approached as an
unsupervised learning or novelty detection problem, given the com-
plexities associated with the acquisition of comprehensive anoma-
lous acoustic data. Conventional methodologies for training anoma-
lous sound detection systems primarily employ auto-encoder archi-
tectures or representational learning with auxiliary tasks. However,
both approaches have inherent limitations. Auto-encoder struc-
tures are constrained to utilizing only the target machine’s opera-
tional sounds, while training with auxiliary tasks, although capa-
ble of incorporating diverse acoustic inputs, may yield representa-
tions that lack correlation with the characteristic acoustic signatures
of anomalous conditions. We propose a training method based on
the source separation model (CMGAN[1]) that aims to isolate non-
target machine sounds from a mixture of target and non-target class
acoustic signals. This approach enables the effective utilization of
diverse machine sounds and facilitates the training of complex neu-
ral network architectures with limited sample sizes. Our experi-
mental results demonstrate that the proposed method yields better
performance compared to both conventional auto-encoder training
approaches and source separation techniques that focus on isolating
target machine signals. Moreover, our experimental results demon-
strate that the proposed method exhibits the potential for enhanced
representation learning as the quantity of non-target data increases,
even while maintaining a constant volume of target class data.

Index Terms— Anomalous sound detection, Novelty detec-
tion, Representational learning, Source separation

1. INTRODUCTION

Anomalous sound detection aims to determine whether an acquired
acoustic signal originates from normal or anomalous operating con-
ditions. The diverse nature of anomalous sounds, which vary de-
pending on the target system, necessitates separate datasets for each
target system. Furthermore, the difficulty in acquiring comprehen-
sive anomalous sound samples, coupled with the fact that acquired
samples may not represent all possible anomalous states, necessi-
tates approaching this problem as an unsupervised learning or nov-
elty detection task.

In response to these challenges, DCASE 2024 Task 2 [2] re-
quires the development of an anomalous sound detection model ca-
pable of monitoring machine conditions without access to anoma-
lous samples. The task provides 1,000 sound clips per machine
type for model training. Additionally, to ensure generalization

across varying operating environments and machine types, the sys-
tem must be robust to environmental changes and operate without
reliance on additional attribute information, such as operating speed
or machine identification.

Conventional approaches typically employ neural networks to
extract representations from acoustic signals. These methods can be
broadly categorized into two main groups. The first utilizes auto-
encoder structures [3], training neural networks to encode and de-
code input signals. Anomaly detection is then performed either by
quantifying the discrepancy between the decoded output and the in-
put, or by using the encoder output as an embedding feature for sub-
sequent anomaly score calculation. The second category involves
training neural networks on auxiliary tasks, such as classifying ad-
ditional data attributes or classes [4], or directly learning represen-
tations through contrastive learning techniques [5].

Although source separation neural networks have been used in
anomalous sound detection [6], they have mainly served as prepro-
cessing stages for other neural networks or have been trained using
attribute information. To address the constraints of training without
attribute information while effectively utilizing non-target class sig-
nals, we propose a novel source separation-based representational
learning method.

Our experimental results demonstrate the efficacy of the pro-
posed method. We conducted comparative tests against conven-
tional source separation methods that estimate target class signals
and auto-encoder structures that utilize only the target signal as in-
put. The proposed method achieved a better representation when
evaluated by using anomalous sound detection with the Maha-
lanobis distance. Moreover, we observed that the performance of
our proposed method improves with increased non-target data, even
when the quantity of target data remains constant.

2. METHODOLOGY

2.1. Training strategy and anomaly score calculation

We obtain an embedding feature vector from a source separation
model. The purpose of the neural network is to extract character-
istics that can distinguish whether a machine’s condition is normal
or abnormal. We assume that normal and abnormal conditions can
be distinguished from acoustic data and that would also be distin-
guishable in the representation of neural network. We utilized the
CMGAN[1] neural network structure, which is an encoder-decoder
structure with conformer blocks[7].

In contrast to a typical auto-encoder structure, where the neu-
ral network is trained to reconstruct the desired input signal at the
output, our training objective is to remove the target machine sig-
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nal from the input and separate the signals from other machines. In
our representation training process, the input of the neural network
Xt,f is expressed as follows:

Xt,f = F(dc(t) + s× nc̄(t)), (1)

where dc(t) represents the signal of the target machine class c signal
in time series, nc̄(t) represents the signal from another class c̄ that
is not the target machine class, s is the scaling factor to match the
intensity of the target and other machine class signals in dB scale,
and the neural network input Xt,f in the time-frequency domain is
obtained by applying the short-time Fourier transform operator F
to the weighted sum of dc(t) and nc̄(t). We introduce a scaling fac-
tor s to modulate the training objective’s difficulty. Small value of
s make the intensity of non-target signal smaller, the source separa-
tion problem becomes more difficult, and vice versa. For the pro-
posed system to work well, s value needs to be sufficiently small,
but a large s value may be needed when the number of training sam-
ples or model complexity is limited.
The neural network utilizes the real, imaginary, and magnitude
components of the spectrogram as input. Since we intend for our
feature extractor to remove the target machine signal, we trained it
to minimize the difference between the neural network’s estimation
output and the other class signal. We configured the training loss
function L of the neural network as follows:

L =α{1
l

l∑
t=1

(|s× nc̄(t)− y(t)|)}+ β{ 1

mn

m∑
t=1

n∑
f=1

(|s×NR
t,f |−

|Y R
t,f |)2}+ γ{ 1

mn

m∑
t=1

n∑
f=1

(|s×NI
t,f | − |Y I

t,f |)
2},

(2)

where yt and Y R
t,f , Y I

t,f are the output of the neural network
decoder in the time series and the real and imaginary components of
the time-frequency domain, respectively. NR

t,f and NI
t,f represent

the real and imaginary components of the non-target signal in the
time-frequency domain. α, β, and γ are the hyperparameters for
each difference term. During the training procedure, the network is
trained to estimate nc̄(t) from Xt,f .

Anomaly scores are calculated from the Mahalanobis distance
of the neural network output feature matrix. The covariance matrix
of the feature is estimated by the maximum-likelihood covariance
estimator. In summary, we first train the neural network to sepa-
rate the signal from the mixed signal of other classes and the tar-
get class signal, excluding the target class signal. After training,
the average pooling is performed in multiple stages of the network,
and the average pool is executed from the output of the encoder,
the intermediate of the conformer, and the output of the conformer.
The resulting average-pooled matrices are then used as features for
anomaly scoring, and in the scoring process, we employ the Maha-
lanobis distance with a covariance estimator. The overview of our
system is shown in Fig. 1.

2.2. Experiments configure

We utilized two datasets consistent with those employed in DCASE
2024 Task 2: ToyADMOS2 [8] and MIMII DG [9]. These datasets
collectively provided 16 types of machine sounds, each comprising
1,000 training clips. Each set of 1,000 clips was composed of 990
clips from the source domain and 10 clips from the target domain

Figure 1: Proposed anomalous detection system overview

which are different operating environment from the source domain.
For evaluation purposes, 7 machine type signals were provided,
consisting of 200 sound clips labeled as either normal or anomalous.
The evaluation data were equally distributed between the source and
target domains, with 100 clips from each domain. The source do-
main, constituting 99% of the training data, represents the primary
training environment. The target domain, comprising the remain-
ing 1% of training data, consists of domain-shifted signals that re-
flect changed machine operating conditions relative to the source
domain.
To assess the efficacy of our proposed method, we conducted ex-
periments using varying quantities of non-target data. Two distinct
datasets were employed: the first included non-target sounds from
six machine types that contained test data, while the second utilized
sounds from 14 machine types, excluding the Brushless Motor class
due to the presence of clipping in some samples. Audio prepro-
cessing involved randomly trimming each 16kHz sampled clip to
2 seconds, followed by a short-time Fourier transform using a fil-
ter length of 400 samples and an overlap of 100 samples. In the
decibel matching process, non-target class signals were attenuated
by 5dB lower relative to the target class signal. We added average
pooling layers to the CMGAN neural network structure, applying
pooling to each channel. Given the network’s 64-channel archi-
tecture, the resulting feature vector maintained a 64-dimensional
size post-pooling. The average pooling was performed at three lo-
cations: the encoder output, the second conformer block output,
and the last conformer block output (decoder input). The 2-second
average-pooled results were concatenated to form the final feature
set. The loss function hyperparameters α, β, and γ were set to 0.5,
6.0, and 1.0, respectively, and remained constant across all machine
classes. We initially adopted hyperparameters value from the origi-
nal hyperparameters of CMGAN and subsequently fine-tuned them
through experimentation. The hyperparameter values are dependent
on the non-target signal intensity matching level and necessitating
adjustment as matching dB changes. For optimization, we used the
AdamW [10] algorithm in conjunction with a StepLR learning rate
scheduler. To ensure fair comparison, hyperparameters and neural
network configurations were maintained consistently across differ-
ent training methodologies.
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3. EVALUATION

3.1. Evaluation metric

The performance of the anomalous detection system is evaluated
using the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve. AUC scores are calculated in three dis-
tinct contexts: the source domain, which generates most of the train-
ing data; the target domain, representing a domain-shifted environ-
ment; and the partial AUC (pAUC), which constrains the maximum
false positive rate to 10%, thus addressing the frequency of false
alarms in practical applications. The overall model performance,
consistent with the DCASE 2024 Task 2 official score Ω, is com-
puted as the harmonic mean of results across all classes, domains,
and the pAUC, as follows:

Ω = h{AUCc,d, pAUCc|c ∈ C, d ∈ {source, target}}, (3)

where h is the harmonic mean operator and C is the set of the ma-
chine types.

3.2. Evaluation result

We evaluated our proposed method against two conventional ap-
proaches: a source separation method utilizing the CMGAN struc-
ture and an auto-encoder method also based on CMGAN. For com-
prehensive performance comparison, we have included the results
of the DCASE 2024 Task 2 baseline system [11] in Table 1. Ta-
ble 1 presents the performance of various systems. Our proposed
method is evaluated with two configurations: estimating 14 and 6
non-target classes from a mixture of target and non-target signals.
The conventional separation approach trains a neural network to es-
timate the target class from a mixed signal, while the auto-encoder
method reconstructs the target signal from target-only input. The
DCASE 2024 Task 2 baseline systems score anomalies using the
mean square error (Baseline-MSE) and the Mahalanobis distance
(Baseline-Mahalanobis) between input and output.

The score Ω, which represents the harmonic mean of the AUC
and pAUC performance metrics, demonstrates the efficacy of our
approach. The neural network trained to separate non-target sig-
nals achieved a Ω score of 54.58% This performance surpasses both
the conventional separation method, which estimates target signals
and achieved 53.99%, and the auto-encoder method, which yielded
51.41%. Furthermore, we observed that increasing the quantity
of non-target class data enhanced the potential for acquiring bet-
ter representations. Specifically, expanding the diversity of non-
target classes led to an improvement in the Ω score from 54.58%
to 56.00% when using our proposed training method. To visualize
the effectiveness of our approach, we employed the t-Distributed
Stochastic Neighbor Embedding (tSNE) projection to represent the
learned features of the toytrain class, as illustrated in Fig. 2. The vi-
sualization demonstrates that our proposed method, which focuses
on separating non-target class signals, yields more distinct separa-
tions between normal and anomalous samples compared to alterna-
tive methods. These alternatives, which include approaches trained
to separate target class signals or traditional auto-encoder methods,
show less clear differentiation in their projected representations.

4. CONCLUSIONS

This study proposes a novel approach to representation learning
for anomalous detection systems, utilizing a neural network with

a source separation model. Given the constraints of having only
normal condition samples and limited training data, we developed a
representation learning strategy that separates non-target class sig-
nals from a mixture of target and non-target class signals. Our
method effectively leverages both the available training samples
and data from other classes. To evaluate the neural network’s abil-
ity to learn representations that distinguish anomalous characteris-
tics, we implemented an anomalous detection system that scores
the obtained representations using the Mahalanobis distance and a
maximum-likelihood covariance estimator. We compared our pro-
posed method with alternative training strategies, including sepa-
rating target signals from mixed sounds and estimating target sig-
nals from target-only inputs. Results demonstrate that our method
achieves superior performance, with a harmonic mean score of
54.58%, compared to 53.99% and 51.41% for the alternative ap-
proaches. Notably, we observed that our training strategy yields
improved representations with an increase in non-target class sig-
nals, even when the quantity of target class signals remains constant.
Specifically, utilizing 14 non-target classes resulted in a score of
56.00%, a 1.42% improvement over the 6-class non-target scenario,
and better results compared to the baseline methods (55.35% and
55.02%) employing two different anomalous scoring techniques.
Visualization of the learned representations using a t-SNE projec-
tion further corroborates the efficacy of our approach, revealing a
more distinct separation between normal and anomalous samples
compared to other methods. In conclusion, we have proposed and
validated a training strategy that effectively utilizes both target and
non-target class samples. Our method of training neural networks
to separate non-target signals from mixed inputs demonstrates bet-
ter performance in obtaining target class representations compared
to target separation and auto-encoder methods. Furthermore, we
have shown that our approach can achieve enhanced representations
with an increased diversity of non-target class signals, highlighting
its potential for scalability and improved performance in anomalous
sound detection tasks.

5. REFERENCES

[1] S. Abdulatif, R. Cao, and B. Yang, “Cmgan: Conformer-based
metric-gan for monaural speech enhancement,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 32, pp. 2477–2493, 2024.

[2] T. Nishida, N. Harada, D. Niizumi, D. Albertini, R. San-
nino, S. Pradolini, F. Augusti, K. Imoto, K. Dohi, H. Puro-
hit, T. Endo, and Y. Kawaguchi, “Description and discussion
on DCASE 2024 challenge task 2: First-shot unsupervised
anomalous sound detection for machine condition monitor-
ing,” In arXiv e-prints: 2406.07250, 2024.

[3] K. Li, Q.-H. Nguyen, Y. Ota, and M. Unoki, “Unsupervised
anomalous sound detection for machine condition monitoring
using temporal modulation features on gammatone auditory
filterbank.” in DCASE, 2022.

[4] S. Venkatesh, G. Wichern, A. S. Subramanian, and J. Le Roux,
“Improved domain generalization via disentangled multi-task
learning in unsupervised anomalous sound detection.” in
DCASE, 2022.

[5] X. Cai and H. Dinkel, “A contrastive semi-supervised learn-
ing framework for anomaly sound detection,” in Proceedings
of the 6th Detection and Classification of Acoustic Scenes

148



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

System info Metric bearing fan gearbox slider toycar toytrain valve Ω score
(h-mean)

Proposed
method

(14 class)

AUC(Target) 69.24% 62.76% 59.84% 55.88% 45.96% 65.64% 48.76%
56.00%AUC(Source) 61.04% 58.60% 68.68% 65.88% 44.72% 76.76% 46.36%

pAUC 58.05% 54.16% 55.05% 51.58% 48.89% 54.79% 48.89%
Proposed
method
(6 class)

AUC(Target) 69.52% 63.28% 62.12% 47.16% 44.32% 65.36% 47.48%
54.58%AUC(Source) 61.04% 55.64% 61.84% 60.28% 47.68% 77.52% 48.08%

pAUC 54.16% 51.42% 52.84% 51.58% 48.68% 51.84% 48.79%

Conventional
separation

AUC(Target) 67.96% 57.00% 56.36% 53.72% 47.00% 65.08% 48.00%
53.99%AUC(Source) 64.52% 57.96% 61.80% 61.64% 42.48% 74.64% 42.24%

pAUC 56.32% 48.74% 51.79% 51.63% 47.84% 53.53% 48.63%

Auto-encoder
AUC(Target) 67.84% 55.48% 49.84% 42.16% 49.72% 63.04% 47.56%

51.41%AUC(Source) 57.92% 57.92% 53.12% 44.92% 43.24% 76.76% 39.48%
pAUC 51.89% 51.42% 51.05% 51.05% 48.11% 53.00% 49.32%

Baseline
(MSE)

AUC(Target) 61.40% 55.24% 69.34% 56.01% 33.75% 46.92% 46.25%
55.35%AUC(Source) 62.01% 67.71% 70.40% 66.51% 66.98% 76.63% 51.07%

pAUC 57.58% 57.53% 55.65% 51.77% 48.77% 47.95% 52.42%

Baseline
(Mahalanobis)

AUC(Target) 51.58% 42.70% 74.35% 68.11% 37.35% 39.99% 53.61%
55.02%AUC(Source) 54.43% 79.37% 81.82% 75.35% 63.01% 61.99% 55.69%

pAUC 58.82% 53.44% 55.74% 49.05% 51.04% 48.21% 51.26%

Table 1: Anomalous detection performance comparison of proposed method and others

Figure 2: tSNE projection of representation of neural network trained by (a) Proposed method with 14 non-target classes (b) Proposed method
with 6 non-target classes (c) Source separation trained to separate target class (d) Auto-encoder structure

149



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

and Events 2021 Workshop (DCASE2021), Barcelona, Spain,
November 2021, pp. 31–34.

[6] K. Shimonishi, K. Dohi, and Y. Kawaguchi, “Anomalous
Sound Detection Based on Sound Separation,” in Proc. IN-
TERSPEECH 2023, 2023, pp. 2733–2737.

[7] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, et al., “Conformer:
Convolution-augmented transformer for speech recognition,”
arXiv preprint arXiv:2005.08100, 2020.

[8] N. Harada, D. Niizumi, D. Takeuchi, Y. Ohishi, M. Yasuda,
and S. Saito, “ToyADMOS2: Another dataset of miniature-
machine operating sounds for anomalous sound detection un-
der domain shift conditions,” in Proceedings of the Detection
and Classification of Acoustic Scenes and Events Workshop
(DCASE), Barcelona, Spain, November 2021, pp. 1–5.

[9] K. Dohi, T. Nishida, H. Purohit, R. Tanabe, T. Endo, M. Ya-
mamoto, Y. Nikaido, and Y. Kawaguchi, “MIMII DG: Sound
dataset for malfunctioning industrial machine investigation
and inspection for domain generalization task,” in Proceed-
ings of the 7th Detection and Classification of Acoustic Scenes
and Events 2022 Workshop (DCASE2022), Nancy, France,
November 2022.

[10] I. Loshchilov and F. Hutter, “Decoupled weight decay regu-
larization,” 2019.

[11] N. Harada, D. Niizumi, Y. Ohishi, D. Takeuchi, and M. Ya-
suda, “First-shot anomaly sound detection for machine condi-
tion monitoring: A domain generalization baseline,” in 2023
31st European Signal Processing Conference (EUSIPCO),
2023, pp. 191–195.

150



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024  23–25 October 2024, Tokyo, Japan 

AUXILIARY DECODER-BASED LEARNING OF SOUND EVENT DETECTION USING 
MULTI-CHANNEL FEATURES AND MAXIMUM PROBABILITY AGGREGATION 

Sang Won Son1, Jongyeon Park1, 
Hong Kook Kim1,2 

Sulaiman Vesal3 Jeong Eun Lim4 

1 AI Graduate School 
2 School of EECS 

Gwangju Institute of Science and 
Technology  

Gwangju 61005, Korea 
{{ssw970519, jypark3737}@gm., 

hongkook@}gist.ac.kr 

3AI Lab., Innovation Center 
Hanwha Vision 

Teaneck, NJ 07666, USA  
s.vesal@hanwha.com 

4AI Lab., R&D Center  
Hanwha Vision 

Seongnam-si, Gyeonggi-do 13488, 
Korea  

 je04.lim@hanwha.com 

ABSTRACT 

This paper proposes a sound event detection (SED) model oper-
ating on heterogeneous labeled and/or unlabeled datasets, such as 
the DESED and MAESTRO datasets. The proposed SED model 
is based on a frequency dynamic convolution (FDY)–large kernel 
attention (LKA)-convolutional recurrent neural network (CRNN), 
and it is trained via mean-teacher-based semi-supervised learning 
to handle unlabeled data. The FDY–LKA-CRNN model incorpo-
rates bidirectional encoder representation from audio transformer 
(BEATs) embeddings to improve high-level semantic representa-
tion. However, the contribution of the BEATs encoder to the per-
formance of the combined SED model is over-emphasized rela-
tive to that of the FDY–LKA-CRNN, which limits the overall per-
formance of the SED model. To prevent this problem, an auxiliary 
decoder is applied to train the SED model with BEATs embed-
dings. Additionally, to accommodate the different recording char-
acteristics of sound events in the two datasets, multi-channel log-
mel features are concatenated in a channel-wise manner. Finally, 
a maximum probability aggregation (MPA) approach is proposed 
to address the different labeling time intervals of the two datasets. 
The performance of the proposed SED model is evaluated on the 
validation dataset for the DCASE 2024 Challenge Task 4, in terms 
of class-score-based polyphonic sound detection score (PSDS) 
and macro-average partial area under the receiver operating char-
acteristic curve (MpAUC). The results show that the proposed 
model performs better than the baseline. In addition, the proposed 
SED model employing the multi-channel log-mel feature, auxil-
iary decoder, and MPA outperforms the baseline model. Ensem-
bling several versions of the proposed SED model improves 
PSDS and MpAUC, scoring 0.038 higher in the sum of PSDS and 
MpAUC compared to the baseline model. 

Index Terms— Sound event detection (SED), semi-super-
vised learning, auxiliary decoder, multi-channel log-mel feature, 
maximum probability aggregation 

1. INTRODUCTION 

Sound event detection (SED) aims to localize and classify individ-
ual sound events originating from acoustic signals, along with their 
corresponding timestamps. In recent years, the use of deep learn-
ing for SED has been widely researched [1]. While the perfor-
mance of SED is satisfactory in some applications, such as [2, 3], 
a major challenge for developing deep learning-based SED models 
still remains in view of the preparation of label audio data with 
timestamps, which is expensive and time-consuming. This has 
prompted the development of weakly supervised and semi-super-
vised learning techniques [4] based on weakly labeled and unla-
beled datasets [5]. Recently, a soft label–based dataset, called the 
Multi-Annotator Estimated STROng labels (MAESTRO) dataset 
[6], has also been employed to reduce the overall cost of annotat-
ing strong labels while maintaining the timestamps of sound 
events. 

However, the use of mixtures of differently labeled data for 
SED yields a time misalignment problem that an inconsistency 
arises in the time recording units between the heterogeneously la-
beled datasets. In other words, soft labels contain label infor-
mation over 1 s recording unit, whereas weakly labeled and unla-
beled datasets, e.g., the Domestic Environment Sound Event De-
tection (DESED) dataset, contain sound events recorded over 
shorter units than 1 s. In addition to this time misalignment prob-
lem, there is another mismatch problem in the recording charac-
teristics of sound events in the different datasets. 

Thus, this paper proposes a maximum probability aggrega-
tion (MPA) approach for SED to address the time misalignment 
between the DESED and MAESTRO datasets. In addition, to ac-
commodate time-frequency patterns according to different re-
cording characteristics, a multi-channel log-mel feature is ex-
tracted to help the SED model capture sound events from two dif-
ferent datasets. 

The proposed MPA and multi-channel log-mel feature are 
applied to an SED model, named a frequency dynamic convolu-
tion (FDY) [7]–large kernel attention (LKA) [8]-convolutional re-
current neural network (CRNN) model, which was developed for 
the DCASE 2023 Challenge Task 4A [9]. The FDY–LKA-CRNN 

* This work was supported in part by Hanhwa Vision Co. Ltd., the Institute of 
Information & communications Technology Planning & Evaluation(IITP) 
grant funded by the Korean government (MSIT) (No.2022-0-00963), and the 
“Practical Research and Development support program supervised by the 
GTI” grant funded by the GIST in 2024. 
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model is trained via mean-teacher-based semi-supervised learning 
to handle unlabeled data, and it incorporates bidirectional encoder 
representation from audio transformer (BEATs) [10] embeddings 
to improve high-level semantic representation. However, the con-
tribution of the BEATs encoder to the performance of the com-
bined SED model is over-emphasized relative to that of the FDY–
LKA-CRNN. To further improve the overall performance of the 
SED model, an auxiliary decoder [11] is applied to train the SED 
model with BEATs embeddings. 

Our contributions can be summarized as follows: 
⚫ To deal with the time misalignment issue between the 

DESED and MAESTRO datasets, we propose MPA, which 
effectively aligns the time intervals between the predicted 
strong labels of the SED model and the soft labels in the 
MAESTRO dataset, thereby improving the overall perfor-
mance of the SED model. 

⚫ To extract the heterogeneous time-frequency patterns of the 
sound events between the two datasets, we propose a multi-
channel log-mel feature extraction method. Especially the 
feature improves a metric about MAESTRO dataset. 

⚫ Finally, we incorporate an auxiliary decoder to balance the 
contributions of the convolutional block and pretrained 
model by providing additional loss weighting during training. 
Consequently, the proposed auxiliary decoder-based training 
improves SED performance in both datasets. 
 
The remainder of this paper is organized as follows: Section 

2 describes the dataset and input features of the SED model de-
veloped in this study. Section 3 proposes a multi-channel log-mel 
feature and MPA, and also incorporates the auxiliary decoder for 
SED model training. Section 4 evaluates the performance of the 
developed SED model on the DCASE 2024 Task 4 validation da-
taset and compares the SED performance according to different 
combinations of the proposed approaches. Finally, Section 5 con-
cludes this paper. 

2. DATASET 

Unlike in 2023, the database for the DCASE 2024 Challenge Task 
4 comprises the DESED and MAESTRO datasets. The DESED 

dataset, which is identical to that for the last year’s DCASE Chal-
lenge, contains several types of data such as weakly labeled data, 
unlabeled in-domain training data, strongly labeled synthetic data, 
and strongly labeled real data. All the audio clips span 10 seconds 
each. The weakly labeled dataset is composed of 1,578 clips with 
only class labels. The unlabeled in-domain training dataset con-
tains 14,412 audio clips. Finally, the strongly labeled real and syn-
thetic datasets contain 3,470 and 10,000 clips, respectively, where 
the strongly labeled synthetic dataset is created using Scraper [12]. 
Note that the number of audio event classes is 10 in this dataset. 

The original MAESTRO dataset contains audio clips longer 
than 180 seconds. However, to balance the length of audio clips 
in this dataset with that in the DESED dataset, the audio clips are 
cropped to 10 s, allowing a 9 s overlap between consecutively 
cropped audio clips. Each cropped audio clip is softly labeled into 
10 vectors, where each vector is assigned to every segment of 1 s 
with a dimension of 19 for representing 19 audio event classes. 
Notice that the event classes in the DESED dataset are different 
from those in the MAESTRO dataset, except for two classes, e.g., 
“Speech” in DESED and “People Talking” in MAESTRO, and 
“Dishes” in DESED and “Cutlery and dishes” in MAESTRO. Af-
ter merging the similar two classes, there are 27 classes in total. 

The mono-channel signals in the two datasets are first 
resampled from 44.1 to 16 kHz to extract audio features. Then, 
the audio signals are segmented into frames of 2,048 samples with 
a hop length of 160 samples. A 2,048-point fast Fourier transform 
is applied to each frame, followed by a 128-dimensional mel-fil-
terbank analysis. Each 10 s audio clip comprises 1,001 frames. 
Hence, the input feature dimensions are 1001×128. The retrieved 
mel-spectrogram features are then normalized based on the mean 
and standard deviation for all training audio samples. When ex-
tracting the multi-channel log-mel feature, we use identical pa-
rameters for preprocessing. 

3. PROPOSED METHOD 

The SED model is based on the FDY–LKA-CRNN architecture 
that was proposed in [9], and it is trained via semi-supervised 
learning in a mean-teacher framework. Fig. 1 shows the proposed 

 
Figure 1. Illustration of the proposed SED model training procedure, focused on maximum probability aggregation. 
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SED model training procedure, where the newly proposed ap-
proaches, such as MPA and the multi-channel log-mel feature, are 
exaggerated. In addition to MPA and the multi-channel feature, 
the auxiliary decoder is intrinsically used for training the student 
and teacher models shown at the bottom of the figure. The follow-
ing subsections sequentially describe MPA, the multi-channel 
feature, and the auxiliary decoder in detail. 

3.1. Multi-channel log-mel feature 

As mentioned in Section 2, there are different recording environ-
ments between the DESED and MAESTRO datasets, which are 
recorded in almost clean and noise conditions, respectively. To 
capture the diverse acoustic properties of the two datasets, we ex-
tract the multi-channel log-mel feature composed of 1) a log-mel 
spectrogram extracted using the Torchaudio framework, 2) a log-
mel spectrogram extracted using Kaldi within the Torchaudio 
framework, and 3) the mel-frequency cepstral coefficient (MFCC) 
feature extracted using Kaldi within the Torchaudio framework. 

Fig. 2 illustrates the proposed multi-channel log-mel feature 
extraction procedure for obtaining the heterogeneous time-fre-
quency patterns of the sound events. First, three different feature 
vectors, as described above, are extracted and then concatenated 
channel-wise to create a multi-channel log-mel feature. This con-
catenated feature vector is input to the SED model during both 
training and inference. By leveraging multiple configurations to 
extract the log-mel features, it is expected that we create a robust 
input representation that effectively bridges the gap between the 
DESED and MAESTRO datasets. 

3.2. Length-adjustable maximum probability aggregation 

The FDY–LKA-CRNN-based SED model was developed for the 
DESED dataset, where audio data labels were assigned in seg-
ments less than 1 s. To accommodate different labels for sound 
events as in the MAESTRO dataset, we need to incorporate new 
techniques into the SED model. This is because the difference in 
labeling presents a significant challenge due to the mismatch in 
time intervals between the label information of the MAESTRO 
dataset and DESED dataset. 

To deal with such a time misalignment problem, we propose 
the MPA. Compared to the labels in the DESED dataset, the soft 
labels in the MAESTRO dataset do not guarantee that a sound 
event entirely exists within each 1 s segment. The output of the 
SED model consists of predictions for 25 frames, which corre-
sponds to a duration of 1 s. As shown in Figure 3, we select the 
highest probability value among these 25 frames and use this 
value as the class probability for the corresponding 1 s segment. 
This approach ensures that the time interval for the MAESTRO 
dataset would be aligned with the soft labels. This MPA is per-
formed only during the training step. 

3.3. Auxiliary decoder 

The BEATs encoder can extract the embedding corresponding to 
high-level semantic information, resulting in providing improved 
SED performance [9]. However, the contribution of the BEATs 
encoder to the performance of the combined SED model is over-
emphasized relative to that of the FDY–LKA-CRNN. Thus, we 
incorporate an auxiliary decoder to balance the contributions be-
tween the convolutional block and BEATs encoder by providing 
additional loss weighting during training. 

Fig. 4 shows the network architecture of the proposed auxil-
iary decoder applied to train the FDY-LKA-CNN-based SED 
model with BEATs embeddings. The proposed auxiliary decoder 
mirrors the structure of the main decoder, consisting of two bidi-
rectional gated recurrent units (Bi-GRUs) designed to capture 
temporal context information, followed by a fully connected (FC) 
classifier that uses a sigmoid function to calculate class probabil-
ities. The auxiliary decoder does not share weights with the main 
decoder. Also, it is activated only during the training step, and a 
higher weight is assigned to the auxiliary loss in the initial training 
steps than the main loss. This guides the learning process so that 
the convolutional blocks are well-trained compared to without us-
ing the auxiliary decoder. During inference, the main decoder is 
only operated to generate the output of the SED model. 

4. EXPERIMENTAL RESULTS 

4.1. Model training 

The parameters of the FDY–LKA-CRNN-based SED model were 
initialized through Xavier initialization [13]. The minibatch-wise 
adaptive moment estimation optimization technique [14] was em-
ployed, which involved decoupling the weight decay from the 
gradient-based updates. In addition, a dropout method [15] was 
applied to the FDY–LKA-CRNN model at a rate of 0.5. The learn-

 
Figure 3. Example of implementing maximum probability aggre-
gation, which is applied only to the MAESTRO dataset.  

Figure 2. Illustration of the proposed multi-channel log-mel fea-
ture extraction procedure for obtaining the heterogeneous time-
frequency patterns of the sound events. 

 
Figure 4. Network architecture of the proposed auxiliary decoder 
applied to train the FDY-LKA-CNN-based SED model with 
BEATs embeddings. 
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ing rate was set based on the ramp-up strategy [4], with the max-
imum value reaching 0.001 after 50 epochs. Several augmentation 
techniques were applied to the train data, including time-fre-
quency shift [16], time mask [17], mix-up [18], and filter augmen-
tation [19]. 

4.2. Discussion 

The performance of the proposed SED model was evaluated using 
the measures defined in the DCASE 2024 Challenge Task 4 [20]: 
class-score-based polyphonic sound detection score (PSDS) [21] 
and macro-average partial area under the receiver operating char-
acteristic curve (MpAUC).  

Table 1 compares the performance of the baseline with those 
of various versions of the proposed SED model on the validation 
dataset of the DCASE 2024 Challenge Task 4. As shown in the 
table, there are nine different versions in this study. The FDY–
LKA-CRNN is the SED model identical to that in [9], which was 
developed in the DCASE 2023 Challenge. Then, we applied each 
of the three proposed approaches, such as auxiliary decoder, MPA, 
and multi-channel log-mel feature that are abbreviated as A, M, 
and C, respectively. For example, FDY–LKA-CRNN–A means 
the FDY–LKA-CRNN-based SED model trained using the pro-
posed auxiliary decoder. The FDY–LKA-CRNN–AMC(E) means 
an ensemble model combined with the FDY–LKA-CRNN–
AMCs obtained from 16 different checkpoints.  

First of all, we observed the performance of FDY–LKA-
CRNN SED model was degraded compared to that of the baseline 
model. This was because FDY–LKA-CRNN model was opti-
mized to the labeling of the DESED dataset, as mentioned earlier. 
Then, we applied each of the three proposed approaches (A, M, 
and C) to FDY–LKA-CRNN. As shown from the third to fifth row 
in the table, any FDY–LKA-CRNN–X improved MpAUC com-
pared to FDY–LKA-CRNN, while FDY–LKA-CRNN–C pro-
vided a little lower class-score-based PSDS than FDY–LKA-
CRNN. However, combining any two out of three approaches 
achieved higher or comparable class-score-based PSDS and 
MpAUC to FDY–LKA-CRNN. 

Next, we combined all the three approaches to construct 
FDY–LKA-CRNN–AMC. Then, it was revealed that FDY–LKA-

CRNN–AMC yielded better than FDY–LKA-CRNN as well as 
the baseline model.  

Finally, we constructed an ensemble model, FDY–LKA-
CRNN–AMC(E), and compared its performance with the baseline 
and FDY–LKA-CRNN-based single models. As shown in the ta-
ble, this ensemble model outperformed the baseline as well as the 
other single models. This superior performance was ascribed to 
the inherent advantages of ensemble modeling, such as reduced 
overfitting and improved model robustness. 

5. CONCLUSIONS 

In this paper, we proposed maximum probability aggregation and 
a multi-channel log-mel feature to improve SED performance 
when the training datasets were heterogeneously recorded and la-
beled. In addition, the auxiliary decoder-based training approach 
was proposed to balance the contributions of different representa-
tions prior to a classifier. In particular, our baseline model was 
FDY–LKA-CRNN with BEATs embeddings; thus, the auxiliary 
decoder could help the classifier get balanced information between 
the CNN block and the BEATs encoder. In summary, the auxiliary 
decoder enhanced the performance of the convolutional block, en-
abling it to extract semantics. MPA was applied to the MAESTRO 
dataset to match the time alignment between the output of the SED 
model and the soft labels. The multi-channel log-mel feature could 
help the SED model accommodate the various time-frequency pat-
terns from the two different datasets used in this challenge. We 
constructed the SED model according to the rules of the DCASE 
2024 Challenge Task 4. The experimental results showed that the 
SED model trained with the multi-channel log-mel feature, MPA, 
and auxiliary decoder increased the PSDS and MpAUC by 0.0118 
and 0.01, respectively, compared to the baseline SED model. An 
ensemble model derived from the model checkpoints also im-
proved the sum of PSDS and MpAUC by 0.038 over the baseline 
model.  

In future work, we will investigate the effectiveness of the pro-
posed approaches according to different neural architectures of 
SED models.  

Table 1: Performance comparison of the baseline and various versions of the proposed SED model on the validation dataset of DCASE 
2024 Challenge Task 4. 

Model Auxiliary  
decoder 

Maximum 
probability  
aggregation 

Multi-
channel  
log-mel 
feature 

Ensemble 
Validation Dataset 

Class-score- 
based PSDS MpAUC Sum of 

metrics 
Baseline: CRNN-based  

mean-teacher model [22] − − − − 0.49 ± 0.004 0.73 ± 0.007 1.22 

FDY–LKA-CRNN − − − − 0.4799 0.665 1.144 
FDY–LKA-CRNN–A  − − − 0.4922 0.673 1.164 
FDY–LKA-CRNN–M −  − − 0.4959 0.692 1.187 
FDY–LKA-CRNN–C − −  − 0.4663 0.709 1.175 
FDY–LKA-CRNN–AM   − − 0.5092 0.709 1.218 
FDY–LKA-CRNN–MC −   − 0.4832 0.733 1.216 
FDY–LKA-CRNN–AC  −  − 0.4795 0.712 1.191 
FDY–LKA-CRNN–AMC    − 0.5018 0.740 1.241 
FDY–LKA-CRNN–AMC(E)     0.5162 0.742  1.258  
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ABSTRACT 

This paper proposes a prompt-engineering-based caption aug-
mentation approach for enhancing the performance of language-
queried audio source separation (LASS) models. In the context of 
LASS, when large language models (LLMs) are utilized to gener-
ate augmented captions for audio clip descriptions, the choice of 
LLM prompts significantly influences the performance of LASS 
models. Hence, this study compares the performance of a LASS 
model using a dataset-dependent prompt (DDP) and a dataset-in-
dependent prompt (DIP). Experimental results on a small-sized 
benchmarking dataset reveal that the DDP-based caption augmen-
tation approach achieves better speech quality than the corre-
sponding DIP approach. However, not all DDP-generated cap-
tions guarantee quality improvement of the LASS models. Thus, 
a criterion is proposed to exclusively select effective captions 
based on their Bidirectional Encoder Representations from Trans-
formers (BERT) similarity scores relative to the original caption. 
Subsequently, augmented captions with BERT similarity scores 
exceeding a predefined threshold are adopted for model training. 
The effectiveness of the proposed prompt-engineering-based ap-
proach is then evaluated on the baseline LASS model of DCASE 
2024 Challenge Task 9. Performance evaluation results show that 
the baseline LASS model using the proposed prompt-generated 
caption outperforms the model using the original caption. The 
proposed prompt-engineering approach is also applied to Audi-
oSep, a state-of-the-art model, to verify its validity across diverse 
LASS models. Ablation studies reveal that selecting appropriate 
prompts for LLM-based caption augmentation significantly en-
hances LASS performance. Furthermore, selective augmentation 
based on BERT similarity scores can further boost audio separa-
tion quality. 

Index Terms— Language-queried audio source sepa-
ration (LASS), large language model (LLM), caption aug-
mentation, BERT similarity score, DCASE 2024 Challenge 
Task 9 

1. INTRODUCTION 

Source separation refers to the technique of isolating specific 
sound sources from a mixture of audio signals. Traditionally, this 

domain has primarily focused on tasks with predefined target 
sources, including speech enhancement [1], speech separation [2], 
and music source separation [3]. Recently, significant research ef-
forts have been devoted toward universal sound separation [4], 
which seeks to segregate diverse real-world sound classes. How-
ever, owing to the vast number of possible sound sources, prede-
fining all potential classes is nearly impossible. 

To address this, researchers have explored a query-based 
sound separation approach utilizing visual [5] or audio queries [6] 
to separate specific sound sources. One such approach is language-
queried audio source separation (LASS) [7], [8], which leverages 
natural language queries to identify and separate target sound 
sources. However, significant challenges related to data availabil-
ity and quality hinder the training of deep learning models for 
LASS. Furthermore, the effectiveness of the language-query ap-
proaches relies on the user of the LASS model. This implies that 
the manner in which an audio clip is queried can vary widely de-
pending on the time, location, and occasions of using the LASS 
model, even when the same user is involved. Consequently, anno-
tating individual audio clips with inputs from numerous people is 
essential [9]. However, this annotation process is expensive and 
time-consuming, resulting in a limited number of captions for each 
audio clip. To address this data scarcity, the most intuitive solution 
is to utilize text augmentation techniques. 

Notably, text augmentation research in the natural language 
processing (NLP) domain aims to improve the robustness of NLP 
models by generating diverse yet meaningful variations of original 
sentences. Easy Data Augmentation [10], a representative example 
of text augmentation approaches, adopts four techniques: synonym 
replacement, random insertion, random swap, and random deletion. 
These techniques enhance the robustness of text classifiers through 
text augmentation. Beyond textual content, audio and video cap-
tioning tasks aim to convert non-textual media into descriptive lan-
guage, thus enhancing the accessibility and comprehension of au-
diovisual content. While audio captioning tasks generate textual 
descriptions of sound content [11], video captioning tasks auto-
matically generate textual descriptions of actions and events de-
picted in videos [12]. These tasks, similar to LASS, involve han-
dling both textual information and audiovisual content. However, 
current captioning research, such as [11] and [12], predominantly 
focuses on augmenting audio and video features to address the 
challenges related to data scarcity. Consequently, attempts to aug-
ment a linguistic expressions remain scarce.  

Unlike traditional multimodal data augmentation approaches, 
which focus on diversifying audio and video content, our research 
focuses on augmenting data to enrich textual diversity. Specifi-
cally, by augmenting captions, our approach enables the LASS 
models to identify and utilize diverse captions conveying the same 
meaning. For example, identifying “a sound of thin plastic rattling” 
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as “fire crackling.” Additionally, utilizing multiple captions for 
each audio clip enhances LASS performance. To further enhance 
the performance of LASS models, this study utilizes a large lan-
guage model (LLM) to augment the caption of audio clips. Re-
cently, numerous studies have developed approaches for text aug-
mentation using LLMs, highlighting the significant impacts of 
LLM input prompts on the output quality [13]. Considering this, 
the current study investigates sophisticated prompt designs to en-
hance LLM-based caption augmentation. The key contributions of 
our research are summarized as follows: 
⚫ We first investigate how to effectively design an input 

prompt for augmenting captions using an LLM. Our results 
indicate that a dataset-dependent prompt (DDP), which is de-
signed considering various sentence structures across differ-
ent datasets, performs better than a dataset-independent 
prompt (DIP), which uses a single prompt regardless of the 
dataset. 

⚫ Given that all generated captions by LLM may not neces-
sarily improve the training of LASS models, we establish a 
criterion for selecting captions. This criterion adopts the 
BERT similarity score to quantify the similarity between 
original and augmented captions. Subsequently, perfor-
mance evaluations of the LASS model are conducted by se-
lecting captions depending on their similarity scores. Our 
findings show that utilizing descriptive captions with a di-
verse range of similarity scores is more effective than focus-
ing solely on those with high similarity to the original ones. 

⚫ We examine the effectiveness of the proposed prompts and 
selection criterion across different LASS models. The results 
reveal that the proposed approach demonstrates effective for 
the baseline model of DCASE 2024 Challenge Task 4 and 
the AudioSep model [8]. Consequently, the LASS model 
employing our caption augmentation approach is ranked first 
in the evaluation of DCASE 2024 Challenge Task 9. 
The remainder of this paper is organized as follows. Section 

2 describes the datasets used for the LASS model. Section 3 pre-
sents the LASS model and proposes our caption augmentation ap-
proach using an LLM-based prompt-engineering strategy. Section 
4 presents a performance evaluation of the LASS model on the 
validation dataset of DCASE 2024 Challenge Task 9. Finally, Sec-
tion 5 concludes this paper.  

2. DATASET 

The baseline system of DCASE 2024 Challenge Task 9 [7], [8] 
was developed using audio samples sourced from Clotho v2 [9] 
and Freesound Dataset 50K (FSD50K) [14]. Notably, all audio 
clips within these datasets were acquired from the Freesound plat-
form. In FSD50K, captions for each audio clip were initially ob-
tained by refining raw descriptions using ChatGPT. Meanwhile, 
captions in Clotho v2 were crowdsourced using annotators from 
English-speaking countries, resulting in five captions per audio 
clip. In addition to these datasets, WavCaps [15] dataset was also 
used as one of externally available datasets. The WavCaps [15] 

dataset included the Freesound subset, but the Freesound subset 
was excluded in this work. More detailed information regarding 
the selected datasets is outlined in Table 1. 

In particular, FSD50K was an extensive dataset comprising 
51,197 Freesound clips with human-labeled sound occurrences. 
Each audio clip was categorized based on 200 AudioSet ontology 
classes. Clotho v2 was an audio captioning dataset comprising 
5,929 audio clips. Of these, 3,839 audio clips are allocated for de-
velopment, 1,045 for validation, and 1,045 for evaluation. Each 
clip possessed five manually generated captions, varying in length 
from eight to twenty words. Finally, WavCaps in this study com-
prised 140,750 audio clips excluding the Freesound subset. Mean-
while, captions for these audio clips were generated by ChatGPT 
based on their raw audio descriptions. While consistent descrip-
tion-generation conditions were applied to SoundBible, and BBC, 
differing conditions were adopted for AudioSet.  

3. PROPOSED LASS MODEL 

We develop a LASS model based on the baseline model of 
DCASE 2024 Challenge Task 9 [7], [8]. This baseline LASS 
model comprises two key components: Query Net, which lever-
ages Contrastive Language Audio Pretraining (CLAP) [16], and 
Separation Net which employs ResUNet [17]. Notably, the desired 
target source is conditioned by Query Net and separated by Sepa-
ration Net. This paper proposes a prompt-engineering-based ap-
proach for LLM based caption augmentation, aiming to diversify 
the query representations of Query Net as if annotated by many 
humans. 

Fig. 1 illustrates the training procedure of our LASS model 
using the proposed caption augmentation approach. Initially, a 
prompt corresponding to original caption of an audio clip is in-
putted into an LLM with prompt to generate multiple captions. The 
resulting captions are subsequently filtered to remove a prompt 
with the original sentences. The filtered captions are then incom-
plete or interrogative caption corresponding to an audio clip, com-
pared to the original caption, in terms of their meaningfulness and 

 
Figure 1: Procedure of training a LASS model using the proposed 
caption augmentation approach.
 

Table 1: Summary of the training datasets used in this paper. 
Dataset Data subset # of Clips # of Captions 

FSD50K 40,966 40,966 
Clotho v2 3,839 19,195 

WavCaps 
BBC 31,201 31,201 

SoundBible 1,232 1,232 
AudioSet  108,317 108,317 

 

 

Table 2: Distribution of captions according to different datasets 
and prompts. 

# of Captions 
Dataset Original DDP DIP 

FSD50K 162,485 40,966 30,991 

WavCaps 
BBC 31,201 131,969 27,225 

SoundBible 1,232 1,997 550 
AudioSet  108,319 406,139 75,300 
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diversity, using BERT-based similarity scores [18]. Next, the se-
lected captions are paired with their corresponding audio clips, 
forming multiple pairs of caption-audio clips by copying the orig-
inal audio cli p to make the pairs. Finally, the LASS shown in the 
lower arm of the figure is trained using the augmented pairs of 
caption-audio clips. Note here that Microsoft's Phi-2.0 LLM [19] 
is used for caption generation, which is a 2.7 billion-parameter lan-
guage model known for its superior comprehension and generation 
capabilities compared to the Llama-7B model.  

3.1. Quality of augmented captions based on input prompts 

We first investigated how to effectively design an input prompt for 
augmenting captions using the LLM. A review of relevant studies 
revealed that individual datasets require unique prompts custom-
ized to their specific attributes rather than general prompts [16]. 
Therefore, we hypothesized that crafting prompts tailored to the 
attributes of each dataset could enhance the quality of the gener-
ated captions. This approach led to the development of dataset-
dependent prompts (DDPs), which generate sentences closely re-
sembling original descriptions while meeting prompt requirements. 
On the other hand, the dataset-independent prompts (DIPs) were 
designed to be applicable even without prior information of indi-
vidual dataset characteristics.  

Second, we customized DDP based on the caption-generation 
conditions adopted in [9], [14], [15] curating a distinct prompt for 
each of the FSD50K, AudioSet subset, and BBC+SoundBible sub-
set.  Here, SoundBible+BBC means a subset datasets combining 
the BBC and SoundBible subsets because they share identical cap-
tion-generation conditions [15].  

Next, to formulate a DIP, we initially referenced the caption-
generation prompts utilized in WavCaps [15] and Clotho v2 [9]. 
However, they used a prompt to generate a sentence by only con-
sidering the event label. It was evident that these prompts might 
not be suitable for our study because we needed to augment sound 
description captions at the sentence level but not the event word 
level. To remedy this issue, we needed to redesign the DIP so that 
it could consider a sentence with a similar meaning to the original 
prompt. The detailed d esign process of the DIP is described in 
[20]. After generating the captions using the DDP or DIP, the cap-
tions were filtered and selected, as described above. In particular, 
the BERT similarity score between the original and each generated 
caption was computed. Then, captions whose scores were higher 
than a predefined threshold were selected, while captions with a 

similarity score of 1.0 was removed because it implied that the 
generated ca0ptions were identical to the original caption. Table 2 
presents the number of captions augmented using each prompt for 
different datasets after applying the filtering process to the gener-
ated captions.  

Table 3 compares the signal-to-distortion ratio (SDR) be-
tween the DDP and DIP. Due to the large data sizes, we randomly 
sampled 10, 000 audio clips from each dataset and used the corre-
sponding caption-audio pairs for this experiment. While both types 
of prompts were designed to augment four captions per audio clip, 
the DIP produced approximately 1 to 1.5 captions on average, 
whereas the DDP consistently generated 4 captions on average. 
Specifically, the LASS model employing the DDP for FSD50K 
achieved an SDR of 4.432 dB, whereas that employing the DIP 
attained an SDR of 4.113 dB. Meanwhile, for the BBC+ Sound-
Bible subset, the LASS models using the DDP and DIP achieved 
SDRs of 4.968 and 4.764 dB, respectively. Finally, the LASS 
models using the DDP and DIP achieved SDRs of 5.038 and 4.764 
dB, respectively, for the AudioSet subset. As shown in the table, 
there was a similar tendency in other quality measures such as 
SDR improvement (SDRi) and scale-invariant (SI)-SDR, when 
comparing the DDP-based augmentation with DIP-based one. To 
ensure a fair quality comparison, we conducted additional experi-
ments with equal numbers of augmented captions for both meth-
ods. Consequently, DDP consistently outperformed DIP in SDR 
and SI-SDR, indicating superior caption quality. It was also re-
vealed that better performance was achieved with more captions 
for DDP.  

Based on these results, it was proven that the DDP was more 
effective than the DIP, the LASS model employing DIP-based 
augmentation demonstrated performance improvement over that 
using original captions. Hence, in cases with limited knowledge 
regarding specific data characteristics, our DIP can be also useful 
as a viable alternative.  

3.2. Quality of augmented captions based on the BERT simi-
larity score  

Since it is uncertain whether all captions automatically generated 

Table 3: Comparison of SDR, SDRi, and SI-SDR between DDP and DIP with randomly sampled 10,000 audio clips from different datasets. 
Dataset FSD50K WavCaps 

BBC+SoundBible AudioSet 
Prompt Type Original DDP DDP DIP Original DDP DDP DIP Original DDP DDP DIP 

# of Augmented  
Captions - 39,586 7,498 7,498 - 41,359 8,578 8,578 - 37,634 6,879 6,879 

SDR 3.960 4.432 4.237 4.113 4.577 4.968 4.807 4.764 4.465 5.038 4.808 4.764 
SDRi 3.925 4.397 4.202 4.078 4.542 4.933 4.772 4.729 4.430 5.003 4.773 4.729 

SI-SDR 0.293 1.470 0.852 0.618 1.083 2.431 2.090 1.961 1.092 2.311 2.215 1.848 
 
Table 4: Comparison of SDR, SDRi, and SI-SDR in relation to 
BERT similarity scores for FSD50K dataset, using approximately 
11,277 randomly selected augmented captions. 

Threshold 0 0.700 0.850 
# of Augmented Captions 11,277 11,277 11,277 

SDR 4.236 4.369 4.167 
SDRi 4.201 4.334 4.132 

SI-SDR 1.195 1.372 1.080 
 

 
Figure 2: Distribution of BERT similarity scores for DDP-based 
augmented captions. 
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by the LLM effectively contribute to the training of the LASS 
model, we establish a criterion for selecting captions. To this end, 
the BERT similarity score is used to measure the similarity be-
tween the original and augmented captions, because the BERT 
similarity score can assess the similarity of each token in the can-
didate sentence using contextual embeddings [18].  

Fig. 2 depicts the distribution of BERT similarity scores for 
DDP-based augmented captions. Each distribution seems to be a 
Gaussian distribution with a mean of 0.85 and a little different var-
iance. It was observed from the comparison between the original 
and generated captions that the generated captions with similarity 
scores below a certain threshold could be unsuitable as sound de-
scriptions. For instance, the original caption “A musician plays a 
tune on a wind instrument” was augmented to “The sound of thun-
der fills the air, shaking the ground and captivating everyone's at-
tention,” scoring 0.6, thus significantly differing in meaning.  

Next, a performance evaluation of the LASS model on the 
FSD50K dataset was conducted by selecting captions depending 
on the BERT similarity score. Table 4 compares the objective per-
formance of the LASS models trained by the selected captions ac-
cording to different thresholds, where approximately 11,277 ran-
domly selected captions were used for each threshold. As shown 
in the table, we set the threshold as 0.7 for caption selection, be-
cause using descriptive captions with a diverse range of similarity 
scores was more effective than using those with high similarity to 
the original ones.  

4. PERFORMANCE EVALUATION 

In this section, we evaluated the performance of the LASS models 
employing DDP and DIP. In addition to the baseline LASS model, 
the AudioSep model [8] was also trained to examine the effective-
ness of the proposed prompts and selection criterion on different 
LASS models. Table 5 compares SDR, SDRi, and SI-SDR of dif-
ferent LASS models trained using various combinations of train-
ing datasets with/without caption augmentation on the validation 
dataset of DCASE 2024 Challenge Task 9. In this work, the Adam 
optimizer with a learning rate of 1 × 10−3 and a batch size of 64 
was applied for 100 epochs to train the LASS models. Notice that 
the BERT similarity score threshold of selecting captions was all 
set to 0.7.  

As shown in Table 5, the baseline LASS model trained on 
Baseline Dev Set achieved an SDR of 5.817 dB, which is con-
sistent with the DCASE 2024 Challenge Task 9 baseline check-
point [21], [22]. Augmenting the Baseline Dev Set with DIP-
based generated captions increased the SDR to 6.547 dB, and 
DDP-based captions further improved it to 6.716 dB, demonstrat-
ing better performance compared to DIP-based ones. Training on 

the WavCaps dataset (excluding Freesound) resulted in an SDR 
of 7.500 dB, with DDP-based captions pushing the SDR to 7.818 
dB.  

Next, the pretrained AudioSep model, which was trained on 
over 2 million clips from weakly labeled datasets such as Audi-
oSet, VGGSound, and AudioCaps, was utilized to validate the 
general applicability of the DDP-based caption generation ap-
proach. As shown in Table 5, the pretrained AudioSep model 
achieved an SDR of 8.195 dB, surpassing that of the baseline 
LASS model trained with DDP-based augmented captions. Fine-
tuning this model using Baseline Dev Set and WavCaps dataset 
increased the SDR to 8.370 dB. On the other hand, the AudioSep 
model using DDP-based generated captions reached SDR of 
8.489 dB, demonstrating performance compared to that using 
DIP-based captions. Thus, the AudioSep model fine- tuned by 
employing DDP-based caption augmentation demonstrated the 
best performance in terms of the SDR, SDRi, and SI-SDR.  

5. CONCLUSION 

To enhance the performance of LASS models, this paper proposed 
DDP-based caption augmentation as a means of prompt engineer-
ing. Specifically, two prompts were developed: a DDP, which is 
tailored to the characteristics of a specific dataset, and a DIP, 
which could be used without dataset information. Utilizing these 
prompts, five captions were generated for each audio clip using an 
LLM, following which selective learning of the augmented cap-
tions was performed based on BERT similarity scores. Subse-
quently, the SDR performance of the baseline and AudioSep mod-
els with DDP-based and DIP-based caption augmentation was as-
sessed. Our findings demonstrated that the DDP, which de-
pendently considered the unique characteristics of each dataset, 
yielded more suitable results. Furthermore, performance improve-
ments were observed as the BERT similarity scores between the 
original and augmented captions reached values of 0.700 or higher. 
Collectively, these findings underscore the importance of custom-
ized prompt engineering in enhancing LASS performance through 
data augmentation.  

In our study, we utilized LLM to augment captions to enhance 
the performance of the LASS model. While our approach showed 
improved results, several limitations should be noted. Primarily, 
the use of LLMs and the design of appropriate prompts for caption 
augmentation are still largely unexplored. Thus, our approach may 
not have fully leveraged the potential of the model. Additionally, 
although performance improvements were observed in LASS, it is 
uncertain if these enhancements can be generalized to other tasks 
using caption-audio paired data, such as audio captioning.  

Table 5: Performance comparison of different LASS models trained using various combinations of training datasets with/without caption 
augmentation on the validation dataset of DCASE 2024 Challenge Task 9. 

Model Training Dataset Training Approach Caption Augmentation SDR SDRi SI-SDR 

Baseline 

Baseline Dev Set 
(FSD50K + Clotho v2) 

Full N/A 5.817 5.782 3.837 
Full DIP 6.547 6.512 4.636 
Full DDP 6.716 6.681 4.729 

Baseline Dev Set + WavCaps 
Full N/A 7.500 7.465 5.795 
Full DIP 7.750 7.715 6.161 
Full DDP 7.818 7.783 6.321 

AudioSep 

- Pretrained - 8.195 8.160 6.708 

Baseline Dev Set + WavCaps 
Fine-tuning N/A 8.370 8.335 7.109 
Fine-tuning DIP 8.459 8.424 7.072 
Fine-tuning DDP 8.489 8.454 7.198 

 

159



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024  23–25 October 2024, Tokyo, Japan 

6. REFERENCES 

[1] S. Pascual, A. Bonafonte, and J. Serra, “SEGAN: Speech en-
hancement generative adversarial network,” in Proc. Inter-
speech, 2017, pp. 3642–3646. 

[2] D. Wang and J. Chen, “Supervised speech separation based 
on deep learning: An overview,” IEEE/ACM Trans. Audio 
Speech Lang.Process., vol. 26, no. 10, pp. 1702–1726, 2018. 

[3] S. Park, T. Kim, K. Lee, and N. Kwak, “Music source sepa-
ration using stacked hourglass networks,” arXiv preprint 
arXiv:1805.08559, 2018. 

[4] I. Kavalerov, S. Wisdom, H. Erdogan, B. Patton, K. Wilson, 
J. Le Roux, and J. R. Hershey, “Universal sound separation,” 
in Proc. WASPAA, 2019, pp. 175–179. 

[5] R. Gao and K. Grauman, “VisualVoice: Audio-visual speech 
separation with cross-modal consistency,” in Proc. CVPR, 
2021, pp. 15490–15500. 

[6] B. Gfeller, D. Roblek, and M. Tagliasacchi, “One-shot con-
ditional audio filtering of arbitrary sounds,” in Proc. ICASSP, 
2021, pp. 501–505.  

[7] X. Liu, H. Liu, Q. Kong, X. Mei, J. Zhao, Q. Huang, M. D. 
Plumbley, and W. Wang, “Separate what you describe: Lan-
guage-queried audio source separation,” in Proc. Interspeech, 
2022, pp.1801–1805.  

[8] X. Liu, Q. Kong, Y. Zhao, H. Liu, Y. Yuan, Y. Liu, R. Xia, 
Y. Wang, M. D. Plumbley, and W. Wang, “Separate anything 
you describe,” arXiv preprint, arXiv:2308.05037, 2023. 

[9] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: An audio 
captioning dataset,” in Proc. ICASSP, 2020, pp. 736–740. 

[10] J. Wei and K. Zou, “EDA: Easy data augmentation tech-
niques for boosting performance on text classification tasks,” 
in Proc. EMNLP-IJCNLP, 2019, pp. 6382–6388.  

[11] Z. Ye, Y. Wang, H. Wang, D. Yang and Y. Zou, “FeatureCut: 
An adaptive data augmentation for automated audio caption-
ing,” in Proc. APSIPA, 2022, pp. 313–318 

[12] C. Wang, H. Yang, and C. Meinel, “Image captioning with 
deep bidirectional LSTMs and multi-task learning,” ACM 
TOMM, vol. 14, issue 2s, pp. 1–20, 2018. 

[13] Y. Zhou, A. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, 
and J. Ba, “Large language models are human-level prompt 
engineers,” in Proc. ICLR, 2023. Available: https://open-
review.net/forum?id=92gvk82DE-. 

[14] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, 
“FSD50K: An open dataset of human-labeled sound events,” 
IEEE/ACM Trans. Audio Speech Lang. Process, vol. 30, pp. 
829–852, 2022. 

[15] X. Mei, C. Meng, H. Liu, Q. Kong, T. Ko, C. Zhao, M. D. 
Plumbley, Y. Zou, and W. Wang, “WavCaps: A ChatGPT as-
sisted weakly-labelled audio captioning dataset for audio lan-
guage multimodal research,” arXiv preprint, arXiv: 
2303.17395, 2023. 

[16] C. Li, M. Zhang, Q. Mei, W. Kong, and M. Bendersky, 
“Learning to rewrite prompts for personalized text genera-
tion,” in Proc. ACM Web Conference, 2024, pp. 3367–3378. 

[17] Q. Kong, Y. Cao, H. Liu, K.Choi, and Y. Wang, “Decoupling 
magnitude and phase estimation with deep ResUNet for mu-
sic source separation,” in Proc. ISMIR, 2021. Available: 
https://doi.org/10.48550/arXiv.2109.05418. 

[18] T. Zhang, V. Kishore, F. Wu, K. Weinberger, and Y. Artzi, 
“BERTScore: Evaluating text generation with BERT,” in 

Proc. ICLR, 2020. Available: https://openreview.net/fo-
rum?id=SkeHuCVFDr.  

[19] M. Javaheripi and S. Bubeck, “Phi-2: The surprising power 
of small language models.” Available at https://www.mi-
crosoft.com/en-us/research/blog/phi-2-the-surprising-power-
of-small-language-models/, and accessed on May 01, 2024. 

[20] D. H. Lee, Y. Song, and H. K. Kim, “performance improve-
ment of language-queried audio source separation based on 
caption augmentation from large language models for 
DCASE Challenge 2024 Task 9,” arXiv preprint, 
arXiv:2406.11248, 2024. 

[21] L. Xubo and Z. Yan, “DCASE 2024 Task 9: Language-que-
ried audio source separation | pre-trained weights for the 
baseline system.” Available at https://zenodo.org/rec-
ords/10887460, and accessed on May 01, 2024. 

[22] https://dcase.community/challenge2024/task-language-que-
ried-audio-source-separation. Accessed on May 01, 2024. 
  

160



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

SALT: STANDARDIZED AUDIO EVENT LABEL TAXONOMY

Paraskevas Stamatiadis, Michel Olvera, Slim Essid
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ABSTRACT

Machine listening systems often rely on fixed taxonomies to or-
ganize and label audio data, key for training and evaluating deep
neural networks (DNNs) and other supervised algorithms. How-
ever, such taxonomies face significant constraints: they are com-
posed of application-dependent predefined categories, which hin-
ders the integration of new or varied sounds, and exhibits limited
cross-dataset compatibility due to inconsistent labeling standards.
To overcome these limitations, we introduce SALT: Standardized
Audio event Label Taxonomy. Building upon the hierarchical struc-
ture of AudioSet’s ontology, our taxonomy extends and standardizes
labels across 24 publicly available environmental sound datasets, al-
lowing the mapping of class labels from diverse datasets to a unified
system. Our proposal comes with a new Python package designed
for navigating and utilizing this taxonomy, easing cross-dataset la-
bel searching and hierarchical exploration. Notably, our package
allows effortless data aggregation from diverse sources, hence easy
experimentation with combined datasets.

Index Terms— Machine listening, DCASE, sound taxonomy,
sound categorization, data aggregation

1. INTRODUCTION

Machine listening systems support a wide range of audio appli-
cations, including urban sound analysis [1, 2], industrial acoustic
monitoring [3, 4, 5], music analysis [6, 7, 8], and speech recogni-
tion [9, 10, 11]. The key success of these systems, typically re-
lying on supervised machine learning approaches, especially using
deep neural networks (DNNs), lies in the systematic annotation of
training data, using predefined class labels from hierarchical sound
ontologies and taxonomies [12, 13, 14, 15, 16, 17, 18].

Sound ontologies and taxonomies serve as foundational frame-
works to categorize everyday sound scenes and events [19]. De-
veloped across several research fields—for instance auditory cog-
nition [20, 21], soundscape research [22], sound design [23]—they
are particularly instrumental in machine listening. Notable exam-
ples stand out for their wide adoption in the DCASE1 community:
UrbanSound8K [12], SONYC-UST [15, 24], MAVD-traffic [16]
for urban sound analysis and ESC-50 [25] and AudioSet [15] for
broader sound event recognition.

As evident from the previous examples, categorization of
sounds in these systems are context-specific and tailored to desired
applications. Their static nature often entails significant, overhauls
for updates or extensions, especially when combining audio events
from different environments, even for the same application. An ex-
emplary case of this, is the adaptation of the SONYC-UST’s taxon-
omy. Originally developed to classify urban sounds in New York

1Detection and Classification of Acoustic Scenes and Events

City, this taxonomy required an expansion to accommodate the
unique sounds of Singapore city’s soundscapes, while maintaining
compatibility with the base categorization. This adaptation allowed
for bench-marking of urban sound tagging systems across different
cities [17, 26].

While recent initiatives such as mirdata [27] and Soundata
[28] have simplified the use of major datasets for Music Informa-
tion Research (MIR) and DCASE, by standardizing data loading,
these efforts primarily focus on addressing issues related to data
management and accessibility through open-source software pack-
ages. As such, these packages promote reproducibility and flexible
data-processing pipelines. However, the development of adaptable
and extensive sound categorization frameworks capable of integrat-
ing new audio event labels from diverse datasets while maintain-
ing compatibility with existing taxonomies remains largely unad-
dressed.

In this work, we tackle such challenges by introducing SALT:
a Standardized Audio event Label Taxonomy. Leveraging the hi-
erarchical structure of AudioSet, SALT extends and standardizes
labels across 24 publicly available environmental sound datasets.
Such a large collection of datasets covers diverse audio analysis
tasks including audio tagging, sound event detection and acoustic
scene classification. By standardizing labels, SALT enables map-
ping them across diverse datasets, ensuring compatibility and easing
dataset aggregation. Alongside our proposed taxonomy of standard
dataset labels, we present py-salt, an open-source python package
designed to navigate through its content. This tool allows users to
easily navigate through the hierarchical label taxonomy at any level
of granularity. It turns out to be quite valuable when performing
experiments considering various existing datasets whose particular
labelling schemes can be seamlessly represented in our unified tax-
onomy.

We posit that our contribution is timely in a research context
where large-scale training of audio models is fueled by the availabil-
ity of (labelled) training data and computational resources. Our tax-
onomy with standardized audio event labels simplifies data aggre-
gation, complementing tools like Soundata to develop audio classi-
fication models at scale.

The remainder of this work is organized as follows: Section
2, introduces the motivation and design principles behind SALT.
Section 3 presents the functionalities and applications of py-salt,
our proposed Python package, and Section 4 concludes the article.

2. SALT

The motivation behind creating SALT is the development of a new
solution leveraging existing taxonomies to facilitate experimenta-
tion across different environmental sound datasets. The key feature
of this solution is label aggregation, which allows unified catego-
rization of sound events. This approach necessitates a standardized
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set of labels applicable to multiple environmental sound datasets.
Consequently, with SALT we aim to expand AudioSet, the largest
general-purpose sound event taxonomy, and use it as a common
frame of reference to represent the annotations of all major publicly
available DCASE datasets.

2.1. Design Principles

We aim to establish a general-purpose sound taxonomy with label
aggregation capabilities at the core of its design. To achieve this,
we adapt existing sound event taxonomies from diverse domains,
including but not limited to urban sound analysis, acoustic scene
classification, domestic sound event detection, among others, using
AudioSet’s taxonomy as our basis. A key principle is to integrate
labels from diverse sound collections, prioritizing datasets that are
independent from each other rather than subsets of others, leading
to a natural expansion of AudioSet’s taxonomy. This integration
into a unified taxonomy entails a standardization process to ensure
label consistency across datasets.

Label standardization. The standardization process involves
a mapping of original (i.e., default) category names from different
datasets that describe the same acoustic event to a standardized
label. For example, labels such as “car horn” in UrbanSound8K,
“car horn” in ESC-50 and “Vehicle horn, car horn, honking”
in AudioSet, all refer to the sound produced by a car horn. To
aggregate labels effectively, we map them to the standard label
car horn in SALT. Our notation for denoting standard labels uses
lowercase characters and underscores instead of white spaces.

Mapping for accurate aggregation. In cases where a dataset
label indicates more than one acoustic event, or sources producing
sound, the mapping depends on the nature of the sounds. If the
events or sources have similar acoustic properties, the word “or” is
introduced in the standard label to preserve both sounds in the label.
For example, the label “Railroad car, train wagon” in AudioSet
is mapped to the standard label railroad car or train wagon as
both sources produce the same type of sound. On the contrary,
when a dataset label indicates multiple sound events, each of them
entailing unique acoustic signatures, the mapping selects the most
specific (i.e.,finest-grained) standard label that avoids incorrect
associations in the aggregation process. For example, the label
“dog-barking-whining” in SONYC-UST is mapped to the broader
standard label dog to ensure accurate aggregation. This principle
prevents mistakenly including unrelated events into more specific
standard labels such as dog barking or dog whining. In Figure 1
we present a clear depiction of our label standardization procedure.

Hierarchy expansion. Additionally, our objective is to pre-
serve the base hierarchy of AudioSet while integrating new
standard labels when strictly necessary. This design principle
serves two main purposes. First, it facilitates label aggregation
across multiple hierarchical levels by mapping dataset labels not
only to a standard label, but also to its hierarchical ancestors (also
standardized labels). For example, the label “Bird” in AudioSet is
mapped to the standard label bird in our taxonomy, as well as to
its standard ancestors wild animal and animal. Second, it refines
the AudioSet taxonomy by incorporating new or rare sound event
labels coming from a wide variety of environmental sound datasets
serving different audio analysis tasks. When a dataset contains
class labels which do not fit neatly into the AudioSet taxonomy

Figure 1: Illustration of SALT’s standardization process. Dataset
labels are systematically mapped to a standard label that ensures
cross-dataset compatibility.

or cannot be covered by any existing node in the structure, new
standardized labels are introduced to accomodate such labels. For
instance, labels such as “truck/compressor” from the MAVD-traffic
and “Friction brake” from the SINGA:PURA datasets, represent
cases where AudioSet’s existing labels are insufficient to fully
capture the diverse set of sounds encountered in publicly available
datasets.

2.2. Taxonomy Structure

Our proposed extension to Audioset’s taxonomy, is structured into
multiple hierarchical levels, each representing a different granular-
ity of sound categories. Starting from AudioSet’s seven broad sound
categories — “Human sounds”, “Animal”, “Music”, “Source-
ambiguous sounds”, “Sounds of things”, “Natural sounds”, and
“Channel, environment and background” — and 616 sound labels
(out of the 632 provided in the taxonomy), we expand to 734 sound
labels. These labels are categorized under the original seven Au-
dioSet categories, with the addition of two new categories: Water
and Other. Figure 2 illustrates the contribution of the original la-
bels from all considered datasets to compose the standard labels in
SALT.

With careful examination of the video clips available in Au-
dioSet and their associated labels, we refined the hierarchical struc-
ture of AudioSet to clarify the placement of labels within the tax-
onomy. For example, when examining the label “Water”, we found
that 37% of clips include tags related to water sounds occurring
in domestic environments e.g., “Water faucet”, while, only 2% of
them are related to outdoor and/or natural landscapes. This dis-
tribution indicates that the “Water” tag does not exclusively belong
under “Natural sounds”, but also frequently appears in domestic set-
tings. Additionally, we conducted refinements by examining chil-
dren within categories such as “Vehicle” and “Engine”. For ex-
ample, clips tagged with the label “Accelerating, revving, vroom”,
categorized under “Engine”, primarily pertain to vehicle sounds, ac-
counting for approximately 93% of its instances. Therefore, “Accel-
erating, revving, vroom” is additionally categorized under “Vehi-
cle”. For a complete list of all such refinements, we refer the reader
to our companion repository2.

3. PY-SALT

In this section, we give an overview of the functionalities and ap-
plications of SALT, designed to unify event labels through standard

2https://github.com/tpt-adasp/salt
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Figure 2: Contribution of dataset’s original (default) labels to SALT
after the standardization process.

labels, allowing for label search, data exploration, and hierarchi-
cal parsing. To exploit the benefits of our proposed taxonomy with
standard labels, we developed py-salt, a Python package that pro-
vides tools for navigating and utilizing the taxonomy.

3.1. Functionalities

Label searching. This functionality allows two searching modes.
First, standard labels can be employed to look for corresponding
original (default) dataset labels across all those integrated in SALT,
e.g., motorcycle → “motorbike” coming from Urbansas, “Mo-
torcycle” from AudioSet/FSD50K, “motorcycle/wheel rolling”,
“motorcycle/engine idling”, “motorcycle/engine accelerating”
from MAVD-traffic, etc. Secondly, original dataset labels can be
employed to identify their counterparts across all datasets within
the taxonomy. This dual approach offers comprehensive coverage
and consistency for cross-dataset retrieval, e.g., ReaLISED’s “water
tap” → “Water tap and faucet”, “Water tap, faucet”, “water tap
running” coming from FSD50K, AudioSet and TUT Sound Events
2016, respectively.

Hierarchical exploration and expansion. This functionality
allows browsing the taxonomy at any level of the hierarchy and
easily locate superodinate (parent), subordinate (child) and coor-
dinate (sibling) categories. Additionally, SALT supports mapping
expansion, a functionality useful to incorporate new datasets and
label categories into the taxonomy. The mapping process can be
performed using the existing standard labels or by defining new
ones suiting the user’s requirements.

Visualization and searching tools. Graph plotting utilities
are included in py-salt, which allows users to explore SALT
visually. The python library contains methods to plot graphs
showing the hierarchical structure of a given standard label in
SALT, and also to depict all original (default) class names in the
aggregated datasets that mapped to a SALT label. For example,
the function plot_hierarchical_tree_graph(’bird’)
serves to generate a graphical representation of the hierarchical
structure for the standard label bird as illustrated in Figure 3.

Figure 3: Example of standard label mapping for the standardized
label bird.

This functionality provides a clearer depiction of the relationships
between parent, child and sibling categories. Similarly, the function
plot_std_label_mapping(’car_horn’) serves to show
the mapping of dataset labels to the standard label car horn as
illustrated in Figure 4. This is useful for identifying the potential
datasets needed for a specific application of interest.

An additional example, is illustrated in Listing 1, which in-
volves retrieving the dataset labels mapped to the standard label
reverse beeper. The function returns a Python dictionary where
dataset names serve as keys and their corresponding labels as val-
ues. This example highlights the package’s feature to provide de-
tailed and well-organized information about class labels, which is
essential for analysis and integration of data.

Furthermore, the package comes with extensive documentation
including a tutorial notebook and practical examples to demonstrate
all functionalities discussed in this section. The interested reader
is referred to the corresponding repository for more information
about py-salt.

3.2. Applications

SALT can serve diverse applications and use cases through its func-
tionalities. The provided python library, facilitates exploration of
mapped datasets, both individually and in combination. An inter-
esting use case comprises the compilation of data from multiple
datasets to compose new datasets or collections. This is achieved
by the use of a series of methods provided in py-salt, that allows
gathering the desired labels from specific datasets or domains of
interest. For example, to develop an audio classifier specialized in
the detection of emergency signals, all relevant labels from different
datasets e.g., AudioSet, SINGA:PURA, ESC-50, etc. can be easily
accessed through the standard label alarm signal. Similarly, to de-
velop an urban sound monitoring system, various dataset labels can
be aggregated through a set of standard labels such as vehicle, en-
gine, and outdoor urban or manmade from datasets MAVD-traffic,
AudioSet, FSD50K and SONYC-UST, respectively. To give another
example, for a system targeting the detection of domestic sound
events, labels such as kitchen (i.e. kitchen sounds), bell and televi-
sion can be aggregated to create a specialized classifier for recog-
nizing common household sounds. Figure 5 illustrates the signifi-
cant benefits of label aggregation in augmenting the amount of data
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Figure 4: Example of dataset label mapping for the standardized
label car horn.

available for minority classes.
Another use case involves defining a common set of standard la-

bels for cross-dataset evaluation purposes, e.g., training on SONYC
and testing on the same set of labels on UrbanSound8K. This ap-
proach is particularly useful for bench-marking audio analysis sys-
tems and assess their generalization capabilities. Overall, SALT
can diminish inconsistencies and discrepancies between different
datasets and promotes fair comparison of model performance.

1 from py_salt.event_mapping import EventExplorer()
2

3 # Init taxonomy explorer
4 e = EventExplorer()
5

6 # Get dataset mapping dictionary
7 e.get_mapping_for_std_label(’reverse_beeper’)
8

9 {’SONYC’: [’reverse-beeper’],
10 ’Singapura’: [’Reverse beeper’],
11 ’AudioSet_strong’: [’Reversing beeps’],
12 ’AudioSet’: [’Reversing beeps’]}

Listing 1: Label search using the standardized label reverse beeper

4. CONCLUSION

In this paper, we introduced SALT: Standardized Audio event La-
bel Taxonomy to unify existing sound taxonomies into a global
one through the standardization of labels, while also addressing
some of their limitations. Built upon AudioSet’s hierarchical struc-
ture, SALT standardizes and extends labels across 24 environmen-
tal sound datasets, enhancing clarity and precision and enabling
cross-dataset label compatibility. Furthermore, we support the use
of SALT, by introducing a Python package that provides robust

Figure 5: The benefit of label aggregation in selected standardized
labels targeting domestic sound events.

tools to perform cross-dataset label aggregation, explore hierarchi-
cal relationships and visualize label mappings. These capabilities
streamlining data aggregation and analysis, make SALT a valuable
resource for developing machine listening systems at scale.
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ABSTRACT

Oxygenators, alarm devices, and footsteps are some of the most
common sound sources in a hospital. Detecting them has scientific
value for environmental psychology but comes with challenges of
its own: namely, privacy preservation and limited labeled data. In
this paper, we address these two challenges via a combination of
edge computing and cloud computing. For privacy preservation,
we have designed an acoustic sensor which computes third-octave
spectrograms on the fly instead of recording audio waveforms. For
sample-efficient machine learning, we have repurposed a pretrained
audio neural network (PANN) via spectral transcoding and label
space adaptation. A small-scale study in a neonatological intensive
care unit (NICU) confirms that the time series of detected events
align with another modality of measurement: i.e., electronic badges
for parents and healthcare professionals. Hence, this paper demon-
strates the feasibility of polyphonic machine listening in a hospital
ward while guaranteeing privacy by design.

Index Terms— Computational environmental audio analysis,
edge computing, machine learning methods, privacy.

1. INTRODUCTION

Sound is a reliable and non-invasive carrier of information about hu-
man health [1]. Yet, historically, the subfield of medical acoustics
has mainly focused on analyzing sounds as produced by patients:
stutter [2], crackles [3], cough [4], and so on. Much less is known
about the sounds as heard by patients in a clinical setting: as ex-
perimental psychologists have pointed out, the detailed description
of acoustic events in intensive care units (ICU’s) is typically over-
looked in favor of sound pressure level measurements (SPL) [5].
Meanwhile, exposure to anthropogenic noise at unsafe SPL levels
is known to induce stress, cognitive impairment and sleep disorders
in children [6] and adults [7], thus calling for urgent remediation.

The case of neonatal intensive care units (NICU’s), where pre-
mature babies receive special care to grow and survive, presents an
even greater gap in research than adult ICU’s [8]. During their time
in the NICU, preterm infants are exposed to unpredictable sensory
stimuli while undergoing a protracted period of rapid brain growth,
causing lasting effects on cognitive ability [9]. Unfortunately, the
auditory physiology and cognition of neonates have received insuf-
ficient attention from scientists until recently [10].

What is known with certainty is that parents have an essential
role to play in the development of their newborn babies [11]. In-
deed, an approach sometimes described as “kangaroo care” involves
prolonged periods of skin-to-skin contact between the baby and ei-
ther of the two parents, in addition to incubator placement. Pro-

∗Thanks to ANR AIBY4 (ANR-20-THIA-0011) for funding.
†Thanks to ANR MuReNN (ANR-23-CE23-0007-01) for funding.

digital audio acquisition
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pretrained audio neural network

EDGE
COMPUTING

CLOUD
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label space adaptation

(Section 2.1)

(Section 2.2)

(Section 2.3)

(Section 2.4)

(Section 2.5)

Figure 1: Flowchart of stages in the proposed approach. The first
two stages are performed “on the edge”. The last three stages are
performed “on the cloud”, i.e., on a central server.

moting this approach requires to take the well-being of parents into
consideration so that they feel included into collective care work.

For this purpose, we have launched a project on “listening to
family experiences in the neonatological ward”, or LIFEWARD for
short. Here, the word “listening” is understood as both qualita-
tive and quantitative: i.e., as enacted by interviews with parents
as well as autonomous acoustic sensors. Although there is sci-
entific consensus around the value of semi-structured interviews
for neonatology—see, for example, [12]—the same cannot be said
about machine listening. This is for at least three reasons. First, the
deployment of acoustic sensors in a hospital raises pressing con-
cerns about privacy preservation and cybersecurity. Secondly, the
application of machine learning to the NICU is not straightforward,
for lack of annotated training data. Thirdly, and perhaps most fun-
damentally, machine listening systems have not yet demonstrated
their ability to reconstruct objective information about social bonds
in the NICU. Addressing these three challenges is necessary before
envisioning the integration of machine listening instruments within
the toolkit of patient experience research.

In this article, we present a proof of feasibility of machine lis-
tening for neonatology. Prior work in this domain has focused
on a single class of sound event—namely, the spontaneous cries
of preterm newborns [13]. Meanwhile, our system is a multilabel
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sound event detector for adult voices, footsteps, oxygenators, and
alarm devices. Furthermore, the originality of our approach is that it
integrates all aspects of machine listening, from digital audio acqui-
sition to sound event detection, into a mixed pipeline that involves
both edge computing and cloud computing.

Figure 1 decomposes our approach into five stages, described
in Sections 2.1 through 2.5. To comply with standards of privacy
and security, the LIFEWARD sensor does not store the acquired
waveforms. Rather, it extracts a third-octave spectrogram on the
fly; i.e., a coarse estimate of power spectral density over windows
of duration 125ms. This, in turn, brings its own challenges for
sound event detection, which typically requires finer spectrotempo-
ral information. We address this challenge via a pretrained “spec-
tral transcoder”; i.e., a deep neural network for nonuniform resam-
pling the time–frequency domain. We pass the output of the spectral
transcoder to a pretrained audio neural network (PANN), with Au-
dioSet as its label space. Lastly, we use domain-specific knowledge
to narrow down this taxonomy for the NICU.

Section 3 presents the result of an in-progress study at an NICU,
and provides tentative evidence for the feasibility of the proposed
approach. Indeed, neural network predictions appear to coincide
with isolated sound events of interest (Section 3.1) as well as times-
tamps from a non-audio modality of human presence (Section 3.2).

2. METHODS

2.1. Acoustic sensor

Our acoustic sensor is a Raspberry Pi, inspired by previous work
on urban noise monitoring [14]. It acquires audio from an exter-
nal USB microphone, specifically, the micW i436. The i436 is an
omnidirectional electret microphone with a capsule diameter of ap-
proximately 7 mm, in compliance with NF EN 61672 Class-2 stan-
dards. Its sensitivity and frequency response has been calibrated
manually by the manufacturer. After digital–analog conversion, the
sample rate is 32 kHz. Our sensor is powered by the grid and “air-
gapped”, i.e., physically isolated from the public Internet and from
each other. This is to reduce the risk of malicious data access.

2.2. Third-octave spectrogram

We use fast Fourier transforms (FFT) to design a third-octave fil-
terbank with bands ranging from 20 Hz to 12.5 kHz, in compli-
ance with the ANSI S1.1-1986 and IEC 61260-1:2014 standards
[15]. We extract the magnitude response of each filter over non-
overlapping subbands of duration 125 ms. These operations are
implemented in the C language, compiled for the Raspberry Pi, and
executed in real time. The result is stored incrementally on a non-
volatile memory (“SD card”).

A perceptual evaluation on twelve subjects has shown that the
third-octave spectrogram does not contain sufficient information to
recover intelligible speech, at least via classical signal processing
techniques—namely, Moore-Penrose pseudoinverse and Griffin-
Lim algorithm for phase retrieval [15]. Thus, the third-octave spec-
trogram representation can be said to be privacy-aware, in the sense
it mitigates the severity of a security breach should the SD card were
to be lost or stolen in the healthcare facility.

Another advantage of computing third-octave spectrograms on
the edge resides in its bitrate: around 3.71 kilobytes per second
(kbps). This is lower than MP3 (128–320 kbps) and lossless audio
(around 1 Mbps). The bitrate of third-octave spectrograms trans-
lates to around 320 megabytes per day, or 117 gigabytes per year.

Thus, a single SD card suffices to contain all the spectrogram data
over a longitudinal survey spanning the full length of stay of the
preterm infant at the NICU.

2.3. Spectral transcoder

Previous work in urban environments has shown the potential of the
third-octave spectrogram as a feature for sound event classification,
both in supervised and self-supervised scenarios [16]. Yet, this pre-
vious work is unapplicable in the context of the NICU, for lack of
annotated training data. Furthermore, note that it would not be pos-
sible to launch our own annotation campaign because, as explained
before, our sensors do not record audio. We propose to circum-
vent this problem by relying on a pretrained audio neural network
(PANN) for multilabel sound event detection and classification [17].

Here, a second issue arises: PANN does not operate upon
the third-octave spectrogram but on a mel-frequency spectrogram,
which has a finer temporal resolution (hop size of 10 ms) and a
finer spectral resolution (64 bins on the mel scale). In principle, the
required change of resolution could be achieved by a linear non-
uniform resampler. Yet, in practice, this produces a blurry time–
frequency representation which is not recognized by PANN as con-
taining any events of interest. Against this issue, a deep neural net-
work was developed by Tailleur et al. [18], which we call spectral
transcoder, so as to recover a plausible mel-frequency spectrogram
from a third-octave spectrogram measurement.

The spectral transcoder is a convnet with six layers. It is
trained on TAU Urban Acoustic Scenes 2020 Mobile dataset [19]
in a “teacher–student” scenario. The teacher is the composition of
mel-frequency spectrogram and PANN whereas the student is the
composition of third-octave spectrogram, spectral transcoder, and
PANN. In other words, the spectral transcoder is not trained to min-
imize its mean square error with the mel-frequency ground truth
(as a linear model would) but to generate a mel-frequency spectro-
gram whose spectrotemporal content has the same distribution of
sound events as the ground truth. The training process involves min-
imizing a binary cross-entropy loss, computed between the PANN
output of the student and that of the teacher, by updating solely
the transcoder’s parameters. This is a kind of super-resolution pro-
cedure in which the implicit knowledge about the spectrotemporal
characteristics of natural audio sounds is distilled from PANN into
the spectral transcoder under the form of convnet weights. We refer
to [18] for more details on the spectral transcoder.

2.4. AudioSet classification with PANN

Our PANN of choice is a residual network with 38 layers, or
ResNet38 for short. It contains around 74M parameters. To this day,
it is regarded as one of the most accurate general-purpose multilabel
audio classifier among those which take the mel-frequency spectro-
gram as input. The PANN is trained on AudioSet, a dataset which
contains over 2M 10-second audio clips which were extracted from
YouTube videos. In the next sections, we refer to the composition of
pretrained spectral transcoder and PANN as “PANN-1/3oct” model.
We refer to [17] for further details on PANN.

Since PANN is a multilabel classifier, its output vector is unnor-
malized. For the sake of visualization, we have found it beneficial to
rank predictions in decreasing order, normalize rank by the number
of classes, and apply an inverse power transform. Given predic-
tions x[k] for each class k, this procedure yields the α-compressed
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reciprocal rank

y[k] =

(
K

σ−1[k]

)α

, (1)

where k is the class index, K is the total number of classes, σ is the
sorting permutation such that (x ◦ σ)[1] > . . . > (x ◦ σ)[K], and
α < 1 is a constant exponent. We set α = 0.5 in this paper.

2.5. Label space adaptation

The PANN-1/3oct model analyzes a third-octave spectrogram snip-
pet of duration equal to 10 seconds and returns a vector of dimen-
sion 527, corresponding to the classes in AudioSet dataset. These
classes are a subset of the 623-class AudioSet ontology1, which has
been defined by a Google Research team after scraping web-scale
text data for “Hearst patterns”, i.e., of either of these forms [20]:

[...] sounds such as X or Y [...]
[...] X, Y, and other sounds [...]

This approach has proven fruitful for general-purpose audio classi-
fication: we refer to [21] for a review. Yet, it is unsuitable for the
ICU, whose distribution of sound events is inadequately represented
by textual mentions of sound events on the web. At the same time,
training a classifier from scratch on a new taxonomy is out of the
question for reasons of privacy preservation, as explained earlier.

Instead, we simply run the PANN-1/3oct model on third-octave
spectrogram data from the NICU and look for some frequently oc-
curing AudioSet classes. We find four activity patterns of interest:
“conversation”, “walk, footsteps”, “train”, and “electronic music”.
Although the former two sound events are plausible, the latter two
are clearly not. Yet, after interviewing NICU employees, we may
hypothesize that they yield indirect information: i.e., that “train”
actually corresponds to the rumble of the oxygenator while “elec-
tronic music” corresponds to the ringtone of the hospital phone. We
summarize this correspondence in Table 1.

Neonatal Intensive Care Unit (NICU) AudioSet

Conversation Conversation
Footsteps Walk, footsteps
Oxygenator Train
Hospital phone Electronic music

Table 1: Mapping of sound event labels from the neonatal intensive
care unit (NICU) to AudioSet.

3. APPLICATION

3.1. Deployment in a neonatal intensive care unit

Since 2018, a design company2 have been partnering with Nantes
University hospital and a nonprofit organization3 to enhance the in-
clusion of parents in the NICU. The nonprofit organization collab-
orated with designers to refurnish a care room so as to facilitate the
presence of parents alongside their newborn. In this context, the
LIFEWARD sensor has offered the necessary guarantees for a safe
and privacy-aware deployment in the NICU. We have obtained the

1Link to complete list of classes in the AudioSet dataset:
https://research.google.com/audioset/dataset/index.html

2Sensipode
3the B.E.R.S.E association

approval of an ethical review board to deploy this sensor4. Six fam-
ilies have given their informed consent to participate in the LIFE-
WARD study: three in the aforementioned redesigned room and
three in a standard room. The length of stay is approximately 90
days for each family. Thus, we have collected third-octave spectro-
gram data over 18 cumulated months.

3.2. Visualization of sound events

We now collect a few waveform-domain samples from the sound
events of interest in a real NICU environment. This data collection
stage is carried out with a handheld device, over short durations,
and with the collaboration of NICU professionals. Specifically, we
ring various kinds of alarms, activate oxygenators and other pumps,
stomp our feet, and so forth. Admittedly, these sounds are too few
to offer an independent quantitative evaluation of PANN-1/3oct: we
refer to [18] for that matter. Still, they may serve as suggestive evi-
dence for the fact that the correspondences which we hypothesized
in Table 1 are adequate and useful in practice.

Figure 2 illustrates our findings for each of the four classes of
interest. For example, we notice vertical patterns of high energy in
the recording of footsteps, versus horizontal patterns in the record-
ings of oxygenator. These simple observations corroborate the pre-
diction of the PANN-1/3oct model with label space adaptation: see
Table 1. Those examples demonstrate one of the advantages of us-
ing the transcoder: one can double-check model predictions by dis-
playing the transcoded spectrogram, despite not being able to listen
to the underlying audio waveform.

3.3. Proof of feasibility for continuous monitoring

The previous section has confirmed the interest of the PANN-1/3oct
model in the context of isolated sounds from the NICU, as acquired
by a handheld device. It remains to be seen if this model remains
informative in a real-world polyphonic context, as acquired by the
LIFEWARD sensor. For this purpose, we propose to compare the
detected events with another modality of measurement: i.e., elec-
tronic badges worn by parents and healthcare professionals. Via
near-field communication (NFC), these badges yield information
about who is present in the care room at any given time. Hence, they
offer indirect confirmation for the feasibility of machine listening in
the NICU, while remaining non-invasive and privacy-aware.

Figure 3 shows an example of PANN-1/3oct predictions from
our real-world NICU dataset, together with timestamps from elec-
tronic badges. We notice that segments during which two adults
are present in the room coincide with a rise in the presence of
conversation—and, to a lesser degree, of footsteps. Meanwhile, the
lowest values for the “conversation” class correspond to segments in
which only one adult is present in the room. Yet, we recognize that
these are only anecdotal observations. Future research is needed to
expand the comparison of acoustical and non-acoustical informa-
tion to a larger scale; i.e., multiple days and multiple rooms.

4. CONCLUSION

The DCASE community has a key role to play at the intersection
between sound design and healthcare. Yet, fulfilling this role comes
with challenge of its own, such as: privacy, cybersecurity, and lim-
ited labeled data. In this article, we have presented a first prototype

4Groupe Nantais d’Éthique dans le Domaine de la Santé (GNEDS) -
n°22-09-090
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Figure 2: Spectrograms from audio recordings in the Neonatal Intensive Care Unit (NICU). First row corresponds to audio recordings
transformed into fast third-octaves spectrograms. Second row corresponds to Mel spectrograms transcoded with the transcoder. Third row
corresponds to groundtruth Mel spectrograms, obtained with Mel transformation on the waveform. PANN-1/3oct predictions, using the
mapping between Audioset classes and NICU classes, are shown in fourth row.
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Figure 3: Presence of conversation and footsteps on a day of April 2023 in one room, as averaged over three-minute intervals. The badge of
the health professional (EPC) and of the mother are also shown during the period. The shaded areas denote intervals in which more than one
adult is present in the room.

of acoustic sensor which demonstrates the feasibility of sound event
detection in a neonatal intensive care unit (NICU). The main limita-
tion of our study is that, because our sensor does not record audio as
waveforms, it is impossible to establish a “ground truth” by expert
annotation. We have circumvented this limitation in two way: first,
by evaluating the system on well-controlled isolated sounds; and
second, by matching the sequence of detected sound events with
non-acoustical information. In the future, we plan to refine the inte-
gration of multiple data modalities towards a more comprehensive
understanding of patients and their lived experiences.
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ABSTRACT

In this study, we propose an effective loss function for training neu-
ral networks (NNs) in acoustic-based traffic monitoring. This task
involves estimating the number of vehicles from a fixed duration
of acoustic input, such as one minute. Since the distribution of the
number of passing vehicles depends on the road and can deviate
significantly from a normal distribution, using Mean Square Error
(MSE) as the loss function may not always lead to efficient learn-
ing. To address this, we introduce a matching loss for the ranking
function into the loss function. This enhances learning by increas-
ing the rank correlation between true and estimated vehicle counts.
We evaluated the effectiveness of this loss function on the devel-
opment dataset of the DCASE 2024 Challenge Task 10 under var-
ious input feature and network architecture conditions. The results
demonstrate that the proposed loss function significantly improves
Kendall’s Tau Rank Correlation (KTRC) and Root Mean Square Er-
ror (RMSE), highlighting its potential for improving acoustic-based
traffic monitoring systems.

Index Terms— matching loss, traffic monitoring, vehicle
counting, deep neural network, acoustic sensing, microphone array

1. INTRODUCTION

Measuring road traffic conditions, including traffic volume, speed,
density, time occupancy, vehicle type, and direction of travel, is
essential for understanding real-time traffic situations. Traffic mon-
itoring systems that provide this information to road traffic control
systems and users are also crucial for smart city development [1,2].
Various sensors can be used for traffic monitoring, including intru-
sive systems embedded in the road (e.g., loop coils [3], vibration
sensors), non-intrusive systems mounted over or on the side of the
road (e.g., radar, cameras, infrared sensors, acoustic sensors), and
off-road mobile devices (e.g., aircraft, satellites) [4].

Although acoustic sensors, that is, microphones installed on the
roadside are not the most common method, they offer several advan-
tages such as low installation and maintenance costs, low energy
consumption, non-intrusiveness, and insensitivity to obstructions,
shadows, and lighting conditions. Approaches to acoustic-based
traffic monitoring are roughly classified into two types: rule-based
[5–9] and machine-learning-based [10–19]. In particular, one of the
latters, [18], provides a baseline system used in DCASE 2024 Chal-
lenge, the major international competition in the field of acoustic

scene and event understanding. It represents the growing interest in
recent years in machine-learning-based acoustic traffic monitoring.
Various data augmentation methods have been proposed [20–29],
especially, [18] investigates the effectiveness of data augmentation
by an open-source road acoustic simulator [30].

In this study, following the DCASE 2024 Task 10 setup, we ad-
dress the problem of counting the number of vehicles per vehicle
type (car or Commercial Vehicle, CV) and per direction of travel
(left or right) from acoustic signals. Specifically, we focus on the
loss function for training a neural network (NN). Mean Square Er-
ror (MSE) is a common loss function for this task. However, using
MSE may not be optimal for counting vehicles because the distri-
bution of passing vehicles varies depending on the road and can
significantly deviate from a normal distribution. Therefore, we pro-
pose a new loss function that aims to increase the rank correlation
between the true and estimated number of vehicles since the rank
correlation is a nonparametric measure and does not depend on the
data distribution. This loss function is derived by applying the con-
cept of matching loss [31] to the ranking function.

We conducted an experimental evaluation for checking the ef-
fectiveness of our loss function using training, validation, and syn-
thetic data from the DCASE 2024 Challenge Task 10 development
dataset [17]. We also compared several combinations of input
acoustic features and two network architectures. Evaluated using
Kendall’s Tau Rank Correlation (KTRC) and Root Mean Square
Error (RMSE), our loss function showed improvement in both met-
rics. Additionally, we assessed the estimation performance with
and without pre-training. The results confirmed that pre-training
enhanced the estimation performance.

This paper is organized as follows. Section 2 describes the in-
put features and network architectures considered in this study of
acoustic-based traffic monitoring with NN. Section 3 introduces the
proposed loss function. Section 4 presents the experimental evalua-
tion and results. Section 5 provides the conclusion.

2. INPUT FEATURES AND NETWORK ARCHITECTURES

In acoustic-based traffic monitoring with NN, the feature extrac-
tion from the input acoustic signal and the structure of the network
architecture are crucial for efficient learning. In this section, we
describe several input features and network architectures, whose ef-
fectivess has been confirmed in the baseline system of the DCASE
2024 Challenge Task 10 [17,18] and our previous work [19,20]. We
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will compare the performance of these various combinations in the
experimental evaluation section 4.

2.1. Input features

Suppose that we have multiple microphones and let xi ∈ RN be
the acoustic signal of traffic sound captured by the ith microphone.

We express the short-time Fourier transform as

Xi = STFT(xi). (1)

where Xi ∈ CF×T is the complex-valued spectrogram with F fre-
quency bins and T time frames. The amplitude of Xi and the phase
difference between Xi and Xj are known to be the basis for effec-
tive features in acoustic-based traffic monitoring as follows.

LogMelSpec: XLMS
i ∈ RM×T is calculated by taking the loga-

rithm of the mel-scale transform of the amplitude spectrogram
of Xi, and M specifies the number of mel frequency bands.

LogPowSpec: XLPS
i ∈ RF×T , where the (f, t) element

XLPS
i (f, t) is calculated by

XLPS
i (f, t) = 10 log10(|Xi(f, t)|2). (2)

Here, f and t represent indices in the frequency and time direc-
tions, respectively, and Xi(f, t) denotes the (f, t) element of
Xi (the same notation applies to other matrices).

GCC-PHAT: XGCC
i,j ∈ RG×T , where the (τ, t) element

XGCC
i,j (τ, t) is calculated using the following equation [32]:

XGCC
i,j (τ, t) = F−1

f→τ

Xi(f, t)X
∗
j (f, t)

|Xi(f, t)||Xj(f, t)|
. (3)

Here, F−1
f→τ is the inverse Fourier transform from f to τ . The

indices i, j refer to distinct channels, and G specifies the number
of GCC-PHAT coefficients.

PhaseDiff: XPDC
i,j ∈ RF×T and XPDS

i,j ∈ RF×T , where the (f, t)

elements, XPDC
i,j (f, t) and XPDS

i,j (f, t), are calculated using the
following equations [33]:

∆ϕi,j(f, t) = arg(Xi(f, t)/Xj(f, t)), (4)

XPDC
i,j (f, t) = cos(∆ϕi,j(f, t)), (5)

XPDS
i,j (f, t) = sin(∆ϕi,j(f, t)). (6)

2.2. Network architecture

Convolutional Neural Network (CNN)-based architecture is known
to be effective in acoustic-based traffic monitoring. In this study,
we consider the following two types of the CNN architectures.

CRNN: The amplitude-related and phase-related input features
stack in the direction of the newly added channel dimension
and are passed separately through network branches with the
same structure. The network branches consist of convolutional
encoders and Time-Distributed Multi-Layer Perceptrons (TD-
MLP), composed of multiple Conv2D layers and a fully con-
nected (FC) layer, respectively. TD-MLP is independently ap-
plied to each time frame of their input. Features that pass
through each branch are concatenated and processed by a fur-
ther TD-MLP layer, followed by a Gated Recurrent Unit (GRU)
and an FC layer to regress labels.

ConvMixer: Each channel’s amplitude-related and phase-related
input features are concatenated in the direction of the frequency
dimension and passed through the embedding layer, the Con-
vMixer layer [34,35], and the classifier layer. In the embedding
layer, patch embedding is applied to input features by handling
short time frames in the input as patches. ConvMixer layer has
a repeating network structure consisting of a pointwise convolu-
tion, which mixes the features for each time frame using an FC
layer, and a depthwise convolution, which mixes the features by
convolving in the direction of the time frame. In the classifier
layer, the output of the ConvMixer layer is finally aggregated in
the time-frame direction by the average pooling layer and then
transformed into a one-dimensional vector representing the la-
bel by the FC layer.

3. PROPOSED LOSS FUNCTION

Let y(∗)k and ŷ
(∗)
k ∈ R be the true and estimated vehicle counts for

data k and label (∗) ∈ {car-l2r, car-r2l,CV-l2r,CV-r2l}1, respec-
tively, where k = 1, . . . ,K is the data index within a batch of size
K ∈ N. Let y(∗) and ŷ(∗) ∈ RK be the collections of true and
estimated counts, respectively, for all data k = 1, . . . ,K.

A loss function is used to evaluate the performance of a model
by quantifying the closeness between the true value y

(∗)
k and its

estimate ŷ
(∗)
k . One of the most common loss functions is the MSE

such as

MSE:

LMSE(ŷ
(∗);y(∗)) =

1

K

K
k=1

(y
(∗)
k − ŷ

(∗)
k )2. (7)

While, the key idea of our proposed loss function is to induce
the correspondence between true and estimated order relations of
data, aiming to enhance learning efficiently. Here, φ : RK → ZK

is referred to as the ranking function, defined as

φ(y(∗)) =

K
k=1




sign(ŷ
(∗)
1 − ŷ

(∗)
k )

...
sign(ŷ

(∗)
K − ŷ

(∗)
k )


 . (8)

Intuitively, [φ(y(∗))]k denotes the number of elements smaller than
ŷ
(∗)
k minus the number of elements larger than ŷ

(∗)
k . Thus, φ maps

the ranking of the input vector y(∗) into the integers within {−K+

1, . . . ,K − 1}. If we want to bring φ(ŷ(∗)) and φ(y(∗)) closer,
a straightforward loss function could be ||φ(ŷ(∗)) − φ(y(∗))||22,
where || · ||2 denotes the L2 norm of a vector. However, this func-
tion cannot be used as a loss function due to the discontinuity and
zero gradient of the function φ. Instead, we propose the following
loss function.

Matching:

LMatching(ŷ
(∗);y(∗))

=
1

K2


1

2

K
k=1

K
l=1

|ŷ(∗)k − ŷ
(∗)
l | −

K
k=1

[φ(y(∗))]kŷ
(∗)
k


. (9)

1The number of passenger cars or commercial vehicles (CVs) moving
from left to right or right to left per minute.
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Note that LMatching is convex with respect to its first variable
ŷ(∗), and its subgradient of LMatching is provided by

∇LMatching(ŷ
(∗);y(∗)) =

1

K2

(
φ(ŷ(∗))− φ(y(∗))

)
. (10)

It means that minimizing LMatching induces a correspondence be-
tween φ(ŷ(∗)) and φ(y(∗)), i.e., the ranking of the true and esti-
mated data. A mathematical relationship like that between the loss
function LMatching and the vector-valued function φ is generally
referred to as the matching loss [31]. Motivated by this concept, we
incorporate the matching loss for the ranking function as described
above to enhance the correspondence between the ranking of the
true and estimated data.

Note that the ranking is invariant to bias, meaning that
φ(ŷ(∗)) = φ(ŷ(∗) + c1) for any constant c, where 1 denotes the
vector each of whose element is one. This indicates that using only
LMatching is insufficient for estimating the correct number of vehi-
cles without bias. Therefore, finally, we propose to combine these
loss functions such as

MSE+Matching:
LMSE+Matching = (1− λ)LMSE + λLMatching. (11)

where λ is a weight parameter for the combination.

4. EXPERIMENTAL EVALUATIONS

In this section, we present the conditions and results of an exper-
iment to evaluate the effectiveness of our proposed loss function.
The experiments were conducted using the input features and net-
work architectures described in Section 2.

4.1. Experimental conditions

We trained our model using the training2, validation3, and synthetic4

data from the DCASE 2024 Challenge Task 10 development dataset
[17] and evaluated it using the validation data5. We referred to the
baseline system of DCASE 2024 Challenge Task 10 [17, 18], using
synthetic data exclusively for pre-training and real data for fine-
tuning.

Two feature patterns were used as input features: LogMel-
Spec+GCC-PHAT and LogPowSpec+PhaseDiff, which combine
amplitude-related and phase-related features. The number of chan-
nels is four (i, j ∈ {1, 2, 3, 4}), and the phase-related input features
are computed between pairs of channels i and j. The sampling fre-
quency Fs was 16 kHz, the STFT frame length N was 1024 points
(64 ms), and the frameshift was 160 points (10 ms) for a 1-min sig-
nal. When the signal length L = 60 s, F = ⌊N/2⌋+ 1 = 513 and
T = ⌈L · Fs/(N/2)⌉ = 1875. The number of frequency bands M
of LogMelSpec was set to 48, and the number of coefficients G of
GCC-PHAT was set to 96.

In the CRNN, we used six Conv2D layers of convolutional en-
coders, each with filters 32-32-64-64-128-128 and a kernel size of
(5, 5) and a stride of 2 in both dimensions. The first TD-MLP has
two layers with 128 neurons each, the second TD-MLP has three
layers with 128 neurons each, the GRU has two layers with 128

27294 1-min training samples of real data collected from 6 sites.
37705 1-min validation samples of real data collected from 6 sites.
41224 1-min synthetic data generated via pyroadacoustics simulator [30].
5Since the labels for the DCASE 2024 Challenge Task 10 evaluation

dataset are not yet publicly available, validation data were used [17].
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Figure 1: Error with and without Matching and pre-training

neurons each, and the last FC layer has four neurons. In the Con-
vMixer, the number of embeddings was set to T = 1875, the fea-
ture vector dimension was 5, the kernel size of the depthwise con-
volution was 5, and the number of iterations was 5.

Two loss patterns were used as loss functions: MSE and
MSE+Matching. During training, the average loss of each label
was used to update the loss function, with the weighting coefficient
λ of MSE+Matching set to 0.5, which was determined experimen-
tally, and the batch size K set to 16. Additionally, the learning
rate for pre-training and without pre-training learning was set to
0.00005, and the learning rate for fine-tuning was set to 0.0005, op-
timized by Adam [36]. We trained the model for 100 epochs and
selected the best checkpoint based on validation loss. KTRC and
RMSE were used as evaluation metrics and were evaluated for four
labels: car-l2r, car-r2l, CV-l2r, and CV-r2l.

4.2. Experimental results

Table 1 shows the performance of vehicle counts for each location.
CRNN performed better than ConvMixer, particularly in terms of
CV accuracy and pre-training effectiveness. The estimation perfor-
mance with pre-training, using LogPowSpec+PhaseDiff, CRNN,
and MSE+Matching, was promising, particularly at location 6.
Figure 1 shows the difference between true and estimated labels un-
der these conditions, with and without Matching and pre-training.
The results in the table and figure show that our proposed loss func-
tion and pre-training were confirmed to enhance estimation perfor-
mance. Additionally, our proposed loss function improved not only
in KTRC but also in RMSE. We submitted this best-performing
condition system for the DCASE 2024 Challenge Task 10 [37].

5. CONCLUSIONS

In this study, we proposed a new loss function for acoustic-based
traffic monitoring using NN. Our proposed loss function, derived
from matching loss to the ranking function, aims to increase the
rank correlation between the orders of true and estimated number
of vehicles in each batch. We evaluated the effectiveness of our
proposed loss function on the development dataset of the DCASE
2024 Challenge Task 10 and investigated good combinations of in-
put acoustic features and network architectures. Our proposed loss
function demonstrated improvements not only in KTRC but also in
RMSE. As future work, our proposed loss function can be applied to
other acoustics-based traffic monitoring tasks, such as traffic speed
estimation.
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Table 1: Performance of vehicle counts for each location

Loc. Arc. Input Loss Pre-tr. ↑ Kendall’s Tau Rank Corr ↓ RMSE
car-l2r car-r2l CV-l2r CV-r2l car-l2r car-r2l CV-l2r CV-r2l

1

CRNN LogMelSpec+GCC-PHAT MSE ✓ 0.415 0.423 0.164 0.153 2.619 2.966 0.999 0.901
CRNN LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.392 0.447 0.136 0.172 2.662 2.914 0.922 0.868
CRNN LogPowSpec+PhaseDiff MSE ✓ 0.39 0.455 0.182 0.129 2.689 2.894 0.88 0.884
CRNN LogPowSpec+PhaseDiff MSE+Matching ✓ 0.403 0.433 0.13 0.118 2.642 2.946 0.949 0.875
ConvMixer LogMelSpec+GCC-PHAT MSE ✓ 0.421 0.406 0.16 0.141 2.643 3.039 0.837 0.835
ConvMixer LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.429 0.429 0.026 0.152 2.626 2.982 0.866 0.837
ConvMixer LogPowSpec+PhaseDiff MSE ✓ 0.29 0.306 0.121 0.105 2.894 3.23 0.842 0.84
ConvMixer LogPowSpec+PhaseDiff MSE+Matching ✓ 0.158 0.144 0.096 0.054 3.526 3.927 1.266 1.701

2

CRNN LogMelSpec+GCC-PHAT MSE ✓ 0.768 0.409 0.201 0.026 1.868 2.627 0.815 0.678
CRNN LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.685 0.376 0.086 -0.002 2.466 2.832 0.862 0.715
CRNN LogPowSpec+PhaseDiff MSE ✓ 0.685 0.462 -0.003 0.015 2.501 2.478 0.863 0.729
CRNN LogPowSpec+PhaseDiff MSE+Matching ✓ 0.774 0.623 0.128 0.179 1.9 1.951 0.824 0.623
ConvMixer LogMelSpec+GCC-PHAT MSE ✓ 0.415 0.361 0.213 -0.103 8.093 6.595 0.963 1.206
ConvMixer LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.513 0.355 -0.118 0.045 4.384 3.429 1.766 1.003
ConvMixer LogPowSpec+PhaseDiff MSE ✓ 0.44 0.318 0.174 -0.126 3.536 3.194 0.73 0.919
ConvMixer LogPowSpec+PhaseDiff MSE+Matching ✓ 0.445 0.194 -0.193 -0.132 3.852 6.916 0.848 2.159

3

CRNN LogMelSpec+GCC-PHAT MSE ✓ 0.545 0.578 0.197 0.381 1.739 1.281 0.3 0.199
CRNN LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.548 0.584 0.081 -0.008 1.73 1.275 0.308 0.22
CRNN LogPowSpec+PhaseDiff MSE ✓ 0.557 0.584 0.191 0.226 1.726 1.286 0.293 0.224
CRNN LogPowSpec+PhaseDiff MSE+Matching ✓ 0.548 0.582 -0.028 -0.03 1.743 1.284 0.359 0.241
ConvMixer LogMelSpec+GCC-PHAT MSE ✓ 0.478 0.442 0.097 0.117 1.872 1.478 0.305 0.234
ConvMixer LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.49 0.449 0.064 0.052 1.851 1.477 0.319 0.263
ConvMixer LogPowSpec+PhaseDiff MSE ✓ 0.494 0.486 0.079 0.141 1.845 1.43 0.3 0.218
ConvMixer LogPowSpec+PhaseDiff MSE+Matching ✓ 0.472 0.419 -0.044 0.008 1.87 1.514 0.298 0.215

4

CRNN LogMelSpec+GCC-PHAT MSE ✓ 0.439 -0.013 -0.061 0.592 1.641 1.666 0.797 0.67
CRNN LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.585 0.467 0.114 0.562 1.622 0.801 0.501 0.41
CRNN LogPowSpec+PhaseDiff MSE ✓ 0.658 -0.189 0.251 -0.197 1.502 2.16 0.667 0.57
CRNN LogPowSpec+PhaseDiff MSE+Matching ✓ 0.049 -0.013 -0.203 0.07 2.406 1.951 0.739 0.626
ConvMixer LogMelSpec+GCC-PHAT MSE ✓ 0.512 0.038 -0.266 -0.055 1.892 1.905 0.751 0.593
ConvMixer LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.366 -0.164 0.301 -0.602 1.783 2.511 1.321 0.604
ConvMixer LogPowSpec+PhaseDiff MSE ✓ 0.341 0.29 0.408 0.602 9.199 1.699 1.097 1.702
ConvMixer LogPowSpec+PhaseDiff MSE+Matching ✓ 0.073 -0.215 0.301 0.456 2.048 1.355 0.592 0.917

5

CRNN LogMelSpec+GCC-PHAT MSE ✓ 0.428 0.498 0.068 0.156 0.771 0.619 0.402 0.187
CRNN LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.303 0.091 -0.063 0.59 0.827 0.886 0.374 0.234
CRNN LogPowSpec+PhaseDiff MSE ✓ 0.032 0.163 0.157 0.328 0.972 0.842 0.352 0.245
CRNN LogPowSpec+PhaseDiff MSE+Matching ✓ 0.498 0.283 -0.101 0.095 0.785 0.781 0.368 0.275
ConvMixer LogMelSpec+GCC-PHAT MSE ✓ 0.129 0.004 0.096 -0.134 1.013 0.889 0.372 0.407
ConvMixer LogMelSpec+GCC-PHAT MSE+Matching ✓ -0.16 -0.149 -0.001 -0.107 1.271 0.842 0.769 0.278
ConvMixer LogPowSpec+PhaseDiff MSE ✓ 0.092 0.025 -0.048 0.135 0.947 0.852 0.357 0.284
ConvMixer LogPowSpec+PhaseDiff MSE+Matching ✓ 0.042 0.014 0.072 -0.034 0.947 1.006 0.372 0.28

6

CRNN LogMelSpec+GCC-PHAT MSE ✓ 0.849 0.737 0.788 0.729 1.337 1.663 0.443 0.466
CRNN LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.845 0.726 0.808 0.744 1.394 1.697 0.452 0.458
CRNN LogPowSpec+PhaseDiff MSE ✓ 0.827 0.713 0.753 0.681 1.507 1.748 0.519 0.511
CRNN LogPowSpec+PhaseDiff MSE+Matching ✓ 0.854 0.738 0.821 0.761 1.288 1.607 0.433 0.451
ConvMixer LogMelSpec+GCC-PHAT MSE ✓ 0.428 0.459 0.313 0.335 3.712 2.854 0.976 0.824
ConvMixer LogMelSpec+GCC-PHAT MSE+Matching ✓ 0.495 0.43 0.281 0.297 3.409 2.925 1.001 0.791
ConvMixer LogPowSpec+PhaseDiff MSE ✓ 0.494 0.49 0.404 0.308 3.368 2.764 0.955 0.798
ConvMixer LogPowSpec+PhaseDiff MSE+Matching ✓ 0.671 0.517 0.285 -0.069 2.584 2.707 1.002 0.857

6

CRNN LogMelSpec+GCC-PHAT MSE — 0.824 0.709 0.78 0.714 1.526 1.777 0.514 0.491
CRNN LogMelSpec+GCC-PHAT MSE+Matching — 0.816 0.71 0.788 0.706 1.596 1.814 0.516 0.533
CRNN LogPowSpec+PhaseDiff MSE — 0.773 0.668 0.651 0.502 1.829 2.012 0.649 0.656
CRNN LogPowSpec+PhaseDiff MSE+Matching — 0.803 0.693 0.786 0.71 1.633 1.864 0.509 0.504
ConvMixer LogMelSpec+GCC-PHAT MSE — 0.752 0.659 0.252 0.141 1.968 1.998 1.005 0.835
ConvMixer LogMelSpec+GCC-PHAT MSE+Matching — 0.763 0.651 0.297 0.19 2.313 2.077 1.009 0.834
ConvMixer LogPowSpec+PhaseDiff MSE — 0.774 0.65 0.343 0.118 1.945 2.38 0.966 0.847
ConvMixer LogPowSpec+PhaseDiff MSE+Matching — 0.744 0.601 0.249 0.148 2.403 2.474 1.036 0.852
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TOWARDS LEARNING A DIFFERENCE-AWARE GENERAL-PURPOSE AUDIO
REPRESENTATION

Daiki Takeuchi, Masahiro Yasuda, Daisuke Niizumi, Noboru Harada

NTT Corporation, Japan

ABSTRACT

General-purpose audio representations with self-supervised learn-
ing have shown promising results on diverse tasks. Methods such
as BYOL-A try to learn semantically robust representation by ig-
noring differences between two data computed using data augmen-
tations that simulate semantically similar data from the same input.
However, some audio-difference-related tasks require representa-
tions that are sensitive to slight semantic differences while maintain-
ing robustness to similar data. This study investigates how to learn
difference-aware audio representations. We propose subtraction-
consistent representation learning in which mixed sounds are sepa-
rable by subtracting representations in latent space. In the proposed
method, an additional network extending BYOL-A learns the differ-
ence between a sound sample and its down-mix with another sound
sample. Experiments confirmed that the proposed method improves
the accuracy of difference-aware audio tasks while maintaining the
general-purpose audio representation performance.

Index Terms— general-purpose audio representation, audio
difference, self-supervised learning

1. INTRODUCTION

General-purpose audio representations with self-supervised learn-
ing have shown promising results on diverse tasks [1–4]. Some
of the self-supervised learning methods try to semantically robust
learn representations by ignoring differences between two data aug-
mentations applied to the same input. Data augmentations, such
as time shifting, pitch shifting, and mixing other audio samples or
noise, are designed and selected to emulate divisions to be ignored
to obtain semantically similar representations in the latent space.
As a result, learned representation will be robust to the difference
between semantically similar data.

However, some difference-aware audio tasks, such as audio re-
trieval with auxiliary information [5], require representations that
are sensitive to slight semantic differences while maintaining ro-
bustness to similar data. Existing general-purpose representation
learning methods do not sufficiently solve this kind of task.

To address the lack of difference awareness in conventional
self-supervised learning, we propose subtraction-consistent repre-
sentation learning in which mixed sounds are separable by subtract-
ing representations in latent space. The overview of the proposed
method is shown in Fig. 1. The proposed method is implemented as
an extension of BYOL-A [3]. Subtraction-consistent representation
learning is based on the hypothesis that the semantic information
present in a mixture of two sounds at similar sound pressure levels is
equivalent to the combined semantic information of the two sounds
before mixing. Our training method subtracts the representation of
one mixed audio sample from the representation of the mixture and
maximizes the agreement between the remaining representation of

Data augmentation Encoder Projector Predictor

Minimize
Stop gradient

: Exponetial moving average

Conventional
Proposed

MinimizeIntra-batch mixing

Weighted
LogSumExp

Figure 1: Overview of the proposed method and BYOL-A (con-
ventional method). The proposed method (colored in red) extends
BYOL-A (colored in green), mixing the augmented view v among
other batch data to make a mixed input w. We train the proposed
method to predict the BYOL-A target network output zξ from the
difference between the encoder outputs of v and w.

the subtraction and the representation of the other mixed audio sam-
ple. Multitask learning of BYOL-A and subtraction-consistent rep-
resentation learning losses are performed during training. BYOL-A
learns semantically robust audio representation, while subtraction-
consistent representation learning makes that representation aware
of differences. As a result, our method should learn a difference-
aware general-purpose audio representation.

Experiments confirm the learned representation by the pro-
posed method improves the performance on two difference-aware
audio tasks: environmental sound classification under noisy con-
ditions and audio retrieval with auxiliary information. We also
evaluate the learned representations in various downstream tasks
and confirm that the performance was comparable to that learned
by conventional BYOL-A. Therefore, the proposed method learns
the difference-aware audio representation without degrading the
general-purpose audio representation performance.

2. RELATED WORK

2.1. Self-supervised learning for audio representation

The general-purpose audio representation with self-supervised
learning is effective for diverse tasks, including environmental
sounds, music, and speech. BYOL-A [3] combines the self-
supervised learning method Bootstrap Your Own Latent [6] (BYOL)
with audio data augmentation. It learns representations invariant
to differences in background noise and changes in the pitch and
duration of audio. COLA [1] uses contrastive learning to learn rep-
resentations that become closer to the segments cropped from the
same audio clip and farther among the segments from the different
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audio clips, making the representations of an audio clip invariant
to the cropping location. Fonseca et al. [2], and DeLoRes [4] also
learn representations invariant to audio differences produced by
data augmentation.

While they learn representations robust to changes produced by
data augmentation and differences in segment cropping locations,
they do not explicitly learn to encode information about differences
in audio. This study investigates the learning of a general-purpose
audio representation with awareness of audio differences by intro-
ducing the difference-based loss created by mixing sounds.

2.2. Difference-aware audio tasks

The recognition and retrieval tasks related to audio differences have
also been studied. In [5], audio retrieval with auxiliary information
was proposed. The content-based audio retrieval with text-query
modifier [5] enables us to search an audio clip from an audio sample
and the description of the difference. This method uses the common
latent space between audio clips and descriptions of differences.

The methods to generate text explaining the difference between
two sounds have also been studied [7, 8]. In [8], self-supervised
learning focusing on the fact that input two audio clips are similar
but slightly different is applied for learning the audio difference en-
coder. For the audio captioning system, the training method using
the difference between the audio representation of before and after
mixing is proposed in [9]. This study fixed the parameters of the
encoder model that outputs acoustic representations and utilized the
differences to train the text generation model. Unlike this study, we
use differences to learn the parameters of the encoder model that
outputs the audio representation.

3. BACKGROUND: BYOL-A

BYOL-A [3] is the method to obtain general-purpose audio rep-
resentation by self-supervised training based on the BYOL frame-
work [6]. The green area in Fig. 1 shows the overview of the BYOL
training procedure. BYOL framework uses online and target net-
works with parameters θ and ξ, respectively. The online network
has encoder fθ , projector gθ , and predictor qθ . The target network
has encoder fξ and projector gξ. The parameter of the target net-
work ξ is the exponential moving average of the parameter of the
online network θ. In the online network, compute v by data aug-
mentation t to input x, then pass through the encoder, projector,
and predictor to obtain qθ(zθ). In the target network, compute v′

by another data augmentation t′ to input x, then pass through the
encoder and projector to obtain zξ. After that, the normalized mean
squared error of qθ(zθ) and zξ is used for training loss:

Lbyol = ||l2(qθ(zθ))− l2(zξ)||22

= 2− 2 · ⟨qθ(zθ), zξ⟩
||qθ(zθ)||2 · ||zξ||2

, (1)

where l2(·) is l2-normalization, and ⟨x, y⟩ indicates the inner prod-
uct of x and y. Thus, the BYOL framework can obtain the feature
representation robust to the data augmentation t and t′, and design-
ing the data augmentation is one of the important elements to obtain
better representation.

BYOL-A uses mel-spectrogram to preprocess the audio signal
and three data augmentation methods that consider the nature of
the audio signal: Mixup, random resize crop (RRC), and random
linear fader (RLF). Mixup randomly adds another sound as back-
ground sound, RRC performs shifts and stretches in the axis of time

and frequency randomly, and RLF makes random changes of tem-
poral amplitude, which simulates fade in or out. BYOL-A applies
Mixup, RRC, and RLF to input x sequentially and outputs the data-
augmented views v and v′.

4. PROPOSED METHOD

The proposed method adds self-supervised learning to represent
the relation between the audio signals before and after the mixture
through differences in feature representations in the training proce-
dure of BYOL-A. The training procedure of the proposed method is
shown in red in Fig. 1. The proposed method is structured to include
BYOL-A and in addition to a conventional loss Lbyol, it learns to
predict the target network output zξ from the difference between au-
dio representations before and after the mixture. The computational
procedure of the proposed method branches from the input v af-
ter data augmentation, following the conventional BYOL-A. First,
the mixture w is obtained by intra-batch mixing v with its index-
shifting s(v) and weighted log-sum-exp:

w = log(γ exp(s(v)) + (1− γ) exp(v)), (2)

where, γ is the mixing rate, s is the intra-batch shift operator,
s(v) = s([v1, v2, . . . , vN ]) = [v2, . . . , vN , v1] and vn is n-th
data of v. Then, the difference between the encoder output of the
mixture fθ(w) and encoder output of the sound before mixing mul-
tiplied by the mixing ratio γs(yθ) is calculated and input into the
projector gθ and another predictor q̂θ to compute q̂θ(ẑθ). Finally,
we get the difference loss Ldiff , a normalized mean squared error
between q̂θ(ẑθ) and zξ:

Ldiff = ||l2(q̂θ(ẑθ))− l2(zξ)||22

= 2− 2 · ⟨q̂θ(ẑθ), zξ⟩
||q̂θ(ẑθ)||2 · ||zξ||2

. (3)

The training step backpropagates the weighted sum of two loss (1−
λ)Lbyol + λLdiff , where λ is the weight parameter.

5. EXPERIMENTS

We conducted the following experiments to evaluate the audio rep-
resentations learned by the proposed method, and we used BYOL-
A [3] as the baseline method.

5.1. Pre-training Setup

All audio data was transformed into a mel-spectrogram with a sam-
pling frequency of 16,000 Hz, window size of 25 ms, hop size of
10 ms, and mel-spaced frequency bins F = 64 in the range of
50 to 8,000 Hz. The pre-training dataset was a random sample of
200,000 files from AudioSet [10]. Note that it was approximately
1/10 of the original size. The pre-training only utilized audio files
without employing any labels. The same setup for data augmenta-
tion, exponential moving average, and model structures was used as
the conventional method [3]. Adam [11] was used as the optimizer
with a learning rate 0.001. The number of epochs was set to 100.
The weight parameter λ, which decides the balance between Lbyol

and Ldiff was set to 0, 0.1, 0.2, 0.5, or 0.8. Note that λ = 0 corre-
sponds to the baseline method. The mixing rate of the intra-batch
mixing γ is randomly sampled uniformly between 0.4 and 0.6 for
each input.

177



Detection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, JapanDetection and Classification of Acoustic Scenes and Events 2024 23–25 October 2024, Tokyo, Japan

Mixing Mixture

(a) Reference background
(100% overlap)

(b) Reference background
(50% overlap)

(c) Reference background
(0% overlap)

Sound event
(From ESC-50)

Background sound
(From FSD50K)

Figure 2: Procedure to generate BgKnown ESC-50. We mix the
ESC-50 samples with the FSD50K sample as background noise to
create a mixture and three reference background sounds.

Table 1: BgKnown ESC-50 results (%). A larger λ learned more
from Ldiff improves accuracy, validating that the proposed ap-
proach achieved the difference-aware property.

Method λ Mix (a) 100% (b) 50% (c) 0%

Baseline 0 47.25 55.29 52.21 47.92

Proposed 0.1 47.39 55.54 52.46 48.50
Proposed 0.2 47.42 57.54 53.37 48.67
Proposed 0.5 47.33 58.96 54.63 50.50
Proposed 0.8 45.84 59.96 55.50 51.96

5.2. Evaluation: Background-known ESC-50

This experiment verified that the audio representation learned by
the proposed method holds effective information about the audio
differences for solving a task. To do so, we created a dataset,
Background-known ESC-50 (BgKnown ESC-50), and tested the
pre-trained models.

Dataset: Background-known ESC-50
BgKnown ESC-50 extends ESC-50 [12], an environmental sound
classification task with 50 classes, by mixing the FSD50K audio
files as background noise to the ESC-50 audio files. As shown in
Fig. 2, we created a mixture (an ESC-50 audio contaminated with
noise) and three reference backgrounds. While solving a task using
only the mixture is challenging due to the noise, we made one of
the reference backgrounds available; the more effectively the solver
utilizes the difference between a mixture and a reference, the higher
the task performance.

We randomly selected the FSD50K sample with 10 seconds or
longer and cropped (a) a 5-second long clip, (b) a 5-second long
clip with 50% overlap with (a), and (c) a 5-second long clip without
overlap from (a), and mixed (a) into ESC-50 sample with a random
SNR between 0 to 3 dB using Scaper [13]. We kept the labels un-
changed. Among the split folds of ESC-50, we assigned 1, 2, and
3 to the training set (1200 files) and 4 and 5 to the test set (800
files). We used the FSD50K development and evaluation sets as the
background noise for the training and test sets, respectively.

Experimental setup
We conducted a linear evaluation using feature differences on Bg-
Known ESC-50. First, we used the pre-trained encoder fθ to obtain
representations ymix and ybg of the mixture and reference back-
ground and obtained the difference representation ydiff = ymix −
ybg. Then, we conducted a linear evaluation using the ydiff on the
three problem settings (a) to (c).
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Figure 3: Model and adapter structure for audio retrieval with aux-
iliary information. We train the system using a contrastive learning
and classification task. Audio Emb and Text Emb indicate audio
and text embedding layers, respectively. GELU is the Gaussian er-
ror linear unit [14].

Table 2: APwD-Dataset results (%). The proposed method im-
proves the audio encoder, performing better than the conventional
and baseline, with the best results using λ of 0.2 to 0.5.

Rain Traffic
Method λ R@1 R@5 R@10 R@1 R@5 R@10

Conventional [5] - 44.5 72.1 76.9 39.1 62.2 69.5
Baseline 0 50.23 71.66 75.26 36.86 58.59 67.93

Proposed 0.1 51.96 71.63 74.83 37.96 59.73 66.9
Proposed 0.2 53.99 72.06 76.00 37.70 60.06 68.00
Proposed 0.5 52.76 71.73 75.73 39.73 60.63 68.30
Proposed 0.8 51.66 70.63 74.86 39.56 61.36 68.16

We followed the standard linear evaluation procedure in the
conventional method [3] that trains a single linear layer, taking the
difference representation ydiff as input. We set the training epochs
for 200 with early stopping based on the validation loss value, as-
signed 10% of the training set as the validation set, and used the
Adam optimizer with a learning rate of 0.001. We ran the exper-
iments with different random seeds three times and averaged the
results.

Results
Table 1 shows the results of BgKnown ESC-50. In addition to the
(a) to (c), we also tested ymix as is in the linear evaluation, denoted
as “Mix”. The results show that the proposed method improved
accuracy with larger λ for the (a) to (c) when using the difference
representation ydiff . In contrast, the results stayed around 47% for
the Mix when we used the representation of the ymix as it is in-
stead of ydiff . These results demonstrate that the representation of
the proposed method holds effective information about the audio
differences.

Notably, the (c) 0% results show improvement despite no direct
overlap with the mixed background noise. The segments cropped
from the same audio clip share the background sounds (or sound
scene of the clip), indicating that the information about the audio
difference represents the clip-level (or semantic-level) information
of the audio clip.

5.3. Evaluation: Audio retrieval with auxiliary information

We validated the effectiveness of the difference-aware representa-
tion for the difference-aware audio task. We evaluated the represen-
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Table 3: Linear evaluation results on audio classification tasks (%) with 95% CI. The results in bold are the best scores in each task. Many
underlined results within the 95% confidence interval of the baseline show that our models maintain baseline performance.

Method λ ESC-50 US8K SPCV2 VC1 VF CRM-D GTZAN NSynth Surge Average

Baseline 0 82.70 ± 1.76 79.43 ± 0.73 93.16 ± 0.18 57.17 ± 0.97 93.39 ± 0.38 61.81 ± 2.30 67.24 ± 3.93 74.80 ± 0.22 37.82 ± 0.17 71.95

Proposed 0.1 82.12 ± 1.37 79.85 ± 0.33 93.22 ± 0.16 56.90 ± 0.12 93.22 ± 1.10 60.67 ± 0.00 67.24 ± 0.86 76.30 ± 0.37 37.82 ± 0.02 71.93
Proposed 0.2 82.77 ± 0.85 79.72 ± 0.48 93.15 ± 0.31 56.75 ± 0.14 93.38 ± 0.09 61.21 ± 1.64 67.24 ± 3.09 74.23 ± 0.39 37.68 ± 0.29 71.79
Proposed 0.5 82.37 ± 1.56 78.99 ± 0.50 92.96 ± 0.24 55.86 ± 0.03 92.78 ± 0.79 60.65 ± 0.33 66.90 ± 1.48 74.76 ± 0.26 38.17 ± 0.91 71.49
Proposed 0.8 80.80 ± 2.00 78.62 ± 0.12 92.82 ± 0.23 55.19 ± 0.15 92.10 ± 0.45 61.36 ± 1.45 66.78 ± 1.98 74.25 ± 0.29 38.72 ± 0.92 71.18

tations using an audio retrieval task with auxiliary information [5],
one of the practical tasks utilizing semantic differences.

Experimental setup
This experiment used the APwD-Dataset [5], which consists of a set
of two similar audio clips and an auxiliary text describing the dif-
ferences between these audio clips. The task is to search for a target
audio that best matches the query audio and auxiliary text. The au-
dio clip is a mixture of ESC-50 audio event samples (foreground
sound with class labels) and an FSD50K acoustic scene sample
(background sound). This dataset contains two scenes, “Rain” and
“Traffic,” distinguished by their background sounds, consisting of
50,000/1,000 samples for training and testing sets. In addition, class
labels are available for an extra classification task.

We followed [5] for the system and the training/test details.
Fig. 3 shows the system that inputs a query audio and a query-
modifier text (auxiliary information), and searches the target audio
using cosine similarity. During training, it learned through con-
trastive learning and multi-label classification tasks. We used the
encoder pre-trained by the proposed method as the audio embedding
layer in the shared audio encoder blocks and DistilBERT [15] as text
embedding layer in the text encoder block. We froze all audio/text
encoder parameters. We trained the adapter and linear layers for
300 epochs using the Adam [11] optimizer. We assigned 10% of
the training samples for validation, and the model with the smallest
validation loss was used for evaluation. We used recall@K(R@K)
to evaluate the accuracy of audio retrieval. R@K is the rate at which
the ground-truth audio files are included in the Kth rank of the se-
lected candidates. We ran the evaluation with three random seeds
and averaged the results to obtain the final score.

Results
Table 2 shows that the audio encoder pre-trained by the proposed
method improves the audio retrieval performance. The results con-
tain the conventional method [5] using VGGish [16] as audio em-
bedding, the baseline using BYOL-A, and the proposed methods.
The “Rain” results show that the proposed method improved to
53.99% for R@1 from the baseline of 50.23% and the conventional
44.5%. The “Traffic“ results also show that the proposed method
improved to 39.73% for R@1 from the baseline of 36.86% and
the conventional 39.1%. These results validate the effectiveness of
the proposed subtraction-consistent representation learning for the
difference-aware audio task.

5.4. Evaluation: General-purpose audio representation

We validated that the proposed subtraction-consistent representa-
tion learning maintains a general-purpose audio representation per-
formance without the impact of learning the difference-aware abil-
ity. We followed BYOL-A [3] to assess the performance in a linear
evaluation on various tasks, including environmental sound, music,
and speech.

Experimental setup
The tasks for linear evaluation include ESC-50 [12], Urban Sound
8K [17] (US8K), Speech Command V2 [18] (SPCV2), Vox-
Celeb1 [19] (VC1), VoxForge [20] (VF), CREMA-D [21] (CRM-
D), GTZAN [22], NSynth [23], and the Pitch Audio Dataset (Surge
synthesizer) [24] (Surge). The training/test details follow BYOL-
A [3], such as the training epochs 200 with early stopping based on
the validation loss. We ran the evaluation with three random seeds
and averaged the results with 95% CI.

Results
Table 3 shows that the proposed method slightly degrades the
general-purpose performance, while most results are within the
95% confidence interval. The average result degrades from 71.95%
for the baseline to 71.18% for λ = 0.8. However, most task results
of the proposed method are marked with underline, i.e., within the
range of 95% confidence interval of the baseline results. The most
significant degradation of VC1 is -1.98 from 57.17%, which should
be a slight drop considering the confidence interval range is ±0.97.
These results confirm that the performance degradation caused
by the proposed subtraction-consistent representation learning is
generally insignificant.

We confirm that the large λ changes the characteristics of the
learned representations as the APwD-Dataset results in Section
5.3. While using λ = 0.8 degrades the general-purpose perfor-
mance most in Table 3, using λ = 0.5 or 0.8 improves the Traffic
performance of APwD-Dataset in Table 2. In addition, Surge, a
pitch classification of musical instruments, improves as λ becomes
larger, suggesting the representation contains more pitch informa-
tion. These observations suggest a tradeoff of task performance by
the use of learning tasks.

6. CONCLUSION

This study investigates how to learn difference-aware audio repre-
sentations. We propose a self-supervised learning method called
subtraction-consistent representation learning. With the obtained
representation, mixed sounds are separable by subtracting repre-
sentations in latent space. In the proposed method, an additional
network extending BYOL-A learns the difference between a sound
sample and its down-mix with another sound sample. Experiments
confirmed that the proposed method improves the accuracy of audio
signal retrieval with text auxiliary information utilizing semantic
differences in sounds. It was also confirmed that the performance
of the proposed method does not degrade significantly in the lin-
ear evaluation of various traditional audio classification tasks that
require general-purpose audio representation.
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ABSTRACT

This study examines textual, user-written search queries within the
context of sound search engines, encompassing various applications
such as foley, sound effects, and general audio retrieval. Current re-
search inadequately addresses real-world user needs and behaviours
in designing text-based audio retrieval systems. To bridge this gap,
we analysed search queries from two sources: a custom survey and
Freesound website query logs. The survey was designed to collect
queries for an unrestricted, hypothetical sound search engine, result-
ing in a dataset that captures user intentions without the constraints
of existing systems. This dataset is also made available for shar-
ing with the research community. In contrast, the Freesound query
logs encompass approximately 9 million search requests, providing
a comprehensive view of real-world usage patterns. Our findings
indicate that survey queries are generally longer than Freesound
queries, suggesting users prefer detailed queries when not lim-
ited by system constraints. Both datasets predominantly feature
keyword-based queries, with few survey participants using full sen-
tences. Key factors influencing survey queries include the primary
sound source, intended usage, perceived location, and the number
of sound sources. These insights are crucial for developing user-
centred, effective text-based audio retrieval systems, enhancing our
understanding of user behaviour in sound search contexts.

Index Terms— query log analysis, sound search, text-to-audio
retrieval, Freesound

1. INTRODUCTION

Users search for foley, sound effects, and other audio elements
daily, playing a crucial role in multimedia production, gaming, film-
making, and various other creative industries. As the demand for
high-quality and diverse sound assets grows, understanding user
search behaviour becomes increasingly vital for developing efficient
and intuitive sound search engines. Platforms like Freesound [1]
and FindSounds.com [2] offer robust search functionalities to cater
to this growing need for sound resources.

Unlike information retrieval involving purely textual data, mul-
timedia retrieval — and thus sound search — is faced with the prob-
lem of a modality gap. To overcome it, different forms of content-
based retrieval have been proposed, such as querying by acoustic
features or query-by-example [3]. However, these methods are still
not widely adopted and most search interfaces on the internet op-
erate primarily with text-based search queries as input. Despite
their widespread use, there is a significant gap in research address-
ing how users formulate search queries on sound search platforms.
While previous studies have examined search queries for insights

on semantic attributes of sounds [4], no research, to the best of our
knowledge, has systematically investigated the nature and charac-
teristics of sound search queries, leaving a critical aspect of user
behaviour unexplored.

Examining text queries is particularly valuable given the recent
advancements in large language models (LLMs) [5], which have
significantly enhanced the feasibility of processing complex natural
language inputs across various applications. Furthermore, there is a
notable trend towards multi-modal retrieval techniques, which often
operate on long-form input texts [6, 7, 8]. Recently a new family
of audio retrieval systems focusing on cross-modal retrieval tech-
niques have been proposed [9, 10, 11]. These systems promise to
retrieve audio recordings based on text queries by directly matching
the text with the audio content. This approach eliminates the need
for textual metadata and potentially offers users greater expressive
power. However, real-world user needs and behaviours are often
overlooked. For example, these text-to-audio retrieval systems typ-
ically train on full-form sentence descriptions, whereas actual user
inputs may not match this format. As seen in generative systems
for automatic music or image generation, user prompts tend to be
short and underspecified or, more generally, be out-of-distribution
in comparison to the training data [12, 13]. This discrepancy can
hinder system performance.

Prior research in web-search and information retrieval shows
that people tend to search with short queries [14]. However, expec-
tations towards systems might have shifted due to the widespread
adoption of LLMs, and users might provide more text than before.
This leaves us to wonder if there is a need to investigate where on
the spectrum of input length and complexity user preference falls.
This study aims to answer two questions:
RQ1 How would users like to search for sounds using text-only

systems?
RQ2 How do people currently use text queries in a real-world

sound search system?
In short, the contribution of our work is to shed light on user

behaviour, expectations, and the status quo in sound search to guide
the development of future sound search systems. We do so by
analysing actual search queries from both a custom survey and the
Freesound website query logs. Additionally, we provide insights
that are important for guiding the development of user-centred, ef-
fective text-based audio retrieval systems.

2. METHOD

In an effort to answer our research questions, we collect data from
two sources: an online survey and search query logs from the sound-
sharing platform Freesound. The survey features a mock search
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Figure 1: Schematic of the survey workflow: A participant is
prompted with a randomly chosen stimulus, asked to provide a
search query and indicate aspects that influenced their query. In
a subsequent step, a simulated search result is presented together
with the stimulus to elicit an updated query.

task designed to elicit queries that allow interpretations of user ex-
pectations towards a hypothetical sound search system backed by a
limitless retrieval engine. The query log data is selected to reflect
the real-world usage of a sound search service. We publish the data
collected in the survey online.1

2.1. Online survey

We devise a survey to collect user-written text queries with two
goals in mind: i) How would users formulate queries if they do
not feel restricted by the requirements of a specific search system
and ii) what aspects of sounds influence the query formulation.

To ensure realistic and diverse queries, participants were as-
signed a search task where they could submit and potentially update
their queries. The task involved an initial stimulus in the first step
and a hypothetical search result in the second step, as outlined in
Figure 1. This setup was designed to engage participants while sim-
ulating the essential mechanics of a search engine, with the stimu-
lus serving to define a target sound through various modalities. The
stimuli, which were randomly assigned, were presented as either
a sound recording, an image, or a text description of a sound. In
both steps, we additionally ask users what they considered impor-
tant when writing or refining their query, respectively. More specif-
ically, they select from a list of 12 predefined aspects all that they
consider relevant. We list the aspects with a short explanation in
Table 1.

2.1.1. Data sources

To not be limited by the performance of an actual retrieval system
and to give as much creative freedom to participants during the
experiment, we do not employ any actual search engine. Rather,
we simulate retrieval results by manually mapping stimuli to audio
clips prior to the experiment. The audio clips should serve as exam-
ples of results that are somewhat relevant but not fully satisfactory
and could require refinement of the query. Moreover, the stimuli are

1https://doi.org/10.5281/zenodo.13622537

Aspect Explanatory description

Main sound source The most prominent and recognisable ob-
ject, entity or event in the sound.

Number of sources How many sound sources there are.
Usage context What the sound could be used for, e.g. in a

movie, in a game, in a commercial
Loudness How loud or quiet the sound is.
Perceived emotion How the sound makes you feel.
Recording Quality The perceived fidelity of the sound, i.e.

how clear or noisy it is.
Rhythm The perceived regularity or irregularity of

the sound, e.g. repetitive/chaotic, fast/slow.
Duration How long the sound lasts, e.g. short/long.
Color and/or density The perceived quality and/or composition

of the sound, e.g. bright/dark, warm/cold,
harsh/smooth, simple/complex, etc.

Pitch The perceived frequency of the sound.
Temporal order The order in which events occur in time,

e.g. first/last, before/after, simultaneously.
Recording setting The perceived space and environment in

which the sound was recorded.

Table 1: Aspect options available to survey respondents.

all collected manually to relate to a wide range of potential record-
ings ranging from natural sounds over instrument samples to sound
effects. Specifically, we consider three different types of stimuli:

Audio recordings The FSD50K dataset [15] is chosen as a data
source for our audio recording stimuli. It features annotations for
200 sound classes and for each class, a list of example sounds is
given. To obtain a stimulus-result pair, a random class is chosen
and two distinct sounds of the examples are selected at random.

Images To acquire a set of images that can be linked to match-
ing sounds, we first select 100 sounds from Freesound to be rep-
resentative of the prevailing sound categories on the platform. For
each sound, we search for potential fitting images on the Creative
Commons image platform Openverse2 and select several if possible.
Through this curation process, we collect 334 image-sound pairs.

Text descriptions We source the text descriptions from the audio
captioning dataset Clotho [16]. More specifically, we synthesise
summarative statements from the five crowd-sourced captions be-
longing to a single sound using the LLM Mixtral 8x7b [17]. Since
the associated sound is a perfect match to the description, it can not
be used as the search result. Instead, we turn to the TAU Audio-
Text Graded Relevance 2023 dataset to find sounds that are relevant
to the descriptions [18].

2.1.2. Participation and Participant welfare

To find people interested in sound search, participants were re-
cruited through an announcement on the Freesound website. Partic-
ipation was completely voluntarily and no compensation was given.
During the experiment, participants were free to skip a certain stim-
ulus. Additionally, they are offered to end their participation after

2https://openverse.org
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completing nine search tasks and every three tasks after that. To
not bias our data through high number of annotations by individual
participants, the maximum number of search tasks is 21.

Prior to participation, the survey experiment was approved by
an Institutional Review Board of the Universitat Pompeu Fabra to
ensure alignment with ethical guidelines and protections for human
subjects in research. The survey was fully anonymous and did not
collect any personal data, safeguarding respondents’ privacy and
confidentiality. Participants were informed about the objectives of
the research, their tasks, and the use of their survey answers, under-
pinning their informed consent before contributing to the project.

2.2. Query log analysis

In addition to the survey, we collect anonymised system logs for
search queries conducted on the Freesound website. The text search
on Freesound matches the textual metadata (user-provided sound ti-
tles and descriptions) and allows users to filter results according to
various aspects including file type, sampling rate, etc. Since our
focus is on textual queries, we exclude all requests that do not spec-
ify a query or rely on search filters. We consider search requests
submitted over the course of 12 weeks from April to June 2024 and
collected a total of 9M queries. Table 2 outlines the structure of the
query log data.

For further data analysis, we apply a series of processing steps.
First, all queries are case-folded. Then, to detect search requests
that were submitted by a single user in a sequential fashion, i.e.
likely belonging to the same session, we group on the timestamp
and anonymised IP address. Adopting a popular baseline method in
session detection, we assign requests to distinct sessions if they are
separated by at least 30 minutes [19]. Finally, to better understand
what people are searching for, we take all queries submitted by at
least 100 different IPs and manually annotate them with a single
topic. The list of topics for annotation was adopted from the Au-
dioSet taxonomy [20]. If a query term is ambiguous (e.g. ‘metal’,
‘swing’ or ‘kick’) it is left unannotated. All annotations were done
by one annotator. In total, we could annotate 978 of the 1,000 most
common search queries and we share the annotations in the same
repository as the survey results (see Sec. 2.1).

timestamp anonymised IP addr. query

20240603073000 6ff843ba... “dog”
20240603073050 6ff843ba... “dog barking”
20240603073150 d24f26cf... “background music”

Table 2: Excerpt of query logs collected from Freesound.

3. RESULTS

3.1. Survey results

In our survey, 94 participants completed a total of 706 search tasks
with an average of 7.5 (median 9.0) tasks per participant. The mean
time spent on a single task is 97.8 seconds. All three stimuli types
are approximately equally represented in the data with 240 data
points for image stimuli, 238 for audio, and 228 for text, respec-
tively. The initial query contained 4.4 tokens on average and 5.5 to-
kens after refinement in the second step of the search task. Queries
were slightly longer when based on a text stimulus (median: four
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Figure 2: Distribution of aspects chosen by survey respondents to
indicate what they considered important when searching for sounds.

tokens) in comparison with the other two types of stimuli (median:
three tokens). Participants chose to not update their query in the sec-
ond step, or submitted the same query verbatim, in 36% of cases.

When reviewing how participants chose to update their query,
we find that most commonly the updated queries are longer by one
token (32% of the cases) or two tokens (17%), but sometimes also
keep the same number of tokens (14%) or are shorter by at least
one token (18%). Examples of these updates include: ‘water drip-
ping’ → ‘slow water dripping’, ‘car passing by’ → ‘car passing
by in distance’, and ‘Creaking Door’ → ‘Creaking Door Opening
and Closing’. Overall, queries consist of enumerated keywords
(e.g. ‘drums, instrumental, live sound, music’, ‘fishermen dock
crowd’), short noun or verb phrases (‘lively restaurant room’, ‘per-
cussion instruments’, ‘child playing toy harmonica’ ) or a combina-
tion thereof (‘short clip of rapid intake of breath, moderately high
pitch’). Only very few participants formed full sentences (‘Man
gives great speech’, ‘Water is flowing through pipes’). Negations
are rare and mostly only present in the refined queries (e.g. ‘live
guitar’ → ‘live guitar no synth’).

From the Figure 2, we can see that participants consider aspects
relating to the content of the sound (main sound source, number of
sources & recording setting) most important. Moreover, the data in-
dicates that the usage context of a sound influences users search be-
haviour. Upon closer inspection of the query terms however, we can
not find this reflected in the queries, i.e. there are hardly any words
that describe a usage context. Finally, aspects related to perceptual
properties (Loudness, Colour and density, Pitch) and structural at-
tributes (Duration, Rhythm, Temporal order) of the audio recording
were given less attention.

3.2. Query log analysis

The mean query length in the query log data is 1.8 (median: 2)
and the average number of queries per session is 3.9 (median: 2).
In contrast to the survey experiment, we cannot find a significant
increase in query length for subsequent requests within a session.

Figure 3 shows the breakdown of the topics found when anno-
tating the query log data with the first two levels of the AudioSet
ontology. We extend the ontology with a new category (‘Other’)
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Figure 3: Distribution of topics found in the top 1,000 search
queries submitted on Freesound.

Category Search query examples

utterances and
vocables

‘oh no’, ‘yeah’, ‘hmm’, ‘yay’, ‘huh’,
‘hello’, ‘hey’, ‘what’

production
jargon

‘riser, ‘one shot’, ‘stab’, ‘stinger’,
‘bumper’

abbreviations ‘atmo’, ‘bgm’

intended use ‘error’, ‘success’, ‘correct answer’, ‘alert’,
‘button click’, ‘game over’, ‘jumpscare’

Table 3: Examples of special vocabulary used in sound search.

including non-English texts and queries related to NSFW content.
What stands out in this chart is that queries are generally related
to a wide range of topics and span across all classes of the taxon-
omy. There is a high interest in sound effects, recordings relating to
objects, music, and human-made sounds.

Moreover, as a side-effect of manually annotating the topics, we
identify interesting patterns in the expressions used in the queries
that highlight another dimension of user search behaviour. Table
3 lists broad categories for these expressions ranging from jargon
specific to sound design, music and video production, etc. to literal
use of single words to find short speech recordings.

4. DISCUSSION AND LIMITATIONS

The above-presented results indicate that users generally tend to use
short queries when using sound search systems and that there is
no expectation from users that complex queries such as describing
interactions between elements or temporal order are understood or
helpful to achieve their search goal. While these results are expected

in light of the findings in the literature on search behaviour, the most
striking difference in our study is that queries collected in the survey
were significantly longer than those of the query log. These data
must be interpreted with caution since the specifics of the Freesound
search system might encourage users to submit short queries. By
default, all search terms provided in a user query must be present
in a document to match the query, i.e. for a sound to be a returned
result to the query “dog barking baby crying” all four words must be
found in the metadata. Nonetheless, it leads us to the hypothesis that
users of sound search systems would provide longer and potentially
more complex queries if the system supports it.

Reflecting on the latest developments in text-to-audio retrieval
research, our analysis shows a discrepancy between the existing
datasets and potential user input. These datasets are usually repur-
posed from the task of audio captioning and we argue that they are
inadequate for two main reasons. Firstly, datasets commonly used
for evaluation and benchmarking such as the Clotho dataset might
not give a reliable estimate of real-world performance due to the
choice of audio recordings. For example, the creators of Clotho pur-
posely exclude music, sound effects, and speech recordings [16],
while it is apparent from our analysis that user interest is spread
over a wide range of topics. Secondly, the way people formulate
their queries might present a challenge, as user input often takes the
form of short enumerations or keywords rather than full sentences,
which contrasts with the textual training and evaluation data that
typically consist of complete sentences.

The generalisability of the presented results is subject to cer-
tain limitations. For instance, one limitation of our study lies in the
fact that recruitment for the experimental survey was done via the
Freesound website. Responses might be biased by participants’ ex-
perience with the website’s search engine. Furthermore, the results
regarding the importance of aspects in the experimental survey pro-
vide a limited view of the participants’ motivations since they are
heavily influenced by the choice of stimulus. Finally, the relatively
small sample size in topic annotations limits the comprehensiveness
of our findings, highlighting the need for future research to expand
and deepen our understanding of user behaviour and preferences.

Further research might also explore users’ intentions in sound
search since we mostly provide a view on the “what” dimension and
not the “why” of search [21]. We see from both sets of results that
searchers (not surprisingly) focus on the main elements comprising
a sound in their queries. These results are in agreement with the
observations of Giordano et al. [22], who suggested that “the most
informative way to describe natural sounds verbally focuses on the
properties of the sound source, rather than on sensory or acous-
tic attributes.” However, understanding the underlying intentions is
necessary to ultimately improve search performance satisfaction.

5. CONCLUSIONS AND FUTURE WORK

Our study analysed sound search queries from two sources: sub-
mitted by participants of an online survey and the query log of
Freesound. The results of this investigation suggest that users of
sound search systems would provide longer queries if not limited
by system constraints. The second major finding was a clear dis-
crepancy between user-written queries and current research datasets
in text-to-audio retrieval research with respect to the topics cov-
ered and the language used. Future work should look into creating
datasets specifically designed for the purpose of evaluating sound
retrieval systems with user expectations and behaviour in mind.
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ABSTRACT
The state-of-the-art approach for semi-supervised anomalous sound
detection is to first learn an embedding space by using auxiliary
classification tasks based on meta information or self-supervised
learning and then estimate the distribution of normal data. In this
work, AdaProj a novel loss function for training the embedding
model is presented. In contrast to commonly used angular margin
losses, which project data of each class as close as possible to their
corresponding class centers, AdaProj learns to project data onto
class-specific subspaces while still ensuring an angular margin be-
tween classes. By doing so, the resulting distributions of the embed-
dings belonging to normal data are not required to be as restrictive
as other loss functions allowing a more detailed view on the data.
In experiments conducted on the DCASE2022 and DCASE2023
anomalous sound detection datasets, it is shown that using AdaProj
to learn an embedding space significantly outperforms other com-
monly used loss functions.

Index Terms— machine listening, anomaly detection, repre-
sentation learning, domain generalization

1. INTRODUCTION

Semi-supervised anomaly detection is the task of training a system
to differentiate between normal and anomalous data using only nor-
mal training samples [1]. An example application is acoustic ma-
chine condition monitoring for predictive maintenance [2, 3]. Here,
normal data corresponds to sounds of fully functioning machines
whereas anomalous sounds indicate mechanical failure. One of the
main difficulties to overcome in acoustic machine condition mon-
itoring is that it is practically impossible to record isolated sounds
of a target machine. Instead, recordings also contain many other
sounds emitted by non-target machines or other sound sources such
as humans. Compared to this complex acoustic scene, anomalous
signal components of the target machines are very subtle and hard
to detect without utilizing additional knowledge. Another main
difficulty is that a system should also be able to reliably detect
anomalous sounds when changing the acoustic conditions or ma-
chine settings without needing to collect large amounts of data in
these changed conditions or to re-train the system (domain gener-
alization [4]). One possibility to overcome both difficulties is to
learn a mapping of the audio signals into a fixed-dimensional vector
space, in which representations belonging to normal and anomalous
data, called embeddings, can be easily separated. Then, by estimat-
ing the distribution of normal training samples in the embedding
space, one can compute an anomaly score for a test sample to dis-
tinguish between normal and anomalous samples.

To train such an embedding model, the state-of-the-art is to uti-
lize an auxiliary classification task using provided meta information

or self-supervised learning. This enables the embedding model to
closely monitor target signals and ignore other signals and noise [5].
For machine condition monitoring, possible auxiliary tasks are clas-
sifying between machine types [6–8] or, additionally, between dif-
ferent machine states and noise settings [9–11], recognizing aug-
mented and non-augmented versions of normal data [6, 12] or pre-
dicting the activity of machines [10]. Using an auxiliary task to
learn embeddings is also called outlier exposure (OE) [13] because
normal samples belonging to other classes than a target class can be
considered proxy outliers [14].

The contributions of this work are the following. First and fore-
most, AdaProj, a novel angular margin loss function that learns
class-specific subspaces for training an embedding model, is pre-
sented1. Second, it is proven that AdaProj has arbitrary large op-
timal solution spaces allowing to relax the compactness require-
ments of the class-specific distributions in the embedding space.
Last but not least, AdaProj is compared to other commonly used
loss functions. In experiments conducted on the DCASE2022 and
DCASE2023 anomalous sound detection (ASD) datasets it is shown
that AdaProj outperforms other commonly used loss functions.

1.1. Related Work

When training a neural network to solve a classification task, usu-
ally the softmax function in combination with the categorical cross-
entropy (CXE) is used. However, this only reduces inter-class simi-
larity without explicitly increasing intra-class similarity [15]. When
training an embedding model for anomaly detection, high intra-
class similarity is a desired property to cluster normal data and be
able to detect anomalous samples. There are several loss functions
that explicitly increase intra-class similarity: [16] proposed a com-
pactness loss to project the data into a hypersphere of minimal vol-
ume for one-class classification. However, for machine condition
monitoring in noisy conditions it is known that one-class losses per-
form worse than losses that also discriminatively solve an auxiliary
classification task [5]. [17] utilized an additional descriptiveness
loss consisting of a CXE imposing a classification task on another
arbitrary dataset than the target dataset to regularize the training
objective. For machine condition monitoring, often meta informa-
tion is available as it can at least be ensured which machine is being
recorded when collecting data. [8] used center loss [18], which min-
imizes the distance to learned class centers for each class. Another
choice are angular margin losses that learn an embedding space on
the unit sphere while ensuring a margin between classes, which im-
proves the generalization capabilities. Specific examples are the ad-
ditive margin softmax loss [15] as used by [7,19] and ArcFace [20]

1An open-source implementation of the AdaProj loss is available at:
https://github.com/wilkinghoff/AdaProj
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as used by [6, 11, 21]. [22, 23] use the AdaCos loss [24], which
essentially is ArcFace with an adaptive scale parameter, or the sub-
cluster AdaCos loss [25], which utilizes multiple sub-clusters for
each class instead of a single one.

As stated before, the goal of this work is to reduce the restric-
tions on the learned distributions in the embedding space by learn-
ing class-specific linear subspaces. There are also other works on
losses aiming at learning subspaces based on orthogonal projections
in an embedding space. [26] used orthogonal projections as a con-
straint for training an autoencoder based anomaly detection system.
Another example is semi-supervised image classification by using
a combination of class-specific subspace projections with a recon-
structions loss and ensure that they are different by also using a dis-
criminative loss [27]. Our work focuses on learning an embedding
space through an auxiliary classification task that is well-suited for
semi-supervised anomaly detection.

2. METHODOLOGY

2.1. Notation

Let ϕ : X → RD denote a neural network where X de-
notes some input space, which consists of audio signals in this
work, and D ∈ N denotes the dimension of the embedding
space. Define the linear projection of x ∈ RD onto the sub-
space span(Ck) ⊂ RD as Pspan(Ck)(x) :=

∑
ck∈Ck

⟨x, ck⟩ck. Fur-
thermore, let SD−1 = {y ∈ RD : ∥y∥2 = 1} ⊂ RD denote the D-
sphere and define PSD−1(x) := x

∥x∥2
∈ SD−1 to be the projection

onto the D-sphere.

2.2. AdaProj loss function

Similar to the sub-cluster AdaCos loss [25], the idea of the AdaProj
loss is to enlarge the space of optimal solutions to allow the network
to learn less restrictive distributions of normal data. This relaxation
is achieved by measuring the distance to class-specific subspaces
while training the embedding model instead of measuring the dis-
tance to a single or multiple centers as done for other angular margin
losses and may help to differentiate between normal and anomalous
embeddings after training. The reason is that for some auxiliary
classes a strong compactness may be detrimental when aiming to
learn an embedding space that separates normal and anomalous data
since both may be distributed very similarly.

Formally, the definition of the AdaProj loss is as follows.

Definition 1 (AdaProj loss). Let Ck ⊂ RD with |Ck| = J ∈ N
denote class centers for class k ∈ {1, ..., Nclasses}. Then for the
AdaProj loss the logit for class k ∈ {1, ..., Nclasses} is defined as

L(x, Ck) := ŝ · ∥PSD−1(x)− PSD−1(Pspan(Ck)(x))∥
2
2

where ŝ ∈ R+ is the adaptive scale parameter of the AdaCos loss
[24]. Inserting these logits into a softmax function and computing
the CXE yields the AdaProj loss function.

Remark. Note that, by Lemma 5 of [5], it holds that

∥PSD−1(x)− PSD−1(Pspan(Ck)(x))∥
2
2

=2(1− ⟨PSD−1(x), PSD−1(Pspan(Ck)(x))⟩),

which is equal to the cosine distance in this case and explains why
the AdaProj loss can be called an angular margin loss.

As for other angular margin losses, projecting the embedding
space onto the D-sphere has several advantages [5]. Most impor-
tantly, if D is sufficiently large randomly initialized centers are
with very high probability approximately orthonormal to each other
[28], i.e. distributed equidistantly, and sufficiently far away from
000 ∈ RD . Therefore, one does not need to carefully design a method
to initialize the centers. Another advantage is that a normalization
may prevent numerical issues, similar to applying batch normaliza-
tion [29].

The following Lemma shows that using the AdaProj loss, as
defined above, indeed increases the solution space.

Lemma 2. Let x ∈ RD and let C ⊂ RD contain pairwise or-
thonormal elements. If x ∈ span(C) ∩ SD−1, then

∥PSD−1(x)− PSD−1(Pspan(C)(x))∥22 = 0.

Proof. Let x ∈ span(C) ∩ SD−1 ⊂ RD with |C| = J . Therefore,
∥x∥2 = 1 and there are λj ∈ R with x =

∑J
j=1 λjcj . Thus, it

holds that

x =
J∑

j=1

λjcj =

J∑
j=1

J∑
i=1

λi⟨ci, cj⟩cj =

J∑
j=1

⟨
J∑

i=1

λici, cj⟩cj

=

J∑
j=1

⟨x, cj⟩cj = Pspan(C)(x).

Hence, we obtain

∥PSD−1(x)− PSD−1(Pspan(C)(x))∥22 = 0.

Remark. If C contains randomly initialized elements of the unit
sphere and D is sufficiently large, then the elements of C are ap-
proximately pairwise orthonormal with very high probability [28].

When inserting the projection onto the D − 1-sphere as an op-
eration into the neural network, this Lemma shows that the solution
space for the AdaProj loss function is increased to the whole sub-
space span(C), which has a dimension of |C| with very high prob-
ability. Because of this, it should be ensured that |C| < D. Oth-
erwise the whole embedding space may be an optimal solution and
thus the network cannot learn a meaningful embedding space. In
comparison, for the AdaCos loss only the class centers themselves
are optimal solutions and for the sub-cluster AdaCos loss each sub-
cluster is an optimal solution [5].

3. EXPERIMENTAL RESULTS

3.1. Datasets and performance metrics

For the experiments, the DCASE2022 ASD dataset [2] and the
DCASE2023 ASD dataset [3] for semi-supervised machine con-
dition monitoring were used. Both datasets consist of a develop-
ment set and an evaluation set that are divided into a training split
containing only normal data and a test split containing normal as
well as anomalous data. Furthermore, both tasks explicitly capture
the problem of domain generalization [4] by defining a source and
a target domain, which differs from the source domain by alter-
ing machine parameters or noise conditions. The task is to detect
anomalous samples regardless of the domain a sample belongs to by
training a system with only normal data. As meta information, the
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target machine type of each sample is known and for the training
samples, also the domain and additional parameter settings or noise
conditions, called attribute information, are known and thus can be
utilized to train an embedding model.

The DCASE2022 ASD dataset [2] consists of the machine
types “ToyCar” and “ToyTrain” from ToyAdmos2 [30] and “fan”,
“gearbox”, “bearing”, “slide rail” and “valve” from MIMII-DG
[31]. For each machine type, there are six different sections cor-
responding to different domain shifts and also defining subsets used
for computing the performance. These sections are known for each
recording and can also be utilized as meta information to train the
system. For the source domain of each section, there are 1000 nor-
mal audio recordings with a duration of 10 s and a sampling rate of
16 kHz belonging to the training split. For the target domain of each
section, there are only 10 normal audio recordings belonging to the
training split. The test splits of each section contain approximately
100 normal and 100 anomalous samples.

The DCASE2023 ASD dataset [3] is similar to the
DCASE2022 ASD dataset with the following modifications. First
of all, the development set and the evaluation set contain mutually
exclusive machine types. More concretely, the development set con-
tains the same machine types as the DCASE2022 dataset and the
evaluation set contains the machine types “ToyTank”, “ToyNscale”
and “ToyDrone” from ToyAdmos2+ [32] and “vacuum”, “band-
saw”, “grinder” and “shaker” from MIMII-DG [31]. Furthermore,
there is only a single section for each machine type, which makes
the auxiliary classification task much easier resulting in less infor-
mative embeddings for the ASD task. Last but not least, the dura-
tion of each recording has a length between 6 s and 18 s. Overall,
all three modifications make this task much more challenging than
the DCASE2022 ASD task.

To measure the performance of the ASD systems the threshold-
independent area under the receiver operating characteristic (ROC)
curve (AUC) metric is used. In addition, the partial area under the
ROC curve (pAUC) [33], which is the AUC for low false positive
rates ranging from 0 to p, with p = 0.1, is used. Both performance
metrics are computed domain-independent for every previously de-
fined section of the dataset and the harmonic mean of all resulting
values is the final score used to measure and compare the perfor-
mances of different ASD systems.

3.2. Anomalous sound detection system

For all experiments conducted in this work, the state-of-the-art ASD
system presented in [23] is used. An overview of the system can be
found in Figure 1. The system consists of three main components:
1) a feature extractor, 2) an embedding model and 3) a backend for
computing anomaly scores.

In the first processing block, two different feature represen-
tations are extracted from the raw waveforms, namely magnitude
spectrograms and the magnitude spectrum. To capture less similar
information with both feature representations, the temporal mean is
subtracted from the spectrograms, essentially removing static fre-
quency information that are captured with the highest possible res-
olution by the spectra.

For each of the two feature representations, another convolu-
tional sub-network is trained and the resulting embeddings are con-
catenated and normalized with respect to the Euclidean norm to ob-
tain a single embedding. In contrast to the original architecture, the
embedding dimension is doubled from 256 to 512 to increase the
likelihood of two randomly initialized center vectors to be orthogo-

nal. Note that even if some of the randomly sampled class centers
are not orthonal, the probability that they are linearly independent
is equal to 1 if J < D. Thus, the subspaces spanned be the class
centers do not collapse. More details about the subnetwork archi-
tectures can be found in [23]. The network is trained for 10 epochs
using a batch size of 64 using adam [34] by utilizing meta informa-
tion such as machine types and the provided attribute information as
an auxiliary classification task. Different loss functions can be used
for this purpose and will be compared in the next subsection. All
loss functions investigated in this work require class-specific center
vectors, which are initialized randomly using Glorot uniform initial-
ization [35]. To improve the ASD performance, the class centers are
not adapted during training and no bias terms are used as proposed
in [16] for one-class classification. Furthermore, mixup [36] with
a uniformly distributed mixing coefficient is applied to the wave-
forms.

As a backend, k-means with 32 means is applied to the normal
training samples of the source domain. For a given test sample, the
smallest cosine distance to these means and the ten normal training
samples of the target domain is used as an anomaly score. Thus,
smaller values indicate normal samples whereas higher values indi-
cate anomalous samples.

3.3. Performance evaluation

In the first experiment, the ASD performance obtained with the fol-
lowing loss functions was compared: 1) individual class-specific
intra-class (IC) compactness losses jointly trained on all classes [16]
2) an additional discriminative CXE loss, similar to the descriptive-
ness loss used in [17] but trained on the same dataset, 3) the AdaCos
loss [24], 4) the sub-cluster AdaCos loss [25] with 32 sub-clusters
and 5) the proposed AdaProj loss. Each experiment was repeated
ten times to reduce the variance of the resulting performances. The
results can be found in Table 1.

The main observation to be made is that the proposed AdaProj
loss outperforms all other losses. Especially on the DCASE2023
dataset, there are significant improvements to be observed. The
most likely explanation is that for this dataset the classification
task is less difficult and thus a few classes may be easily identified
leading to embeddings that do not carry enough information to dis-
tinguish between embeddings belonging to normal and anomalous
samples of these classes.

Another interesting observation is that, in contrast to the orig-
inal results presented in [25], the sub-cluster AdaCos loss actu-
ally performs slightly worse than the AdaCos loss despite having
a higher solution space. A possible explanation is that in [25], the
centers are adapted during training whereas, in our work, they are
not as this has been shown to improve the resulting performance
[23]. Since all centers have approximately the same distance to
each other when being randomly initialized, i.e. the centers belong-
ing to a target class and the other centers, the network will likely
utilize only a single center for each class that is closest to the ini-
tial embeddings of the corresponding target class. Moreover, a low
inter-class similarity is more difficult to ensure due to the higher to-
tal number of sub-clusters belonging to other classes. This leads to
more restrictive requirements when learning class-specific distribu-
tions and thus actually reduces the ability to differentiate between
embeddings belonging to normal and anomalous samples.
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Figure 1: Structure of the ASD system, adapted from Figure 1 in [23]. Representation size in each step is given in brackets.

Table 1: ASD performance obtained with different loss functions. Harmonic means of all AUCs and pAUCs over all pre-defined sections of
the dataset are depicted in percent. Arithmetic mean and standard deviation of the results over ten independent trials are shown. Best results
in each column are highlighted with bold letters.

loss function DCASE2022 dev. set [2] DCASE2022 eval. set [2] DCASE2023 dev. set [3] DCASE2023 eval. set [3] arithmetic mean
AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

IC compactness loss [16] 79.2± 0.9 64.7± 1.1 70.3± 0.8 58.9± 0.8 67.7± 1.2 56.9± 0.9 64.0± 1.5 55.8± 0.9 70.3 59.1
IC compactness loss + CXE [17] 79.0± 0.8 65.0± 0.7 72.6± 0.4 60.3± 0.7 70.4± 1.0 57.4± 1.157.4± 1.157.4± 1.1 67.5± 0.8 57.5± 1.0 72.4 60.1
AdaCos loss [24] 79.8± 0.7 65.5± 0.965.5± 0.965.5± 0.9 73.0± 0.4 59.7± 0.6 70.9± 0.9 56.8± 0.9 68.0± 1.6 58.0± 1.1 72.9 60.0
sub-cluster AdaCos loss [25] 80.0± 1.4 65.2± 1.1 72.9± 0.6 59.5± 0.5 70.4± 0.9 56.3± 0.8 66.5± 1.6 56.2± 1.0 72.5 59.3
proposed AdaProj loss 80.6± 0.880.6± 0.880.6± 0.8 65.5± 1.365.5± 1.365.5± 1.3 73.6± 0.773.6± 0.773.6± 0.7 60.5± 0.760.5± 0.760.5± 0.7 71.4± 1.071.4± 1.071.4± 1.0 56.2± 0.7 69.8± 1.369.8± 1.369.8± 1.3 60.0± 0.560.0± 0.560.0± 0.5 73.973.973.9 60.660.660.6
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Figure 2: Domain-independent performance obtained on the
DCASE2023 dataset with different subspace dimensions. The
means over ten independent trials are shown.

3.4. Investigating the impact of the subspace dimension on the
performance

As an ablation study, different choices for the dimension of the
subspaces have been compared experimentally on the DCASE2023
ASD dataset. The results can be found in Figure 2. It can be seen,
that, on the development set, the results are relatively stable while a
larger dimension slightly improves the performance on the evalua-
tion set without any significant differences. For subspace dimen-
sions greater than 48 the performances seem to slightly degrade
again. In conclusion, the subspace dimension should be neither too
high nor too low but other than that appears to not have a significant
impact on the performance. Thus, a dimension of 32, as used for the
other experiments in this work, appears to be a reasonable choice.
Since using the AdaProj with this subspace dimension also outper-
formed the other loss functions on the DCASE2022 ASD dataset
(cf. Table 1, this particular dimension may serve as a default hyper-
parameter setting for the AdaProj loss.

4. CONCLUSIONS

In this work, AdaProj a novel angular margin loss function specif-
ically designed for semi-supervised anomaly detection with auxil-
iary classification tasks was presented. It was proven that this loss
function learns an embedding space with class-specific subspaces
of arbitrary dimension. In contrast to other angular margin losses,
which try to project data to individual points in space, this relaxes
the requirements of solving the classification task and allows for
less compact distributions in the embedding space. In experiments
conducted on the DCASE2022 and DCASE2023 ASD datasets, it
was shown that using AdaProj results in better performance than
other commonly used loss functions. In conclusion, the resulting
embedding space has a more desirable structure than the other em-
bedding spaces for differentiating between normal and anomalous
samples. For future work, it is planned to evaluate AdaProj on other
datasets and further improve the performance of the ASD system
by utilizing self-supervised learning [37] or multi-task learning [9].
Investigating how the AdaProj loss performs for supervised or un-
supervised tasks in comparison to other loss functions may also be
of interest.
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ABSTRACT

Language-queried audio source separation (LASS) aims to
separate an audio source guided by a text query, with the signal-
to-distortion ratio (SDR)-based metrics being commonly used to
objectively measure the quality of the separated audio. However,
the SDR-based metrics require a reference signal, which is often
difficult to obtain in real-world scenarios. In addition, with the
SDR-based metrics, the content information of the text query is not
considered effectively in LASS. This paper introduces a reference-
free evaluation metric using a contrastive language-audio pretrain-
ing (CLAP) module, termed CLAPScore, which measures the
semantic similarity between the separated audio and the text query.
Unlike SDR, the proposed CLAPScore metric evaluates the quality
of the separated audio based on the content information of the text
query, without needing a reference signal. Experiments show that
the CLAPScore provides an effective evaluation of the semantic
relevance of the separated audio to the text query, as compared to the
SDR metric, offering an alternative for the performance evaluation
of LASS systems. The code for evaluation is publicly available1.

Index Terms— Language-queried audio source separation,
evaluation metric, semantic similarity, CLAPScore

1. INTRODUCTION

Language-queried audio source separation (LASS) focuses on sep-
arating an audio source from a multi-source mixture based on
a natural language description, i.e., a text query [1, 2]. Unlike
traditional audio source separation, LASS utilizes the complex
and rich semantic information of natural language to guide the
separation process [1]. This integration of multi-modal data allows
for more intuitive and flexible interaction with audio separation
systems, making it particularly useful in various applications, i.e.,
audio editing [3–6], multimedia content creation [7], and designs of
assistive listening devices [1, 2, 8, 9].

Following audio source separation literature [10–12], the
signal-to-distortion ratio based metrics, i.e., SDR [13], SDR im-
provement (SDRi) [14, 15], and scale-invariant SDR (SI-SDR) [16]

*Corresponding author.
This work was partly supported by the project of the Ministry of

Industry and Information Technology under Grant No.CBZ3N21-2.
1GitHub: https://github.com/LittleFlyingSheep/CLAPScore for LASS

have been used to measure the separation performance of LASS
methods in [1]. All these metrics aim to quantify the quality of
the separated audio signals. They measure how close the separated
audio is to the original target audio, focusing on the reduction of
distortion or errors introduced during the separation process [14].

However, a major limitation of these SDR-based metrics is that
they need a reference audio to compare against the separated audio.
This makes these metrics applicable only in the simulated envi-
ronments with known target audio, but impractical for real-world
applications where the target source is unknown [17]. In such cases,
alternative evaluation methods or proxy measures are required to
evaluate the performance of the audio separation algorithms.

In this paper, we introduce a reference-free evaluation metric
for LASS, which calculates the audio-text similarity score using
the contrastive language-audio pretraining (CLAP) module [18],
termed CLAPScore. Unlike the previous SDR-based metrics that
require a reference audio to measure the separation performance,
the proposed CLAPScore metric evaluates the semantic similarity
between the separated audio and the text query without needing
a reference audio. This makes CLAPScore metric particularly
useful for real-world applications where a reference audio may not
be available. Furthermore, similar to SDRi, the improvement in
CLAPScore (CLAPScore-i) from the mixture to the separated audio
can reflect the improvement from LASS methods. Moreover, the
CLAPScore is also expanded to incorporate the reference audio
while it is available, denoted as RefCLAPScore.

Experiments indicate that the proposed CLAPScore metric
exhibits an approximately linear correlation with the SDR metric,
suggesting that CLAPScore can effectively evaluate the separation
performance of the LASS methods. Additionally, since the CLAP-
Score metric does not require reference audio and relies solely on
the text query used in the LASS separation process, it can be utilized
to evaluate LASS in real-world scenarios where the reference audio
is unavailable. This capability facilitates the development and
evaluation of the LASS methods on real-world multi-source data.

2. PREVIOUS SDR-BASED METRICS

The SDR-based metrics (i.e., SDR, SDRi, and SI-SDR) are
widely used objective metrics in signal processing, particularly
in language-queried audio source separation [14]. These metrics
can provide a reliable and standardized method for evaluating the
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Figure 1: Illustration of the limitation of the SDR-based metrics for the evaluation of the language-queried audio source separation (LASS)
methods in the real-world scenario, where the reference audio required by the SDR-based metrics is unavailable. Therefore, the SDR-based
metrics are unusable for the evaluation of the LASS methods in the real-world scenario.

Figure 2: Illustration of the evaluation process with the proposed CLAPScore metric for language-queried audio source separation. Notably,
the proposed CLAPScore metric does not need a reference audio for the evaluation. The inputs of the proposed CLAPScore metric, i.e.,
the estimated audio and the text query, are available in both simulation and real-world scenarios. Therefore, the CLAPScore metric can be
applicable for both such scenarios.

quality of the separated audio from LASS methods in the simulation
scenario but are limited in the real world [17].

2.1. Definition of SDR-Based Metrics

In widely used SDR-based metrics, SDR measures the ratio of the
power of the desired signal to the power of the distortion introduced
by the separation process [13]. SDRi is an improvement metric
that measures the difference in SDR before and after applying an
audio source separation algorithm [14, 15]. SI-SDR normalizes the
audio signals to make the evaluation independent of their amplitude,
which is more robust for varying scales [16, 19, 20]. The definition
of SDR, SDRi and SI-SDR can be presented as follows:

SDR = 10 log10

(
∥s∥2

∥s− ŝ∥2

)
, (1)

SDRi = SDRafter − SDRbefore, (2)

SI-SDR = 10 log10

(
∥αs∥2

∥αs− ŝ∥2

)
, (3)

where s denotes the reference audio, i.e., the ground-truth audio
source, ŝ denotes the estimated audio. SDRbefore denotes the SDR
between the mixture and the reference audio, and SDRafter denotes
the SDR between the separated audio from a LASS method and the
reference audio. The improvement from SDRbefore to SDRafter is the
value of SDRi. For SI-SDR, α = ŝ⊤s

∥s∥2 is the optimal scaling factor
that aligns the estimated audio with the reference audio, where
⊤ denotes the transpose operation. For all of these SDR-based
metrics, a higher value indicates better separation performance.

2.2. Limitation of SDR-Based Metrics

According to the above definition of SDR-based metrics, it can be
found that, these metrics all depend on the reference audio signal
s to measure the separation performance of the LASS methods.
However, this requirement can be only met in a simulation scenario,
where the reference audio and the noise are known to simulate the
mixture audio. Due to the lack of the reference audio, these SDR-
based metrics cannot be usable to measure the LASS performance
in the real-world scenario, as illustrated in Figure 1.

Moreover, these SDR-based metrics are power-based metrics to
measure the effectiveness of LASS methods. They primarily focus
on the signal quality and distortion level of the separated audio,
without considering whether the semantic content of the separated
audio matches the text query. Therefore, these SDR-based metrics
cannot measure the semantic similarity between the separated audio
and the text query. To measure the matching of the semantic content
between the separated audio and the text query, other more effective
semantic similarity metrics are required.

3. PROPOSED CLAPSCORE METRIC

To measure how well the separated audio matches the text queries,
we introduce the CLAPScore metric. This metric quantifies how
closely the content of the separated audio aligns with the text query.
A higher CLAPScore means that the separated audio’s content is
more similar to the text query, indicating better performance in
separating audio based on the text query. The evaluation process
with the proposed CLAPScore metric is illustrated in Figure 2.
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3.1. Definition of Proposed CLAPScore Metric

The proposed CLAPScore metric is a measure of the similarity
between the separated audio from the LASS methods and the text
query used in the LASS process. It can measure the semantic
similarity between the separated audio and the text query.

The calculation of the proposed CLAPScore metric is based
on the contrastive language-audio pretraining (CLAP) module [18].
The CLAP module is pretrained on a large-scale dataset and learns
the audio-text alignment in the latent space [18]. Due to this
advantage, the CLAP module is widely used to measure the audio-
text alignment in the evaluation of text-to-audio generation methods
[21, 22]. Inspired by these studies, we introduce the CLAP module
to calculate the audio-text similarity between the estimated audio
and the text query to measure the separation performance of the
LASS methods.

Specifically, the audio embedding of the estimated audio ŝ (i.e.,
the separated audio signal) and the text embedding of the text query
are obtained with the CLAP module2, as follows,

â = EA(ŝ), (4)

t = ET (c), (5)

where c denotes the text query, EA(·) and ET (·) denotes the audio
encoder and text encoder in CLAP module, respectively. The
audio embedding â of the estimated audio is extracted by the audio
encoder in the CLAP module, and the text embedding t of the text
query is extracted by the text encoder in the CLAP module.

Then, the cosine similarity between the audio embedding and
the text embedding is calculated as the value of the proposed
CLAPScore metric to measure the semantic similarity between the
estimated audio and the text query. Thus, the calculation of the
audio-text similarity score can be represented as

CLAPScore =
â⊤t

∥â∥∥t∥ . (6)

A higher CLAPScore means a better match between the audio
embedding of the estimated audio and the text query used in LASS
process. Therefore, a higher CLAPScore indicates better separation
performance of the LASS methods.

3.2. Advantages of the Proposed CLAPScore Metric

Different from the SDR-based metrics, the proposed CLAPScore
metric can evaluate the degree of matching between the separated
audio and the text query in their latent spaces. It provide a way to
measure the semantic similarity between the separated audio and
the text query for the LASS task.

In addition, according to the definition of the proposed CLAP-
Score metric, it can be found that, the evaluation based on the
proposed CLAPScore metric depends on the separated audio and
the text query, without the need for a reference audio as required
in the SDR-based metrics. The separated audio and the text query
can be easily obtained in both the simulation and the real-world
scenarios, thus this metric is applicable for both scenarios, offering
advantages over the SDR-based metrics which only work when the
reference audio is available.

2https://huggingface.co/spaces/Audio-AGI/AudioSep/blob/main/
checkpoint/music speech audioset epoch 15 esc 89.98.pt

3.3. Expanded CLAPScore Improvement Metric

In addition, similar to the SDRi metric, we design the improve-
ment of the CLAPScore metric to measure the difference in the
proposed CLAPScore metric before and after applying an LASS
method, termed CLAPScore improvement (CLAPScore-i). The
CLAPScore-i metric can be calculated as follows,

CLAPScore-i = CLAPScoreafter − CLAPScorebefore, (7)

where CLAPScorebefore denotes the CLAPScore between the orig-
inal mixture audio and the text query, and CLAPScoreafter denotes
the CLAPScore between the separated audio and the text query.

3.4. Expanded RefCLAPScore Metric

We present an expanded CLAPScore while the reference audio
is available, termed RefCLAPScore. The calculation of the Ref-
CLAPScore can be represented as

RefCLAPScore = H(CLAPScoreafter,CLAPScoreref), (8)

where H(·, ·) denotes the harmonic mean function, and
CLAPScoreref denotes the CLAPScore of the reference audio. The
RefCLAPScore metric can further introduce the semantic informa-
tion of the reference audio (i.e., source audio) to obtain a fine-
grained measure for the separation performance.

4. EXPERIMENTS

4.1. Dataset

To verify the effectiveness of the proposed CLAPScore metric,
we conducted experiments on the DCASE 2024 Challenge Task
9 validation set3. This dataset includes 1000 audio signals from
the FreeSound dataset [23], each with 3 corresponding text queries.
By randomly combining pairs of audio signals, the validation set
provides 3000 mixture audio samples for evaluation. Additionally,
we split this dataset to perform an ablation study of the proposed
CLAPScore metric.

4.2. Effectiveness of Proposed CLAPScore Metric

To demonstrate the effectiveness of the proposed CLAPScore met-
ric, we evaluate the separation performance of standard LASS meth-
ods on 3000 officially provided mixture audio signals using both
SDR-based metrics (SDR, SDRi, SI-SDR) and CLAPScore based
metrics (CLAPScore, CLAPScore-i, RefCLAPScore). The eval-
uated LASS methods include the official baseline of the DCASE
2024 Challenge Task 9 (baseline) [2], our previously submitted
system [24] trained with GPT-augmented text queries (baseline-
Augmented) [25,26], and the state-of-the-art method, AudioSep [2].
Evaluation results measured by these metrics are shown in Table 1.

Based on the SDR metric performance, it is clear that the
separation effectiveness of the three evaluated LASS methods ranks
from highest to lowest as follows: AudioSep, baseline-Augmented,
and baseline. Similarly, in the evaluation using the CLAPScore
metric, the methods rank from best to worst in the same order:
AudioSep, baseline-Augmented, and baseline. This demonstrates
that the CLAPScore metric can effectively assess the separation
performance of LASS methods. Furthermore, its ability to evaluate
without requiring a reference audio makes it particularly suitable
for scenarios where reference audio is unavailable.

3https://zenodo.org/records/10886481
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Table 1: Evaluation of different LASS methods with the SDR-based
metrics (i.e., SDR, SDRi, SI-SDR) and the proposed CLAPScore
based metrics (i.e., CLAPScore, CLAPScore-i, RefCLAPScore).

Method SDR SDRi SI-SDR CLAPScore CLAPScore-i RefCLAPScore

Baseline [2] 5.708 5.673 3.862 0.239 0.029 0.253
Baseline-Augmented [24] 5.937 5.902 4.191 0.242 0.031 0.254

AudioSep [2] 8.192 8.157 6.680 0.261 0.050 0.267

Table 2: Pearson correlation coefficient (PCC) between SDR-
based and CLAPScore-based metrics with statistically significant
correlation p-value < 0.05.

PCC with SDR PCC with SI-SDR PCC with SDRi

CLAPScore 0.270 0.289 CLAPScore-i 0.288RefCLAPScore 0.226 0.254

4.3. Correlation between SDR-Based Metrics and CLAPScore

According to the results in Table 1, an interesting phenomenon
can be observed that the performance measured by CLAPScore
based metrics (i.e., CLAPScore, CLAPScore-i, and RefCLAP-
Score) shows similar trend to that measured by SDR-based metrics.
Specifically, when the performance on CLAPScore based metrics
is high, the performance on SDR-based metrics is also high.
To explore their correlation, we calculate the Pearson correlation
coefficient (PCC) as Table 2.

It can be found that, both CLAPScore and RefCLAPScore
shows a moderate positive correlation with both SDR and SI-
SDR. Additionally, CLAPScore-i has a similar moderate correlation
with SDRi. These indicate that the CLAPScore based metrics
has statistically significant positive correlations with SDR-based
metrics.

To further explore the correlation between these metrics, we
simulate the mixture audio under different SDR levels ranging from
−20dB to 20dB in 5dB increments, based on the provided 3000
source-noise pairs in the validation set of DCASE 2024 Challenge
Task 9. Then, we evaluate the quality of these simulated mixture
audio and the quality of the separated audio from the LASS method
(i.e., AudioSep [2]) using the proposed CLAPScore based metrics.
The results are illustrated in Figure 3.

The proposed CLAPScore for mixture audio shows an approx-
imately linear correlation with the SDR metric, as shown by the
blue line in Figure 3. This indicates that CLAPScore effectively
evaluates audio signal quality using text queries. Additionally,
Figure 3 demonstrates that the CLAPScore for separated audio (red
line) and CLAPScore-i (green line) indicate a better match with text
queries for separated audio, validating CLAPScore’s effectiveness
in measuring separated audio quality. Notably, CLAPScore-i for
AudioSep is higher at lower SDR levels than at higher SDR levels,
likely because simulated mixtures at higher SDR levels are already
close to the source audio, resulting in only subtle improvements
with the LASS method.

4.4. Evaluation with Different Mixing Strategies

We conduct an ablation study to evaluate the CLAPScore value of
the mixture audio signals with different mixing strategies, where
990 audio signals are selected from the validation set of DCASE
2024 Challenge Task 9 as source audio and three different mixing
strategies are attempted for each source audio: (1) source audio,
(2) mixed with white noise, and (3) mixed with an audio signal
of different content. This results in a total of 2970 mixtures for

Figure 3: Illustration to show the correlation between the SDR
metric and the proposed CLAPScore metric. Here, the separated
audio comes from the LASS method, i.e., AudioSep [2].

Figure 4: Illustration of the proposed CLAPScore metric for the
mixtures from different mixing strategies.

evaluation, with each mixing strategy producing 990 estimated
audio signals. The lines representing the CLAPScore metric at
different SDR levels (−20dB, −15dB, −10dB, −5dB, 0dB, 5dB,
10dB, 15dB, and 20dB) for these mixtures are shown in Figure 4.

It can be found that, the value of the proposed CLAPScore for
the source audio is significantly better than the one mixed by audio
with different content, under any SDR levels. This verifies that
the proposed CLAPScore metric can capture the difference on the
semantic content between the estimated audio and the text query.
Therefore, the proposed CLAPScore metric prefers to assign an
estimated audio that has different content from the text query with a
lower measure, even if the SDR performance of the estimated audio
is good (i.e., 20dB).

Furthermore, it is interesting that the estimated audio mixed
with the white noise has higher CLAPScore value than the original
source audio under high SDR levels (i.e., 10dB, 15dB, 20dB). The
reason may be that, in these SDR levels, the white noise can be
considered as the background noise, estimated audio mixed by
such background noise may enhance the realism of the resulting
mixes, as analyzed in [9]. Then, the enhanced realism of the
estimated audio leads to better CLAPScore performance than the
source audio.

5. CONCLUSION

In this work, we proposed a reference-free metric for language-
queried audio source separation using contrastive language-audio
pretraining, termed CLAPScore, which can further measure the
semantic similarity between the estimated audio and the text query,
without the requirement of a reference audio. Experiments show
that the proposed CLAPScore can achieve a more fine-grained
evaluation for language-queried audio source separation.
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ABSTRACT
This work aims to advance sound event detection (SED) research
by presenting a new large language model (LLM)-powered dataset
namely wild domestic environment sound event detection (Wild-
DESED). It is crafted as an extension to the original DESED dataset
to reflect diverse acoustic variability and complex noises in home
settings. We leveraged LLMs to generate eight different domestic
scenarios based on target sound categories of the DESED dataset.
Then we enriched the scenarios with a carefully tailored mixture of
noises selected from AudioSet and ensured no overlap with target
sound. We consider widely popular convolutional neural recurrent
network to study WildDESED dataset, which depicts its challenging
nature. We then apply curriculum learning by gradually increasing
noise complexity to enhance the model’s generalization capabilities
across various noise levels. Our results with this approach show
improvements within the noisy environment, validating the effec-
tiveness on the WildDESED dataset promoting noise-robust SED
advancements.

Index Terms— sound event detection, DESED, noisy scenario,
noise robust SED, curriculum learning

1. INTRODUCTION

Sounds play a vital role in our lives, helping us understand our sur-
roundings and notice changes. Sound event detection (SED) [1, 2]
is essential for interpreting and responding to our environment, with
applications ranging from urban noise management to smart-home
technologies [3] and security systems [4]. SED has made great
strides [5–7], thanks to diverse datasets [8] tailored for specific sce-
narios. Google AudioSet [9] provides a wide array of sounds, and
MAVD [10] focuses on traffic noise. Among various SED datasets,
DESED [11, 12] is well known for its focus on domestic environ-
ments, which makes it the most utilized dataset for home sound
event research. However, DESED faces challenges in comprehen-
sively representing the unpredictable and complex nature of house-
hold sounds. Hence, there exists scope for covering a wide range of
domestic scenarios with common background noises that can occur
in a household.

The quest for noise robustness in SED has led to the develop-
ment of new methodologies and datasets [13, 14] aimed towards
improving performance under challenging conditions such as noisy
urban environments. Innovations by researchers like Neri et al. [15],
Serizel et al. [16], and Wan et al. [17] have pushed the boundaries
of SED systems by integrating deep learning and audio enhance-
ment techniques. These studies, however, predominantly address
controlled or semi-controlled environments, leaving a gap for SED
systems to effectively detect sound events in the less predictable,
‘wild’ conditions in domestic environments.

Addressing this gap, our research contributes to the field by in-
troducing a new dataset namely, wild domestic environment sound
event detection (WildDESED). We proposed carefully selecting
noise types from the AudioSet that accurately represent real home
environments but are distinct from DESED’s target sounds. This
artificial selection could be challenging because of the bias and un-
natural correlations. Large language models (LLMs) [18] such as
GPT-4, ChatGPT, and Llama have demonstrated remarkable poten-
tial to perform various tasks [19–21] in recent years. In this regard,
we utilized the strong capabilities of LLMs to analyze and sum-
marize acoustic data for selecting specific noises. This helped us
to design eight different scenarios that blend the noises with target
sounds, simulating authentic domestic environments. The noises
are divided into four categories based on their sources and acous-
tic properties, allowing for a diverse and realistic combination with
target sounds. This novel approach has culminated in the creation
of WildDESED dataset, specifically designed to enhance SED re-
search in dynamic and natural home environments.

Building on this foundation, our research not only intro-
duces the WildDESED dataset, but also explores the application
of curriculum learning in the context of SED to tackle the chal-
lenges posed by domestic noisy environments. Curriculum learn-
ing [22–24] is a training approach that improves models for noisy
speech [25–27] and audio by starting with simpler, less noisy data
and gradually increasing the noise level. This method is similar to
the way how the humans learn and helps models adjust from clean
to noisy sounds more effectively. In this work, we applied curricu-
lum learning to the baseline convolutional recurrent neural network
(CRNN) [28–30] model using the WildDESED dataset for our stud-
ies. The novelty of this work lies in the proposal of a new in-the-
wild dataset for advancing SED research and exploring curriculum
learning as an approach to develop noise-robust SED systems. The
WildDESED dataset has been made publicly available1.

2. RELATED WORK

The WildDESED dataset is an extension to the original DESED
dataset, which is a foundational resource featuring 10 target sound
classes pivotal for understanding the sounds in home environments.
The DESED dataset consists of the following subsets: The weak
set, with 1,578 real recordings labeled with weak annotations, cap-
tures the presence of sound classes without temporal specifics. The
unlabeled training set includes 14,412 real, unlabeled recordings.
The test set comprises of 1,168 real recordings with strong anno-
tations to assess model performance. These three subsets are real-
world recordings from AudioSet. The training synth set contains
10,000 synthetic recordings with strong annotations [31], detailing

1https://github.com/swagshaw/WildDESED
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Table 1: A summary of different background noises used in Wild-
DESED dataset.

Noise Occurrences Duration (Second)
Bird chirping outside 9,847 7,523

Car passing by outside 311 862
Chair moving 343 359
Clock ticking 2,5777 2,662

Coffee machine 6 30
Door closing 335 196

Fan noise 117 958
Footsteps 6,243 2,101
Light rain 159 1,379

Refrigerator humming 58 456
TV playing in the background 805 7,191

Wind blowing 5,467 48,648
Total 49,468 72,365

exact temporal boundaries. The synth validation set has 2,500 syn-
thetic recordings with strong annotations for model validation dur-
ing development. These two synthetic subsets are generated with
the Scaper. Their background files are extracted from SINS [32],
TUT [33], MUSAN [34], or YouTube and have been selected be-
cause they contain a very low amount of our sound event classes.
We propose to simulate more diverse and complex noisy scenarios
that are not covered by the original DESED dataset and also intro-
duce a controlled variability for testing.

3. WILDDESED

We extend DESED to the WildDESED for in-the-wild scenarios for
domestic environments by considering three primary set of ques-
tions to address as follows:

• What type of background noises do we use?
• What are the domestic scenarios we choose?
• How do we mix the background noises to the scenarios?

GPT-4 is an advanced language model that builds on the GPT-3 ar-
chitecture but uses a larger amount of training data. It includes the
latest techniques to enhance understanding of natural language. In
the following subsections, we will detail how we leverage GPT-4
to address each of these questions, outlining the methodology be-
hind the creation of the WildDESED dataset. This new dataset aims
to bridge the gap between the controlled environment of existing
datasets and the dynamic, often unpredictable nature of real-world
domestic soundscapes, thus expanding the potential for noise-robust
SED research in truly ‘wild’ home scenarios.

3.1. What type of background noises do we use?

To construct the WildDESED dataset, we initiated our process with
the foundational DESED dataset, which identifies 10 distinct sound
events in 10-second audio clips. The events in DESED include
diverse household sounds like alarms, appliances, pets, and run-
ning water. We input the total 356 classes from the strongly anno-
tated subset of AudioSet to the GPT-4 together with the 10 DESED
classes. Then we guide GPT-4 by the following prompt:

“Select noise classes from the 356 strongly annotated AudioSet
classes, alongside the 10 DESED classes ensuring clear delineation
and no overlap with DESED’s sound events. Further, apply thor-
ough filtering to exclude any AudioSet classes similar to DESED
target classes, preserving the distinctiveness of the dataset.”

Considering the output of GPT-4, we enhanced DESED with
selected events from the strongly annotated subset of AudioSet, en-
suring clear delineation and no overlap with DESED’s sound events.
A thorough filtering process was applied to exclude any AudioSet
classes that are very similar to target classes of DESED dataset,
preserving the distinctiveness of our dataset. Table 1 displays the
outcome of our selection process, listing the types and quantities of
noise clips integrated into WildDESED. We included a spectrum of
sounds both indoor, like the clock ticking, and outdoor, such as birds
chirping that capture the essence of a domestic environment. The
‘clock ticking’ class, for instance, has the largest event count, while
‘wind blowing’ spans the greatest duration, together reflecting the
continuous and transient nature of home sounds.

This dataset construction ensures WildDESED encompasses a
rich and authentic array of domestic noises, ready to challenge and
advance SED systems in recognizing the events under complex
acoustic home environments.

3.2. What are the domestic scenarios we choose?

For the WildDESED dataset, we still have to map the selected 12
noise classes with our 10 target classes. We input them to GPT-4
and use the following prompt:

“Create eight different domestic scenarios so that they should
map 12 selected noise classes to the 10 target classes from the
DESED dataset, crafting authentic household soundscapes. Ensure
the scenarios reflect typical sounds one would encounter in a house-
hold environment.”

Considering the output of LLM, we crafted eight different do-
mestic scenarios, each mapping to target classes from the DESED
dataset to create authentic soundscapes one would encounter in a
household. These scenarios are constructed to reflect the typical
activities and the accompanying sounds in a domestic environment.

• Morning Routine: Associated with ‘Blender’ target sounds,
this scenario captures the essence of the morning with ‘Light
rain’, ‘Refrigerator humming’, ‘Clock ticking’, and ‘TV play-
ing in the background’.

• Home Office: Linked to ‘Speech’ as the target class, it includes
background sounds of ‘Car passing by’, ‘Fan noise’, and ‘Foot-
steps’, emulating a work-from-home setting.

• Household Chores: Representing ‘Vacuum cleaner’ noises as
the target, this scenario combines ‘Door closing’, ‘Chair mov-
ing’, and ‘Footsteps’ as background to depict cleaning activi-
ties.

• Late-night: Tied to the ‘Electric shaver toothbrush’ target
sound, offering the ‘Clock ticking’ and ‘Light rain’ as a back-
drop for night-time routines.

• Cooking: Merging the target sounds of ‘Frying’ and ‘Dishes’
with ‘Coffee machine’ buzzes and ‘Refrigerator humming’,
this scenario is bustling with culinary activity.

• Pet Care: Incorporating target sounds of ‘Cat’ and ‘Dog’, this
setting is further brought to life with ‘Bird chirping outside’
and ‘TV playing in the background’.

• Bathroom Routine: Linked to ‘Running water’ as the target
sound, with added ‘Fan noise’ and ‘Wind blowing’, simulating
personal care sounds.

• Emergency: Associated with the ‘Alarm bell ringing’ target
sound, it layers urgent sounds like ‘Refrigerator humming’ and
‘Fan noise’ with ‘Clock ticking’ and ‘Car passing by’.
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Figure 1: Illustration3of Morning Routine Scenario out of the total
eight scenarios in WildDESED dataset. In the scenario, key target
sound events are written in bold fonts, along with added different
background noises to simulate real-life settings.

Each scenario’s sound design is a thoughtful blend of target and
noise classes, chosen to challenge the detection capabilities of SED
systems within the rich and varied auditory context of a home en-
vironment. To illustrate our scenarios, we present a Figure 1 that
showcases two typical scenarios out of the eight: the ‘Pet Care Sce-
nario’ and the ‘Morning Routine Scenario’. This figure highlights
key target sound events within each scenario, incorporating strate-
gically placed background noises to simulate the real-life acoustic
challenges found in domestic settings.

3.3. How do we mix the background noises to the scenarios?

In the WildDESED dataset, the integration of background noises
into the selected domestic scenarios is meticulously structured
around a quadrant based on the acoustic characteristics of the
noises. The quadrant categorizes noises into four groups: Ambi-
ent Environmental Sounds, Human-related and Intermittent Sounds,
Mechanical and Electronic Sounds, and Nature and Outdoor
Sounds, as illustrated in Figure 2.

• For Ambient Environmental Sounds, such as ‘Light rain’ and
‘Wind blowing’, we repeated these sounds to cover the entire
duration of the audio clip from the original DESED dataset.
These sounds are mixed at a low intensity to ensure they pro-
vide a consistent background atmosphere without overpower-
ing the primary sound events. The rationale behind this is to
create an unobtrusive ambient layer that emulates the continu-
ous presence of these sounds in a typical home environment.

• Sounds like ‘Footsteps’, ‘Door closing’, and ‘Chair moving’
fall into the Human-Related and Intermittent Sounds cat-
egory. These are inserted at random intervals to simulate the
sporadic nature of human movement and activities within a
home. The volume and frequency of these sounds are varied
±10% range to reflect the realistic and unpredictable nature of
their occurrence in daily life.

• Mechanical sounds, including ‘Clock ticking’ and ‘Coffee
machine’, are inserted at specific points to coincide with the
actions they represent, such as a coffee machine being used
during morning routines. The volume is set to be noticeable
but not overwhelming, ensuring the sound is recognized as a
part of the scenario without becoming a large distraction.

• Lastly, Nature and Outdoor Sounds like ‘Car passing by out-
side’ and ‘Bird chirping outside’ are incorporated randomly to
enhance the realism of external environmental influences. The

Ambient Sounds

Unpredictable 

Human-Related
Sounds

Nature and Outdoor
Sounds

Mechanical Sounds

ContinuousDiscontinuous

Predictable

Figure 2: Quadrant showing four groups of noise types based on
their acoustic characteristics considered in the WildDESED.

Figure 3: Statistics of noises in the WildDESED subsets.

volume may fluctuate to mimic the variable volume of these
sounds in real settings, contributing to the unpredictability and
diversity of the overall soundscape.

Each noise type and its corresponding mixing approach are tailored
to maintain the authenticity of the domestic scenarios. This me-
thodical and scenario-specific approach to mix noises ensures that
the WildDESED dataset not only presents a challenge for SED sys-
tems but also closely reflects the complex acoustic environments of
actual domestic settings.

In finalizing the composition of the WildDESED dataset, spe-
cial consideration was given to the representation of the ‘speech’
sound class due to its prevalence and significance in domestic en-
vironments. For the ‘Home Office’ scenario in synth set and synth
val set, we exclusively selected clips that featured the ‘speech’ class
in isolation, omitting any clips where ‘speech’ occurred alongside
other sound events.

Figure 3 displays class-wise statistics for different background
noises in each subset of the WildDESED dataset, indicating the
prevalence of each noise type, within synth, synth val, weak, and
test subsets. Figure 4 shows scenario-wise statistics for the sce-
narios in the WildDESED dataset, quantifying how frequently each
scenario appears in each subset. Through this detailed dataset
structure, WildDESED dataset positions itself as a crucial resource
for developing and evaluating SED systems, equipping researchers
with the means to advance the field of SED in diverse naturalistic
home environments.

3Figures generated using DALL-E-2 (https://openai.com/dall-e-2)
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Table 2: Performance in PSDS1 (P1), PSDS2 (P2) and PSDS1 + PSDS2 (P1 + P2) of the proposed curriculum learning (CL) approach on the
DESED devtest set and our proposed WildDESED (W) dataset with SNR in dB.

Model Performance on DESED Performance on WildDESED
10dB 5dB 0dB -5dB

P1 P2 P1 + P2 P1 P2 P1 + P2 P1 P2 P1 + P2 P1 P2 P1 + P2 P1 P2 P1 + P2
CRNN 0.344 0.543 0.887 0.222 0.409 0.631 0.148 0.302 0.450 0.064 0.174 0.238 0.017 0.078 0.095

CRNN (W) 0.200 0.329 0.529 0.175 0.337 0.512 0.135 0.303 0.438 0.087 0.242 0.329 0.048 0.174 0.222
CRNN (W+ CL) 0.265 0.461 0.726 0.212 0.443 0.655 0.175 0.390 0.565 0.114 0.317 0.431 0.049 0.211 0.260

Figure 4: Statistics of the scenarios in the WildDESED subsets.

4. CURRICULUM LEARNING FOR NOISE-ROBUST SED

We use a curriculum learning [22, 26] method to develop noise-
robust SED systems. This approach introduces complexity in
stages, starting with simple tasks and gradually integrating noise
at various signal-to-noise ratios (SNR), aligning with our goal to
augment the model’s resilience to noise.

We have five stages in our methodology, each with an increas-
ing level of noise difficulty. Initially, the model learns from clean
audio samples. This foundational step is crucial for establishing an
understanding of the sound events without the confounding pres-
ence of noise. We then incrementally introduce noise, decreasing
the SNR by 5dB in subsequent stages. Let N be the total number of
training samples. Given k noise levels L = [L1, L2, . . . , Lk], the
dataset D is composed as follows:

D =

k⋃
i=1

{Di} , Di =
N

k
samples at noise level Li (1)

The k in our experiment here is 5 including the clean DESED,
and noise levels 10dB, 5dB, 0dB, and -5dB are considered. The
model’s progress is meticulously monitored, and a validation metric
c is used to evaluate learning at each epoch. In our approach, the c
is the intersection f1-score. If c fails to improve for ten consecutive
epochs [35], the best-performing model state is reloaded, and the
training progresses to the next noise level.

5. EXPERIMENTAL SETTINGS

5.1. Dataset and Evaluation Metric

We considered the DESED dataset and our proposed WildDESED
dataset, featuring 10-second audio clips across various subsets. All
clips were resampled to 16 kHz mono and segmented using a 2048-
sample window and 256-sample hop length for spectrogram extrac-
tion and log-mel spectrogram generation. Our systems were eval-
uated using the threshold-independent polyphonic sound event de-
tection scores (PSDS) [36] in two scenarios following DCASE 2023
Challenge Task 4A protocol. Scenario-1 focuses on prompt reaction
and temporal localization, while Scenario-2 emphasizes on reduc-
ing class confusion for SED.

5.2. Implementation Details

For our experiments, following the DCASE 2023 Task 4A base-
line [29], we utilized a batch size of 48 and employed the Adam
optimizer with an initial learning rate of 0.001, coupled with an ex-
ponential warmup scheduler applied across the first 50 epochs out
of a total 200 epochs. To stabilize training, we implemented a mean
teacher model with an exponential moving average [37] factor set at
0.999. We consider the CRNN [29] baseline system from DCASE
2023 Task 4A, featuring approximately 1.2 million parameters, en-
suring a robust comparison for our curriculum learning approach.

6. RESULTS AND DISCUSSION

Table 2 shows the results of our studies on DESED and newly cre-
ated WildDESED datasets. It is observed that the performance of
the baseline CRNN model trained using DESED dataset drops sig-
nificantly as the noise levels are increased on WildDESED dataset
compared to that on the original DESED dataset. We then explore
the baseline CRNN model trained using WildDESED data, which
we refer to as CRNN (W). We find that CRNN (W) performs bet-
ter than the original CRNN model when the noise levels on Wild-
DESED are on the higher end (0 dB and -5 dB). However, the per-
formance is comparable for both models when noise level is 5 dB
and then the original CRNN model performs better for less noisy
scenario of 10dB on WildDESED and on the clean DESED dataset.

We now focus on the studies for curriculum learning approach
applied on the CRNN model trained using WildDESED dataset. We
refer this model as CRNN (W+CL) and find that it outperforms
both CRNN as well as CRNN (W) models for all noise levels on
the WildDESED dataset. This highlights the scope of curriculum
learning approach for developing noise-robust SED systems using
WildDESED dataset for unseen complex domestic settings. We also
note that the CRNN model trained on the clean DESED performs
the best on the DESED test due to the matched conditions. How-
ever, the model CRNN (W+CL) with curriculum learning certainly
helps to boost the performance of the CRNN (W) model trained on
WildDESED dataset to bring it closer that of the CRNN model on
DESED test set. The future work will focus on reducing this per-
formance gap on the clean scenario for noise-robust SED models.

7. CONCLUSION

In this work, we have presented a new dataset referred to as Wild-
DESED to advance SED research under noisy home settings and
also explored a preliminary curriculum learning method to develop
noise-robust SED systems. We used 12 noises from Audioset to
craft the WildDESED dataset considering 8 different scenarios de-
picting complex home environments by considering assistance from
an LLM. The studies conducted showed the scope of curriculum
learning approach for developing noise-robust SED systems using
the WildDESED dataset. We believe this WildDESED dataset will
be useful for future horizons of noise-robust SED research.
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ABSTRACT

Audio-text relevance learning refers to learning the shared semantic
properties of audio samples and textual descriptions. The standard
approach uses binary relevances derived from pairs of audio sam-
ples and their human-provided captions, categorizing each pair as
either positive or negative. This may result in suboptimal systems
due to varying levels of relevance between audio samples and cap-
tions. In contrast, a recent study used human-assigned relevance
ratings, i.e., continuous relevances, for these pairs but did not ob-
tain performance gains in audio-text relevance learning. This work
introduces a relevance learning method that utilizes both human-
assigned continuous relevance ratings and binary relevances using a
combination of a listwise ranking objective and a contrastive learn-
ing objective. Experimental results demonstrate the effectiveness
of the proposed method, showing improvements in language-based
audio retrieval, a downstream task in audio-text relevance learning.
In addition, we analyze how properties of the captions or audio clips
contribute to the continuous audio-text relevances provided by hu-
mans or learned by the machine.

Index Terms— Audio-text learning, continuous relevance, bi-
nary relevance, contrastive learning, learn-to-rank

1. INTRODUCTION

Audio-text relevance learning refers to learning the shared seman-
tic properties of audio samples and textual descriptions. It plays
an important role in applications such as language-based audio re-
trieval [1]. Recent studies [2, 3] address this problem with similar-
ity learning approaches, which learn intermediate representations
of audio samples and texts in a shared embedding space, thereby
measuring audio-text relevance by employing a similarity function
(e.g., cosine similarity) over these representations.

Audio-caption datasets (e.g., Clotho [4], WavCaps [5]), which
consist of audio samples accompanied by human annotated cap-
tions, are widely used for training [1]. Due to the lack of relevance
information about audio samples and captions beyond the annotated
ones, a binary relevance is adopted between audio samples and cap-
tions. An audio sample is considered relevant to its annotated cap-
tion but irrelevant to all other captions. By optimizing a contrastive
learning objective (e.g., InfoNCE [6]), a learning system is trained
to project audio samples and their relevant captions close to each
other but far away from the irrelevant ones in the shared embedding
space.

It is likely that audio samples and captions can have varying lev-
els of relevance, ranging from fully relevant to partially relevant.
For instance, consider an audio sample and its corresponding cap-
tion “people speak to each other and a cat sighs”, as shown in Fig. 1.
A partial caption “people speak to each other” only describes part
of the audio sample, as it lacks a description of cat sighs. Therefore,
it can be seen as partially relevant to the audio sample. However,
when adopting binary audio-caption relevance, all captions except

People speak to each other and a cat sighs

People speak to each other

Full caption

Partial caption

Audio wave

Binary Relevance
Continuous Relevance

1
100

0
98 ... 0

Audio-Text Relevance

relevant irrelevant

99

Figure 1: An audio sample with its full caption “people speak to
each other and a cat sighs”, which provides a complete description
of its content, and a partial caption “people speak to each other”,
which only describes part of its content. The figure illustrates two
categories of audio-text relevance: binary and continuous.

the one corresponding to the audio sample are regarded as irrele-
vant. In the given example, the caption “people speak to each other”
will be incorrectly regarded as irrelevant to the audio sample. To ac-
curately depict the relevance between audio samples and captions, it
is essential to employ non-binary relevance measures (e.g., graded
relevance [7, 8]).

Current audio-caption datasets [4, 5] lack annotated non-binary
relevance information for their audio samples and captions. Our
previous study [9] collected continuous audio-caption relevances
for a small subset of Clotho [4] via crowdsourced subjective assess-
ments. Human annotators were asked to assign relevance ratings
(ranging from 0 to 100) to audio samples with respect to a given
caption. It was shown that reducing these ratings to binary rele-
vances for training did not improve model performance on down-
stream tasks (e.g., language-based audio retrieval) [9]. Conversely,
obtaining continuous relevances through subjective assessments is
often expensive, being labor-intensive and time-consuming, while
training a system typically requires a large amount of data.

This work proposes an audio-text relevance learning method
that leverages both continuous and binary relevances. We train
modality-specific encoders to project audio samples and texts into
a shared embedding space, learning audio-text relevance by com-
puting the cosine similarity of their embeddings. During training,
we jointly optimize a listwise ranking objective (e.g., ListNet [10])
with human-assigned continuous relevance ratings and a contrastive
learning objective (e.g., InfoNCE [6]) with binary audio-text rele-
vances. Experimental results demonstrate the effectiveness of the
proposed method, showing improvements in language-based audio
retrieval, a downstream task in audio-text relevance learning. Ad-
ditionally, we analyze how properties of the captions or audio clips
contribute to the continuous audio-text relevances provided by hu-
mans or learned by the machine.

2. PROPOSED METHOD

This section presents the proposed audio-text relevance learning
method with continuous and binary relevances.
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2.1. Audio-Text Relevance Learning

Fig. 2 presents a model-agnostic dual-encoder framework for audio-
text relevance learning. Audio samples and texts are projected into
a shared embedding space via modality-specific encoders (e.g., au-
dio and text encoders). The relevance between audio samples and
texts is measured by computing the similarity between their embed-
dings, such as cosine similarity. When training with continuous rel-
evances (e.g., relevance ratings), a listwise ranking objective (e.g.,
ListNet [10]) is computed based on these relevances and the audio-
text embedding similarities. For binary relevances, a contrastive
learning objective (e.g., InfoNCE [6]) is calculated from the binary
relevances and embedding similarities. Using both relevances for
training involves a joint learning objective combining the listwise
ranking and contrastive learning objectives.

2.2. Learning Objectives

ListNet Loss with Continuous Relevances. Given N audio sam-
ples {y1, · · · , yN} and a caption x, let si (0 ≤ si ≤ 100) be the
relevance rating of yi to x, for i = 1, · · · , N . Suppose that L is
an ideal ranked list (which is unknown), where y1, · · · , yN are ar-
ranged in descending order according to their relevance to x. The
top-one ranking probability of yi, denoted by p(yi), represents the
probability of it being ranked at the top of L, given the relevance
ratings {s1, · · · , sN}.

Inspired by [10], p(yi) is written as

p(yi) =
ϕ(si)∑N
j=1 ϕ(sj)

, (1)

with ϕ(si) being

ϕ(si) =
si

log2 (r(si) + 1)
, (2)

where r(si) represents the position of si in the descending ranked
list of s1, · · · , sN . The top-one probabilities {p(y1), · · · , p(yN )}
define a probability distribution P over audio samples y1, · · · , yN
with respect to the caption x.

In this work, the dual-encoder framework outputs cosine simi-
larity scores between audio and text embeddings as a measure of
audio-text relevance. Suppose that ai is the audio embedding of yi,
and c is the text embedding of x; their similarity score is denoted
by t(ai, c), with t(ai, c) ∈ [−1, 1].

Similar to (1), we calculate another top-one ranking proba-
bility of yi, denoted by q(yi), based on the similarity scores
{t(a1, c), · · · , t(aN , c)}. Specifically, the probability q(yi) is
written as

q(yi) =
exp(t(ai, c)/ω)∑N
j=1 exp(t(aj , c)/ω)

. (3)

with ω being a hyperparameter. These top-one probabilities
{q(y1), · · · , q(yN )} define another probability distribution Q over
audio samples y1, · · · , yN with respect to the caption x.

Finally, the ListNet loss is calculated as the cross entropy be-
tween the two probability distributions P and Q, written as

LListNet = −
N∑

j=1

p(yj) log q(yj). (4)

By minimizing (4), the dual-encoder framework are optimized for
ranking audio samples by their relevance to a given caption.

InfoNCE Loss with Binary Relevances. For the case of binary
relevances, InfoNCE loss [6] is used for training. In InfoNCE, au-
dio samples and captions are considered relevant only if they cor-

Dataset Relevance #Audio / #Captions
development validation evaluation

GrRel Graded 2186 / 200 1004 / 200 1009 / 200
BiRel

Binary
2186 / 200 1004 / 200 1009 / 200

SuperBiRel 2186 / 2186 1004 / 1004 1009 / 1009
Clotho 3839 / 19195 1045 / 5225 1045 / 5225

Table 1: Audio samples and captions with human-assigned rele-
vance ratings (i.e., graded relevances) and binary relevances.

respond to each other, and otherwise, they are irrelevant. Similar
to [2, 3], we use symmetric InfoNCE that tries to classify audio
samples as either relevant or irrelevant to a given caption, and vice
versa. The total InfoNCE loss is then calculated as the sum of two
categorical cross entropies of the two tasks.

Joint Loss. To use both continuous and binary audio-text rele-
vances for training, the ListNet (4) and InfoNCE losses are com-
bined into a joint loss. Specifically, the joint loss is written as

Ljoint = α · LInfoNCE + (1− α) · LListNet, (5)
where α is a hyperparameter that is chosen from (0, 1).

3. EXPERIMENTS
The proposed method was validated on language-based audio re-
trieval, a downstream task in audio-text relevance learning.

3.1. Audio and Text Data

Clotho. All audio samples and texts used in the experiment were
selected from Clotho [4], which consists of 5,929 audio samples,
each with five human annotated captions. Clotho is partitioned into
three subsets: a development set with 3,839 audio samples, a valida-
tion set with 1,045 audio samples, and an evaluation set with 1,045
audio samples.

Continuous Relevances. Our previous study [9] collected rel-
evance ratings for a small subset of audio samples and captions in
Clotho [4] via crowdsourced subjective assessments. Human anno-
tators were asked to assign relevance ratings (ranging from 0 to 100)
to indicate their judgements of how much the acoustic content of an
audio sample matched with a given caption. Relevance ratings were
collected for 17 audio samples per caption across 600 captions, re-
sulting in a total of 10,200 ratings. We denoted this subset of Clotho
with human-assigned relevance ratings as “GrRel”.

Binary Relevances. We constructed three datasets of audio sam-
ples and captions with binary relevances, where an audio sample
was considered relevant to its corresponding caption but irrelevant
to all other captions in the dataset. Specifically, we denoted as
“BiRel” the set of audio samples and captions, the same as “GrRel”,
but annotated with binary relevances. The “SuperBiRel” consisted
of audio samples in “BiRel” and “GrRel”, each accompanied by
one of the five reference captions provided in Clotho [4]. Finally,
all audio samples and captions in Clotho [4] were utilized for ex-
periment. Regardless of the graded and binary relevances in these
datasets, we had “GrRel” = “BiRel” ⊂ “SuperBiRel” ⊂ Clotho.
Table 1 summarizes the four datasets.

3.2. Audio and Text Encoders

Audio Encoder. A pretrained CNN14 [11] was utilized as the audio
encoder, with a fully-connected layer added on its top. It took 64-
dimensional log mel-band energies as inputs, which were computed
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Figure 2: A model-agnostic dual-encoder framework for audio-text relevance learning with continuous and binary relevances.

from 40 ms Hanning-windowed frames with a hop length of 20 ms,
and generated 300-dimensional audio embeddings. We fine-tuned
the audio encoder during training.

Text Encoder. The Sentence-BERT (specifically, “all-mpnet-
base-v2”) [12] was employed as the text encoder to extract 768-
dimensional text embeddings from audio captions. An additional
fully-connected layer was added on top to transform these text em-
beddings into 300-dimensional embeddings. The Sentence-BERT
was frozen during training.

Training Setup. During training, optimization was carried out
using the Adam optimizer, starting with a learning rate of 0.001. If
the validation loss failed to improve over five consecutive epochs,
the learning rate was reduced by a factor of ten. Early stopping
was applied with a patience of ten epochs to terminate training if no
improvement was observed.

3.3. Language-based Audio Retrieval

The proposed method was validated on language-based audio re-
trieval, a downstream task of audio-text relevance learning, which
aims to retrieve audio samples from a dataset based on their rele-
vance to a given textual query. We performed language-based au-
dio retrieval by using captions as textual queries to retrieve their
corresponding audio samples in the Clotho evaluation set (“Clotho-
evaluation”) [4]. Audio-text relevance was measured by the cosine
similarity between audio and text embeddings, with higher cosine
similarity indicating greater relevance.

Evaluation Metrics. Retrieval performance was assessed using
mean Average Precision (mAP) and Recall at 10 (R@10), as done
in [1]. The mAP was determined by averaging the Average Preci-
sion (AP) scores across all query captions, where AP was the av-
erage of the precision values at the positions of audio samples in
the relevance-based ranked list corresponding to a query caption.
R@10 was calculated as the proportion of audio samples within the
top-10 results relative to the total number of audio samples corre-
sponding to a query caption, averaged over all captions. Higher
values for both metrics indicate better performance.

4. RESULTS

This section reports the experimental results for language-based au-
dio retrieval and audio-text relevance learning.

4.1. Language-based Audio Retrieval

Table 2 presents the results on Clotho-evaluation. Each evaluation
is repeated five times, and the averaged metrics are reported.

Continuous and Binary Relevances. Note that the ListNet loss
(see Section 2.2) can also work with binary relevances. In such a

Training Dataset Loss Evaluation Metrics
mAP R@10

GrRel
ListNet

0.034 ± 0.001 0.070 ± 0.002
BiRel 0.015 ± 0.002 0.024 ± 0.004

SuperBiRel
InfoNCE

0.168 ± 0.005 0.356 ± 0.010
Clotho 0.239 ± 0.001 0.482 ± 0.002

SuperBiRel + GrRel
Joint

0.173 ± 0.001 0.364 ± 0.009
Clotho + GrRel 0.244 ± 0.002 0.486 ± 0.002

Table 2: Language-based audio retrieval on Clotho-evaluation.

case, the binary relevance values {0, 1} are mapped to relevance rat-
ings {0, 100}, respectively. When training the dual-encoder frame-
work with the ListNet loss (4), we experimented with the same
audio samples and captions with either human-assigned relevance
ratings (“GrRel”) or binary relevances (“BiRel”). Experimental re-
sults show that using human-assigned relevance ratings for train-
ing leads to better performance. For instance, “GrRel” surpasses
“BiRel”, achieving an R@10 score of 0.070 ± 0.002 compared
to 0.024 ± 0.004 for “BiRel”. We conclude that continuous rel-
evances (e.g., human-assigned relevance ratings) outperform binary
relevances in depicting the relevance between audio samples and
texts, thereby resulting in superior performance in language-based
audio retrieval.

Learning Objectives. When training the dual-encoder frame-
work with different learning objectives, the joint loss (5) achieves
enhanced performance compared to both the ListNet loss (4) and
the InfoNCE loss [6]. For instance, the InfoNCE loss with “Super-
BiRel” yields an R@10 score of 0.356 ± 0.010, and the ListNet
loss with “GrRel” obtains an R@10 score of 0.070± 0.002. When
combined, the joint loss with “GrRel” and “SuperBiRel” attains an
R@10 score of 0.364± 0.009. This demonstrates the effectiveness
of the proposed method in utilizing both human-assigned relevance
ratings and binary relevances for audio-text relevance learning.

Additionally, regardless of the learning objectives, the volume of
training data (e.g., the number of audio samples and captions) af-
fects performance. For instance, when working with the InfoNCE
loss, the larger Clotho outperforms “SuperBiRel”, achieving an
R@10 score of 0.482± 0.002 compared to 0.356± 0.010 for “Su-
perBiRel”. The ListNet loss obtains the worst performance, likely
due to the limited number of audio samples and captions in “GrRel”
and “BiRel”.

4.2. Learned Audio-Text Relevances

The learned audio-text relevances are measured by the cosine sim-
ilarity between audio and text embeddings, with higher similarity
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Training Dataset Loss Correlation
ρ-statistic p-value

GrRel ListNet 0.530 < 0.001
SuperBiRel InfoNCE 0.671 < 0.001

SuperBiRel + GrRel Joint 0.690 < 0.001

Table 3: Spearman’s rank-order correlation between learned rele-
vances and human-assigned ratings in the “GrRel” evaluation set.

Feature HR MR D(H, M) APT

A
ud

io e-time n.s. n.s. n.s. n.s.
e-class -0.195** -0.233** n.s. 0.089*
audio duration n.s. n.s. n.s. 0.604**

Te
xt

perplexity -0.092* n.s. n.s. n.s.
# words 0.130** n.s. 0.108** 0.227**
# C-words 0.099* n.s. 0.100* 0.213**
# nouns n.s. n.s. 0.107** 0.158**
# adjectives n.s. n.s. n.s. 0.082*
# fr-words 0.095* n.s. n.s. 0.113**
# fr-C-words 0.089* n.s. n.s. 0.127**
# fr-nouns n.s. n.s. 0.083* 0.095*

Table 4: Pearson correlation coefficients between annotation char-
acteristics and data features. * p-value <0.05, ** p-value <0.01,
”n.s.” = not significant.

indicating greater relevance. We collect learned audio-text rele-
vances for audio samples and captions in the “GrRel” evaluation set
from three setups: the ListNet loss (4) with “GrRel”, the InfoNCE
loss [6] with “SuperBiRel”, and the joint loss (5) with both datasets.
These learned relevances are compared with human-assigned rele-
vance ratings in the “GrRel” evaluation set, which includes 3,400
relevance ratings across 1,009 audio samples and 200 captions.
Specifically, we calculate Spearman’s rank-order correlation [13]
between the learned audio-text relevances and human-assigned rel-
evance ratings.

As shown in Table 3, all three setups learn audio-text relevances
that are moderately positively correlated with the human-assigned
relevance ratings (0.4 < ρ < 0.7, p-values < 0.001). Employ-
ing the joint loss with both datasets yields the highest correlation
observed with the human-assigned relevance ratings (ρ = 0.690, p-
value < 0.001). Despite the ListNet loss applied to “GrRel”, which
incorporates the fewest audio samples and captions during train-
ing, it demonstrates a moderate positive correlation (ρ = 0.53, p-
value < 0.001), showing the effectiveness of the proposed method
in audio-text relevance learning.

5. ANALYSIS OF CROWDSOURCED RATINGS

To better understand the data-related bias factors in our audio-text
relevance annotations and learning systems, we analyzed how text
and audio properties might be related to the relevance ratings pro-
vided by humans and learned by the machine. Previous studies in
crowd-sourcing sound events have linked annotation characteristics
like inter-annotator agreement to audio attributes such as overlap-
ping sounds [14] and sound-event loudness [15]. Regarding data
attributes, research has explored audio complexity through spectral
dynamics [16] and cognitive processing demands [17], as well as

text complexity based on caption length and syntactic structure [18].
Inspired by these works, we measured a set of audio and text fea-

tures and analyzed their correlation with human and machine audio-
caption relevance ratings. We conducted our analysis across true-
positive (TP) pairs (i.e., 600 crowdsourced captions and their orig-
inal audio pairs [4], see [9]). For audio clips, we utilized the prob-
ability matrix from the pre-trained sound event detection PANNS
model [11], measuring entropy across 527 sound classes (e-class)
using averaged probabilities across time, and entropy over time (e-
time) using averaged probabilities across classes, where entropy
H = −

∑
i pi log2(pi), with pi as probability distributions. Ad-

ditionally, we considered the audio clip duration as a third attribute.
Regarding text captions, we analyzed perplexity (as a measure of
syntactic complexity), word count, content words (C-words) count,
and adjectives count. Additionally, we compiled lists of the 500
most frequent (fr) words, content words, and adjectives from the
original Clotho dataset, tallying their occurrences in each caption.

Audio and text attributes were correlated against the human-rated
(HR) audio-text relevances and their standard deviation across an-
notators (SD-HR), the latter being a measure of annotators’ dis-
agreement on the relevances. The attributes were also compared
against machine relevance ratings (MR) from a model trained on
Clotho data (InfoNCE loss with binary relevances) to understand
the factors contributing to the learnability of the data. Finally, we
explored whether the audio/text attributes can explain the degree
of disagreement between HR and MR (D(H, M)), and whether the
average time annotators spent playing audio clips (APT) correlates
with audio/text attributes.

Table 4 presents the Pearson correlation coefficients between the
measured audio and text features and the annotation characteristics.
HR and MR are negatively correlated with class entropy, indicat-
ing that the presence of diverse sound classes in the clip leads both
humans and machines to score a TP audio-text pair as less rele-
vant. Conversely, a positive correlation (r=0.213, p<0.01) between
std-HR and class entropy suggests that such a feature results in dis-
agreement among annotators. Moreover, the syntactic complexity
of captions tends to lead annotators to score a true positive audio-
caption pair as less relevant. Conversely, longer and denser captions
tend to lead annotators to perceive audio-caption pairs as more rel-
evant. Similarly, the disagreement between human and machine
ratings increases with longer and denser captions. As expected,
annotators tended to play audio clips for a longer duration when
the actual length of the audio was longer. Surprisingly, the aver-
age played time is also correlated with text attributes, suggesting
that when annotators are presented with a longer and denser cap-
tion, they tend to listen to more of the audio clip before rating the
relevance of the audio-caption pair.

6. CONCLUSIONS

This study introduced an approach to audio-text relevance learning
that integrated both continuous and binary relevances. By training
modality-specific encoders, we projected audio samples and texts
into a shared embedding space, where the cosine similarity of their
embeddings served as a measure of their relevance. Through a com-
bined optimization of a listwise ranking objective using continuous
relevance ratings and a contrastive learning objective with binary
relevances during training, our method demonstrated enhanced per-
formance in language-based audio retrieval, a downstream task in
this domain. Moreover, we analyzed how various properties of cap-
tions and audio clips influenced both human-assigned and machine-
learned continuous relevances.
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ABSTRACT

Designing lightweight models that require minimal computational 
resources and can operate on edge devices is the latest trend in 
deep learning research. This paper details our approach to Task 1: 
Low-Complexity Acoustic Scene Classification (ASC) for the 
DCASE'24 challenge. The task involves developing data-efficient 
systems for five scenarios, which progressively limit the available 
training data (i.e., 100%, 50%, 25%, 10%, 5%), while also han-
dling device mismatches and low-complexity constraints (maxi-
mum memory allowance for model parameters: 128 kB, maximum 
number of MACs per inference: 30 million). In this work, we in-
troduce a lightweight novel CNN architecture called MofleNet, 
featuring a combination of shuffle channels and residual inverted 
bottleneck blocks. Furthermore, we improve the performance by 
ensembling MofleNet with CP-ResNet. To meet the constraint of 
keeping the model size under 128 kB, both models are fine-tuned 
using quantization-aware training. Compared to the DCASE'24 
Task 1 baseline, our proposed system improves results on the TAU 
Urban Acoustic Scenes 2022 Mobile Development dataset by 
around 6% on an average across five datasets and 4% on the chal-
lenge test set, earning a 7th rank in the DCASE’24 task 1 challenge.

Index Terms—MofleNet, CP-ResNet, Ensemble Learning, 
Quantization Aware Training, Device Impulse Response augmen-
tation, Freq-MixStyle

1. INTRODUCTION

Acoustic Scene Classification (ASC) is a key research area within 
computational auditory scene analysis, focusing on categorizing 
audio recordings into predefined scene types. ASC has the poten-
tial to enhance various applications, including wearable devices, 
robotics, smart home devices, autonomous vehicles, and environ-
mental monitoring. The annual IEEE DCASE Challenge has 
driven significant progress in ASC over the years.

In the IEEE DCASE’24 Challenge Task 1 [1], the goal is to 
classify 1-second audio recordings into one of ten predefined 
acoustic scene classes under three challenging conditions: (1) a re-
cording device mismatch, (2) low complexity constraints, and (3) 
limited training data. For the training data, five scenarios with data
subsets containing data approx. 5%, 10%, 25%, 50%, and 100% 
are provided. A system must only be trained on the specified sub-
set and the explicitly allowed external resources. Additionally, to 
ensure ASC systems perform well on typical edge devices, strict 

† Both authors contributed equally.
* Work was done during an internship at Panasonic R&D Center Singapore

constraints are imposed, limiting model size to 128 kB and multi-
ply-accumulate operations (MACs) per inference to 30 million.

Convolutional Neural Networks (CNNs) dominates ASC tasks.
Lightweight models like MobileNet variant CP-Mobile [4], Ghost-
Net [5], SepNet [6] and blueprint separable convolutions network 
[7] have been used to tackle DCASE Task 1 challenges prior to
2023. In the DCASE’23 Task 1 challenge, the rank-1 model used
an ensemble of 12 teacher models, including six variants of Patch-
out FaSt Spectrogram Transformer (PaSST) and six variants of
CP-ResNet [3], to train a student model, CP-mobile (CPM) [4].
CPM's performance depends heavily on the number of channels in
each CPM Block, but reducing the model size often requires sac-
rificing accuracy. Moreover, scaling down the model size does not
proportionately decrease the MACs, presenting a significant chal-
lenge in balancing model size, accuracy, and computational effi-
ciency. This year’s challenge requires training the system on five
different sizes of training sets. Training the teacher model on a
100% dataset to distill knowledge into a student model trained on
a smaller dataset is not allowed. As a result, adopting the same
approach as the top-ranked submission would require training 12
models for each of the five dataset sizes, totaling to 60 teacher
models, making the process highly resource-intensive.

This paper introduces MofleNet (MobileShuffleNet), a model 
that incorporates channel shuffling and residual inverted bottle-
neck blocks into the CNN network. MofleNet is efficiently de-
signed to meet the challenge requirements and address CP-
Mobile’s limitations. To further improve performance, we con-
sider an ensemble of MofleNet and optimized CP-ResNet. The re-
mainder of the paper is structured as follows: Section 2 discuss the 
data preprocess. Section 3 presents the MofleNet model. Section 4 
covers ensemble models. The experimental setup is covered in 
Section 5. Section 6 discuss results, and finally, the conclusions 
are presented in Section 7.

2. DATA PRE-PROCESS

2.1. Dataset
The development dataset for this challenge is TAU22 [2], con-
taining recordings from 12 European cities and capturing 10 dis-
tinct acoustic scenes using 4 real devices. Additionally, synthetic 
data for 11 mobile devices was generated based on the original 
recordings. TAU22 retains the content of the TAU Urban Acous-
tic Scenes 2020 Mobile development dataset (TAU20) but seg-
ments the 10- second audio clips into 1-second fragments, signif-
icantly increasing prediction difficulty. The dataset comprises 
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230,350 1-sec audio clips, each labeled with corresponding acous-
tic scene. All audio clips are single-channel, 44.1 kHz and 24-bit 
format.
2.2. Feature Extraction
Raw 1D time domain audio signals were resampled to 32 kHz and 
converted to Mel domain. To obtain the Mel spectrogram, time 
domain signal is converted to the time frequency domain using 
short-time Fourier transform (STFT). This ensures that both the 
temporal and spectral characteristics of the audio data are utilized. 
After the frequency domain conversion, we extracted the Mel 
spectrogram corresponding to each audio clip using 256 Mel 
bands covering upto16 kHz. For the STFT Parameters, we employ
a window size of 96 ms with a hop size of 16 ms for MofleNet 
and 23.4 ms as hop size for CP-ResNet. Input (features extracted) 
is arranged in the form of Frequency Bands X Time Frames X 
Channels.
2.3. Data Augmentations
To mitigate overfitting, especially for limited labelled data and to 
achieve good generalization, combination of Freq-MixStyle, De-
vice Impulse Responses, and time rolling techniques are used. 
Frequency MixStyle (FMS) is the frequency-wise version of 
MixStyle. It mixes frequency-wise statistics instead of channel-
wise statistics in audio processing tasks [8]. MixStyle enhances 
model robustness to domain shifts by normalizing input features 
using the mean and standard deviation of other samples within the 
same batch, leveraging the observation that instance-wise statisti-
cal moments encapsulate style information. FMS normalizes the 
frequency bands in a spectrogram and then denormalizes them 
with mixed frequency statistics of two spectrograms. FMS is ap-
plied to a batch with a probability specified by the hyperparameter 
𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹, and the mixing coefficient is drawn from a Beta distribution
of parameter α.
Device Impulse Response (DIR) augmentation involves con-
volving the input recordings with impulse responses from 66 
freely available DIRs [9] from MicIRP [10]. The characteristic 
frequency responses of the recording devices in MicIRP make 
them ideal for simulating a diverse range of recording devices. 
This technique is designed to enhance the model’s ability to gen-
eralize across recordings from various devices. DIR augmentation 
is controlled by the hyperparameter 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷, which defines the prob-
ability of convolving a waveform with a DIR. 
Time Rolling involves shifting a prefix/suffix of a randomly sam-
pled length to the other end of the input signal. This augmentation, 
computed in the time domain, helps to simulate variations in the 
temporal alignment of the audio data.
Following parametric values are used for data augmentation.

Table 1: Data Augmentation Parameters

Model 
Name

FMS DIR Time
Rolling𝒑𝒑𝑭𝑭𝑭𝑭𝑭𝑭 α 𝒑𝒑𝑫𝑫𝑫𝑫𝑫𝑫

MofleNet 0.4 0.3 0.6 125ms
CP-ResNet 0.8 0.4 0.4 125ms

3. MOFLENET

Our proposed MofleNet architecture (MofleNet127) is depicted in 
Figure 1. It combines strided convolutions, Mofle Blocks, and av-
erage pooling to aggregate all components from the last 

convolution layer to obtain the scene prediction probabilities. The 
design of MofleNet was inspired from CP-Mobile [4] and Shuf-
fleNet [11].

The Mofle block integrates grouped convolution, channel 
shuffle, depth wise convolution, and pointwise projection convo-
lution to create a residual inverted bottleneck block. Figure 3 illus-
trates the S (Standard)/D (Spatial Down sampling) /T (Transition)
design of Mofle Blocks. Unlike the CPM block, which employs 
pointwise expansion convolution, the Mofle Block replaces this 
with grouped convolution. A drawback of grouped convolution is 
that some channels outputs are derived from only a small fraction 
of input channels, limiting information exchange. To address this, 
channel shuffle (See Figure 2) was introduced after the grouped 
convolution to enhance information flow between channel groups.
This promotes better mixing of information across different groups 
of channels, capturing more diverse and comprehensive features. 
This approach reduces the number of parameters and computa-
tional cost without significantly compromising information ex-
change between channels, resulting in richer and more informative 
feature maps. Additionally, the fourth layer of ShuffleNet units in 
[11] employs a grouped convolution, our experiments showed this
configuration did not demonstrate significant improvement.
Therefore, the Mofle block design doesn’t include a grouped con-
volution layer after the depth wise convolutions.

Figure 1: MofleNet127 Architecture: 
Conv2D@KxK: Conv2D with Kernel Size KxK

s-Stride, BN-Batch Normalization

Figure 2: Channel Shuffle
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T-block: The T-Block is designed to increase the number of chan-
nels within the network. These channels help in learning features
across the 2D dimension, enabling the network to capture various
patterns and representations from the input data.
S-block: The S-Block includes a residual connection, which helps
mitigate vanishing gradient issues and facilitates the training of
MofleNet. This block allows the model to learn both the original
representation and the residual, leading to smoother optimization
and better gradient flow.
D-block: The primary function of the D-Block is to reduce the
model’s complexity, particularly the MACs. It achieves this by de-
creasing the size of the feature maps, allowing the model to handle
smaller data sizes more efficiently.
Global Response Normalization (GRN) [15] is applied before 
the final ReLU activation. GRN in Mofle blocks is used to avoid 
feature redundancies in models with restricted capacity. 

4. ENSEMBLE MODELS

To enhance performance, we ensembled MofleNet and CP-ResNet
after optimizing both models to meet challenge constraints. The 
resulting model sizes are 57kB for MofleNet127 (now referred as 
MofleNet57) and 59kB for CPR128 (now referred as CPR59), to-
taling 116kB.
4.1. MofleNet57
To lower the MACs without majorly impacting the accuracy, third 
Mofle Block in Figure 1 was tuned from Block S to Block D with
a stride of (2x1) during convolution. Additionally, adjusted the 
channel multiplier and expansion rate to 1.8 and 2.6 respectively
to further reduce model size and computations.
4.2. CPR59
CP-ResNet is a receptive-field regularized CNN that gradually 
builds local features covering a spatially restricted size. Table 2
presents the CPR59 architecture, a modified CP-ResNet, that
ranked 1st in the DCASE’22 Task 1 challenge [3]. The original CP-
ResNet model (CPR128) has approximately 128k parameters with 
a model size of 128kB. To reduce the model size and complexity, 
the following modifications were introduced: 
• The number of parameters in the CP-ResNet network grows

quadratically with its width. Reducing the channel multiplier
from 2.0 to 1.4 brings down the parameter count below 64,000
(50% reduction in model size).

• Introducing max pooling layers with a shape of (2x1) and
stride of (2x1) before the third and fourth (also the last) blocks
reduces the MACs to under 15 million.

For additional information on the Basic CPR block listed in Table 
2, refer to Figure 4.

Table 2: CPR59 Architecture

5. EXPERIMENTAL SETUP

5.1. Training:
A total of 150 epochs with a batch size of 256, and adam optimizer 
was used for training. The learning rate strategy follows the same 
approach as in [4].

5.2. Quantization Aware Training: 
As a part of Task 1 challenge constraints, submitted models should 
meet 128kB as memory requirement. To minimize the drop in per-
formance after the quantization step, we applied Quantization 
Aware Training (QAT) [13] to all our architectures by fine-tuning 
the models for 24 epochs. A peak learning rate of 5×10−5 and lin-
early decreased it to 10% by epoch 16 was set during fine-tuning 
phase. Conv2d + BN + ReLU combinations was fused into a single 
layer and utilized PyTorch’s 'fbgemm' quantization configuration 
[12]. All computations were performed in int8, except for those in 
the GRN layer of MofleNet. Table 3 presents the total parameters, 
model size and Million MACs (MMAC) per inference.

Operator Output Shape
Input 256 x 43 x 1

Conv2D@3x3, BN, ReLU 127 x 21 x 32
Max Pool 63 x 10 x 32

Basic CPR Block(A) 63 x 10 x 32
Max Pool 31 x 10 x 32

Basic CPR Block(A) 31 x 10 x 32
Max Pool 15 x 10 x 32
Max Pool 7 x 10 x 32

Basic CPR Block(B) 7 x 10 x 44
Max Pool 7 x 5 x 44

Basic CPR Block(B) 7 x 5 x 26
Conv2D@1x1, BN 7 x 5 x 10

Avg. Pool 1 x 1 x 10

Figure 3: Mofle Blocks: T (Transition)-Block, S 
(Standard)-Block, D (Spatial Down sampling)-Block

Figure 4: Two Basic CPR Blocks
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Table 5: DCASE’24 Top Submission Results

Table 3: Total Parameters, Model Size and Complexity

Model Parameters Size (kB) MMAC
Baseline 61,000 122 29

MofleNet127 127,000 127 27.7
MofleNet57 57,000 57 13.4

CPR59 59,000 59 16
MofleNet57+CPR59 116,000 116 29.4

6. RESULTS

6.1. Development Results

The performance of the models for the five scenarios (100%, 50%, 
25%, 10%, 5%) on the validation data is shown in Table 4, the data 
splits are predefined by the challenge organizers. On average, the 
MofleNet127 and CPR128 architectures demonstrate a 4% perfor-
mance improvement compared to the baseline. Notably,
MofleNet127 performed well on the 100%, 50%, 25%, and 10% 
datasets but shows limited improvement on the 5% dataset. In con-
trast, CPR128 [3] outperforms MofleNet127 on the 5% dataset by 
4.1%. 

Table 4: Model accuracies after QAT

Using MofleNet57 or CPR59 individually, without ensembling, 
yields only marginal improvements over the baseline model,
whereas the ensemble approach achieves significantly better re-
sults. Although the individual performance of MofleNet57 and 
CPR59 models is notable, their true value lies in the significant 
savings on MACs and model size. 

Development results demonstrate that the ensemble of the two 
models significantly improves accuracy by approximately 6% 
compared to the baseline.

6.2. Challenge Results
This section provides a critical analysis of the challenge results and 
submitted systems. Table 5 [14] displays the top team’s submis-
sions and rankings, with our team (OO_NTUPRDCSG) securing 
7th place. Notably, our ensemble of MofleNet with CP-ResNet 
demonstrates a robust strategy, yielding a 4% performance in-
crease on the challenge test data compared to the baseline, while 
reducing the model size from 122 kB to 116kB. Unlike the top 
models, which employed Knowledge Distillation and external 
data, our model was trained directly on development dataset sub-
sets, showcasing its effectiveness in handling limited data without 
relying on additional resources.

Analysis of the top-ranked models revealed that both the 1st

and 2nd rank submissions were fine-tuned versions of CP-Mobile 
[4]. Replacing 3x3 convolutions with a combination of 1x3 and 
3x1 convolutions reduced CP-Mobile model complexity but did 
not improve performance, indicating that model pruning was the 
key contributor to the top-ranked submission’s success. The 2nd

place submission’s key contribution lies in its novel training strat-
egy for CP-Mobile. 

Our approach closely aligns with the 3rd-ranked submission, 
with the primary difference being their use of Knowledge Distilla-
tion. MofleNet and CP-ResNet ensemble achieved 64% accuracy, 
nearing the 3rd-ranked submissions on the development dataset 
with Knowledge Distillation. Our key contribution is the develop-
ment and strong performance of MofleNet and its ensemble. 

7. CONCLUSIONS

In this work, we presented our approach for Task 1: Low-Com-
plexity Acoustic Scene Classification in the DCASE 2024 chal-
lenge. We introduced MofleNet, a novel hybrid architecture in-
corporating shuffle channels and residual inverted bottleneck 
blocks and used it in an ensemble with CP-ResNet. Our methods 
included augmentation techniques such as Freq-MixStyle and De-
vice Impulse Response, along with Quantization Aware Training 
to meet the model size constraint. Our experimental results 
demonstrated that the ensemble of MofleNet and CP-ResNet sig-
nificantly improved accuracy compared to individual models by 
approx. 4% and baseline by approx. 6%. Specifically, MofleNet 
performed better with larger datasets, while CPR59 was more ef-
fective with smaller datasets. Additionally, DCASE’24 Task 1 
challenge results demonstrate the strength and potential of our en-
semble approach. Despite not utilizing Knowledge Distillation, 
our model demonstrated good performance in handling limited 
data scenarios. This work highlights the importance of model en-
semble and novel design of MofleNet, setting a foundation for fu-
ture advancements in this domain.

Submission Label Rank Accuracies per Split Key 
Contribution

Knowledge
Distillation100% 50% 25% 10% 5%

Han_SJTUTHU 1 61.82 60.38 59.09 56.69 54.35 Model Pruning 4 Teachers models

MALACH24_JKU 2 61.51 60.05 58.01 54.46 51.95 New training 
strategy

3 Teacher models with
Bayesian Ensemble 

Shao_NEPUMSE 3 61.71 60.61 58.31 53.75 51.38 Mamba variation 12 Teacher models 

OO_NTUPRDCSG 7 59.91 58.42 55.87 51.43 48.52 MofleNet Not Utilized

Model Accuracies per Split
100% 50% 25% 10% 5%

Baseline 56.99 53.19 50.29 45.29 42.40

MofleNet127 61.94 58.68 55.4 49.1 42.94

CPR128 60.06 58.88 55.18 50.82 47.08

MofleNet57 58.79 56.71 52.21 45.4 41.22

CPR59 58.49 57.52 54.81 48.79 44.92
MofleNet57+ 

CPR59 62.22 60.04 56.73 51.27 47.59
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ABSTRACT

This work explores the integration of large language models
(LLMs) in multimodal machine learning, focusing on their use-
fulness in augmenting and generating audio-caption datasets. The
study is structured around three primary objectives. The first objec-
tive is to evaluate the capability of LLMs to enhance existing audio-
caption datasets by generating augmented and improved captions.
The second objective explores the potential of LLMs to create new
audio-caption datasets by extracting relevant text and audio from
video-caption datasets. Various LLMs and hyperparameter configu-
rations are tested to determine their effectiveness in these two tasks.
The final objective is to evaluate the impact of these augmented and
newly created datasets on training outcomes, providing insights into
their potential contributions to audio related machine learning tasks.
The results demonstrate the potential of LLMs to significantly ad-
vance the field by improving data quality and availability, in result
enhancing model training and performance.

Index Terms— Language-Based Audio Retrieval, DCASE
2024, Large Language Models, Caption augmentation, Bi-encoder
architecture, Multimodal learning

1. INTRODUCTION

The rapid advancement of multimodal machine learning has led to
an increasing demand for high-quality and diverse audio-caption
datasets. However, collecting such datasets by gathering audio sam-
ples and captioning them manually can be a time-consuming and
resource-intensive task, often resulting in limited availability and
quality issues. Recent developments in large language models have
shown promising capabilities in natural language processing tasks,
sparking interest in their potential applications in multimodal learn-
ing.

The effectiveness of utilizing text augmentations has been
demonstrated by Primus et al. [1] through the application of var-
ious tools. However, with the advent of GPT-3 and subsequent ad-
vancements in large language models, it has become evident that
these models alone can perform a range of complex augmentations,
notably improving results of language-audio retrieval. The objec-
tive of this work is to evaluate and benchmark the effectiveness of
augmentations performed by LLMs. We mainly focus on exploring
two potential applications of large language models in language-
audio retrieval task. The first is to augment captions using back-
translation and mixing described in subsection 2.2. Primus et al.
[2] showed that paraphrasing captions to Clotho v2.1 dataset us-
ing GPT-3.5 Turbo can successfully enrich the training data. Xu
[3] introduced AudioSetMix, which employed LLM-assisted trans-
formations for audio captions, demonstrating how LLMs can dy-
namically augment audio-caption datasets to improve both the di-
versity and quality of the data. In alignment with this, Wu et al.

[4, 5] have proven that mixing captions improves the performance
of audio captioning. Audio retrieval and captioning are in princi-
ple closely related [6] and therefore we further explore the effect
of mixing captions on the former. The second LLM implementa-
tion is to generate a new audio-caption dataset from existing video-
caption datasets by extracting audio descriptions from captions us-
ing LLMs as presented in subsection 2.3). The WavCaps [7] dataset
utilizes LLMs to refine raw audio descriptions into more structured,
caption-like sentences, demonstrating an effective use of LLMs in
creating cleaner, more useful datasets for multimodal learning.

We further explore this concept by experimenting with different
LLMs, hyperparameters and systematically measuring the results.
The model we are using for comparison to verify and measure the
results of proposed methods is a custom bi-encoder architecture in-
spired by the work of Primus et al. [2], and is described in subsec-
tion 2.1. In accordance with the objectives of this work, experiments
are conducted exclusively using LLMs. Simpler methods of data
augmentation are not tested, as LLMs are expected to yield more
sophisticated and effective results. The conducted experiments and
the final results are analyzed in section 3.

The findings presented in this work demonstrate promising re-
sults, warranting further investigation to fully explore the vast po-
tential of LLMs in multimodal learning.

2. METHOD

2.1. Model training

To evaluate selected augmentations and data generation methods,
we use a two-phase approach with an audio retrieval model: pre-
training and fine-tuning. For pre-training, we employ datasets
Clotho v2.1 [8], AudioCaps [9], and WavCaps [7]. We then fine-
tune the model using only the Clotho and AudioCaps datasets. The
effectiveness of the model is assessed by comparing the mean aver-
age precision at rank 10 (mAP@10) across test splits of these two
datasets. The model consists of a bi-encoder architecture designed
to estimate similarity between audio and text data. Input audio and
text are mapped to a 1,024-dimensional latent space, where pairs
with similar meanings are positioned close to each other, while pairs
with different meanings are positioned further apart. The similarity
between embeddings is determined using cosine similarity. For tex-
tual embeddings we utilize the RoBERTa-large model [10], and to
encode audio we use the PaSST-S [11] encoder. We train the entire
model simultaneously without freezing any layers.

To train our systems, we employ the InfoNCE loss with a train-
able temperature. After calculating embeddings of all n audios and
texts from a given batch, we compute the similarity matrix S, where
Sij denotes the similarity between text i and audio j. The diag-
onal of the matrix represents matching pairs, while all other ele-
ments are considered non-matching. We then calculate the mean
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Original caption Back-translated caption
Brakes squeak, and a quiet engine idles nicely The brakes squeal, and a quiet engine slows down smoothly

Loud deep tone cascading through a large room Deep and loud tone resonating in a large room
A siren wails into the open air while waves lap the shore A siren sounds in the air while the waves hit the shore

Table 1: Examples of back-translation

cross-entropy loss on each row (text-to-audio loss) and each column
(audio-to-text loss) after applying the softmax function. The final
loss is the mean of the audio-to-text and text-to-audio components.

We analyze 30-second audio segments based on Clotho’s max-
imal audio length. Since the audio encoder processes 10-second
segments, we split the input audio into 10-second windows with a
10-second hop size, without any additional overlap between win-
dows. Subsequently, we average all embeddings from a given audio
to obtain final representation.

2.2. Augmentations

In this section, we explore two augmentation methods: back-
translation and mixing. The back-translation method subtly mod-
ifies captions by translating them into a random language and then
back to English, leveraging linguistic nuances to introduce minor
yet impactful changes. Meanwhile, mixing involves combining au-
dio samples and captions to generate new, coherent captions that
expand our dataset significantly.

2.2.1. Back-translation

Each caption is translated to a random language and then back to
English using a large language model. The following prompt was
used for this task:

You will be given audio captions. The captions are go-
ing to be used for training of an audio captioning model.
Translate every caption to a random language and then
translate it back to English. When translating, feel free to
make proper adjustments to ensure the phrase is natural
and coherent. Do not comment on translations.

At first glance, this method appears similar to simple para-
phrasing; however, it offers two significant advantages. First, it
introduces subtle yet noticeable modifications to the original text,
leveraging the inherent differences between languages. Second, by
operating within the constraints of translation, the LLM preserves
the core meaning of the caption. Consequently, this approach pro-
duces slightly modified captions, often with a different word or-
der, while minimizing the risk of altering the fundamental message.
We present some examples of this augmentation on captions from
Clotho v2.1 dataset using GPT-4o in Table 1.

2.2.2. Mixing

Audio samples from the Clotho and AudioCaps datasets are mixed
with each other and the LLM is prompted to combine the corre-
sponding captions in a sensible manner. This process results in the
creation of 50,000 new audio-caption pairs. The following prompt
was used as input for this task:

You will be given a list of audio captions. Your task is to
mix them together to generate a new caption. The cap-
tion that you generate should be a mix of all the input
captions. Keep the generated caption under 15 words.
Do not write introductions or explanations. The caption
should be a natural and coherent sentence in the style of

the input captions. The captions are not chronological,
so don’t refer to time dependencies between them.

2.3. VideoCaps

2.3.1. Dataset generation

In order to create a new high-quality dataset, we collected com-
monly used video-caption datasets: Activity-Net [12], Charades-
Ego [13], MSRVTT [14], MSVD [15], VATEX [16], VIOLIN [17]
and WebVid [18]. This resulted in obtaining around 10.8 million
samples. Then, we extracted samples that contained valid audio,
which narrowed the dataset down to around 770,000 audio-caption
pairs. The main challenge was that many of the captions were pri-
marily video-focused and did not contain any meaningful informa-
tion about the audio content.

Therefore, in order to filter out such cases, we employ the fine-
tuned model described in subsection 2.1 to obtain audio and text
embeddings for each sample. Then, cosine similarity between em-
beddings of each ground-truth pair is computed. This approach
leverages the model’s capability to represent complex semantic re-
lationships and can be used to estimate the quality of ground-truth
pairs in an arbitrary dataset. This method was applied to select top
100,000 samples for further processing.

To further process the selected samples, the LLM was used to
rephrase original captions and remove any visual context that would
be irrelevant during audio retrieval training. The following prompt
was used as input to the LLM:

You will be given video captions. Rephrase them and re-
move parts that couldn’t possibly be inferred from audio
events. Remove any details from the captions that refer
to visual or spoken events. Focus on the audio content
only. Remove dates, time and names of places and per-
sons. Do not write introductions or explanations. Each
audio caption should be one sentence with less than 15
words. Use grammatical sentences.

Finally, since rephrasing is prone to outliers and low-quality
results as the LLM may deem the input captions as inadequate or
simply fail to perform the task properly, we perform final filtration
on the rephrased captions and extract the top 70,000.

2.3.2. Selecting LLM temperature

The aforementioned method of evaluating dataset quality can also
serve as a benchmark to evaluate performance of various LLMs in
processing captions and aid in selecting hyperparameters. The lat-
ter is especially important, since temperature can have significant
impact on the quality of LLM output [19] and its optimal value
can only be determined empirically. Therefore, we conducted a
grid search and used various commercial and open-source LLMs
with different temperature settings to rephrase 1,000 captions that
were randomly sampled from the top 100,000 pairs obtained ear-
lier. Then, cosine similarity between each rephrased caption and
the corresponding audio clip was computed.
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Experiment LLM used AudioCaps mAP@10 Clotho mAP@10
Pre-training - 56.70 37.36

Pre-training + VideoCaps GPT-4o 56.73 38.12
Pre-training + VideoCaps

(without WavCaps)
GPT-4o 54.77 34.21

Base fine-tuning - 59.43 38.68
Back-translation Llama 3 8B 59.10 38.95
Back-translation GPT-3.5 Turbo 59.76 39.14
Back-translation GPT-4o 59.71 39.11

Mixing Llama 3 8B 60.61 39.17
Mixing GPT-3.5 Turbo 59.23 39.18
Mixing GPT-4o 59.81 39.24

VideoCaps Llama 3 8B 58.57 38.70
VideoCaps GPT-3.5 Turbo 58.57 38.56
VideoCaps GPT-4o 58.87 38.44

VideoCaps + Mixing GPT-4o 59.08 38.82
VideoCaps + Back-translation GPT-4o 59.38 39.02

Back-translation + Mixing GPT-4o 59.44 38.94
VideoCaps + Mixing +

Back-translation
GPT-4o 58.87 38.44

Table 2: Performance of text-to-audio retrieval on the AudioCaps and Clotho v2.1 test sets was evaluated. Each model was trained three
times, with the values reported in the tables representing the average performance on each dataset.

3. EXPERIMENTS AND RESULTS

In this section, we describe all conducted experiments. Table 2
presents the performance of all models on the Clotho v2.1 and Au-
dioCaps datasets, including both pre-training and fine-tuning re-
sults. For all experiments, we utilize the InfoNCE loss function.
We update the model parameters using the AdamW optimizer with
a batch size of 128. Additionally, we employ a cosine decay learn-
ing rate scheduler with warmup. During training, we select the best
model checkpoints based on the mAP@10 value evaluated on the
validation set, which is assessed twice within each training epoch.

3.1. Pre-training

Initially, we aimed to develop an audio-retrieval model for subse-
quent fine-tunings and data filtering. The training phase utilized
Clotho-training, AudioCaps-training, and WavCaps datasets, with
Clotho-validation and AudioCaps-validation employed for valida-
tion purposes. The training consists of 16 epochs, with a learning
rate schedule from 1 × 10−5 to 5 × 10−7. We utilize structured
patchout of 15 and 2 for time and frequency dimensions, respec-
tively. Additionally, random deletion and synonym replacement are
applied with a probability of 0.8.

3.2. Fine-tuning

The next step involves further fine-tuning the model. For this pur-
pose, the same datasets were used for both training and validation,
excluding WavCaps. The number of epochs has been reduced to 6,
and the learning rate has been decreased to range from 3× 10−6 to
6 × 10−8. To increase model regularization, we changed the opti-
mizer weight decay parameter from 0.0 to 0.1. The results indicate
that additional fine-tuning without WavCaps significantly increases
the mAP@10 on both the Clotho and AudioCaps datasets.

3.3. Back-translation and mixing

A certain degree of randomness in generation is particularly desir-
able, especially during back-translation, to avoid literal translation.
We decided to set the temperature parameter to 0.7 for each of the
LLMs. Then, we have prepared augmented datasets: for each cap-
tion in training splits of AudioCaps and Clotho v2.1 we have gener-
ated exacly one back-translated caption. For mixing, we randomly
selected 50,000 data pairs, equalized their audio energies, and used
the LLMs to combine their captions.

To evaluate the effectiveness of augmented datasets in the de-
velopment of audio retrieval systems, we conducted additional fine-
tuning experiments. The effectiveness of these augmentations was
assessed by comparing the mAP@10 value on the AudioCaps and
Clotho v2.1 datasets, based on the training data used. The results,
presented in Table 2, demonstrate that both back-translation and
mixing significantly enhance the model’s performance. For back-
translation, utilizing more advanced language models leads to im-
proved results, while for mixing, the best results were obtained with
the smallest tested model.

Table 3 demonstrates that our best model, enhanced through
data augmentation using Llama 3 8B, outperforms most of current
state-of-the-art solutions. The single models by Primus et al. and
Chen et al., submitted to the DCASE 2023 and 2024 Challenges,
were trained on the full AudioCaps dataset and validated exclu-
sively on the Clotho v2.1, which naturally resulted in improved per-
formance on this dataset.

3.4. VideoCaps

3.4.1. Temperature selection

To select the optimal temperature settings for each large language
model, we conducted experiments across a spectrum of tempera-
ture settings, ranging from 0.0 to 1.5. These settings adjust the ran-
domness in the model’s output: lower temperatures result in more
deterministic outputs, while higher temperatures allow for greater
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Model AudioCaps mAP@10 Clotho mAP@10
CLAP [20] 51.3 20.4

Chen et al. [21] - 37.00
Primus et al. [2] - 38.56

Primus et al. [22] - 39.77
Ours 60.61 39.17

Table 3: Comparison of our solution with other state-of-the-art text-
to-audio retrieval systems.

diversity but potentially less coherence and relevance to the original
audio content. We measured the median cosine similarity of 1,000
selected samples after rephrasing.
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Figure 1: Median cosine similarity of rephrased datasets obtained
using various LLMs across a spectrum of temperature settings

The results, shown in Figure 1, indicate that all models demon-
strate higher median cosine similarity at lower temperatures. This
finding suggests that more deterministic settings produce captions
that are more closely aligned with the reference captions, high-
lighting the trade-off between creativity and accuracy in model-
generated captions. Additionally, GPT-4 and GPT-4o consistently
outperform GPT-3.5 Turbo and Llama 3 8B across most tempera-
ture settings, suggesting that newer and more sophisticated model
architectures may better maintain semantic accuracy even as the
output becomes more diverse at higher temperatures. For further
experiments, we selected a temperature of 0.0 for Llama 3 8B, 1.1
for GPT-3.5 Turbo, and 0.7 for GPT-4o.

3.4.2. Trainings

After filtering, VideoCaps contains approximately 70,000 new
audio-caption pairs. To evaluate the dataset’s quality, we conducted
additional pre-training to measure the influence of VideoCaps on
model performance, keeping pre-training settings the same. The
results of this experiment are shown in Table 2. Substituting Wav-
Caps with VideoCaps alone resulted in a significant performance
decrease on both datasets. However, integrating both WavCaps and
VideoCaps notably enhanced performance on Clotho v2.1 while
maintaining comparable results on AudioCaps.

We also conducted fine-tuning after base pre-training. The re-
sults showed slightly lower performance compared to fine-tuning
without VideoCaps. This difference may be attributed to the larger
volume of VideoCaps data compared to AudioCaps and Clotho
v2.1. Additionally, variations in performance could stem from the
fine-tuning process adapting to specific styles of descriptions and
audio content present in the evaluation sets.

3.5. Joint Trainings

We also conducted experiments using different augmentations dur-
ing fine-tuning, exclusively utilizing data generated by GPT-4o. The
results are shown in Table 2, revealing that none of the combinations
surpassed the performance achieved with Mixing and Llama 3 8B.

4. DISCUSSION AND CONCLUSION

In this study we explored various approaches to augmenting and
generating new datasets for the training of text-to-audio retrieval
systems using large language models. The results demonstrate that
the utilization of presented techniques can significantly enhance re-
trieval model performance.

The novel approach introduced in this paper by creating Video-
Caps dataset, shows promising results for generating large-scale
text-audio datasets, thereby improving model pre-training. We also
showed that large language model choice and the value of the tem-
perature parameter can significantly impact the quality of the gen-
erated dataset. Additionally, our experiments indicate that mix-
ing audio and captions, especially when augmented using Llama
3 8B, yields the best results for our system. This method produced
a new state-of-the-art model in text-to-audio retrieval, achieving a
mAP@10 score of 60.61 on the AudioCaps dataset. Additionally,
it achieved a comparable performance to the current state-of-the-art
models on the Clotho v2.1 dataset, with a score of 39.17.

However, fine-tunings with multiple generated data resulted in
lower performance. One possible explanation for this is that there
is a larger quantity of artificially generated data compared to the
original data, which are likely of better quality.

5. FUTURE RESEARCH

In our research, we introduced three distinct ways to create and en-
hance datasets using large language models. There is still a room
for experiments and improvements.

In addition to our methods, there are alternative approaches to
generating synthetic audio-caption datasets. One such approach in-
volves using the outputs of an audio captioning model as part of the
prompt, along with other relevant metadata. Another method is to
mix audio clips sequentially without significant overlap and prompt
the LLM to generate corresponding captions, taking into account
the temporal aspects of the audio.

Further research should investigate the outcomes of utilizing
different LLMs and fine-tuning their hyperparameters, such as tem-
perature, top-p, and top-k. In addition, experimenting with prompt
engineering seems be an essential approach. It is reasonable to
assume that as the quality of available large language models im-
proves over time, the quality of synthetically generated datasets will
also enhance.
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