
sEMG-based Gesture Recognition with Spiking
Neural Networks on Low-power FPGA⋆

Matteo Antonio Scrugli[0000−0001−7441−1425], Gianluca
Leone[0000−0001−5265−0759], Paola Busia[0000−0002−1434−9858], and Paolo

Meloni[0000−0002−8106−4641]

University of Cagliari, Cagliari, Italy
(matteo.scrugli, gianluca.leone94, paola.busia, paolo.meloni)@unica.it

Abstract. Classification of surface electromyographic (sEMG) signals
for the precise identification of hand gestures is a crucial area in the ad-
vancement of complex prosthetic devices and human-machine interfaces.
This study presents a real-time sEMG classification system, exploiting
a Spiking Neural Network (SNN) to distinguish among twelve distinct
hand gestures. The system is implemented on a Lattice iCE40-UltraPlus
FPGA, explicitly designed for low-power applications. Evaluation on the
NinaPro DB5 dataset confirms an accuracy of 85.6%, demonstrating the
model’s effectiveness. The power consumption for this architecture is ap-
proximately 1.7 mW, leveraging the inherent energy efficiency of SNNs
for low-power classification.

Keywords: Spiking Neural Networks · Real-time monitoring · Health-
care.

1 Introduction

The continuous development of artificial intelligence and neural networks offers
numerous opportunities for long-term monitoring and personalized applications
in the healthcare domain. One area of considerable interest is the precise interpre-
tation of surface electromyographic signals (sEMG) for accurate identification of
hand gestures, a cornerstone for the evolution of sophisticated prosthetic devices
and human-machine interfaces. Real-time monitoring of sEMG poses great chal-
lenges due to stringent accuracy and resource limitations in wearable/embedded
systems, making it a key research area. Spiking Neural Networks (SNNs) emerge
as a promising solution with energy-efficient, event-driven processing. However,
exploiting the benefits of event-driven processing often requires specialized com-
putational architectures.

Field Programmable Gate Arrays (FPGAs), due to their highly customiz-
able hardware design, present themselves as suitable candidates for these com-
putational tasks. Their design allows for the exploitation of sparse neuron fir-
ing patterns. The core Digital Signal Processor (DSP) slices are engineered to

⋆ This work was supported by Key Digital Technologies Joint Undertaking (KDT JU)
in EdgeAI “Edge AI Technologies for Optimised Performance Embedded Processing”
project, grant agreement No 101097300.

This preprint has not undergone peer review or any post-submission improvements or corrections.
The Version of Record of this contribution is published in Design and Architectures for Signal and Image
 Processing (DASIP 2024) , and is available online at 10.1007/978-3-031-62874-0_2 .

2 M. A. Scrugli et al.

Table 1. A comparative summary of relevant works in sEMG classification using Spik-
ing Neural Networks.

Work Dataset Encoding Classess Accuracy Device Energy Power Mops

[3]
custom

Delta 4 84.8% SpiNNaker N.R1 1-4 W N.R.
4 subjects

[4]
custom

Population 8 97.4% N.R. N.R. N.R. 0.013
8 subjects

[10]
custom HD-sEMG

10 95% Jetson 0.97 mJ 100 mW 7.97*5 subjects Decomposition

[12]
custom Event-

6 98.78% N.R. N.R. N.R. 6.57
10 subjects Differential

[11] NinaPro DB5 Delta 12 74% Loihi 246 mJ 41 mW 11.56*

Our NinaPro DB5 Delta 12 85.6% FPGA 35.68 µJ 1.7 mW 2.336
1 Not Reported.
* Estimated from the paper.

adeptly handle a suite of arithmetic operations including addition, multiplica-
tion, and multiply-and-accumulate. On another front, BRAM (Block Random
Access Memory) units, due to their adaptable design and size, are especially
suitable for integrating SNN models and facilitating data access and manage-
ment.

SNN-based systems, although an emerging technology, show promising po-
tential in the classification of sEMG signals for hand gesture recognition, a key
step toward the advancement of complex prosthetic devices and human-machine
interfaces. This paper presents a real-time sEMG classification system for dis-
tinguishing hand gestures and investigates the integration of Spiking neural net-
works on the Lattice iCE40-UltraPlus FPGA, a device optimized for low-power
applications, addressing the challenges and potentials in this area.

The main contributions can be summarized as three most relevant points:

– we present an SNN-based real-time classification system capable of discern-
ing twelve distinct hand gestures using sEMG signals, achieving an accuracy
of 85.6% that underscores the effectiveness of the model;

– we investigate the most efficient coding method to transmit the continuous
sEMG signal in spike traces, evaluating the benefits of using delta modula-
tion on the original signal, as well as on the first- and second-order deriva-
tives, which enhances classification performance;

– we illustrate an efficient implementation on ultra-low-power Lattice FPGAs,
consuming about 1 mW, which exploits the inherent energy efficiency of
SNNs for low-power classification.

2 Related work

Recent works from the literature demonstrate the efficiency of SNNs and their
suitability for the gesture recognition problem based on the sEMG signal pro-
cessing. In Table 1, we summarize the most relevant contributions, reporting

Title Suppressed Due to Excessive Length 3

the reference dataset, the data encoding scheme, the number of different ges-
tures considered, and the classification accuracy. Moreover, we include the on-
hardware efficiency of the proposed models, reporting the targeted platform and
the measured energy and power consumption for inference execution.

The work of [3] demonstrates the use of the NeuCube spiking model for the
recognition of 4 different hand gestures, reaching 84.8% classification accuracy.
The reference data was acquired from 4 volunteering subjects, performing two-
digit grasp, three-digit grasp, fist, and hand rest. The train of spikes provided
as input to the SNN model was obtained through temporal difference encoding.
Similarly, the work of [12] presents an SNN model reaching 98.78% accuracy
in the recognition of 6 different gestures, based on the custom recordings of 10
subjects, whereas in [10] 95% classification accuracy was obtained in the clas-
sification of 10 hand gestures. The authors of [4] propose a different encoding
scheme, exploiting a set of Gaussian filters to produce the train of spikes. They
report 97.4% accuracy in the recognition of 8 different gestures based on the
sEMG recorded from 8 subjects. As can be noticed, the listed works reference
custom datasets, comprising different sets of hand gestures, therefore the com-
parison of the reported results in terms of achieved performance is complicated
by the lack of a common data reference [3, 4, 10, 12].

Due to this reason, we considered as our main reference the work of [11],
which targeted the open-source NinaPro database, considering a subset of the
data collected in the DB5, and particularly 12 gestures comprising flexion and
extension of each finger, thumb adduction, and abduction, plus a rest class.
The authors perform a design exploration for the selection of the optimal SNN
model, comparing topologies including convolutional and fully connected layers.
The finally selected model exploits the CUBA leaky-integrate and fire neuron
and embeds two fully connected layers, reaching 74% classification accuracy.
With this work, we aim at improving the classification performance achieved
in [11], proposing a lean topology with a reduced number of required operations
and relying on a novel version of the delta encoding scheme, where we include
the information provided by the first and second derivatives of the signal.

Moreover, considering the applications of sEMG processing, which include
prosthesis control, evaluating the efficiency of the proposed classifier is espe-
cially relevant. The SNN model presented in [3] was deployed on the SpiNNaker
platform [6], providing real-time classification with power consumption ranging
from 1 to 4 W. The model presented in [11] was evaluated on the Loihi [5],
demonstrating 5.7 ms inference time, with 246 mJ energy per inference and 41
mW average power consumption for parallel execution on 12 cores. On the other
hand, the model presented in [10] was deployed on the NVIDIA Jetson Nano
platform, resulting in 9.7 ms inference time, with 0.97 mJ per inference and
100 mW average power consumption. Finally, direct measurements on target
hardware are not provided for the models in [12] and [4], we thus report their
complexity in terms of the number of required accumulate operations. To the
best of our knowledge, the implementation presented for our proposed gesture
recognition model results in the lowest power consumption among the referenced

4 M. A. Scrugli et al.

works, thanks to the specialized re-configurable processing architecture designed
on the low-power Lattice FPGA and a limited network complexity in terms of
the number of required operations.

3 Method

In this section, we delineate the specifics of our proposed system, showcasing
the reference dataset, the encoding methodology for spike generation, the chosen
SNN architecture, and the targeted FPGA-based processor adapted to sEMG
signal processing.

3.1 Dataset

The data used in this study were derived from the NinaPro DB5 dataset [8],
which includes sEMG and kinematic data collected from 10 subjects without
amputations or disabilities performing 52 distinct hand movements alongside
a resting position. The 52 gestures are divided into subgroups, E1, E2, and
E3, in alignment with the work of [11], which provides the main reference for
comparison, we selected the E1 subgroup comprising of 12 exercises. The labels
are structured to capture different movements for each finger. For the index,
middle, ring, and little fingers, there are two labels each, one for flexion and
another for extension, making eight labels. The thumb adds four more labels for
adduction, abduction, flexion, and extension.

Acquisition was performed using two Thalmic Myo Armbands and the sEMG
signals were sampled at a frequency of 200 Hz. Each subject performed six
repetitions of the specified movements, as demonstrated by movies on a laptop
computer screen, with each repetition lasting approximately five seconds followed
by a three-second rest interval.

For our analysis, we focused specifically on the sEMG data encapsulated in
the “emg” variable of the dataset, which consists of 16 columns representing
signals from 16 channels. The first 8 columns correspond to electrodes evenly
distributed around the forearm at the height of the radio-humeral joint, while
columns 9-16 represent the second Myo, with a 22.5-degree clockwise slope.

The labels are derived from the “restimulus” variable. While, as will be fur-
ther explained in Section 3.3, the dataset was divided into training, validation,
and testing subsets based on the “rerepetition” variable. The names “restimulus”
and “rerepetitin” for the variables derive from the original dataset description.

3.2 Encoding

In the context of spiking neural networks, an important part of the process
is to transform continuous sEMG signals into spike sequences. In this study,
we use Delta modulation, a method commonly used in signal processing and
telecommunications to transform analog signals into digital form.

Title Suppressed Due to Excessive Length 5

Our approach is different from the usual methods found in the literature
because we apply delta modulation not only to the raw signal but also to its
first and second derivatives. Using the first derivative, we emphasize information
related to the speed of muscle activations. Meanwhile, the second derivative
helps us analyze the acceleration or deceleration of these activations, adding
more depth to our analysis.

The mechanism of delta modulation generates two distinct traces, indicating
either a positive or negative deviation of the signal from a designated threshold,
δ, which in our setup, is assigned a value of 15. The signal traces obtained through
delta modulation are used directly without any normalization. Through a series
of tests, the δ value chosen was validated to effectively represent variations in the
sEMG signal. The encoding method is described as pseudo-code in Algorithm 1.

Algorithm 1: sEMG Encoding with Delta Modulation
Input: sEMG signal
Result: Two signals of spikes per channel, POS and NEG.

1 delta sample = First sEMG sample;
2 delta value;
3 while sEMG signal do
4 for sEMG channel do
5 sEMG sample;
6 if sEMG sample > delta sample + delta value then
7 delta sample = sEMG sample;
8 POS channel.append(spike);

9 else
10 POS channel.append(no-spike);

11 if sEMG sample < delta sample - delta value then
12 delta sample = sEMG sample;
13 NEG channel.append(spike);

14 else
15 NEG channel.append(no-spike);

3.3 Segmentation

The segmentation process is a crucial step in preparing sEMG data for subse-
quent analysis and classification activities. This step involves sectioning contin-
uous sEMG signals into segments or windows, which are then used for feature
extraction and classification.

Initially, the repetitions within the dataset are allocated to training, valida-
tion, and testing subsets. Specifically, repetitions 1, 2, 4, and 6 are earmarked
for training, repetition 3 for validation, and repetition 5 for testing.

The windowing process, a central aspect of segmentation, is governed by a set
of parameters. Primarily, the window size and shift, which are set at 0.5 seconds
and 0.1 seconds respectively, dictate the extent and overlap of the segments.
Given the data frequency of 200 Hz, these time-based parameters are translated

6 M. A. Scrugli et al.

into sample-based metrics, yielding a window size of 100 samples and a window
shift of 20 samples.

In the NinaPro DB5, each sample is originally labeled as either exercise or
rest. To assign a single label to a window of samples, we established specific
criteria based on the proportion of labels within each window. A window is
classified as exercise if at least 80% of its samples are labeled as such. Conversely,
a window is labeled as rest if 100% of its samples carry the rest label. Windows
that do not conform to these criteria are excluded from the training phase.

To eliminate some noise present at the beginning of the signal, we imposed
an initial delay of 2 seconds before the start of the windowing process, equivalent
to 400 samples based on the data sampling rate.

3.4 SNN topology and training

We used the SLAYER [9] libraries to manage the neural network; as a matter of
practical implementation, the selected neuron type is the LIF (Leaky Integrate
and Fire).

Outlined in Equations 1 and 2, each neuron receives a sequence of spikes
sin as input, which, when subject to synaptic weight w multiplication, shape
the membrane voltage v within the neuron. The voltage v gradually decreases,
influenced by the decay factor α.

The SLAYER toolbox is essential for defining custom spiking neuron and
synaptic behaviors. It was used in conjunction with the LAVA framework[2, 1],
which enhances GPU-based efficiency for SNN training and simulation.

ṽ(t) = α · v(t) +
∑

w · sin(t) (1)

v(t+ 1) =

{
ṽ(t), if ṽ(t) < θ

0, otherwise
(2)

As shown in Equation 3, the neuron emits an output spike sout(t) when its
voltage exceeds a certain threshold θ. The output spike can be represented as:

sout(t+ 1) =

{
1, if ṽ(t) ≥ θ

0, otherwise
(3)

We carried out the training on Google Colab, leveraging the computational
power of T4 GPUs. The Adam optimizer was chosen with a learning rate of
0.001 and batch sizes fixed at 32. The loss was assessed through the slayer.loss
class, with a focus on SpikeRate-based calculations. We set a true rate target
at 0.2 and a false rate at 0.03. To avoid overfitting, an early stopping technique
was used. In our case, training is stopped if there is no improvement within 10
consecutive epochs.

The architecture of our network is assembled through a series of Dense layers,
delineated in Table 2. Finally, through the support of the SLAYER [9] frame-
work, we introduced axonal delays to simulate the propagation time of spikes
along the axon, setting a maximum delay value of 62 time-steps.

Title Suppressed Due to Excessive Length 7

Table 2. Topology and parameters of the proposed SNN.

Layer Synapse Neuron Delay

Dense Layer 1 96 64 True

Dense Layer 2 64 128 True

Dense Layer 3 128 64 True

Dense Layer 4 64 13 False

3.5 System overview

Figure 1 illustrates the schematic representation of the system implemented. The
core control tasks are orchestrated by a RISC-V processor.

The input signal acquired through the SPI interface is first processed through
the encoding stage, where it is translated into spike trains using delta modula-
tion, as detailed in Section 3.2. At this point, the dataflow progresses to the
segmentation block, which defines a partitioning of the data into windows, as
described in Section 3.3.

Thereafter, the segmented spike trains are channeled into the SNN processor.
The processor analyzes the spike train inputs to extract meaningful information
about the gestures represented by the sEMG signals. After each inference, a
voting phase is initiated to examine the neural network outputs and determine
the final classification.

The classification output is then propagated through the UART interface,
concluding the structured data processing path from acquisition to classification.

RISC-V PROCESSOR

SNN
PROCESSOR

SP
I

U
A

RT

SEGMENTATION
ENCODING

SYSTEM OVERVIEW

!𝑑𝑥
𝑑𝑦 !𝑑𝑥

𝑑𝑦

VOTING

Fig. 1. Overview of the ECG monitoring system.

Figure 2 outlines the architecture of the SNN processor utilized in our sys-
tem, drawing inspiration from the approach delineated in [7]. The input data is
represented by the spike trains channeled from the encoding module. The proces-
sor hosts two neuron modules, each capable of accumulating four 8-bit synaptic
weights per cycle, aiding in the computation between synapses and weights.

Both neuron modules are interfaced with a weight memory and a spike
memory. The weight memory, populated during initialization with the network
weights derived from training, and the spike memory, which stores the results of
previous inferences for all neurons in the SNN, provide the data needed for the

8 M. A. Scrugli et al.

calculation. An address generator dynamically computes the memory addresses,
assisting each of the two available modules in processing a distinct layer of the
SNN.

A spike stack works with the address generator to point out where the active
spikes are in the memory, helping to skip over the inactive synapses. The spikes
that come out of this process are sent to the voting module to be counted,
determining the final classification.

SNN PROCESSOR

Layers 1/2 Layers 3/4WEIGHT MEM

SPIKE MEM

NEURON
MODULE 1

ADDRESS
GEN.

SPIKE STACK

SPIKE MEM

spike out

WEIGHT MEM

SPIKE MEM

NEURON
MODULE 2

ADDRESS
GEN.

SPIKE STACK

SPIKE MEM

spike out to
voting

Fig. 2. Overview of the ECG monitoring system.

4 Experimental results

This section delineates the findings from our experimental analysis, evaluating
both the classification accuracy and the on-hardware inference efficiency of the
proposed sEMG monitoring system.

4.1 Classification evaluation

To reduce the memory footprint and improve the efficiency of the designated
hardware system, the chosen model was subjected to quantization, reducing the
resolution of the weights to 8 bits with negligible accuracy drop. This approach
resulted in a classification accuracy of 85.6% on the test set, obtained with an
output post-processing stage, which allows us to filter out single-spot classi-
fication, through a voting mechanism that discards classifications resulting in
non-consecutive labels, by restoring the last valid output classification.

Table 3 represents the confusion matrix, providing a detailed analysis of
classification performance across classes. As can be noticed, a relevant portion
of the errors, around 45%, is located in the first column and the first row of
the matrix, thus involving the distinction between the rest class and all the
remaining gestures.

In this regard, we also evaluated the impact of the classification errors reg-
istered during the start of each gesture, knowing that the first windows include
a certain portion of rest samples and gesture samples. In detail, we introduced
a tolerance of 200 ms around the gesture onset, where we considered as accept-
able classifications both the rest and the specific gesture class. Considering this
additional tolerance, the overall classification accuracy achieved is 87.01%.

Title Suppressed Due to Excessive Length 9

A graphical representation of an example of classification output is provided
in Figure 3. The plot reports two repetitions of the ring flexion and extension
gestures, separated by a resting phase. The classification output is indicated on
the plot, and placed according to the predicted class. As outlined in Section 3.3,
dataset repetitions are assigned to training (repetitions 1, 2, 4, 6), validation
(repetition 3), and testing subsets (repetition 5).

Table 3. Confusion matrix reporting classification performance on the test set.

T
r
u
e

L
a
b
e
ls

Rest 7078 36 1 28 43 1 4 26 1 39 86 2 32

Idx Flx 62 268 30 15 21 5 17 11 0 0 2 2 2

Idx Ext 31 23 224 8 12 3 1 0 0 0 2 0 0

Mid Flx 30 31 3 285 14 7 8 13 3 3 0 0 0

Mid Ext 17 4 3 0 244 8 4 5 7 0 2 0 0

Ring Flx 43 8 2 12 12 258 2 14 2 3 0 2 2

Ring Ext 39 30 3 17 36 8 218 7 3 2 0 0 10

Lit Flx 48 5 5 6 13 18 26 237 7 10 6 3 11

Lit Ext 52 0 0 5 5 10 13 13 253 0 13 7 0

Thm Add 7 10 0 0 0 0 10 4 0 161 6 70 7

Thm Abd 71 2 4 0 0 0 2 3 3 7 190 17 19

Thm Flx 21 0 4 0 0 0 0 0 0 64 2 166 10

Thm Ext 32 0 10 2 2 0 0 7 2 9 3 6 252

R
e
s
t

Id
x

F
lx

Id
x

E
x
t

M
id

F
lx

M
id

E
x
t

R
in

g
F
lx

R
in

g
E
x
t

L
it

F
lx

L
it

E
x
t

T
h
m

A
d
d

T
h
m

A
b
d

T
h
m

F
lx

T
h
m

E
x
t

Predicted Labels

4.2 Sparsity

SNNs naturally exhibit sparsity, since in a specific instance only a small subset
of neurons are engaged in firing or communication. Sparsity is defined as the
ratio of inactive spikes to the maximum possible spike count within the network,
reflecting the network’s level of inactivity or quietness. In our context, taking
the test set into consideration, a sparsity value of 90.99% was calculated, indica-
tive of a mere 9% average presence of potential active spikes. The platform’s
processing elements allow inference to be calculated for four peaks in parallel.
As a consequence, spikes are processed in quartets, therefore it becomes critical
to assess the extent to which the inherent sparsity of the model architecture
can be exploited on the designated hardware and translated into performance
efficiency. As a result of such grouping of spikes, it is necessary to introduce a
new element, called sparsity-hw, which is defined by the Equation 4.

Sparsity-hw =

(
1−

∑L
i=1

∑Gi

j=1 gij∑L
i=1 Gi

)
× 100 (4)

10 M. A. Scrugli et al.

0 1000 2000 3000 4000 5000 6000 7000
Time (samples)

100

50

0

50

100
Am

pl
itu

de
 ra

w
va

lu
e

Ground Truth
Rest
Ring flexion
Ring extension

0

2

4

6

8

10

12

In
fe

re
nc

e
ou

tp
ut

 in
de

x

 5th rep
 6th rep

 1st rep
 2nd rep

 3rd rep

Inference output
Rest
Ring flexion
Ring extension
Other

Fig. 3. Overview of the EMG signal classification for different repetitions of the rest,
ring flexion, and extension gestures. The ground truth is highlighted in the background,
whereas the classification output is reported as spots overlapped to the signal plot.
Classification errors are reported in black.

Where:

– L is the total number of layers in the network,
– Gi is the number of spike groups in the i-th layer,
– gij indicates whether there’s at least one active spike in the j-th group in the

i-th layer (1 if at least one spike is active, 0 otherwise).

In our scenario, a sparsity-hw value of 77.11% was achieved.

4.3 Power consumption

The system mainly switches between two operating states: the active inference
phase and the idle phase. In the active inference phase, the FPGA is actively
engaged in analyzing the spike data through the Spiking Neural Network (SNN),
classifying the sEMG signals into the corresponding gesture categories. In the
idle phase, on the other hand, the system goes into a low-power mode, greatly
reducing power consumption. The average power consumption of the system can
be assessed over the recurrent 100ms inference interval. During the active phase,
which includes inference, data acquisition, and encoding time and lasts for 3.921
ms, the power consumption is equal to 12.011 mW. In contrast, during the idle
state, the power consumption drops to 1.288 mW. The average power over the
100 ms interval can be computed using Equation 5:

Paverage =
(Pactive · Tactive) + (Pidle · Tidle)

Ttotal
= 1.708 mW (5)

To acquire power metrics, we used a Digilent Analog Discovery 2 oscilloscope
in conjunction with three shunt resistors of 1.0± 0.01 Ω to measure power met-
rics. These resistors were installed across the three distinct power inputs on the

Title Suppressed Due to Excessive Length 11

Lattice iCE40UP5k FPGA, identified as Vcore, VCCIO0&1, and VCCIO2. The
internal components of the FPGA receive a 1.2 V supply from Vcore, whereas
the I/O pins are powered by 3.3 V from the VCCIO0&1 and VCCIO2 circuits.

4.4 Discussion

Our system, implemented on an FPGA, demonstrates a significant advantage in
terms of power efficiency, consuming about 1.7 mW. This is substantially less
than those mentioned in Section 2, such as [3] with a range of 1-4 W and [10]
with 100 mW on Loihi.

Focusing on the NinaPro DB5 dataset, which is common between our work
and [11], provides a fair ground for performance comparison. In terms of accu-
racy, our system achieves 85.6%, which is notably higher than the 74% reported
by [11]. Nonetheless, the model proposed in this work requires the execution of
2.336 million of accumulate operations (MOPS) per classification, which is lower
than the 11.56 MOPS estimated for the execution of the SNN proposed by [11].

In summary, our work stands out in terms of power efficiency and accuracy,
representing a robust solution for real-time gesture recognition using sEMG data.
While there is a trade-off in terms of OPS, the significant gains in accuracy and
power efficiency underscore the effectiveness of our approach.

5 Conclusion

We introduced a real-time sEMG signal classification system aimed at the precise
identification of hand gestures. By employing a Spiking Neural Network (SNN)
for classification, the work taps into the inherent efficiency of event-based compu-
tation, providing a low-power solution apt for implementation on edge devices.
The proposed model, when evaluated on the Ninapro DB5 dataset, exhibited
a commendable classification accuracy of 85.6%, thereby substantiating the ef-
fectiveness of the SNN in recognizing twelve distinct hand gestures. The archi-
tecture, tailored for the Lattice iCE40-UltraPlus FPGA, displayed remarkable
efficiency in terms of both computation and power consumption. The quantized
version of the model, aimed at reducing the memory footprint and enhancing
the operational efficiency on the hardware, maintained a high classification accu-
racy, showcasing the feasibility of deploying such models on resource-constrained
platforms. Power examination demonstrated an average power consumption of
1.7 mW, underscoring the energy-efficient characteristic of the proposed system.
This work, therefore, lays a solid foundation for the creation of energy-efficient
and effective real-time sEMG-based gesture recognition systems, paving the way
for advanced human-machine interfaces and prosthetic control.

References

1. Lava-DL SLAYER (2023), https://lava-nc.org/lava-lib-di/slayer/slayer.html, ac-
cessed: 2023-1-8

12 M. A. Scrugli et al.

2. LAVA-NC (2023), https://lava-nc.org/index.html, accessed: 2023-1-8
3. Behrenbeck, J., Tayeb, Z., Bhiri, C., Richter, C., Rhodes, O., Kasabov,

N., Espinosa-Ramos, J.I., Furber, S., Cheng, G., Conradt, J.: Classifica-
tion and regression of spatio-temporal signals using neucube and its re-
alization on spinnaker neuromorphic hardware. Journal of Neural Engi-
neering 16(2), 026014 (feb 2019). https://doi.org/10.1088/1741-2552/aafabc,
https://dx.doi.org/10.1088/1741-2552/aafabc

4. Cheng, L., Liu, Y., Hou, Z.G., Tan, M., Du, D., Fei, M.: A rapid spiking neu-
ral network approach with an application on hand gesture recognition. IEEE
Transactions on Cognitive and Developmental Systems 13(1), 151–161 (2021).
https://doi.org/10.1109/TCDS.2019.2918228

5. Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G.A.F., Joshi,
P., Plank, P., Risbud, S.R.: Advancing neuromorphic computing with loihi: A
survey of results and outlook. Proceedings of the IEEE 109(5), 911–934 (2021).
https://doi.org/10.1109/JPROC.2021.3067593

6. Furber, S.B., Lester, D.R., Plana, L.A., Garside, J.D., Painkras, E., Temple, S.,
Brown, A.D.: Overview of the spinnaker system architecture. IEEE Transactions
on Computers 62(12), 2454–2467 (2013). https://doi.org/10.1109/TC.2012.142

7. Leone, G., Raffo, L., Meloni, P.: On-fpga spiking neural networks
for end-to-end neural decoding. IEEE Access 11, 41387–41399 (2023).
https://doi.org/10.1109/ACCESS.2023.3269598

8. Pizzolato, S., Tagliapietra, L., Cognolato, M., Reggiani, M., Müller, H., Atzori, M.:
Comparison of six electromyography acquisition setups on hand movement classifi-
cation tasks. PLoS ONE 12 (2017), https://doi.org/10.1371/journal.pone.0186132

9. Shrestha, S.B., Orchard, G.: Slayer: Spike layer error reassignment in time. In:
Proceedings of the 32nd International Conference on Neural Information Process-
ing Systems. p. 1419–1428. NIPS’18, Curran Associates Inc., Red Hook, NY, USA
(2018)

10. Tanzarella, S., Iacono, M., Donati, E., Farina, D., Bartolozzi, C.: Neuromor-
phic decoding of spinal motor neuron behaviour during natural hand move-
ments for a new generation of wearable neural interfaces. IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering 31, 3035–3046 (2023).
https://doi.org/10.1109/TNSRE.2023.3295658

11. Vitale, A., Donati, E., Germann, R., Magno, M.: Neuromorphic edge computing
for biomedical applications: Gesture classification using emg signals. IEEE Sensors
Journal 22(20), 19490–19499 (2022). https://doi.org/10.1109/JSEN.2022.3194678

12. Xu, M., Chen, X., Sun, A., Zhang, X., Chen, X.: A novel event-driven
spiking convolutional neural network for electromyography pattern recogni-
tion. IEEE Transactions on Biomedical Engineering 70(9), 2604–2615 (2023).
https://doi.org/10.1109/TBME.2023.3258606

