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ABSTRACT 

This report presents a description of five open-source repositories developed 

as part of CENTRIC Work Package 3 (WP3)’s activities and published as CENTRIC’s 

AI-based MIMO toolset in deliverable D3.4. The repositories include software 

implementation and documentation of simulation environments and AI-based 

MIMO algorithms developed in WP3 as part of the physical layer processing 

component of the AI native Air-Interface (AI-AI) concept which CENTRIC is 

developing. Each repository focuses on specific MIMO-AI algorithm such as 

reinforcement learning for beam management in Integrated Sensing and 
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Communication (ISAC) scenarios, AI techniques for wide to narrow beam 

prediction, multi-user MIMO neural network-based receiver, transfer learning 

techniques for neural receiver and learning based beam alignment. This report 

provides detailed description of the problem addressed, system model and 

simulation environment, the developed AI algorithm, and usage example and 

results obtained from each of the repositories. These repositories offer a 

comprehensive set of MIMO-AI solutions allowing reproducibility of CENTRIC’s 

research output while serving as the basis for further development of AI-AI 

physical layer methods. 

 

Disclaimer 

This document contains material, which is the copyright of certain CENTRIC consortium 

parties, and may not be reproduced or copied without permission. 

All CENTRIC consortium parties have agreed to full publication of this document. 
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warrant that the information contained in this document is capable of use, nor that use of the 

information is free from risk, accepting no liability for loss or damage suffered by any person 

using this information. 
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Executive summary  

This report presents a comprehensive overview of five open-source software repositories 

developed as part of CENTRIC Work Package 3 (WP3) research on AI-AI physical layer methods. 

The repositories which are referred to as CENTRIC’s MIMO-AI Toolset contains 

implementation and documentation of novel MIMO AI algorithms and simulation 

environments developed in CENTRIC. The publication of these open-source software 

represents a major milestone towards reproducibility of CENTRIC’s research outputs and 

further development of AI based solutions for the physical layer of future wireless networks.  

The first repository contains reinforcement learning based solutions for resource allocation in 

millimetre wave (mmWave) Integrated Sensing and Communication (ISAC) scenarios. The 

repository provides a simulation environment for beam management in a vehicular wireless 

network comprising of a base station (BS) serving multiple vehicles on appropriately allocated 

beam. Python implementation of a novel reinforcement learning algorithm based on proximal 

policy optimization for allocating resources to either communication (beam management) and 

sensing is also included in the repository allowing for evaluation and benchmarking of the 

included methods as well as easy integration of new and efficient AI algorithms for resource 

allocation in mmWave ISAC scenarios.  

The second repository documents real time multi-user MIMO neural network (NN)-based 

receivers that comply with 5G New Radio (5G NR), positioning them as enabling technology 

for novel applications such as re-trainable site-specific base stations and pilotless 

communications. The current version of the receiver developed in WP3 is a flexible multi-user 

MIMO (MU-MIMO) receiver with 5G NR physical uplink shared channel (PUSCH) compatibility. 

The receiver architecture combines graph neural networks (GNN) and convolutional neural 

networks (CNN), allowing flexibility in handling varying user numbers and sub-carrier 

configurations without retraining. In this repository which is prepared and managed by 

NVIDIA, a comprehensive implementation and documentation including simulation examples 

and tutorial-like materials are made available publicly.  

In the third repository, implementation of transfer learning techniques applied to the neural 

receiver are provided. The provided codes allow for evaluating the transferability of neural 

receivers trained in specific environments or for specific tasks to other environments or tasks 

and the potential of various transfer learning techniques to minimize the amount of data 

required for retraining of neural receivers for new environments or tasks. This repository will 

make it possible to easily integrate and evaluate new transfer learning techniques.  

The fourth repository presents implementation of a novel learning-based algorithm for the 

joint, two-sided beam alignment in mmWave communication systems. The novel scheme 

implemented in this repository combines the benefits of adaptive, codebook-free beam 

alignment at the UE side with the advantages of a codebook-sweep based scheme at the base 

station (BS). The proposed end-to-end trainable scheme is compatible with current cellular 

standard signalling and can be readily integrated into the standard without requiring 

significant changes to it. 
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The last repository presents implementation of an AI method for wide beam codebook design. 

The solution allows for exploration of the benefits of refined beam prediction and estimation. 

A neural network is applied as a decoder, where the measurement of signal powers acquired 

from the designed wide beams is the input, and the output is an estimate of the best UE 

refined beam. With the proposed idea, one can leverage the wide beam measurements from 

P1 to predict the refined beam having the highest reference signal received power (RSRP) for 

data transmission without needing the overhead from the P2 beam refinement procedure. 

Each of the five repositories in this MIMO AI toolset includes detailed descriptions covering 

the problem solved, background, simulation environment/system models, functionality, and 

usage examples with results. These repositories offer valuable resources for researchers and 

developers, providing AI-based algorithms developed for varying physical layer challenges. In 

addition to allowing reproducibility of CENTRIC’s research outputs, these repositories will 

serve as excellent starting points for exploring alternative solutions, benchmarking 

performance, and enabling advances in physical layer methods for the AI native Air Interface 

(AI-AI) concept. The repositories support integration with new AI algorithms and/or 

simulation environments thereby providing avenues for advancing research and development 

in this area. 
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1 Introduction 

CENTRIC’s deliverable D3.4 is an open-source software libraries containing a selection of 

simulators of AI algorithms and associated simulation environments. The published open-

source software library referred to as “CENTRIC’s AI-based MIMO Toolset” contain five 

different repositories each with simulation codes and documentation of novel AI algorithms 

developed for the different components of the physical layer of the AI native Air-Interface (AI-

AI).  As shown in Table 1, the five repositories contribute to the four WP3 objectives.  

Table 1: Mapping of WP3 Objectives to the AI algorithms and simulation environment 
published in the open-source software libraries 

  WP3 Objectives 

  1. To devise 

AI-models and 

training 

procedures 

capable of 

providing end-

to-end 

performance 

optimized 

waveforms 

2. To develop 

and assess 

AI-methods 

for 

environment-

specific beam 

management 

3. To provide AI-

enhanced 

MIMO 

processing 

solutions 

4. To define and 

maintain a set of 

common 

scenarios and 

benchmark 

references for 

validation 

 

 

 

 

 

Open-source 

repositories  

 

 

 

RL Based Beam 

Management in 

ISAC Scenarios 

 
✓  

 
✓  

Multiuser MIMO 

Neural Receiver ✓  
 

✓  ✓  

Transfer Learning 

Techniques for 

Neural Receivers 

  
✓  

 

Learning Based 

Beam Alignment ✓  ✓  
 

✓  

Narrow Beam 

Prediction Using 

NN Decoder 

 
✓  

 
✓  

 

The purpose of the open-source repositories, which contain simulators of AI algorithms and 

associated simulation environments, is to provide a comprehensive toolkit for researchers, 

developers, and engineers working on the development and performance evaluation of AI-

based physical layer technologies, specifically within the AI-native Air-Interface (AI-AI) 

framework. These simulators allow users to evaluate and validate the novel AI algorithms 

developed within CENTRIC’s WP3 on AI-AI physical layer methods. The goal is to facilitate 

experimentation with advanced techniques in MIMO, integrated sensing and communication 

(ISAC), beam management, alignment and prediction, and other key physical layer aspects of 

AI-driven communication systems. 
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By offering this open-source software library, CENTRIC encourages collaboration and 

innovation, enabling the broader research community to build upon the foundational work 

already done in the project. This openness will accelerate the development of 6G wireless 

communication systems by allowing for the replication of results, the creation of new AI 

models, and the extension of the published algorithms. The repositories provide not only the 

simulation codes but also detailed documentation to guide users in applying the tools 

effectively, fostering a shared knowledge base and promoting the adoption of AI-based 

solutions in wireless networks.  

This report presents a description of the published repositories, detailing various key aspects 

that contribute to their development and application. Each repository is introduced with 

background information to contextualize the problem it addresses, highlighting the specific 

challenges in the AI-native Air-Interface (AI-AI) framework that the proposed AI algorithms 

aim to solve. It also outlines the simulation environment and system model used to develop 

and evaluate the performance of the algorithms. Furthermore, the report provides a 

description of the AI algorithms proposed within each repository, offering insights into their 

functionality and innovation. Additionally, usage examples are included to demonstrate 

practical applications of the repositories, guiding users through how to use and benefit from 

the tools. Lastly, the report present example results obtained from these simulators.  
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2 Repository 1: RL Based Beam Management in ISAC Scenarios 

https://github.com/CENTRIC-WP3/RL-Based-Beam-Management-in-ISAC-Scenarios 

2.1 Background 

Beamforming and resource allocation methods have significantly improved because of the 

rising demand for fast and dependable wireless communication networks. A crucial task in 

wireless communication systems is beam alignment, which entails directing antenna arrays to 

maximize throughput and improve signal-to-noise ratio (SNR). Traditional beam sweeping in 

5G allocates sensing resources for all users at fixed-slots periodicity. The operations are not 

typically adapted at short timescales, and the division between uplink (UL) and downlink (DL) 

slots is usually kept fixed over long time frames. This might lead to inefficient (low-mobility 

scenarios) and insufficient (high-mobility) sensing to track the necessity of beam changes. To 

address this, we aim to find a way to decide the allocation of resources between sensing, 

uplink, and downlink transmissions that is adaptive on a short timescale according to the 

network situation. We propose a Proximal Policy Optimization (PPO) solution for joint 

resource allocation and beam tracking in a millimeter-wave (mmWave) wireless 

communication context. By coordinating the optimization of the resource allocation and beam 

tracking parameters, our system intends to mitigate the mmWave channel’s dynamic nature 

and its fluctuating channel quality, including blockage events. Simulation results show that, 

compared to baseline approaches, the proposed method outperforms them in terms of 

average packet error rate (PER), learning a more dynamic policy of slots allocation for efficient 

beam tracking and data transmission. 

2.2 System Model 

Consider a vehicular wireless network as depicted in Figure 1, using a time-division duplexing 

(TDD) scheme. A mmWave Base Station (BS) equipped with a uniform linear array (ULA) with  

 

𝑀𝑡 transmitting antennas communicates with 𝑈 single-antenna User Equipment (UEs) in a 

time-slotted network with 𝐾 =  {1, . . . , 𝐾} orthogonal channel uses per frame. In each time 

slot, only one user 𝑢 can be scheduled. Each user 𝑢 has a buffer of size 𝐵𝑈𝐿
𝑢  for uplink packets, 

Figure 1: System model for vehicular wireless network 

https://github.com/CENTRIC-WP3/RL-Based-Beam-Management-in-ISAC-Scenarios
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while the base station has 𝑈 buffers (with size 𝐵𝐷𝐿
𝑢  for the user u) for downlink traffic. At each 

slot 𝑘 ∈ K, the BS performs one action: 𝑆𝑢 (sensing/beam sweeping), 𝐷𝐿𝑢 (transmission of 

downlink packet), or 𝑈𝐿𝑢 (reception of uplink packet) with 𝑢 =  1, . . . , 𝑈. 

2.2.1 Channel Model 

Due to the high directivity of mmWave transmissions, we assume a geometrical two-state 

Line-of-Sight (LoS)/NLoS channel model for this work. In this way, the narrowband channel for 

the user 𝑢 is given by 𝐡𝑢 ∈  ℂ𝑀𝑡  

𝐡𝒖  =
√𝑀𝑡

𝑑𝑢
 𝛽𝑢𝜂𝑢𝒂𝑡

†(𝜃𝑢),  

where † denotes conjugate transposition, 𝑑𝑢 denotes the distance between the BS and the 

𝑢−th user, 𝛽𝑢 ∼ 𝐶𝑁(0, 𝜎𝑢
2 ) is the complex fading gain with variance 𝜎𝑢

2, and 𝜂𝑢 ∈  {𝜐𝑢, 1} is 

the shadowing gain drop coefficient. When the user is in a LoS state 𝜂𝑢  =  1, and 𝜂𝑢 = 𝜐𝑢 

otherwise. Also, 𝜃𝑢 denotes the Angle of Departure (AoD) with respect to the BS array axis 

and the 𝑢 user position. The ideal isotropic array responses are given by  

𝒂𝑡(𝜃𝑢)  =  
1

√𝑀𝑡
 [1, 𝑒−𝑗𝜋 cos(𝜃𝑢), . . . , 𝑒−𝑗𝜋(𝑀𝑡−1) cos(𝜃𝑢)]

𝑇
 .  

For the dynamics of the system, consider the user position in a given time slot 𝑐𝑘
𝑢 =  [𝑥𝑘

𝑢 , 𝑦𝑘
𝑢], 

its velocity 𝐯 =  [𝑣𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑣𝑎𝑛𝑔𝑢𝑙𝑎𝑟], where 𝑣𝑙𝑖𝑛𝑒𝑎𝑟 ∼ Exp(1) and 𝑣𝑎𝑛𝑔𝑢𝑙𝑎𝑟 ∼  𝑁(0, 1) and a 

slot duration of Δ𝑡.This will change the AoDs and consequently make the channel vary along 

our time-slotted resources. We consider a 2D geometric layout.  

2.2.2 Two-State Blockage Model 

To have a dynamic scenario in which the users experience blockages, each user can be in a 

LoS/NLoS state within a time slot 𝑘. It follows a Bernoulli process with probability 𝑃𝑁𝐿𝑂𝑆
𝑢 : 

𝑝𝑁𝐿𝑂𝑆
𝑢 ∼  Bernoulli(𝑃𝑁𝐿𝑂𝑆

𝑢 ), where 𝑝𝑁𝐿𝑂𝑆
𝑢 =  {0, 1} denotes a NLoS/LoS state. When in an 

NLoS state, we assume the duration for which the user is blocked lasts 𝐾𝑁𝐿𝑂𝑆 consecutive time 

slots. The blockage duration is modeled as a uniform distribution 𝐾𝑁𝐿𝑂𝑆 ∼  𝑈(1, 𝑘𝑁𝐿𝑂𝑆).  

2.2.3 Beam Codebook 

A codebook-based analog beamforming architecture to beamform signals with a single RF 

chain at the BS is assumed. Let ℱ =  {𝐟1, . . . , 𝐟𝑀𝑡
} be the codebook. We use the common 

Discrete Fourier Transform (DFT)-based codebooks, with precoders 𝐟𝑖 given by  

𝐟𝑖 =
1

√𝑀𝑡
  [ 1, 𝑒

−𝑗𝜋
2𝑖−1−𝑀𝑡

𝑀𝑡 , . . . , 𝑒
−𝑗𝜋(𝑀𝑡−1)

2𝑖−1−𝑀𝑡
𝑀𝑡  ]

𝑇

, 𝑖 ∈  {1, . . . , 𝑀𝑡}.   

2.2.4 Traffic Model  

Each user’s traffic follows an independent Bernoulli process with probability 𝑃𝑢 for generating 

packets in downlink and uplink in every time slot 𝑘, that is, [𝑝𝑑𝑙
𝑢 , 𝑝𝑑𝑙

𝑢 ]  ∼  Bernoulli(𝑃𝑢), where 

𝑝𝑑𝑙
𝑢 , 𝑝𝑑𝑙

𝑢  takes values 0 or 1 to determine if a packet was generated for the user 𝑢 in downlink 

and uplink for a time slot 𝑘.  
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2.2.5 Optimization Problem  

The target is to minimize the average PER considering allocating resources for all users:  

min
𝑘∈𝒦

1 

𝑈𝐾
∑ ∑ 𝑃𝐸𝑅𝑢𝑘

𝐾

𝑘=1

𝑈

𝑢=1
  

s. t. ∑ 𝑠𝑢𝑘

𝑈

𝑢=1
+ ∑ 𝑑𝑢𝑘

𝑈

𝑢=1
+ ∑ 𝑢𝑢𝑘

𝑈

𝑢=1
= 1 , ∀𝑘 =  1, 2, . . . , 𝐾 

       𝑠𝑢𝑘 , 𝑑𝑢𝑘 , 𝑢𝑢𝑘 ∈ {0, 1}, ∀𝑢 =  1, 2, . . . , 𝑈 , 𝑘 =  1, 2, . . . , 𝐾 

where the constraints denote that just one user can be allocated in every slot 𝑘 for sensing 

𝑠𝑢𝑘, downlink 𝑑𝑢𝑘, or uplink 𝑢𝑢𝑘, respectively.  

2.3 AI Algorithm 

PPO is utilized to solve the resource management problem. It is an actor-critic algorithm that 

utilizes neural networks to model both the policy and value functions, represented by 

parameters 𝜃 and 𝜙 respectively. The goal is to learn a policy 𝜋𝜃(𝑎|𝑠) that maximizes the 

expected cumulative reward in an environment. At each time step 𝑘, the agent observes the 

current state 𝑠𝑘, selects an action 𝑎𝑘 from the policy distribution 𝜋𝜃(𝑎𝑘|𝑠𝑘), and receives a 

reward 𝑟𝑘 and new state 𝑠𝑘+1 upon executing the action. The agent stores these experiences 

to update its policy and value functions after accumulating a certain number of experience 

tuples. The advantage function 𝐴𝑘 quantifies the advantage of taking action 𝑎𝑘 in state 𝑠𝑘  

compared to the expected value from the current state, computed as the sum of discounted 

future rewards minus the value function at the current state:  

𝐴𝑘 = ∑ 𝛾𝑖−𝑘𝑟𝑖 − 𝑉𝜙(𝑠𝑘)
𝑁

𝑖=𝑘
 ,  

where 𝑁 is the maximum number of time steps per experience memory. Next, the value 

function 𝑉𝜙(𝑠𝑘) estimates the expected cumulative reward from the current state 𝑠𝑘  onwards. 

It is updated by minimizing the mean squared error between the estimated value and the 

target value:  

𝐿critic
(𝑘) (𝜙) =

1

2
(𝑉𝜙(𝑠𝑘) − (𝑟𝑘  +  𝛾𝑉𝜙(𝑠𝑘 + 1)))

2

 ,  

where 𝛾 is the discount factor that balances immediate and future rewards. The policy is 

updated using the PPO objective, which aims to maximize the expected advantage while 

avoiding large policy changes. The PPO loss function for a single time step is given by:  

𝐿PPO
(𝑘)

(𝜃)  =  min (𝑟𝑘(𝜃)𝐴𝑘 , clip(𝑟𝑘(𝜃), 1 −  𝜖, 1 +  𝜖)𝐴𝑘) ,  

where the clip operation restricts the values from 1−𝜖 to 1+𝜖, 𝑟𝑘(𝜃) =
𝜋𝜃(𝑎𝑘|𝑠𝑘)

𝜋old(𝑎𝑘|𝑠𝑘)
 is the ratio 

of the updated policy probabilities to the old policy probabilities, and 𝜖 is a hyperparameter 

that controls the magnitude of the policy change. To further improve the stability of training, 

an entropy regularization term is included. The entropy 𝑆[𝜋𝜃(𝑎𝑘|𝑠𝑘)] measures the 

uncertainty or randomness of the policy distribution 𝜋𝜃(𝑎|𝑠). 
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This term encourages exploration by discouraging overly deterministic policies. Finally, the 

total loss function for PPO combines the policy loss, value function loss, and entropy 

regularization over the entire 𝑁 experiences:  

𝐿total(𝜃, 𝜙) =
1

𝑁
∑( 𝐿𝑃𝑃𝑂

(𝑘)
(𝜃)  − 𝑐1𝐿𝑐𝑟𝑖𝑡𝑖𝑐

(𝑘)
(𝜙)  + 𝑐2𝑆[𝜋𝜃(𝑎𝑘|𝑠𝑘)])

𝑘=1

  

where 𝑐1 and 𝑐2 are hyperparameters that control the trade-off between the value function 

loss and the entropy regularization. The policy and value networks are then updated jointly 

by minimizing the total loss. 

2.4 Usage Example and Results 

2.4.1 Usage Example 

A PPO-based time slot allocation for minimizing PER is presented while the method here can 

be applied to the selection of any wireless resource. The BS, as the agent, takes beam indexes, 

packets in the DL and UL buffers, and the received power for the selected beams as the state: 

𝑘 =  {{𝑖1, . . . , 𝑖𝑈  }, {𝑃1
𝐷𝐿 , . . . , 𝑃𝑈

𝐷𝐿}, {𝑃1
𝑈𝐿 , . . . , 𝑃𝑈

𝑈𝐿}, {𝑅1
𝑝, . . . , 𝑅𝑈

𝑝 }} ∈ 𝒮, 

The action space is the set of all possible actions that the BS agent can choose from at each 

time slot. In this way, the possible actions are a discrete variable with 𝑈 × 3 possible values  

𝑎𝑘 ∈ 𝒜 =  {(𝑎, 𝑢), 𝑎 =  0, 1, 2, 𝑢 =  1, 2, . . . , 𝑈 }, 

with the first element 𝑎 denoting the action (0 for sensing, 1 for UL transmission, 2 for DL 

transmission) and the second element 𝑢 denoting the target user. Once in a sensing slot 𝑠𝑢𝑘, 

we assume we select the best neighboring beam (beam tracking) such that  

arg max
𝐟𝑖

𝑢∈{𝐟𝑖−1
𝑢 ,𝐟𝑖

𝑢 ,𝐟𝑖+1
𝑢 }

|√𝑃𝑡 𝐡𝑢
𝑇  𝐟𝑖

𝑢 𝑠 + 𝑛𝑢|
2
 

where |√𝑃𝑡𝐡𝑢
𝑇𝐟𝑖

𝑢 𝑠 + 𝐧𝑢|
2
 is the received signal power of the 𝑢-th user, 𝑃𝑡, 𝑠 ∈ ℂ, and 𝐧𝑢 

denote the transmission power, the known training symbol with normalized power, and the 

zero mean complex Gaussian noise vector with variance 𝜎𝑛
2, respectively. If the sensing 

variable 𝑠𝑢𝑘  is active (i.e., 𝑠𝑢𝑘  = 1), the beam selection for either downlink (𝑑𝑢𝑘) or uplink 

transmission (𝑢𝑢𝑘) in slots will be based on the beam selected during the last sensing slot. 

Packets can be dropped due to different reasons: either encountering a full buffer (𝑃𝐷𝐿
𝑢  >

 𝐵𝐷𝐿
𝑢  or 𝑃𝑈𝐿

𝑢 >  𝐵𝐷𝐿
𝑢  ), transmitting with a poor quality beam (i.e., using an outdated beam 𝐟𝑖

𝑢 

obtained from equation (15) during 𝑠𝑢𝑘), or transmitting during a blockage (𝑝𝑁𝐿𝑂𝑆
𝑢  = 1). A beam 

is considered outdated if 𝐟𝑖
𝑢 is no longer the optimal beam. Reward is defined accordingly as:  

• 𝐺𝑏
𝑢(𝑘) acts as an indicator of buffer fullness for user 𝑢 at time step 𝑘. 𝐺𝐵

𝑢(𝑘)  =  1 is 

given when the buffer is not full.  

• 𝜌(𝑘) captures the impact of beam tracking on beam quality. Positive values encourage 

adaptive beam tracking, while negative values discourage unnecessary adjustments.  

• 𝑂(𝑘) serves as a penalization factor for drops induced by blockages.  
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• 𝐷(𝑘) represents the number of packets dropped within time slot 𝑘. Furthermore, the 

reward 𝑟𝑘 is defined as 

𝑟𝑘  =
1

𝑈×2
 ∑ ∑ 𝐺𝑏

𝑢(𝑘)  + 𝜌(𝑘) + 𝑂(𝑘) − 𝐷(𝑘)𝑏∈{𝐷𝐿,𝑈𝐿}
𝑈
𝑢=1   

2.4.2 Results 

 
Figure 2: Simulation results over test episodes: (a) ECDF of the average PER, (b) slots 

distribution, and (c) drops distribution.  

 

 
 
 
 

The benchmark and baselines to evaluate the results are given below: 1) Genie-aided 

(benchmark): This agent knows exactly when blockages are occurring and always has the best 

beam for the user in a TDMA fashion. This will be the benchmark for the proposed solution. 

2) Random: The policy of the agent is to allocate slots uniformly at random among all possible 

actions. 3) X-TDMA (X Time Division Multiple Access) is a slot allocation policy where slots are 

divided into sensing (S), uplink (UL), and downlink (DL) categories. The value of X represents 

the number of consecutive UL/DL slots pair before transitioning to the next sensing slot. These 

patterns are allocated for every user 𝑢 in a round-robin fashion.  

Figure 2 shows the empirical cumulative distribution function (ECDF) of the average PER, the 

slot distribution and packet drop distribution over the test episodes, respectively. The genie-

aided approach exhibits an effective benchmarking of the PER. Compared to random and X-

TDMA slot allocation, PPO method minimizes the average PER and finds a balance between 

sensing and communication slots. Excessive slot allocation for DL/UL compromises results, as 

evidenced by a performance degradation of around 40% in 3/6-TDMA. Furthermore, 6-TDMA 

shows high variance in PER results due to scenario variation and a lack of sensing slots. 

Although reducing the number of sensing slots, the PPO agent still reduces the buffer drop 

against 3/6-TDMA. Moreover, PPO decreases significantly buffer drops in comparison with 1-

TDMA, but also places importance on the two other drop cases. However, as 1-TDMA fixed 

slot allocation is more robust in terms of beam drops, it does not effectively adapt to the 

dynamics of the environment as its overall PER performance is worse than our solution. To 

sum up, the results demonstrate that the agent learns a policy of a dynamic slot allocation to 

both enhance performance and reduce resource allocation wastage.  

2.5 Remarks  

The results of the exemplified PPO-based time-slot allocation demonstrate that the model can 

successfully learn the complicated dynamics of the environment and provides an effective 



Horizon Europe project no. 101096379 
                                                               Deliverable D3.4 

                 

Page | 19 of 39 

solution to the resource allocation problem. The model exhibits great generalization 

performance of allocation of other resources regardless of system stochasticity. The approach 

is promising for integrated sensing and communications networks. 
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3 Repository 2: Multiuser MIMO Neural Receiver 

https://github.com/CENTRIC-WP3/neural_rx 

 

Figure 3: A neural receiver replaces channel estimation, equalization and demapping by a 
single neural network. 

 

As part of the CENTRIC project, the consortium explores neural network (NN)-based receivers 

that comply with 5G New Radio (5G NR), positioning them as enabling technology for novel 

applications such as re-trainable site-specific base stations and pilotless communications. 

Initially proposed for single-input multiple-output (SIMO) systems, NN-based receivers have 

since evolved to support multiple-input multiple-output (MIMO) systems and pilotless 

communication setups. We have extended this concept as part of WP3 to a flexible multi-user 

MIMO (MU-MIMO) receiver with 5G NR physical uplink shared channel (PUSCH) compatibility. 

The receiver architecture combines graph neural networks (GNN) and convolutional neural 

networks (CNN), allowing flexibility in handling varying user numbers and sub-carrier 

configurations without retraining. 

Additionally, we detail the steps required to deploy a MU-MIMO neural receiver (NRX) in 

actual cellular communication systems, addressing challenges such as real-time inference and 

5G NR standard compatibility. The developed NRX architecture can support dynamic 

modulation and coding scheme (MCS) configurations without retraining and achieving 

inference times of less than 1ms on an NVIDIA A100 GPU using the NVIDIA TensorRT inference 

engine. The architecture is optimized to minimize the signal-to-noise ratio (SNR) performance 

degradation, and we explore site-specific adaptation for enhancing performance in different 

radio environments. The resulting NRX is ready for deployment in real-time 5G NR testbeds, 

and the released source code includes the TensorRT experiments and pre-trained weights. 

https://github.com/CENTRIC-WP3/neural_rx
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Please note that, the neural receiver architecture and its real-time optimization has been 

already described in deliverable D3.2, D3.3 and D2.1. Thus, we keep the introduction of the 

algorithm short and refer the interested reader to these deliverables. 

3.1 Background 

One of the key objectives of the CENTRIC project is the exploration and development of AI-

enabled, user-centric communication systems capable of adapting to new situations and 

applications. On the physical layer, this involves introducing trainable components and 

trainable parameters into signal processing algorithms that can be adjusted through training. 

A particularly promising approach is the so-called neural receiver (NRX), which replaces 

significant portions of traditional physical layer receiver algorithms with neural networks, as 

illustrated in Figure 3. The NRX is not merely a drop-in replacement for existing receiver 

algorithms but serves as a foundational technology for enabling a plethora of novel features, 

such as site-specific fine-tuning of the receiver and pilotless communications via end-to-end 

learning. 

To date, most studies have been simulation-based, and the real-time inference latency 

implications of the proposed solutions remain largely unexplored. The stringent latency and 

throughput requirements of wireless communication systems impose strict constraints on 

neural network (NN) design, limiting their size and complexity. Therefore, deploying and 

validating AI/ML components in the physical layer of a real cellular system under realistic 

latency conditions presents an open and intriguing challenge. Addressing this challenge is a 

key goal of the CENTRIC consortium, as it seeks to demonstrate the practical viability of such 

AI/ML algorithms in a real hardware-in-the-loop testbed. 

3.2 Simulation Environment/System Model 

The code in this repository allows to design, train, and evaluate neural receivers [1] using the 

NVIDIA® Sionna™ link-level simulation library and TensorFlow. Further, trained receivers can 

be prepared for real-time inference via NVIDIA® TensorRT™. 

The following features are currently supported: 

• 5G NR compliant Multi-user MIMO PUSCH receiver 

• Training pipeline using 3GPP compliant channel models 

• TensorRT / ONNX model export for real-time inference 

• Support for varying number of PRBs, users, and different MCS schemes per user 

• End-to-end learning of custom constellations for pilotless communications 

• Site-specific training using ray-tracing based channel simulations from SionnaRT  

We recommend starting with the Jumpstart NRX Tutorial notebook for a detailed introduction 

and overview of the project. 

The basic neural receiver architecture is introduced and described in [1]. The real-time 

experiments and the site-specific training is described in [2]. 

https://nvlabs.github.io/sionna/
https://developer.nvidia.com/tensorrt
https://nvlabs.github.io/sionna/api/rt.html
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Running this code requires Sionna 0.18. To run the notebooks on your machine, you also need 

Jupyter. We recommend Ubuntu 22.04, Python 3.10, and TensorFlow 2.15. For TensorRT, we 

recommend version 9.6 and newer. 

3.3 AI Algorithm 

As mentioned above, a detailed NRX introduction can be found in deliverables D2.1, D3.2 and 

D3.3. However, we briefly recap the NN architecture in the following. The architecture was 

introduced in [1] and consists of the following elements: 

• Convolutional neural network (CNN) layers over the time-frequency grid 

• Graph neural network (GNN) inspired multi-user interference cancellation scheme 

• Readout network to project the feature space back to the desired output domain (LLRs 

and channel estimates) 

 

Figure 4: Overview of the NeuralPUSCHReceiver integrated as Keras layer in the  NVIDIA 
Sionna link-level simulator. 

 
An overview of the network layers is given in Figure 4. Please note that a few minor steps are 

ignored to simplify the visualization. The network implements a similar functionality as the 

Sionna PUSCHReceiver and directly returns the reconstructed payload bits of the transport 

block. However, the LDPC decoder and rate-matching is done by a classical transport block 

decoder and is, thus, not trainable. 

The detailed receiver algorithm is described in [1] and can be summarized as follows. 

The NRX takes as input: 

• Received signal of slot 

• Initial channel estimate for each user (e.g., from least square (LS) channel estimation)  

https://nvlabs.github.io/sionna/
https://jupyter.org/
https://developer.nvidia.com/tensorrt
https://nvlabs.github.io/sionna/api/nr.html#puschreceiver
https://nvlabs.github.io/sionna/api/nr.html#tbdecoder
https://nvlabs.github.io/sionna/api/nr.html#tbdecoder
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• Positional encoded pilot positions in time/frequency grid 

The receiver (CGNN) consists of the following stages: 

1. Initial convolutional neural network (CNN) that projects the stacked input to a high 

dimension feature space (StateInit) 

2. Pointwise MLP and aggregation between the resource elements (REs) of all users 

acting as multi-user interference cancellation (AggregateUserStates) 

3. CNN over the time/frequency grid. This is implemented with separable convolutions 

and skip connections (UpdateStates) 

4. Readout MLP to project the internal state back to scalar LLRs (ReadoutLLRs and 

ReadoutChEst) 

Steps 2 and 3 are iteratively repeated, which effectively defines the depth of the receiver and, 

thereby, enables a simple computational complexity adjustment. 

Outer components (CGNNOFDM) such as the initial channel estimator 

(PUSCHLSChannelEstimator), the resourcegrid demaper (RGDemapper) and the transport 

block decoder (TBDecoder) are non trainable components, but required for 5G NR 

compatibility. We use the standard components from the Sionna link-level simulator. 

3.4 Usage Example and Results  

This repository is structured in the following way: 

• config contains the system configurations for different experiments 

• notebooks contains tutorials and code examples 

• scripts contains the scripts to train, evaluate and debug the NRX 

• utils contains the NRX definition and all Python utilities 

• weights contains weights of pre-trained neural receivers for different configuration 

files 

• results contains pre-computed BLER performance results 

We recommend starting with the Jumpstart NRX Tutorial notebook for a detailed introduction 

and overview of the project. 

The workflow consists of the following steps: 

1. Define a config-file: this includes the entire system configuration including detailed 

NRX architecture and training/evaluation parameters 

2. Train the NRX and track training performance in Tensorboard 

3. Evaluate the BLER performance of the receiver and compare against baselines 
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4. Export the model to ONNX fileformat and run as TensorRT-engine for real-time 

performance analysis 

Furthermore, this framework also supports end-to-end learning for pilotless communications 

[2]. For further information, we refer to the end-to-end learning notebook in the repository. 

After defining a config file, training can be done with the following command: 

"python ../scripts/train_neural_rx.py -config_name CONFIG_NAME.cfg -gpu 0" 

After training, the evaluation can be done with 

“python evaluate.py -config_name CONFIG_NAME.cfg -gpu 0 -num_tx_eval 1” 

Afterwards, the results can be visualized using the plot results notebook. And example of the 

performance after training is given in Figure 5. The large neural receiver uses approx. 4x more 

trainable parameters as the optimized real-time version. A performance degradation of 

approx. 0.7dB can be observed. However, the inference latency improves from approx. 3.11ms 

to 0.96ms. For further details on the inference latency, we refer to D2.1. 

 

Figure 5: Block error rate performance of classical and AI/ML-based receiver algorithms. All 
receivers are evaluated over the same TDL-B/TDL-C channel models using 2 UEs and 4 
receive antennas 

3.5 Remarks 

Parts of the content of this report will be made publicly available as academic publications. 
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4 Repository 3: Transfer Learning Techniques for Neural Receivers  

https://github.com/CENTRIC-WP3/Transfer-Learning-Techniques-for-MIMO-Neural-Receivers 

4.1 Background 

Training deep neural network models typically requires large datasets. Due to the dynamic 

nature of wireless communication setups, generating sufficient dataset for each configuration 

of wireless communication deployment can be cumbersome. To overcome this hurdle, 

transfer learning can be exploited wherein the weights of a source model trained on a large 

dataset can be modified fully or partially by the relatively smaller dataset of the target model. 

For transfer learning to provide reasonable gains, there must be some relationship between 

the source dataset/task and the target dataset/task [3]. For this task we set out to evaluate 

the performance of some transfer learning techniques for dep neural SIMO receiver. To this 

end we consider two fine tuning techniques and a feature extraction technique. We consider 

cases of subcarrier spacing and channel model mismatch and compare the performance of 

the transfer learning techniques with some benchmark approaches. We further validate the 

performance of the transfer learning approach using static data set. 
 

4.2 Simulation Environment/System Model 

An end-to-end communication chain is considered where at the transmitting end, bits are 

generated, encoded, mapped to constellations, and positioned on physical resource blocks. 

OFDM symbols resulting from IFFT are filtered through 3GPP channel models. AWGN is added 

at the receiver and the DFT transformed symbols are fed into a neural receiver which outputs 

the Log Likelihood Ratios of the received symbols. Details of the neural receiver architecture 

are given in Table 2, and in [4]. 

Table 2: Neural Network Architecture 

Layer Channels Kernel Size  Dilation Rate 

Input Conv2D 128 (3,3) (1,1) 

ResNet 1 256 (3,3) (1,1) 

ResNet 2 256 (3,3) (1,1) 

ResNet 3 256 (3,3) (1,1) 

ResNet 4 256 (3,3) (1,1) 

Output Conv2D Number of bits/symbols (3,3) (1,1) 

 

4.3 AI Algorithm 

We evaluate 2 finetuning based algorithms which we call finetuning and finetuning +. In 

finetuning, the architecture of both the source neural receiver and the target neural receivers 

are the same. All the weights transferred from the source receiver are modified using data 

derived from the target. In finetuning + the architecture of the target neural receiver has an 

additional ResNet block, and the top two layers of the target model are frozen hence not 

modified by target dataset. Similarly, the feature extraction technique has the same 

https://github.com/CENTRIC-WP3/Transfer-Learning-Techniques-for-MIMO-Neural-Receivers
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architecture as in the finetuning + case, however only the last two layers of the target model 

are modified with target dataset with the rest layers frozen. A workflow of these techniques 

can be seen in Table 3 and Table 4. 

Table 3: Flow of the Finetuning based techniques. 

Algorithm 1: Technique 1 and 2: Fine Tuning 
Input: Source deep neural receiver (𝑓Φ𝑆

), 𝑘, 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

Output: BLER of target deep neural receiver, (𝑓Φ𝑇
) 

If “Fine Tuning” then 

       Retain 𝑓Φ𝑆
 architecture 

       Load source network parameter, Φ𝑇 ← Φ𝑆 

       for 𝑖 =  1 to 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  do 

             Generate target dataset, 𝑋𝑇 
              Input dataset into target network 

              Update the parameters of  𝑓Φ𝑇
  for trainable layers 

      end 

else 

      If “Fine Tuning +” then 

            Add an extra ResNet block 

           Load source network parameters Φ𝑇 ← Φ𝑆 

           Freeze k layers of 𝑓Φ𝑇
 

           For 𝑖 =  1 to 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 

                 Generate target dataset, 𝑋𝑇 
                 Input dataset into target network 

                 Update the parameters of  𝑓Φ𝑇
  for trainable layers 

           end 

       end 

end 

Instantiate target model 𝑓Φ𝑇
and load weights, Φ𝑇 

Evaluate target model on test data 

Output BLER of target model/ receiver 

 
Table 4: Logical flow of the feature extraction technique 

Algorithm 2: Feature Extraction 
Input: Source deep neural receiver (𝑓Φ𝑆

), 𝑘, 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

Output: BLER of target deep neural receiver, (𝑓Φ𝑇
) 

Add an extra ResNet block 

Load source network parameters Φ𝑇 ← Φ𝑆 

Freeze all layers of 𝑓𝑆 

For 𝑖 =  1 to 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  do 

                 Generate target dataset, 𝑋𝑇 
                 Input dataset into target network 

                 Update the parameters of  𝑓Φ𝑇
  for trainable layers 

           end 

Instantiate target model 𝑓Φ𝑇
and load weights, Φ𝑇 

Evaluate target model on test data 
Output BLER of target model/ receiver 
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4.4 Usage Example and Results  

We consider subcarrier spacing mismatch and channel model mismatch cases. In Figure 6, the 
CDL-C channel model is used, and subcarrier spacing mismatch is studied. Partially fine-tuning 
the weights from the source model offers improved target receiver performance even though 
the target dataset size is 10% of the size of the source dataset. On the other hand, in Figure 
7, fully fine tuning the transferred weights offers improved target receiver performance for 
the channel model mismatch case. As the channel model plays a critical role in 
communication system performance, mismatch in the channel model between source and 
target model will require altering transferred source weights with target dataset.  To obtain 
the results in 6 and 7, training was done on the fly. To validate the results, we considered 
transfer learning using raytracing generated site-specific static dataset. The source dataset 
was generated for a Munich site while the target dataset was generated for a location in Paris. 
Other configurations were kept same for both source and target receivers. With Fine tuning, 
the target receiver achieves a performance 2dB shy of the traditional deep learning approach. 
For Figure 8, we also compared our earlier studied techniques with a so-called transfer 
learning with reconstruction loss proposed in [4]. Although Transfer Learning with 
Reconstruction Loss performed nearly as Finetuning+, it was bested by Finetuning.   

 

4.5 Remarks 

Transfer learning for neural receivers is achievable for various mismatch scenarios using both 

on the fly data and static dataset.  Finetuning based techniques can close the gap between 

having sufficient data and having no target domain dataset. Performance of transfer learning 

techniques for neural receivers is closely coupled with the mismatch cases. While partial 

finetuning is optimal in receiver configuration mismatch, full finetuning offers an edge in 

channel model mismatch. 

 
Figure 6: Figure 6: BLER Vs. 
Eb/No for Transfer between 
SCS 30kHz to 120kHz 

 
Figure 7:  BLER Vs. Eb/No for 
Transfer between CDL C to 
3GPP UMi 

 

 
Figure 8:  BLER Vs. Eb/No 
for Transfer between 
Munich and Paris Sites 
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5 Repository 4: Learning Based Beam Alignment 

 

https://github.com/CENTRIC-WP3/Learning-Based-Beam-Alignment 

5.1 Background 

The challenging propagation environment, combined with the hardware limitations of 

mmWave systems, gives rise to the need for accurate initial access beam alignment strategies 

with low latency and high achievable beamforming gain. Much of the recent work in this area 

either focuses on using beam-codebooks together with methods like compressed-sensing, 

machine learning, and Bayesian approaches [5] [6]. It has been shown that codebook-free, 

adaptive beam alignment might have performance benefits over non-adaptive and codebook-

based approaches [7], and some studies further showed the benefits of joint two-sided 

schemes [8]. This study introduces a novel deep learning based joint two-sided beam 

alignment scheme that aims to combine the benefits of adaptive, codebook-free beam 

alignment at the UE side with the advantages of a codebook-sweep based scheme at the base 

station (BS). The proposed end-to-end trainable scheme is compatible with current cellular 

standard signaling and can be readily integrated into the standard without requiring significant 

changes to it. Extensive simulations demonstrate superior performance of the proposed 

approach over purely codebook-based ones. 

5.2 Simulation Environment/System Model 

We consider the problem of joint, two-sided beam alignment in mmWave communications, 

i.e., the initial (downlink) communication between a BS and a UE, both equipped with an 

uniform linear array (ULA) consisting of 𝑁𝑇𝑋 and 𝑁𝑅𝑋  antenna elements respectively. No initial 

knowledge about the channel between BS and UE is assumed. We assume that both the BS 

and the UE are controlled by AIML-based control units which at each timestep 𝑡, that 

determine the current precoding vector 𝑓𝑡 ∈ ℂ𝑁𝑇𝑋 and the combining vector 𝑤𝑡 ∈ ℂ𝑁𝑅𝑋   at 

the BS and UE respectively, for the channel matrix 𝐇 ∈ ℂ𝑁𝑅𝑋×𝑁𝑇𝑋. Also, the control unit at the 

UE also receives the complex valued received symbol 𝑦𝑡 ∈ ℂ and the current BS beam index 

𝑦𝑡 ∈ ℤ at each timestep as input. The system model is depicted in Figure 9. 

Simulation environment is Python based and use PyTorch as the machine learning library.   

 

https://github.com/CENTRIC-WP3/Learning-Based-Beam-Alignment
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Figure 9: System model for learning based beam alignment 

 

5.3 AI Algorithm 

The unrolled depiction of the proposed algorithm is provided in Figure 10. We use three 

different kinds of learnable networks: The UE sided recurrent neural network (RNN) (N1), the 

final beam-mapping network at the BS (N2), and the learnable beam-codebook at the BS (N3).  

N1 (RNN): Sensing network with the goal of obtaining as much CSI information as possible 

about the channel between BS and UE, based on the measurement sequence of 𝑤𝑡 , 𝑦𝑡 and 

𝑥𝑡. The obtained information is stored in the internal state 𝑠𝑡. At each timestep t, it outputs a 

combining vector 𝑤𝑡 , and for 𝑡 = 𝑇 − 2, it additionally determines a feedback massage 𝑚𝐹𝐵 

for the BS. Also, at the last timestep of the BA process, it outputs the estimated best combining 

vector 𝑤𝑇−1 for the UE. 

N2 (feedforward neural network (FNN)): Network to map the feedback massage 𝑚𝐹𝐵 of N1 to 

the final beampattern 𝑓𝑇−1 at the BS. 

N3 (parameter matrix): Learnable beam-codebook at the BS for possible enhancements over 

classically used codebooks and hardware impairments. This codebook is implemented as a 

2 × 𝑁𝑇𝑋 × 𝑁𝑇𝑅  dimensional trainable parameter matrix. 

The objective of the proposed method is to find the parameters of the neural networks N1, 

N2, and N3 that maximize the following function on beam forming gain at the last time step. 

Beamforming gain =
‖𝑤𝑇−1

𝐻 𝐇𝑓𝑇−1‖2

‖𝐇‖2
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Figure 10: Unrolled depiction of the beam alignment algorithm 

5.4 Usage Example and Results  

See the README file in the repository for an example usage and obtained results. An example 

result is given in Figure 11 for the above parameters where C1, C2, C3 represents the results 

with N1, N2, N3 respectively. MRT+MRC represents the upper bound and Exhaustive search 

represents the legacy method of exhaustive search in 3GPP.  

 

Figure 11: Comparison of beamforming gains of different methods 

 

5.5 Remarks 

This repository contain code for the unrolled AI algorithm described in Section 5.3. The codes 

allow for easy evaluation of the methods and benchmarking.  
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6 Repository 5: Narrow Beam Prediction Using NN Decoder 

https://github.com/CENTRIC-WP3/Narrow-Beam-Prediction-using-Neural-Network-Decoder 

6.1 Background 

The procedure for acquiring and maintaining the highly directional beamforming with hybrid 

antenna arrays for data transmission at both the Next Generation Node B (gNB) and the UE is 

referred to as BM in 5G NR [9]. The BM procedure consists of three phases. In (P1), gNB 

sweeps all the transmitting (Tx) beams to broadcast synchronized signal blocks (SSB). The Tx 

beams in P1 are usually designed to have a relatively wide beamwidth to reduce the number 

required to fully scan the coverage area. In (P2), further Tx beam sweeping may be performed 

to select a preferred "refined" beam having a higher gain and narrower beamwidth so as to 

achieve a higher throughput during data transmission. The gNB may transmit channel state 

information reference signals (CSI-RS) over a set of refined beams, where the main lobes of 

the beams in the set of refined beams are all located within the beamwidth of the wide beam 

selected in P1. In (P3), the gNB uses the beam selected in P2 to transmit CSI-RS over successive 

time instances to allow the UE to switch between different receiving Rx beams so that the UE 

can determine the best Rx beam based on the received signal power. More recently, 3GPP has 

started to study applying AI/ML techniques to beam management in the NR air interface. ML 

based beam management can potentially improve legacy 5G beam management operation to 

reduce measurement overhead, communication latency, and device power consumption [10]. 

The 3GPP Release-18 Study Item has been supported by significant research advancements in 

the application of ML techniques to solve different problems for mmWave beamforming. To 

cite a few examples, [11] utilize neural networks (NNs) to design the sensing beam codebook 

and/or design the beam measurement decoder. The sensing beams essentially result from 

combining refined beams into wide beams, while the measurement decoder inputs the 

measurements of the wide beams and provides the estimation of certain channel state 

information. Considering the mmWave channel angle of departure (AoD) or angle of arrival 

(AoA) estimation, the AoD estimation with wide beam measurements as a super-resolution 

problem, may use convolutional NN (CNN) and long short-term memory (LSTM) as a wide 

beam measurement decoder or fully connected NN (FNN) for a wide beam measurement 

decoder [4]. Moreover, [5] proposes the use of autoencoder to jointly design the wide beam 

codebook and the wide beam measurement decoder. In the literature, the mmWave 

beamforming codebook design problem was also addressed with non-ML techniques. [12] 

proposes a wide beam construction method based only on phase coefficients and optimizes 

the combining coefficients to flatten the wide beam main lobe.  

Motivated by recent standardization efforts, this study details a method for wide beam 

codebook design and shows that it is beneficial for refined beam prediction and estimation. 

We apply a neural network as a decoder, where the measurement signal powers acquired 

from the designed wide beams is the input, and the output is an estimate of the best UE 

refined beam. With the proposed idea, one can leverage the wide beam measurements from 

P1 to predict the refined beam having the highest reference signal received power (RSRP) for 

data transmission without needing the overhead from the P2 beam refinement procedure. 

https://github.com/CENTRIC-WP3/Narrow-Beam-Prediction-using-Neural-Network-Decoder
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This study attempts to fill in the gap via formulating the problem of refined beam prediction 

with wide beam measurements as a classification problem by only utilizing the received signal 

power measurements as our prediction model input, which is more practical than assuming 

full knowledge of the complex received signals as presented in the prior-art. The main aspects 

of the study are summarized below: 

• To propose an algorithm that can generate a wide beam codebook to maintain the cell 

serving coverage (not considered in the prior art) and improve the refined beam 

prediction accuracy. 

• To propose to apply a NN with a fully connected layer and a residual connection to 

decode the wide beam measurement and predict the best refined beam.  

6.2 Simulation Environment/System Model 

6.2.1 System model 

6.2.1.1 Refined beam problem formulation 

Consider a gNB with a uniform planar array (UPA) having 𝑁 × 𝑀 antenna elements, where 

𝑁 represents the azimuth antenna elements and 𝑀 represents the elevation antenna 

elements. The respective spacings for these elements in the azimuth and elevation directions 

are d_az and d_ele. The gNB coverage, mapped into its Tx beam angle domain, has an 

elevation angle range [θmin, θmax] and an azimuth angle range [φmin, φmax]. The Kth gNB 

refined beam is given by: 

 

where 𝑣𝑒𝑙𝑒denote the elevation beam given by 

 

Here, 𝑀′and 𝑁′denote the number of beams in azimuth and elevation. The refined beam index 

k is computed as 𝑘 =  𝑛 + (𝑚 − 1) 𝑁′ and 𝑘 ∈ [1, 𝑀′𝑁′]. The gNB refined beam codebook 

is expressed as: 

 

6.2.1.2 Wide beam problem formulation 

Since the beam sweeping process must periodically align the transmit beam with the updated 

UE position, using refined beams for the beam sweeping process incurs significant overhead 
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from the large 𝑁′ 𝑀 beams. Consequently, the gNB might adopt an alternative transmit beam 

codebook with only 
𝑁′𝑀′

𝑆
 beams for the beam sweeping, where 𝑆 ≥ 1 is the refined beam 

combining ratio. The beam sweeping phase beam codebook mainly includes wide beams with 

larger beamwidths. The gNB wide beam codebook is defined as:  

 

where 𝑤𝑗 is the wide beam vector. In this work, we aim to utilize the wide beam measurement 

power reported by the UE to the gNB to identify the optimal refined beam (i.e., the beam with 

the highest RSRP) for the UE.  

6.2.1.3 Wide beam codebook design 

Each wide beam vector 𝑆 is calculated by linearly combining the refined beams, and in 

practice, such operation can be implemented with summation operation from the analog 

antenna chains without amplitude tuning. The beam vector 𝑤𝑖 is expressed as: 

 

Where 𝑘(𝑘)is the kth element in k, and 𝜔𝑖 is phase coefficient for the linear refined beams 

combination. Adopting the wide beam beamwidth, 𝜔𝑖 can be calculated to flatten the wide 

beam main lobe. 

Two main objectives for the wide beam codebook design can be listed as follows: 

1) 𝐵𝑤𝑖𝑑𝑒 should satisfy the cell coverage conditions. 

2) 𝐵𝑟𝑒𝑓𝑖𝑛𝑒𝑑 is expected to enhance the refined beam prediction accuracy in comparison 

to the wide beam codebook generated. 

Wide beam codebook 𝐵𝑤𝑖𝑑𝑒 generation steps are briefly summarized below: 

• Input: refined beam codebook 𝐵𝑟𝑒𝑓𝑖𝑛𝑒𝑑, combining rate S 

• Output: wide beam codebook 𝐵𝑤𝑖𝑑𝑒 

• Step 1: determine matrix T and refined beam index k  

• Step 2: construct all the wide beam vectors wi 

• Step 3: return wide beam codebook 𝐵𝑤𝑖𝑑𝑒 = [ 𝑤1,…,𝑤𝑁′𝑀′

𝑆

] 

6.2.2 Simulation environment  

The NN training data are generated from a 5G NR 3GPP-compliant system level simulator (SLS), 

and the specific configuration of this SLS is detailed in Table 5. 
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Table 5: System Level Simulation Parameter 

 

The simulations involved 200 drops, encompassing a total of 42,000 UEs. The data destined 

for model training, validation, and testing are segmented with a splitting ratio of 0.8: 0.1: 0.1. 

The training of the model utilizes the Adam optimizer along with the StepLR learning rate 

scheduler, starting with an initial rate of 0.01. For model training, we use the binary cross-

entropy loss function, expressed and RSRP is the ground-truth received signal power vector 

from all refined beams. 

6.3 AI Algorithm 

A neural network (NN) is employed as the wide beam measurement decoder to predict the 

indices of the optimal refined beams. With the introduction of NN, the objective function can 

be reformulated as 
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and f(. ,) is the neural network parameterized by by  and 
𝑘

represents k-th output of the 

last layer of the NN with input of received signal power sequence before normalization.  

The architecture of the proposed NN decoder is depicted in Table 6. 

Table 6: Neural Network Decoder Architecture 

 

The ReLU function is defined as 𝑓𝑅𝑒𝐿𝑈
(𝑥) = max {0, 𝑥}, and Dense 𝑑𝐼, 𝑑𝑂 represents a fully 

connected layer with 𝑑𝐼 as the input data dimension and 𝑑𝑂 as the output data dimension. 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝛿) denotes a dropout operation within the NN layer, applied with probability 𝛿, and 

Softmax is defined for generating probability measure outputs. The outputs from the 3rd and 

7th layers are combined at the 8th layer via a residual connection. 

6.4 Usage Example and Results  

This repository is structured in the following way: 

• Configs/config.yaml contains the training and system configurations performing 

different experiments 
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• model contains all the NN models 

• utils contains common utility functions 

• weights contains weights of pre-trained neural receivers for different configuration 

files 

• results contains pre-computed BLER performance results 

The workflow consists of the following steps: 

5. DataProcessing.py to adjust data processing and convert MATLAB datasets data into 

.npz format 

6. Define simulation parameters in config.yaml: this includes the entire simulation 

parameters including training/evaluation parameters 

7. Train.py generate dataset, data loader, split the data for training and validation 

8. Trainer.py inherit torch.nn.Module to pass the data to the model for training 

9. DistanceDecoding.py to test NN decoder  

 

We can examine three wide beam codebook designs: the common codebook for wide beam 

codebook design (WB), wide beam codebook design incorporating a circular-shift operation 

(CSWB), and wide beam codebook design featuring partial random coding (PR-WB). For the 

decoding technique, we consider two methods: the proposed ML-based decoder and the non-

ML method (DD). As illustrated in Figure 11 and Figure 12, the cumulative distribution function 

(CDF) of Ersrp is computed using the testing data for both fixed and optimal UE beam selection 

accordingly. Additionally, the y-axis value at Ersrp∼=0 dB indicates the prediction accuracy. 

The results indicate that: (1) the ML decoder significantly outperforms DD across all wide 

beam codebook designs; (2) the proposed CSWB and PR-WB models surpass the WB for each 

decoder method; (3) In our configuration, CS-WB with DD and PR-WB with DD demonstrate 

comparable performance to WB with ML, highlighting the importance of the wide beam 

design for refined beam prediction. 
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Figure 12: CDF of RSRP error for refined beam prediction with NN decoder with fixed UE 
receive beam selection  

 

Figure 13: CDF of RSRP error for refined beam prediction with NN decoder with Optimal 
UE receive beam selection 

 

6.5 Remarks 

This repository is made available to allow reproducibility of the results and possible extension of the proposed 

AI algorithm for refined beam prediction.  
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