Numerical Formulation of IFV for Unstructured Grids

The partial differential equation of the general form

0A
E-FV F =S, (1)

with accumulation term A, source/sink term S, and flux term F' of the form
F = qpX — ¢DpVX, (2)

can be solved numerically through discretized integrated finite volume equations.
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Figure 1: General unstructured grid showing control volume, and interfacial areas and fluxes.

Partitioning the computational domain into a set of finite volumes V,, (see Figure ?7)
and integrating the partial differential equations over each volume yields a discretized form
of the mass conservation equations. The following results are obtained:
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—AdV ~ -V, 3
X = 3)

for the accumulation term,
SdV ~ 8,V,, (4)

V’Vl
for the source term, and
Vi OV Z
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for the flux term, where 0V, denotes the surface of V,,, and the sum is over the neighboring

volumes connected to V,,. The flux F},,, across the n—n' interface connecting volumes V,
and V), is defined by

X, — Xy

an’ = (qp)nn’Xnn/ - (¢Dp)nn’m7 (6)
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where the subscript nn’ indicates that the quantity is evaluated at the interface, and the
quantities d,,, d,» denote the distances from the centers of the control volumes V,,, V,,» to the
their common interface with interfacial area A,,,. Combining these results gives the residual
equation for the discretized form of the partial differential equations

R, — (AM - AF) %t 3 P A = SuVi, (7)

where, in general, R, is a nonlinear function of the independent field variables and superscript
k denotes the kth time step. These equations may be solved using a Newton-Raphson
iteration technique in which the discretized equations are first linearized resulting in the
Newton-Raphson equations

Z JLdxtt = —RL (8)
for the ith iteration, with the Jacobian matrix J. , defined by
; OR!
JZ r = ‘TL . 9

Typically, for solving the flow equations dx,, = dp,, where p denotes the fluid pressure,
whereas for the reactive transport equations dx,, = ¢ In Cj,, where C},, denotes the concen-
tration of the jth chemical species.

An explicit method is used to solve the mineral mass transfer equations

OPm —
— = I 1
P = Vol (10)

given by: .
Om(r, t+AL) = dp(r, 1) + AtV I (1, 1), (11)

with mineral volume fraction ¢,, and molar volume V,,, where the mineral reaction rate
I,,,(r, t) is taken from the previous time step.

Pseudo code illustrating implementation of the IFV method. Pseudo is given below
for the flow equation

0
ag@p+V~pu = 0, (12)

with w given by Darcy’s law
K
u = —;V(p— Wpgz), (13)

with permeability x, viscosity p, molar fluid density p, formula weight of water W, and
acceleration of gravity g.

laccumulation term
do n =1, grid/nlmax ! For each local node do...
ng = grid%nL2G(n) ! corresponding ghost index
voldt = porosity_loc_p(ng) * volume_p(n) / grididt
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r_p(jn) = (ddensity_loc_p(ng) - density_p(n)) * voldt
enddo

Iflux terms

do nc = 1, grid/nconn ! For each interior connection...
ml = grid/ndl(nc) ! node indices other either side of face nc
m2 = grid)nd2(nc)
nl = grid’nG2L(m1) ! local node indices
n2 = grid%nG2L(m2)
ddl = gridjdisti(nc) ! distances to interface
dd2 = gridjdist2(nc)

ipl = grid¥%iperml(nc) ! permeability direction
ip2 = gridijiperm2(nc)

if (ipl == 1) then

perml = perm_xx_loc_p(ml) ! permeability in x-direction
else if (ipl == 2) then

perml = perm_yy_loc_p(ml) ! permeability in y-direction

else

perml = perm_zz_loc_p(ml) ! permeability in z-direction
endif
if (ip2 == 1) then

perm2 = perm_xx_loc_p(m2)
else if (ip2 == 2) then

perm2 = perm_yy_loc_p(m2)
else

perm2
endif

perm_zz_loc_p(m2)

dd
f1
2

dd1l + dd2
dd1/dd
dd2/dd

gravity = grid)fmwh2o0 * gridigravity * gridjdelz(nc)

D1 = perml / viscosity_loc_p(ml)
D2 = perm2 / viscosity_loc_p(m2)

D = (D1 * D2) / (dd2*D1 + dd1*D2)
density_ave = f2 * ddensity_loc_p(ml) + f1* ddensity_loc_p(m2)

v_darcy = -D * (ppressure_loc_p(m2) - ppressure_loc_p(ml) &
- gravity * density_ave)
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q = v_darcy * gridjarea(nc)
flux = density_ave * q

! Now add the flux contributions for this phase.

I Note that fluxes through a downstream face should be added to the

I residual component at the cell, while fluxes through an upstream face
! should be subtracted. (The divergence gives the net OUTFLOW rate per
! unit volume.) Thus, when working with pressure differences,

! (ppressure(jm2) - ppressure(jml)) should be *subtracted* at the

| upstream node nl because q = -Dxdiv(P).

if (n1 > 0) then ! If the upstream node is not a ghost node...
r_p(nl) = r_p(nl) + flux
endif

if (n2 > 0) then ! If the downstream node is not a ghost node...
r_p(n2) = r_p(n2) - flux
endif
enddo



