
Numerical Formulation of IFV for Unstructured Grids

The partial differential equation of the general form

∂A

∂t
+ ∇ · F = S, (1)

with accumulation term A, source/sink term S, and flux term F of the form

F = qρX − φDρ∇X, (2)

can be solved numerically through discretized integrated finite volume equations.

APPENDIX B. SPACE AND TIME DISCRETIZATION

The continuum equations (A.1) are discretized in space using the integral finite difference

method (IFD; Edwards, 1972; Narasimhan and Witherspoon, 1976). Introducing appropriate

volume averages, we have

M dV

Vn

Vn Mn (B.1)

where M is a volume-normalized extensive quantity, and Mn is the average value of M over Vn.

Surface integrals are approximated as a discrete sum of averages over surface segments Anm:
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Here Fnm is the average value of the (inward) normal component of F over the surface segment

Anm between volume elements Vn and Vm. The discretization approach used in the integral finite

difference method and the definition of the geometric parameters are illustrated in Fig. 60.
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Figure 60.  Space discretization and geometry data in the integral finite difference method.

The discretized flux is expressed in terms of averages over parameters for elements Vn and Vm. For

the basic Darcy flux term, Eq. (A.5), we have
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Figure 1: General unstructured grid showing control volume, and interfacial areas and fluxes.

Partitioning the computational domain into a set of finite volumes Vn (see Figure ??)
and integrating the partial differential equations over each volume yields a discretized form
of the mass conservation equations. The following results are obtained:∫

Vn

∂

∂t
A dV ' At+∆t

n − At
n

∆t
Vn, (3)

for the accumulation term, ∫
Vn

S dV ' SnVn, (4)

for the source term, and∫
Vn

∇ · F dV =

∫
∂Vn

F · dS '
∑
n′

Fnn′Ann′ , (5)

for the flux term, where ∂Vn denotes the surface of Vn, and the sum is over the neighboring
volumes connected to Vn. The flux Fnn′ across the n−n′ interface connecting volumes Vn

and Vn′ is defined by

Fnn′ = (qρ)nn′Xnn′ − (φDρ)nn′
Xn −Xn′

dn + dn′
, (6)
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where the subscript nn′ indicates that the quantity is evaluated at the interface, and the
quantities dn, dn′ denote the distances from the centers of the control volumes Vn, Vn′ to the
their common interface with interfacial area Ann′ . Combining these results gives the residual
equation for the discretized form of the partial differential equations

Rn =
(
Ak+1

n − Ak
n

)Vn

∆t
+

∑
n′

Fnn′Ann′ − SnVn, (7)

where, in general, Rn is a nonlinear function of the independent field variables and superscript
k denotes the kth time step. These equations may be solved using a Newton-Raphson
iteration technique in which the discretized equations are first linearized resulting in the
Newton-Raphson equations ∑

n′

J i
nn′ δxi+1

n′ = −Ri
n, (8)

for the ith iteration, with the Jacobian matrix J i
nn′ defined by

J i
nn′ =

∂Ri
n

∂xi
n′

. (9)

Typically, for solving the flow equations δxn = δpn, where p denotes the fluid pressure,
whereas for the reactive transport equations δxn = δ ln Cjn, where Cjn denotes the concen-
tration of the jth chemical species.

An explicit method is used to solve the mineral mass transfer equations

∂ϕm

∂t
= V mIm, (10)

given by:
φm(r, t + ∆t) = φm(r, t) + ∆tV mIm(r, t), (11)

with mineral volume fraction ϕm and molar volume V m, where the mineral reaction rate
Im(r, t) is taken from the previous time step.

Pseudo code illustrating implementation of the IFV method. Pseudo is given below
for the flow equation

∂

∂t
ϕρ + ∇ · ρu = 0, (12)

with u given by Darcy’s law

u = −κ

µ
∇

(
p−Wρgz

)
, (13)

with permeability κ, viscosity µ, molar fluid density ρ, formula weight of water W , and
acceleration of gravity g.

!accumulation term
do n = 1, grid%nlmax ! For each local node do...

ng = grid%nL2G(n) ! corresponding ghost index
voldt = porosity_loc_p(ng) * volume_p(n) / grid%dt

[0–2]



May 18, 2012

r_p(jn) = (ddensity_loc_p(ng) - density_p(n)) * voldt
enddo

!flux terms
do nc = 1, grid%nconn ! For each interior connection...

m1 = grid%nd1(nc) ! node indices other either side of face nc
m2 = grid%nd2(nc)

n1 = grid%nG2L(m1) ! local node indices
n2 = grid%nG2L(m2)

dd1 = grid%dist1(nc) ! distances to interface
dd2 = grid%dist2(nc)

ip1 = grid%iperm1(nc) ! permeability direction
ip2 = grid%iperm2(nc)

if (ip1 == 1) then
perm1 = perm_xx_loc_p(m1) ! permeability in x-direction

else if (ip1 == 2) then
perm1 = perm_yy_loc_p(m1) ! permeability in y-direction

else
perm1 = perm_zz_loc_p(m1) ! permeability in z-direction

endif

if (ip2 == 1) then
perm2 = perm_xx_loc_p(m2)

else if (ip2 == 2) then
perm2 = perm_yy_loc_p(m2)

else
perm2 = perm_zz_loc_p(m2)

endif

dd = dd1 + dd2
f1 = dd1/dd
f2 = dd2/dd

gravity = grid%fmwh2o * grid%gravity * grid%delz(nc)

D1 = perm1 / viscosity_loc_p(m1)
D2 = perm2 / viscosity_loc_p(m2)

D = (D1 * D2) / (dd2*D1 + dd1*D2)

density_ave = f2 * ddensity_loc_p(m1) + f1* ddensity_loc_p(m2)

v_darcy = -D * (ppressure_loc_p(m2) - ppressure_loc_p(m1) &
- gravity * density_ave)
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q = v_darcy * grid%area(nc)
flux = density_ave * q

! Now add the flux contributions for this phase.
! Note that fluxes through a downstream face should be added to the
! residual component at the cell, while fluxes through an upstream face
! should be subtracted. (The divergence gives the net OUTFLOW rate per
! unit volume.) Thus, when working with pressure differences,
! (ppressure(jm2) - ppressure(jm1)) should be *subtracted* at the
! upstream node n1 because q = -D*div(P).

if (n1 > 0) then ! If the upstream node is not a ghost node...
r_p(n1) = r_p(n1) + flux

endif

if (n2 > 0) then ! If the downstream node is not a ghost node...
r_p(n2) = r_p(n2) - flux

endif
enddo
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