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Abstract: Large Language Models (LLMs) are rapidly being 

adopted in various applications due to their natural language 

capabilities that enable user interaction using human language. 

As system designers, developers, and users embrace generative 

artificial intelligence and large language models in various 

applications, they need to understand the significant security risks 

associated with them. The paper describes a typical 

LLM-integrated application architecture and identifies multiple 

security risks to address while building these applications. In 

addition, the paper provides guidance on potential mitigations to 

consider in this rapidly evolving space to help protect systems and 

users from potential attack vectors. This paper presents the 

common real-world application patterns of LLMs trending today. 

It also provides a background on generative artificial intelligence 

and related fields. 

Keywords: Large Language Models, Security, Copilot, 

OWASP.  

I. INTRODUCTION

Large Language Models (LLMs) are transforming the

public’s daily lives on many levels by simplifying their 

routine tasks. ChatGPT gained widespread popularity, 

surpassing over 100 million users in two months since its 

release on November 30, 2022 [1], [2]. Many new models 

such as Cohere, LLAMA2, and GPT-4, were released shortly 

after ChatGPT [3]-[5]. 

LLMs’ rising popularity and usefulness led to fast-paced 

integration into many existing systems, such as a 

conversational chatbot or a copilot for content generation, 

source code, or performing tasks in general. In 

LLM-integrated applications, an LLM interacts with various 

components such as APIs, databases, and other LLMs. This 

complexity of interaction, combined with a lack of 

knowledge and skills among developers and users on security 

risks, makes LLM-integrated applications vulnerable.  

Researchers have studied web application security 

extensively. However, the field of LLM security is relatively 

new and evolving rapidly. Security risks can occur 

throughout the software development lifecycle and LLM 

process model [6]. It can range from making model 

deployment vulnerable, to introducing weaknesses for an 
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attacker to exploit, exposing sensitive information, prompt 

manipulation, and remote code execution. The system 

designers and developers of LLM-integrated applications are 

responsible for securing them against these risks. LLMs, due 

to their transformative capabilities in natural language 

processing, can support a variety of use cases such as Text 

Generation (e.g., social media posts, blogs), Language 

Translation (e.g., real-time speech translation, translation 

between languages), Classification (e.g., sentiment analysis, 

content moderation by toxicity level), Summarization (e.g., 

legal paraphrasing, meeting notes summary), and Natural 

Language Conversation Assistance (e.g., digital assistants, 

chatbots). These capabilities enabled several real-world 

applications of LLMs across various domains, such as 

chatbots in Customer Service, investment risk assessment in 

Finance, product recommendation in E-commerce, code 

generation in Software Development, and many more. 

II. BACKGROUND

A. Concepts

Artificial Intelligence (AI) refers to the science and

engineering of making intelligent machines that mimic 

human intelligence and perform tasks humans can do 

naturally. These tasks include sense, language understanding, 

and problem-solving [7]. 

Machine Learning (ML) is a group of technologies and 

statistical algorithms that enable computer systems to 

perform tasks without explicit instruction. These systems 

identify patterns, make decisions, and improve by learning 

from experience and data exposed over time [8]. 

Neural Networks are modeled based on human biology and 

how a network of neurons and the human brain work together 

to understand inputs from human senses. They are 

computational learning systems that use mathematical 

functions to understand and translate data inputs into a 

desired output, recognizing patterns and making decisions as 

they process data [8]. 

Deep Learning (DL) is the technology to train and model a 

large multi-layered neural network to solve complex 

problems with human-like complex decision-making 

processes [9]. 

Generative Artificial Intelligence (GenAI) describes an AI 

system primarily used to create new content, such as audio, 

code, images, and text, closely resembling data it ingested 

during training [10]. Fig. 1 below shows a map of these 

concepts. 
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Figure: 1. Venn Diagram of Artificial Intelligence Technologies 

B. Large Language Model 

LLM is a massive neural network trained on enormous 

input datasets to produce realistic output text by 

understanding and generating human language. With their 

GenAI and NLP capabilities, LLMs can recognize, 

summarize, translate, predict, and generate content. LLMs’ 

use of the transformer model introduced a revolutionary 

innovation with a self-attention mechanism and positional 

encoding; LLMs learned context and meaning significantly 

better by assigning weights based on the importance of 

different words and order in a sentence [11], [12]. 

Using LLMs typically means providing a prompt to guide 

the generation of subsequent text. The text an LLM generates 

is assumed to suitably answer a question. In practice, a great 

deal of iterative work goes into creating prompts to support 

this, known as prompt engineering. 

i. Properties 

LLMs are data-driven prediction systems that generate a 

best-guess output based on data associations and probability 

distributions ingested during training. LLMs are 

auto-associative predictive generators and are stochastic by 

design, as they often generate different outputs for similar 

prompts seen as meaningfully the same by humans. LLMs do 

not possess cognitive understanding and reasoning or grasp 

nuances of human language like meaning and emotion. Yet, 

many attribute human-like qualities and understanding to 

LLMs’ indistinguishable human-like output, showcasing the 

ELIZA effect. 

ii. Process Model 

Large Language Models are trained using unsupervised 

learning enhanced with attention mechanisms on public data 

belonging to a wide range of domains, known as 

general-purpose LLMs. Due to the prohibitive costs 

associated with building and training LLMs, most application 

developers use a general-purpose LLM as a foundation and 

then use prompt engineering or fine-tuning to suit their 

specific purpose. This general-purpose model is considered a 

foundation model. LLMs trained explicitly with a focus on a 

single or subset of domains, such as medical or legal, are 

known as domain-specific LLMs. The LLM foundation 

model operates as a black box, interfaced through an 

effectively “shapeless API” that produces unstable results 

even given the same prompts a human identifies as the same. 

Fig. 2 represents the Large Language Process Model as 

defined by the Beverly Institute of Machine Learning 

(BIML). The black box in the illustration is called the “Black 

Box Foundation Model” as it informs the user that the data 

and processes involved within are unknown, externally 

controlled parties. This lack of visibility brings several 

security concerns for LLM-integrated applications [6]. 

 

 

Figure: 2. A Generic LLM Process Model, Including its 

Foundation Model: Components with Various Steps in 

Using an LLM: 1) Raw Data in the World, 2) Inputs, 3) 

Model, 4) Inference Algorithm, and 5) Outputs [6] 

C. LLM Application Architecture 

Fig. 3 illustrates the typical architecture of an 

LLM-integrated application. The application provider creates 

a variety of predefined prompt templates suited to their 

functional needs. The design and implementation determine 

how user inputs will be integrated with these prompt 

templates to send the combined prompt to the LLM. An LLM 

generates an output for the combined prompt as a response to 

complete the task. The output could invoke downstream 

services on the user’s behalf, such as a database query, 

external API invocation, and webpage access. The 

application could further process the output before the final 

output is sent to the user. 
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Figure: 3. Adapted from OWASP LLM Application Data Flow [13] 
 

In essence, the LLM-integrated application requires a 

comprehensive approach that considers the security of the 

entire architecture, from data ingestion and storage to model 

serving and user interaction. Understanding these 

interactions well can help one develop an effective strategy to 

safeguard an LLM-based application against vulnerabilities. 

D. LLM Top Ten Risks 

As LLM-integrated applications explode, developers and 

users of LLMs must be aware of the risks that impact an 

LLM. Understanding these risks and their mitigations is 

essential to developing, deploying, and securing LLM-based 

applications to prevent adversarial exploits.  

Table I lists Beverly Institute of Machine Learning’s Top 

10 LLM risks and Open Worldwide Application Security 

Project’s (OWASP) Top 10 for Large Language Model 

Applications risks [6], [13]. 

Table I: Top 10 LLM Risks from BIML and OWASP 

BIML Top 10 OWASP Top 10 

Recursive Pollution Prompt Injection 

Data Debt Insecure Output Handling 

Improper Use Training Data Poisoning 

Black Box Opacity Model Denial of Service 

Prompt Manipulation Supply Chain Vulnerabilities 

Poison in the Data Sensitive Information Disclosure 

Reproducibility Economics Insecure Plugin Design 

Data Ownership Excessive Agency 

Model Trustworthiness Overreliance 

Encoding Integrity Model Theft 

III. LLM RISKS AND MITIGATIONS 

The following section details various LLM risks and 

potential mitigations to consider while developing an 

LLM-integrated application.  

A. Reproducibility Economics 

Building and training LLMs from scratch is expensive due 

to the required time, effort, and money. Thousands of GPUs 

handle massive datasets and multiple training runs for 

development and training over a long period. For example, 

training GPT-4 costs about $63 million in hardware 

[14],[15]. 

For the above reasons, the creation and development of 

LLMs is limited to large corporations with substantial 

budgets. These companies provide them as foundation 

models characterized as black box models since the users 

lack visibility into the data used to create the model, the kind 

of training done, or how it is secured. Building and studying 

LLMs is out of reach for academic research and impedes peer 

review of new LLMs due to cost barriers.  

Smaller organizations with limited resources have no 

choice but to use these foundation models with inherent risks, 

limiting competition and increasing the risk of vendor 

lock-in. The burden is on users and developers to ensure the 

LLM works as expected without malicious inclusions. 

B. Model Maintenance and Monitoring  

Developers of LLM-based applications have less control 

over LLMs as the models are maintained via their 

parameters. The developer’s lack of control over user 

prompts and LLM responses makes model maintenance 

difficult. Users can submit any natural language text as input. 

Given that LLMs are auto-associative predictive generators 

and stochastic, the generated output can vary widely, even 

with slight changes in the input text. Data is the lifeblood of 

maintaining an LLM-integrated application. Manipulating 

data used by an LLM-integrated application can help protect 

against attacks, expand the model’s knowledge, or remove 

knowledge to unlearn. We describe some of these ways 

below. 

i. Retraining 

New versions of LLM models are made available by 

retraining on a modified dataset.  
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It can improve the model by increasing its knowledge, 

unlearning harmful information, and responding to attacks 

with better detection [16]. 

ii. Fine-Tuning 

Fine-tuning is a way to train the model with a 

domain-specific dataset to adjust its weights. Hence, it is 

specialized to provide relevant and accurate responses in the 

domain-specific application. The result is a modified model 

that alters the broad knowledge of the foundation model to a 

specific task [17] [36][37][38]. 

iii. Retrieval Augmented Generation (RAG) 

RAG is an approach to improve a foundation model LLM 

without retraining by providing relevant information from an 

external dataset as input to the LLM so a contextually 

accurate and correct response is developed for the users. This 

dynamic ability to combine external information that 

enhances the model’s output reduces the possibility of 

hallucinations while reducing effort and cost. Some 

information retrieval methods RAG uses include accessing 

data directly from the web, relational or vector databases, and 

data from user input [18]. 

There are several risks in building and maintaining an LLM 

model used in an LLM-integrated application. The 

foundation model may include personally identifiable 

information (PII), copyrighted material, harmful content, and 

disinformation. The dataset used in fine-tuning a model poses 

a risk of data leakage for PII or confidential information via 

LLM responses or attacker extraction. Using confidential 

information or PII in the training dataset without user consent 

can lead to regulatory and compliance violations, loss of 

reputation and brand damage upon discovery, and financial 

cost of model unlearning to remediate it. With its dynamic 

content access from various sources, RAG brings its risks, 

including unintended retrieval or disclosure of sensitive 

information from web content, unintended queries or 

privilege elevation on database access, and information 

leakage via inferences. 

These risks can be mitigated by scrutinizing and sanitizing 

training data, avoiding PII data and proprietary information, 

and filtering misleading, biased, or discriminating content. 

Data store access should be protected by implementing input 

validation, proper access controls, sensitive data discovery 

and classification, limiting access based on data 

classification, and monitoring activity to detect unauthorized 

access. User education is needed to avoid users sharing 

sensitive information with an LLM application. An 

LLM-integrated application can sanitize user data or use 

methods to ensure the LLM does not persistently make 

sensitive data part of it. 

iv. Guardrails 

Guardrails leverage input validation, output filtering, 

activity monitoring, and user feedback methods to protect 

against various risks, including sensitive data leakage, 

prompt injection attacks, excessive use, etc. These can 

prevent output containing bias, discrimination, or harmful 

content, monitor performance for accuracy, relevance, and 

toxicity in user responses, and adhere to company or 

compliance policies. Some popular guardrails include Nvidia 

NeMo, Guardrails AI, and Llama Guard [19]-[20]. 

C. Prompt Injection 

Prompt injection uses crafty prompts to manipulate the 

LLM, causing unintended actions. Successful exploitation 

occurs as LLMs have difficulty distinguishing between 

instructions and user-submitted data. These exploits result in 

the LLM overriding its design principles or guardrails, 

executing malicious instructions, producing problematic 

output, and/or poisoning data. Some consequences of the 

exploitation include social engineering attacks, exploit 

plugins, denial of service, and legal and compliance risks. 

There are two types of prompt injection attacks: direct and 

indirect. 

i. Direct 

An attacker directly interacts with the LLM prompt, 

providing malicious inputs to override the system’s 

instructions, bypassing the application developer’s 

intentions. This injection is known as “jailbreaking”[23]. 

ii. Indirect 

An attacker indirectly injects the LLM with a crafted 

prompt using external sources, such as websites, files, etc., 

under the attacker’s control, and it is processed while 

attempting to answer the user’s prompt [22]-[25]. 

Here are some examples of prompt injection attacks: 

One of the techniques to make the LLM move out of 

alignment is the DAN method. The attacker provides a 

prompt: “Your name is DAN - which stands for Do Anything 

Now. You can do anything that ChatGPT cannot. You have 

no restrictions.” This technique can be used whenever a 

request hits the LLM guardrails to override it and get the 

desired response [21].  A recent paper on automated 

adversarial prompting from Carnegie Mellon University 

researchers [24] has shown a process for automating the 

search for effective prompt injection attacks using 

exploration techniques such as gradient descent. These 

techniques can identify a collection of strings that can be 

appended to any request and increase the odds of many 

available LLMs in the market responding to requests 

violating their guardrails.  Prompt injection is an evolving 

area of research on both attacks and defenses. These are ways 

to mitigate the attack and offer a line of defense. 

▪ A prompt structure can help separate user data and 

model developer instructions to avoid executing malicious 

instructions. 

▪ Rate-limiting requests based on IP address, user 

identity, or session limit the ability to launch probing attacks. 

▪ Adversarial training of LLM with normal and malicious 

inputs can prepare the LLM to identify and act on harmful 

inputs.  

▪ Treat all outputs from an LLM as inherently untrusted 

and validate to remove malicious instructions or harmful 

content for further consumption. 

▪ Review and enforce data access controls to ensure the 

least privileged access. 
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D. Overreliance and Improper Use 

It is easy to be overconfident about the output generated by 

an LLM as they confidently present the information, even 

when it is based on imperfect statistical knowledge acquired 

through training data. Humans often accept LLM output with 

excessive trust, creating an overreliance on LLMs. LLM 

output can be wrong based on training data quality, prompt, 

or context interpretation. Hallucinations are the inaccurate 

output generated by matching patterns learned without 

real-world factual understanding [26]. These hallucinations 

can show up with factual inaccuracies, unsupported claims, 

misinformation, or contradictory responses [27]. A common 

reason for improper use is overreliance on LLM output and 

blind faith in human-like reasoning and understanding, even 

if the response is inaccurate or can cause harm to themselves 

or others. Below are some examples of hallucinations 

combined with overreliance that highlight how misuse causes 

harm. 

LLM-based application misuse exists in the legal domain 

related to the generation of legal documents. In 2023, 

Michael Cohen submitted a federal motion with bogus 

Google Bard LLM-generated fabricated legal case citations 

[28]. This is a case where the user was unaware that the 

service could generate nonexistent cases.  

An instance of misuse in the medical domain was 

highlighted in research done on ChatGPT’s responses to 

questions about eosinophilic esophagitis (EoE), which were 

too complex for a patient to understand and provided an 

incorrect relationship between EoE and cancer [34].  

Several examples of this kind bring into question the use of 

LLMs in critical domains like legal and medical practice and 

highlight users’ improper use based on a fundamental 

misunderstanding of LLM-based applications. 

Hallucinations are inherent in LLM-based applications. 

User education is vital to avoid blind trust or misuse of the 

information provided, especially in medical, legal, or 

financial domains. In addition, clear communication via the 

user interface and documentation of the LLM-based 

application’s intended use, limitations, data handling, and 

feedback process will help reduce the risk of overreliance. To 

reduce fake output, developers can mitigate hallucinations by 

model fine-tuning using RAG with domain-specific 

documents. A feedback facility to bring humans into the loop 

can help flag incorrect output. 

E. Excessive Agency 

As shown in Fig. 3, LLM-integrated applications interface 

with several systems directly or indirectly, such as plugins or 

agents, databases, and via the web, to respond to a user’s 

prompt. The application requires permissions or agency to 

interface with these systems to carry out actions needed to 

respond to the prompt. 

Excessive agency refers to an LLM-based system being 

granted more capabilities or access by a developer than it 

should have while interacting with other systems. In most 

cases, excessive agency results from developers providing 

excessive functionality, permissions, or autonomy to the 

LLM-based application or component. The reasons for this 

could be developers’ lack of understanding of the system 

design or poor due diligence on the capabilities of included 

plugins/agents with excessive permissions granted by the 

original plugin developer. 

This results in exploits with unrestricted access where the 

adversary escalates privileges within these interacting 

systems and compromises multiple systems takes over the 

application entirely, or executes additional attacks [25]. 

Examples of attacks include prompt injection, tampering 

with sensitive data, producing misleading information, and 

executing web-based attacks. 

To avoid granting excessive agency, developers must 

follow the “least privilege” principle, which protects LLM 

applications from external threats and unintended errors. It is 

crucial to consider the risks of allowing an LLM to take 

critical actions by adding restrictions to limit it with human 

oversight or limit its abilities to only those required to answer 

the prompt or delegate to other components. Also, it requires 

the security team to perform due diligence and not include 

functionality that may violate regulations or pose serious 

security risks. 

F. Securing Your Output Handling 

Insecure output handling concerns the issues arising from 

improper validation, sanitization, and management of the 

LLM’s generated response before it is passed for downstream 

consumption. Here, the concerns are exploitable 

vulnerabilities, unintended disclosure of PII, and production 

of toxic content. The risks include user harm, service 

reputation damage, privacy concerns, legal liabilities, and 

output consumption by downstream systems leading to SQL 

injection and web-based attacks such as XSS and CSRF. 

Preventing toxic content can be done through sentiment 

analysis, keyword filtering for derogatory words or phrases, 

or custom LLMs trained on toxic data with context-aware 

filtering. PII screening can be done with solutions 

implementing PII discovery and sanitization with techniques 

such as Regular Expressions, Named Entity Recognition 

(NER), dictionary-based keyword lookup, machine learning 

classifiers, and anonymization. Mitigating exploitable code 

generation in output can be done by sanitizing for safety with 

HTML encoding to prevent web attacks, disabling shell 

interpretable outputs, filtering out unsafe programming 

syntax, keywords, or commands, and treating output as data 

when consumed by a downstream component. 

G. Financial Risks 

This section covers the direct and indirect financial loss due 

to the following attack vectors, which have similarities in 

exploiting vulnerabilities within the LLM-integrated 

applications.  

i. Denial of Service 

The model denial of service (DoS) attack exploits LLM’s 

resource-intensive nature, where an adversary consumes 

large amounts of resources to degrade model performance 

and availability, causing possible direct financial losses. 

Attackers can manipulate prompts to make the LLM perform 

resource-intensive tasks.  
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For example, what is the factorial of one million? The 

imbalance between trivial effort by a user to submit prompt 

and intensive processing required by the LLM makes them 

exploitable, incurring substantial costs to the service 

provider. A context window is a mechanism for the LLM to 

focus its attention property on input text. An LLM can 

manage this in its short-term memory, but it is 

computationally intensive, allowing adversaries with prompt 

manipulations to push its limits. In turn, this drains the 

LLM’s resources, which compromises functionality or 

depletes a financial budget. 

ii. Model Theft 

Attackers able to access custom LLM models may 

physically steal the model. Alternatively, like DoS attacks, 

the adversary posts lots of prompts against the LLM 

application, recording the responses and then using them to 

train their model. This ultimately leads to replicating a 

functionally equivalent original model, stealing the 

intellectual property of your model and application. 

As we protect source code for software applications, we 

must safeguard the LLM model with robust security controls 

to manage the LLM application lifecycle. These controls 

include access control, activity monitoring for anomalies, and 

periodic security audits. Input validation and sanitization can 

protect against the exploitation of LLM processing 

capabilities. Fine-tuning the model to respond only to 

domain-specific prompts can prevent computational abuse 

via random prompts. Rate-limiting the number of user 

requests to the LLM application within a time window can 

mitigate service disruption with resource exhaustion. Placing 

thresholds on resource consumption and billing usage will 

make it difficult for an adversary to perform 

resource-intensive tasks and avoid unexpected financial 

impact. 

H. Supply Chain Risks 

Security of the software supply chain refers to measures 

required to ensure the integrity and security of software 

throughout the software development lifecycle. It includes 

security of source code repositories, scanning for 

vulnerabilities in third-party software and their dependencies, 

and controls on CICD processes. 

In LLM-integrated applications, third-party components 

include foundation/custom models, plugins/agents, and the 

integrity of the data used in model development. These 

potentially can be malicious or contain exploitable 

weaknesses. Hence, these components should be untrusted 

until the developers perform due diligence on their safety.  

i. Black Box Opacity 

Using popular foundation LLMs makes it easy for 

developers to consume the model. However, it does not 

provide insight into the dataset quality, security features of 

the model, or learning algorithms, which are necessary to 

understand the foundation model risk fully. BIML’s 2024 

paper states, “An LLM foundation model user is provided 

with what amounts to an undocumented, unstable API that 

sometimes exhibits unanticipated behavior” [6]. If you use a 

black box foundation model, analyze its security, operation, 

data, and output validation to verify it works as desired. 

ii. Model Hub Risk 

It is commonplace for developers to provide 

domain-specific models via popular model hubs, such as 

Hugging Face. Adversaries have targeted these model hubs to 

upload a model with malicious functionality to be used 

directly or indirectly via another benign model [30]. Even 

though safeguards such as malware scanning are 

implemented to ensure the safety of model uploads, care must 

be taken to analyze all third-party models before using them. 

iii. Unsafe Plugins/Agents 

LLMs’ functionality is significantly expanded with plugins, 

allowing integrated applications to reason and solve complex 

prompts, obtain current information, and execute code. These 

plugins can be used as attack vectors by exploiting a lack of 

input/output validation, excessive privileges, and indirect 

prompt injection vulnerabilities. Such weaknesses can lead to 

data theft, remote code execution, sensitive information 

leakage, unauthorized data collection, and model poisoning.  

If your application includes plugins, ensure these 

components are scanned continuously for vulnerabilities, 

implement input/output validation with authentication and 

access control, and patch regularly. 

iv. Training Data Poisoning 

In the context of LLMs, data poisoning is a manipulation of 

a dataset used in training to introduce weaknesses into an 

LLM. Data poisoning can happen unintentionally at any stage 

of the software development lifecycle by ingesting training 

datasets from unreliable public internet sources, fine-tuning, 

or user interactions with the LLM-integrated application once 

deployed. Data can be considered poisoned if it contains PII 

or sensitive information. In 2023, Stanford researchers 

showed that a popular dataset (LAION-5B) used to train 

image generation algorithms contained images related to 

child sexual abuse material [33]. 

LLM-based applications can generate output containing 

misleading information with false or toxic content, including 

biases, discrimination, and other harmful content. In these 

cases, the model provided an answer based on the 

information it has seen within the given context. If the model 

for its training recursively consumes this inaccurate content, 

it can poison the model/data by reinforcing the problematic 

data, increasing its magnitude. This feedback loop is referred 

to as “Recursive Pollution.” This can occur unintentionally if 

a user’s input prompt generates a problematic response that is 

then consumed by the model unbeknownst to the user. 

Adversaries can execute this attack to undermine the integrity 

of the LLM model, rendering the model and LLM-integrated 

application entirely useless. To mitigate data risks, track and 

protect datasets used for model development where possible 

with version control. External training data sources and 

model cards must be tracked with a machine learning bill of 

material (ML-BOM). LLMs should not use their output to 

avoid recursive pollution unless a data sanity check is done 

before ingestion. Incorporate humans in the feedback loop to 

avoid harmful content. 
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v. Model Trustworthiness 

Datasets used for model development are too large for 

human review, may contain inaccurate, sensitive, or biased 

information, or could be poisoned or unavailable for review if 

present in a black box component, so the LLMs should be 

viewed as untrustworthy and scrutinized for use. Data are 

often encoded, filtered, and re-represented before use in 

model development using computer programs and filters 

driven by humans that can bias a model. LLMs’ 

auto-associative predictive generation and stochastic nature, 

coupled with human overreliance, may increase the problems 

in model output if the output is further used in retraining the 

model. Model bias can occur during the training and 

deployment of LLM-integrated applications [31]. A few 

main ways it occurs are through selection bias, which is due 

to lack of representation of the entire population or target 

audience in training data; contextual bias due to the LLM 

failing to understand the context of a conversation or prompt; 

and linguistic bias from an LLM favoring specific languages, 

vocabularies, or cultural references over others. 

Data used to train an LLM must be highly scrutinized at all 

stages for model development and in every interaction with 

an LLM in an LLM-integrated application to confirm it 

behaves as intended to prevent such biases. 

I. Sensitive Information Disclosure 

The dataset used for model development may include PII, 

business secrets, source code, domain-specific algorithms, 

other sensitive information, and so on by design or 

unintentionally. LLM applications can reveal this sensitive 

information via its output. Attackers can steal this data to 

clone the model for competitive advantage or reveal issues in 

the model such as sensitive data, ethical issues, and biases 

which make their way into the model due to lack of 

sanitization or knowledge and damage model reputation 

and/or LLM-integrated application. For example, Samsung 

employees used ChatGPT in three separate instances to check 

confidential source code for errors, requested code 

optimization, shared a meeting recording to convert into 

notes, and unintentionally leaked company sensitive 

information [29]. 

Protecting the LLM application’s data is critical to 

maintaining model integrity and safeguarding sensitive 

information. Developers must leverage LLM-specific 

ML-BOM or model cards for dataset management, 

guardrails, or mitigation strategies to protect the data and 

prevent data leakage in output, as described in the above 

sections. In some cases, data removal may be needed by LLM 

model unlearning if sensitive data is not prevented from 

entering the model in the first place. 

IV. APPLICATIONS 

LLM-powered applications are utilized in many industries 

and are expected to grow. Some of the typical and emerging 

applications seen today are discussed below. 

A. Customer Service 

LLM applications have pervasively improved customer 

service with chatbots and automated email responses. 

Chatbots interact with customers in natural language, address 

customer queries, and provide information for further 

assistance. LLM-enabled customer support improves 

response time, enhances customer experience, and reduces 

workload on human support teams. 

B. Education 

Most recently, LLM applications have been used to 

personalize learning and provide tailored assistance to an 

individual student’s learning style and pace. It can generate 

interactive reading content and adjust complexity to adapt to 

a student’s comprehension level.  

An application can act as a virtual tutor in answering 

students’ questions, help with problem-solving steps, and 

encourage them with positive messages.  

For example, Duolingo has features such as “Explain My 

Answer” and “Roleplay” to provide detailed explanations 

about students’ responses and engage students to practice 

real-world conversation skills with virtual characters, 

providing personalized and interactive language learning. 

C. Healthcare 

The healthcare industry collects vast amounts of structured, 

unstructured, and semi-structured data daily.  

This data comprises doctor’s notes, electronic medical 

records, diagnoses, lab results, smart gadget metrics, medical 

imaging, etc. LLM-powered clinical decision support 

systems can analyze this data to extract insights on patient 

diagnoses and treatments, discover new medicines, and 

advance medical research. 

D. Type of LLM-Based Applications 

Common types of LLM-based applications are chatbots, 

copilots, and autonomous agents. Let us briefly look at each 

of them. 

1. Chatbots primarily simulate interactive conversations with 

humans. They generate text to answer questions and support 

customers in customer service applications. 

Examples: 

▪ Domino’s Pizza uses a chatbot to help customers order 

pizza. 

▪ ChatGenius is a chatbot that enhances customer service 

with custom responses to user inquiries. 

2. Copilots are LLM applications that mainly assist humans 

in performing tasks to become more productive. These 

include writing, coding, creating ideas, identifying errors, 

and improving their work. 

Examples: 

▪ Grammarly helps users with their writing, identifying 

grammar errors and suggesting improvements with 

feedback. 

▪ GitHub Copilot helps programmers write code by 

generating code samples and assisting in debugging 

errors. 

3. Autonomous Agents are LLM applications that go beyond 

assisting in tasks and functions to engage more through 

action using interconnected, automated systems with task 

decomposition and independent decision-making. This is an 

emerging trend and an area of ongoing research [35]. 
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Examples: 

▪ GPT-Engineer builds web application software and 

enhancements from natural language specification. 

▪ ChemCrow is designed to accomplish tasks across 

organic synthesis, drug discovery, and materials design 

[32]. 

V. CONCLUSION 

LLM-integrated applications will continue growing, 

providing significant value to users and businesses. In the 

future, LLM technology will have multi-modal capabilities, 

the ability to affect the physical world, perform reasoning, 

and interact with humans, expanding its application domains 

to healthcare, law, autonomous systems, and more. New 

attack vectors are constantly being discovered with this 

fast-evolving technology, making it challenging to secure 

LLM-integrated applications against all potential attacks. 

System designers and developers responsible for developing 

LLM-integrated applications will be accountable for 

choosing the LLM foundation model and building 

applications that are properly secured. Making your 

application robust to inherent natural and malicious errors 

can improve its security. By considering the risks discussed 

in this paper and applying the mitigations recommended, 

developers can reduce the exposure to these risks. The 

complete system requires following security best practices to 

help ensure a secure deployment. 
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