
AERO-TRAIN
Summer School

DAY 3 –HUMAN-ROBOT INTERACTION



Day 
Introduction

• Welcome!! :)



Sessions
Cloud-enabled Remote Control

Presented by
o Gerasimos Damigos
o Viswa Narayanan Sankaranarayanan
o Achilleas Santi Seisa

Haptics and Teleoperation

Presented by
o Manuel Fernandez Gonzalez
o Julien Mellet



Agenda

Presentation
• Network control systems – Cloud-enabled remote 

control

Tutorial 1
• Task 1 – UAV position control
• Task 2 - Teleoperation Interface
• Task 3 – Delay compensation

Presentation
• Haptics – How to interface operator with aerial 

manipulators

Tutorial 2

Final remarks

Coffee Break

Lunch



Tutorial 1

Please follow the instructions and 
download and run the bash script 
files of the GitHub repository!

https://github.com/AERO-TRAIN/exercises_summer_school_hri_day

chmod +x run_gazebo.sh
./run_gazebo.sh

chmod +x run_controller.sh
./run_controller.sh



Cloud-enabled Remote Control



Motivation



Motivation



Architecture



Challenges

Communication Delays

Bounded Delays Unbounded Delays



Challenges

Communication Delays

Bounded Delays Unbounded Delays

Compensate delay effect 
in robot's sensor data



Overall Architecture



Controller



Position Predictor



PX4 Controller Example



Teleoperation



UDP Tunnels



Simulation



Simulation



Gazebo World Container

Navigate to the /exercises_summer_school_hri_day/tutorial directory.

./run_gazebo.sh
Launch the Gazebo world.

chmod +x run_gazebo.sh
Make the run_gazebo.sh file executable.

When the environment is 
built, the simulation shown in 

the figure appears on your 
screen.

NOTE! The Gazebo simulation is paused 
by default.



Controller Container

Navigate to the /exercises_summer_school_hri_day/tutorial directory.

chmod +x run_controller.sh
Make the run_controller.sh file executable.

./run_controller.sh
Launch the controller environment.

docker container ls

docker exec –it <container> bash

Extra controller container terminals.

cd ~/catkin_ws/src/summer_school_controller/src
For the exercise navigate to



Tutorial

The aim of this workshop is to design a basic teleoperation interface 
to navigate a quadrotor UAV to a desired position.

Aim of the tutorial

Goal of the tasks

The goal is to navigate the UAV through the three pipes to establish 
smooth contact with the target.



Task 1 – UAV Position Control

• Open the velocity_controller.py file with your preferred editor (gedit, 
nano, vim).

• Under the velocity_publisher() method in 
the VelocityController class, please insert your code to send 
velocity inputs to track the position setpoints.

• You may publish waypoints on the /setpoints_position topic to test 
the tracking performance of the controller.

Design a position controller for the UAV.



Task 1 – UAV Position Control (solution)

git checkout solutions

nano ~/catkin_ws/src/summer_school_controller/src/velocity_controller.py

Indicative solutions can be found in the solutions branch



Task 2 – Teleoperation Interface

• Please open the keyboard_teleoperation.py with your preferred 
editor (gedit, nano, vim).

• Under the on_press() method in the DroneTeleoperator class, please 
insert your code to read keyboard inputs and publish position 
setpoints.

• Test it with the velocity_controller.py to navigate the UAV to 
different positions.

Enable a Teleoperation Interface. 



Task 2 – Teleoperation Interface (solution)

git checkout solutions

nano ~/catkin_ws/src/summer_school_controller/src/keyboard_teleoperation.py

Indicative solutions can be found in the solutions branch



Enable Delays

Delete netem

Add a root qdisc

Add a class

Add a delay

Apply the netem

Change the netem

tc qdisc del dev lo root

tc qdisc add dev lo root handle 1: htb default 10

tc class add dev lo parent 1: classid 1:1 htb rate 100mbit

tc qdisc add dev lo parent 1:1 handle 10: netem delay 50ms

tc filter add dev lo protocol ip parent 1:0 prio 1 u32 
match ip protocol 17 0xff flowid 1:1

tc qdisc change dev lo parent 1:1 handle 10: netem delay 
40ms 5ms



Task 3 – Delay Compensation

• Please open the position_prediction.py with your preferred editor (gedit, nano, vim).

• Under the comment #estimate_delay comment in the PositionPredictor class, please 
insert your code to estimate the average delay from the ROS messages.

• Under the #predict_position comment in the PositionPredictor class, please insert 
your code to estimate the current position of the UAV from the available knowledge of 
the delays.

• Test it with the velocity_controller.py and keyboard_teleoperation.py to navigate the 
UAV through the pipes.

Compensate for the Communication Delays.



Task 3 – Delay Compensation (solution)

git checkout solutions

nano ~/catkin_ws/src/summer_school_controller/src/position_prediction.py

Indicative solutions can be found in the solutions branch



Available Material

Gazebo World Controller Environment



Thank you :)
Gerasimos Damigos 

gerasimos.damigos@ericsson.com

Viswa Narayanan Sankaranarayanan 
viswa.narayanan.sankaranarayanan@ltu.se

Achilleas Santi Seisa 
achilleas.seisa@ltu.se


