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Abstract—The proliferation of data generated through
everyday device usage has prompted privacy concerns
among users. In the automotive sector, this issue is
particularly acute, given the substantial volumes of data
collected in accordance with manufacturers’ privacy
policies. Privacy-Enhancing Technologies (PETs), such
as Federated Learning (FL), offer a solution by safe-
guarding the confidentiality of car data while enabling
decentralised machine learning model training, thus
preventing the need for centralised data aggregation.

These FL-based models stand to benefit significantly
from the diverse data distributions inherent in training
across various features extracted from different cars.
However, it remains imperative to ensure user awareness
regarding their data processing, despite FL’s privacy-
preserving mechanisms.

To address this, we propose a User-Empowered FL
approach, built upon the Flower Framework, empower-
ing users to decide their participation in model training
or merely inference without impacting the global model.
We demonstrate this approach through an automotive
case study utilising the EngineFaultDB dataset.

Finally, we outline future directions, particularly
focusing on handling unlabelled data through self-
supervised learning methodologies.

Index Terms—Federated Learning, Privacy, Automotive,
Privacy-Enhancing Technologies

1. Introduction

While data collection offers undeniable benefits
for improving user experiences, it also fuels valid
privacy concerns due to the vast amounts of data
aggregated [1]], [2]. Regulations such as the General
Data Protection Regulation (GDPR) attempt to build
a balance, but the complexity of privacy policies
often undermines true informed consent. This issue
persists across domains, including smart homes, web
and mobile applications, and the automotive sector.
For example, in cars, location data from GPS sensors
and app usage habits can reveal sensitive informa-
tion about a driver’s lifestyle, whereabouts, or worse,
where they reside [3]].

Fortunately, Privacy Enhancing Technologies
(PETs) [4]], [S5] come in aid, providing valuable tools
to protect users’ data in terms of both anonymity and

confidentiality. Anonymity ensures that data cannot
be linked to its respective owner, while confidentiality
refers to the ability to obfuscate the information itself.
In the automotive context, PETs can be employed to
obfuscate sensitive data, apply anonymisation tech-
niques to protect user identities or utilise Federated
Learning (FL) to train predictive models without di-
rectly sharing raw data.

FL enables the training of a machine learning
model distributed across multiple devices, without
the need to aggregate data. This way, sensitive data
remains on user devices, preserving their privacy.
FL is particularly appealing in the automotive field,
where vast amounts of data are generated by vehicle
sensors [6]. However, the implementation of FL often
raises questions about genuine user consent.

In many cases, FL occurs in the background,
and users might not be explicitly aware of their
participation in the training process. For example,
while Google Assistant does allow users to opt in to
contribute their audio recordings for traditional model
improvement, the underlying FL process, which lever-
ages on-device data for model updates, cannot be
completely disabled [7], [8].

Our contribution focuses on this very aspect,
proposing a baseline for obtaining explicit consent
and raising awareness about local model training in
the automotive domain. We believe that users should
be actively empowered in deciding whether their data
is used for FL and should be continuously informed
and aware of the ongoing process.

As a case study, we demonstrate the feasibility
of our approach using a neural network designed to
work with the EngineFaultDB 9] dataset. This dataset
contains 14 features relevant to predicting and clas-
sifying potential engine faults, which usually require
manual intervention from a mechanic using diagnostic
instrumentation. Our neural network assists both the
driver and the mechanic in identifying the cause of
the fault, thereby speeding up the repair process.

We trained the network in an FL setting using the
Flower framework [|10] and ported it to the Android
Automotive platform. This allows us to showcase
how our consent and awareness mechanisms can be
integrated into a real-world automotive application,
ensuring that users have control over their data while
contributing to the improvement of the model.



The EngineFaultDB dataset provides a realistic
scenario for testing the effectiveness of our approach.
By using a neural network that operates on these data,
we can assess the impact of FL. on the model’s per-
formance while respecting user privacy. The Flower
framework simplifies the implementation of FL on
Android Automotive, making it easier to deploy and
test our solution in a practical setting.

The paper is structured as follows: Section [2] pro-
vides a comprehensive introduction to FL, exploring
existing approaches in the mobile and automotive
sectors. Section [3] delves into the details of our pro-
posed approach for user-empowered FL, emphasising
explicit consent and awareness mechanisms. In Sec-
tion @ we evaluate our approach through a case study
on engine fault prediction, demonstrating its practical
application. Section [5] analyses the results obtained
and explores potential improvements. Finally, Sec-
tion [6] summarises our findings and outlines future
research directions.

2. Background

Privacy concerns undermine the trust of end-users
against technological innovations in the automotive
sector, a fact supported by studies such as those
highlighting cars as receptacles of personal data, often
traded by manufacturers [11]. Consequently, PETs
must be employed not only to protect drivers’ per-
sonal data but also to ensure compliance with increas-
ingly stringent regulations such as GDPR.

An attempt to empower users regarding their data
in the automotive domain consists of PRICON [12].
PRICON functions as a “privacy firewall”, manag-
ing data flow between the car and online services.
Through its interface, users can customise privacy
settings, control data sharing between services, and
select from predefined privacy profiles. It balances
service functionality and the desired privacy level,
necessitating user awareness of this trade-off.

2.1. Federated Learning

Federated Learning is a distributed machine learn-
ing paradigm that enables multiple clients (e.g.,
smartphones and vehicles) to collaboratively train
a shared model without exchanging their raw data.
Instead of sending data to a central server, each client
trains a local model on its own data and then shares
model updates (e.g., gradients) with the server. The
server aggregates these updates to improve the global
model, which is then sent back to the clients for
further local training [13]], [14].

FL can be categorised based on the distribution
of data across clients [15]:

e Horizontal Federated Learning (HFL): Also
known as sample-based FL, HFL is applicable
when clients have similar feature spaces but
different data samples. For example, different
hospitals collaborate to train a disease predic-
tion model, where each hospital holds data

for different patients but with the same set of
medical features.

o Vertical Federated Learning (VFL): Also
known as feature-based FL, VFL is suitable
when clients share data samples but have dif-
ferent feature spaces. For example, a bank and
an e-commerce company collaborate to build
a customer behaviour model, where they share
the same customers but have different data
about them (financial vs. purchase history).

e Federated Transfer Learning (FTL): FTL
combines transfer learning with FL. Clients
start with a pre-trained global model and adapt
it to their local data. This approach is useful
when data is limited or when clients have
similar tasks but different data distributions.

Federated Learning, while designed with privacy
in mind, is not immune to attacks. Notably, it re-
mains susceptible to inference attacks, where adver-
saries can glean information about the underlying
training data from model updates [16]. Additionally,
model poisoning poses a significant threat [17], as
even a single malicious agent can manipulate the
global model to misclassify specific inputs with high
confidence. While various countermeasures exist to
address these vulnerabilities, this work focuses ex-
clusively on fundamental FL techniques and does not
delve into attacks and their corresponding defences.

2.2. FL in Mobile Devices

Infotainment systems in modern vehicles are in-
creasingly based on mobile devices, particularly those
running the Android operating system [18]. These
systems typically feature touch screens and offer
functionalities similar to those found in smartphones.
Users can make phone calls, navigate using GPS,
listen to music, and more. By leveraging the familiar
Android platform, these systems provide a seamless
and intuitive user experience, integrating the con-
venience and versatility of mobile devices into the
automotive environment.

Notable examples of FL in the mobile domain
focus mainly on Image Processing [[19], [20] which
protects the confidentiality of users’ pictures. Other
applications of FL include next-word prediction [21]]
or emoji prediction [22]] in a smartphone keyboard.
Both the use cases allow the user not to share their
conversation in a centralised dataset. Another ex-
ample includes wake-word detection [23] such as
the “Hey Google” [24]] on Google Assistant, which
preserves the confidentiality of the user’s voice.

2.3. FL in Automotive

FL in automotive is predominantly used for au-
tonomous driving purposes [25]], [26[], [27]. This en-
ables the training of autonomous driving agents with-
out using driving style data from users, as collection
of these data can potentially breach their privacy [28].

Chellapandi et al. [29]] explored a large number
of applications for FL in the automotive environment,



splitting it into eight categories including safety-
related applications such as collision avoidance [30]]
or traffic sign recognition [31]],

Lastly, FL has also been used to predict faults in
electric vehicles in a study related to the one proposed
in this paper [32]]. The main differences between this
work and ours are:

e The two works use different FL frameworks
and different network structures;

e Our source code is publicly available online;

o Users of our solution can choose to not opt-in
in the federated training process.

3. Our Approach: User-Empowered FL

The proposed approach contributes to user em-
powerment. In fact, the user is, first of all, informed
about the use of their data for training the model.
Additionally, the user is also empowered, because
they can decide whether to train the model or not.

As a demonstration, we developed an Android
Automotive application that manages both the train-
ing of the model in a federated manner and per-
forming inferences without training, depending on the
user’s explicit consent. The app is based on the Tab
Template and has been designed by following the
Google UX Guidelines and design requirements for
usability in cars [33]].

At the core of our approach lies an explicit con-
sent mechanism. Upon launching the application for
the first time, users are presented with a clear and
concise explanation of FL, its potential benefits, and
the types of data involved in the training process.

They are then asked to provide explicit consent
for their device to participate in FL. It is important
to note that this consent is not assumed by default,
hence, it must be actively granted by the user.

To ensure ongoing awareness, we employ a noti-
fication that becomes visible while the model is being
trained locally on the user’s device. This serves as a
constant reminder that FL is in progress and provides
a link to the application settings, where users can
review and modify their consent preferences.

The Android app acts as the central control point
for model management. When the app is started, it
initiates the FL process to download the global model.
During the usage, if the user has granted consent,
the app trains the model locally on the user’s data
and uploads the model updates. Figure [I] represents
a scenario involving three cars, where the drivers of
the green cars granted consent to training, while the
driver of the red car did not.

If the user does not provide consent, the service
simply uses the global model for inference without
performing any local training.

4. Case Study: Engine Fault Prediction

As a proof-of-concept of our approach, we defined
a scenario based on a dataset provided by Vergara
et al. |9], EngineFaultDB. EngineFaultDB contains
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Figure 1. Representation of Federated Learning

TABLE 1. FAULT TYPES

ID “ Type “ Description

0 No-Fault Normal engine operation

1 Rich Mixture Excess fuel in the air-fuel mixture

2 Lean Mixture Insufficient fuel in the air-fuel mixture

3 Low Voltage Insufficient voltage in the electrical system

over 50.000 entries consisting of 14 features. Each
entry is labelled in one of the 4 categories, each one
referring to a specific engine fault, except the first one
that represents normal engine conditions as shown in
table [II This dataset has been used to train a feed-
forward neural network, provided by Vergara er al.,
which is based on [34], depicted in Figure @

In particular, we split up the dataset equally be-
tween three clients all running in an Android Au-
tomotive app. We assumed that two users expressed
consent in their respective apps, while the third client
did not express their consent to train the model as
shown in Figure [3] Then, we trained the model the
model for 10 epochs with batches of size 16. After
training with the first two users, we verified that the

Figure 2. The Neural Network trained
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third user could still use the global model without
participating in the training as shown in Figure @] Fur-
ther optimization of functions and parameters, such
as exploring different numbers of epochs or batch
sizes, may yield improved results and is identified
as a potential avenue for future research.

Table 2] details the feature space, providing Unit
of Measure (UoM) and brief descriptions. Although
this information was partially available in the Engine-
FaultDB paper [9], we were able to verify that:

o Features listed with the green checkmark (v")
can be obtained through the Android Auto-
motive APIs. We obtained this information by
analysing the related documentation [35];

o Features listed with the orange checkmark (v")
can be retrieved via the OBD-II interface. We
obtained this information by analysing dif-
ferent user manuals available for OBD-II car
scanners. Another possibility is to implement
the gathering of said features as custom prop-
erties on Android Automotive. However, the
possibility of gathering these data ultimately
depends on the car (i.e., the car must be
equipped with appropriate sensors).

o Features listed with the red cross (x) require
additional instrumentation for collection.

Given the above, this test case focusing on user
privacy and awareness in the automotive domain,
demonstrates the feasibility of this approach in a sim-
ulated environment, even when not all users consent
to use their data for the training.

5. Discussion and Future Directions

By combining explicit consent with persistent
awareness, our approach empowers users to make
informed decisions about their participation in FL.
Users have full control over whether their data is
used for training and are continuously reminded of
the ongoing FL process. This transparency fosters
trust and ensures that FL is conducted in a privacy-
respecting manner.

Our proposed approach is designed to be flex-
ible and adaptable to different FL scenarios. The
consent mechanism and notification content can be
easily customised to match the specific application
and model involved. The Android Automotive archi-
tecture can also be extended to incorporate additional
features, such as providing users with insights into
the model’s performance or allowing them to control
the frequency of FL updates.

5.1. Limitations

The proof-of-concept of our approach has a few
limitations, which we hereby list:

1) This specific experiment with Federate
Learning cannot be replicated exactly in real-
world conditions. This is because certain fea-
tures in the EngineFaultDB dataset are de-
rived from specialised equipment not found
in standard vehicles.

2) In many real-world scenarios, obtaining ac-
curate labels for data is often hard or im-
possible. Labelling of data similar to the
ones found in EngineFaultDB is challenging
because when a fault occurs, a generic engine
light illuminates on the car dashboard. Di-
agnostic data provides a brand-specific error
code not directly linked to the fault, neces-
sitating manual intervention. Consequently,
cars cannot automatically label new data, a
problem known as unlabelled data [|36]], [|37]].
This remains an important area for future
exploration in Federated Learning.

3) Finally, the current dataset is built on data
gathered from a single engine, while in real-
world scenarios there are many different
types of engines. This is a limitation that
our proof-of-concept inherits from the En-
gineFaultDB, and datasets developed in the
future might solve this problem.

5.2. Future Directions

Given our proof-of-concept approach and its lim-
itations, which were described in the previous sub-
section, we hereby list some possible directions for
future research endeavours.

1) Future work will investigate the feasibility
of designing a network capable of inferring
fault types using only sensors found in stan-
dard vehicles.



TABLE 2. FEATURES

Feature H UoM H Description H How to get
Engine Speed RPM Rotations per minute of the engine
Consumption per hour 1/h Fuel consumption rate per hour
Consumption per 100km 1/100km Fuel consumption rate on 100km
Speed km/h Travel speed of the car
Power kW Power produced by the engine
Manifold Absolute Pressure kPA Pressure within the intake manifold
Force N Torque of the engine
Lambda ER The air-fuel equivalence ratio.
Air-Fuel Ratio AFR Ratio of air to fuel in the combustion chambers
Throttle Position Sensor % Provides information about the angle of the throttle
Carbon monoxide % CO concentration in the exhaust X
Hydrocarbons ppm Concentration of unburnt hydrocarbons in the exhaust X
Carbon dioxide % CO2 concentration in the exhaust X
Oxygen % Oxygen amount in the exhaust X

2) Future work will investigate incorporating
techniques such as self-supervised learning
to address this challenge.

3) Future work could extend the feature space
to include more variables, such as engine
specifications or type of fuel, to develop a
more general model. Such a model could be
trained in a decentralised manner using FL.

6. Conclusion

In this paper, we presented a novel approach to FL
in the automotive domain, emphasising user privacy
and awareness. By integrating explicit user consent
and notifications, our approach empowers individuals
to actively participate in the FL process while main-
taining control over their data.

The flexible design, based on the Flower frame-
work, of our ongoing approach allows for customi-
sation to various FL scenarios. Upon its open-source
releaseP_-] the approach can be further developed and
improved with additional features, such as training
another model.

While our current work focuses on privacy and
user control, the challenge of unlabelled data in FL
remains an important area for future investigation.
Future research will explore the integration of self-
supervised learning and other techniques to leverage
unlabelled data effectively within the FL framework.

The contributions of this work lay a foundation
for more transparent and user-centric FL systems in
the automotive industry, with potential applications
extending to other domains where privacy and data
ownership are paramount. By fostering trust and col-
laboration between users and machine learning mod-
els, we pave the way for developing more accurate,
robust, and ethically sound Al solutions.

1. |https://github.com/marcellomaugeri/User-Empowered-
Federated-Learning-in- Automotive
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