
 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

1 / 24

FAIRICUBE –
F.A.I.R. INFORMATION CUBES

WP5 Ingest

D5.2 Description of the datacube ingestion pipelines

Deliverable Lead: Constructor (formerly: Jacobs) University

Deliverable due date: 30/06/2024

Version: 2.9

05/08/2024

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

2 / 24

Document Control Page

Document Control Page

Title D5.2 Description of the datacube ingestion pipelines

Creator CU (Constructor – formerly: Jacobs - University)

Description This Deliverable describes how new data sets can be incorporated into the
FAIRiCUBE Hub.

Publisher “FAIRiCUBE – F.A.I.R. information cubes” Consortium

Contributors EOX, EPSIT, S4E

Date of delivery 2024-06-30

Type Text

Language EN-GB

Rights Copyright: authors

Audience ☒ Public

☐ Confidential

☐ Classified

Status ☐ In Progress

☐ For Review

☒ For Approval

☐ Approved

Revision History

Version Date Modified by Comments

0.0 01-02-2023 Peter Baumann, JUB created

0.1 20-02-2023 Peter Baumann, JUB updated

0.2 25-02-2023 Peter Baumann, JUB updated

0.3 26-02-2023 Stephan Meißl, EOX Re-adding lost content

0.4 27-02-2023 Peter Baumann, JUB updated

0.5 01-03-2023 Jaume Targa Review

1.0 11-03-2023 Kathi Schleidt Finalized, final version for sub-
mission

2.1 08-11-2023 Mohit Basak, Peter Baumann Updated

2.2 15-11-2023 Mohit Basak, Peter Baumann Updated, and resolved all

comments

2.3 17-11-2023 Schiller Christian updated Data Ingestion Request
Chapter 3 and Chapter 5.1

2.4 21-11-2023 Stefan Jetschny Review and check of formatting

2.5 20-12-2023 Peter Baumann Final formatting, comment

resolution

 Jaume Targa Review

2.6 12-01-2024 Peter Baumann Incorporated review comments

2.7 16-01-2024 Jaume Targa Final review

2.8 25-05-2024 Peter Baumann,
Christian Schiller

Update following reviewer
request

2.9 25-06-2024 Kathi Schleidt, Stefan

Jetschny

Internal review, fixed some

typos, added comments, format

checking

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

3 / 24

Disclaimer

This document is issued within the frame and for the purpose of the FAIRICUBE project. This project

has received funding from the Horizon Europe research and innovation programme under grant agree-
ment No. 101059238. The opinions expressed and arguments employed herein do not necessarily reflect

the official views of the European Commission.

This document and its content are the property of the FAIRICUBE Consortium. All rights relevant to this

document are determined by the applicable laws. Access to this document does not grant any right or
license on the document or its contents. This document or its contents are not to be used or treated in

any manner inconsistent with the rights or interests of the FAIRICUBE Consortium or the Partners’

detriment and are not to be disclosed externally without prior written consent from the FAIRICUBE
Partners. Each FAIRICUBE Partner may use this document in conformity with the FAIRICUBE Consortium

Grant Agreement provisions.

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

4 / 24

Table of Contents

Document Control Page ... 2
Disclaimer ... 3
Table of Contents .. 4
List of Figures ... 5
1 Introduction .. 6
2 Ingestion Pipeline Requirements ... 6
3 Data Request & Ingestion Procedure .. 7

3.1 General Ingestion Procedure ... 7
3.2 Geo Data Types ...11

4 rasdaman Ingestion Pipeline ..12
4.1 Service Overview ...12
4.2 General Documentation and Support...12
4.3 Data Ingest Logistics ...13
4.4 Datacubes Currently Available ..13
4.5 Datacube Ingestion: Technical Details ...14
4.6 Problems Encountered ...15

4.6.1 Data Problems ...15
4.6.2 Conceptual Problems ..17

4.6.2.1 Temporal Semantics ...17

4.6.2.2 Multiple Datacube Views ...18

4.6.2.3 Datacube Catalog ...18

5 EOX Ingestion Pipeline ..20
5.1 Data Ingest Logistics ...20
5.2 Datacubes Currently Available ..22

6 Summary ...23

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

5 / 24

List of Figures

Figure 1: FAIRiCUBE Platform Architecture - Datasets & Models _______________________________ 6

Figure 2: Data Inventory Sheet (vertically: dataset candidates, horizontally: metadata required) – note

that the bottom-right cell has address BY64 ___ 8

Figure 3: Data Ingestion Request Procedure __ 9

Figure 4: Data Ingestion Request Web GUI – Landing page _________________________________ 10

Figure 5: Data Ingestion Request Web GUI – First part of the data entry form __________________ 11

Figure 6: Footprints of rasdaman datacubes on the FAIRiCUBE server., including federated datasets 14

Figure 7: Sentinel-1 scene delivered by ESA with different processing parameters applied _________ 17

Figure 8: rasdaman catalog, integrated with dashboard ____________________________________ 19

Table 1: rasdaman resources __ 13

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

6 / 24

1 Introduction

The FAIRiCUBE integrated datacube platform consists of the two independent pillars EOxHub and

Rasdaman, provided under the lead of partners EOX and CU, respectively. Figure 1 shows the general

architecture (see Deliverable D4.1 for details on it) of the FAIRiCUBE platform.

Before any data resources can be utilised, these must run through the ingestion process. This will differ

depending on the nature of the original data. Some data sources will be provided read-only and as-is
(such as the multi-Petabyte rasdaman Sentinel datacubes or the resources made available via Sentinel

Hub) whereas FAIRiCUBE-specific data will be ingested into rasdaman datacubes or EOX store,
respectively. In addition, all datasets available at CoperniCUBE (https://copernicube.eu) and the Euro

Data Cube (EDC) platform (https://collections.eurodatacube.com/) are available also to FAIRiCUBE

users. This also includes the EDC Sentinel Hub Batch Processing API for asynchronous mass processing.

This Deliverable describes both the rasdaman ingestion pipeline as provided by CU (Section 4) and the

EOX equivalent (Section 5).

Figure 1: FAIRiCUBE Platform Architecture - Datasets & Models

2 Ingestion Pipeline Requirements

To perform the ingestion of data, the following elements are required:

• Raster and non-raster data. Focus on this initial phase has been on the “Big Data” parts,

that is: gridded data. Non-gridded sources like vector data will be considered in the next project
phase, driven by Use Case partners' requirements and joint prioritization.

https://copernicube.eu/
https://collections.eurodatacube.com/

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

7 / 24

• Metadata play an important role. In the project, WP5 ingests “the pixels” whereas WP4
administrates the metadata. Therefore, ingestion normally involves two steps, data and

metadata ingestion, whereby these parallel resources maintain tight links between them.

• Access control is an important facet – not all data are open, and some data owners impose
particular regulations on the use of their data. Therefore, individual, fine-grain access control

needs to be established. In this initial stage where access is restricted to the consortium, such

access control is not yet in place, it will be addressed as a next step once a comprehensive
project data access governance has been set up. For example, currently, partners get access

to the rasdaman datacubes provided by FAIRiCUBE partner CU, but not external entities.

• Defined ingestion process. The process of suggesting, selecting, ingesting, and
communicating the availability of data needs to be well-defined and easy to follow, both for

regular users as well as for non-experts. An additional challenge is the fact that two quite

different datacube services have been included in the project, rasdaman and EOxHub, both
offering EO (Earth Observation) data. One ingestion request procedure has been defined for

both rasdaman and EOX, as the nature of the data to be ingested is the same in both cases.
On a technical level, as rasdaman and EOX rely on two very different and independently

developed software stacks, details vary.

3 Data Request & Ingestion Procedure

In this section, the high-level ingestion process is documented emphasizing the user perspective. While
it has been clear from the onset that the goal will be an ingestion process as automatic as possible

within FAIRiCUBE, it also became apparent that the Use Cases will need to commence work on specifying
required data before this ingestion process has been finalized. In the following the agreed procedures

are described for data (WP5). Note that metadata are handled in WP4, therefore see Deliverable D4.3

for resource meta data ingestion and codelist change requests.

3.1 General Ingestion Procedure

The data ingestion process is as follows, identical for both rasdaman and EOX pillars. If some additional

dataset is requested by a Use Case then a new record is generated on
https://github.com/FAIRiCUBE/data-requests via a new GitHub issue. This has been made more

convenient through https://data-request.fairicube.eu based on a Web GUI with a form where the
requester can provide the necessary information. From this information, internally a machine-readable

request is generated initiating the process. Technically, the Web Gui is a frontend to a GitHub repo;

from the form submission, a GitHub Pull Request is issued as a new branch which the user is
automatically watching and thus receiving notifications of updates depending on their GitHub

notifications configuration. Any progress, problems, discussions, etc. shall be documented in a GitHub
issue associated with the respective Pull Request so that everybody interested can follow the progress

and provide additional feedback or information as necessary.

This is the final approach adopted. Historically, an initial proposal of a Datacube Management Plan was
abandoned because it relied on text documents which left too much of a degree of freedom for filling

in. Instead, the WP2 coordination decided for an “inventory” Excel table for collecting information on
the requested data sets as an initial stop-gap until tool support would become available. This allowed

for discussions on data requirements within the project team while also detecting overlapping data
needs across Use Cases (reported in deliverable D2.1). This was understood as an interim solution until

a more convenient, but also more controlled data request generation would become available (the

abovementioned GitHub Web GUI).

The Inventory Sheet required some minimum specification of the data to enable WP5 locating and

ingesting them. In order to keep the Use Case effort low, WP5 kept this tentatively minimal. However,
at some time catalog information and other potentially useful information was required, ultimately

growing the Inventory Sheet to about 75 items to be entered by Use Cases before an entry should be
accepted for ingestion. In fact, this never happened – at the Fall 2023 project meeting the WP5 lead

https://github.com/FAIRiCUBE/data-requests
https://data-request.fairicube.eu/

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

8 / 24

conducted a straw vote among Use Case partners which revealed that most were willing to provide

about 20 entries, few up to 40 entries, and nobody beyond. Please note that other similar projects with

comparable systems are said to foresee up to 400 individual metadata concepts, 150 of these
mandatory; it remains open, though, how these will be added manually each time. Notably, the straw

vote mentioned was purely based on the number of metadata entries, not the concepts; the scope of

required metadata concepts has remained unchanged.

Therefore, at some time WP5 started ingestion even when dataset request entries were incomplete.
Further, Inventory Sheet v2 was declared frozen in its metadata requirements to achieve a stable basis

for continuation. Figure 2 gives a visual impression of the size of the sheet.

Ultimately, entries (rows) in the Inventory Sheet were replaced by GitHub issues with fixed forms for

the metadata entries, eventually made more user friendly with Web forms. Hence, today the Inventory

Sheet is deprecated and not used any longer.

Figure 2: Data Inventory Sheet (vertically: dataset candidates, horizontally: metadata required)

– note that the bottom-right cell has address BY64

The schematic procedure for a data request is shown in Figure 3.

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

9 / 24

Figure 3: Data Ingestion Request Procedure

Once all metadata and data requirements are fulfilled, confirmed, and validated by the data requester,

the ingestion handling partners will perform the merge and the request will be closed. Any discussion

remains available.

Figure 4 shows the landing page of the WebGUI which can also be used to create new or update existing

datasets. In Figure 4 a sample list of available datasets is shown, each with an Edit Button associated.
Additionally, a Link Button is provided which directly links to the pull request in the respective GitHub

repository, which also provides access to the *json files and allows reviewing any changes.

When a user enters a name in the Search field and presses the Add button on the Landing page, then

the data entry form will be displayed (Figure 5), allowing the user to create a new record. If a user
chooses an already existing dataset and uses the Edit button the same entry form will be shown with

the values available already filled in.

When the merge is done the newly submitted data is available in the STAC Browser deployed at

https://catalog.fairicube.eu. The STAC Browser provides additional features like searching, which are

not available in the static STAC catalog. Sample screenshots of the STAC Browser are provided in Section

5.1.

https://catalog.fairicube.eu/

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

10 / 24

Figure 4: Data Ingestion Request Web GUI – Landing page

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

11 / 24

Figure 5: Data Ingestion Request Web GUI – First part of the data entry form

3.2 Geo Data Types

In FAIRiCUBE, three types of data are considered (aside from the metadata feeding the catalog, see

WP4): gridded (i.e., raster) data, vector data, and point clouds. Potentially relevant information exists

in all of these categories. A basic decision of the project is to map all such data to rasters, requiring a
transformation of point clouds and vectors prior to ingestion, together with a decision on the desired

target resolution. In some cases, the transformation can easily be done at ingestion time by adding
some tool like GDAL into the pipeline. Figure 6 shows a schematic overview emphasizing the data flow

perspective.

Rasterized vector layers have the nice property that they compress well, shrinking volume to a few

percent of a comparable raster image with same resolution.

Point clouds get aligned to a grid by “snapping” points to the grid, which has to have a suitable

resolution. In practice, this does not cause significant relocation errors as point cloud sources like LIDAR

and SAR use sensor arrays which deliver relatively regular data point sets already. This task often is
accomplished already with prefabricated products, for example with DTMs, so it is expected that in

many cases gridded versions are readily available for download and ingestion.

As FAIRiCUBE partners do not work with point clouds, additional methods for aggregating point data to

GeoDataCubes is required. An example of such datasets are the species Occurrence Cubes being created
jointly with the B-Cubed project and their partner GBIF. As this exciting new biodiversity format requires

integration of additional metrics when generating Occurrence Cubes, the existing modalities foreseen

for LIDAR and SAR data do not apply. Custom generation routines are being implemented by the UC

partners.

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

12 / 24

Figure 6: Schematic data flow from ingestion to use (possibly storing derivatives again)

4 rasdaman Ingestion Pipeline

4.1 Service Overview

Technically, the rasdaman deployment is split into two VMs (Virtual Machines), both allocated in the EU:

• one VM offers several Petabytes of data from ds.earthserver.xyz; this VM is for read access via

federation from the FAIRiCUBE VM (see below) only.

• one VM contains the FAIRiCUBE playground where partners have logins to perform any action

desired using WMS, WMTS, WCS, and WCPS (several partners additionally have operating
systems login to this machine for experimental purposes).

These two VMs have been set up so that the data from ds.earthserver.xyz (where build-up and
maintenance of datacubes typically are expensive) cannot be compromised by FAIRiCUBE experiments.

This VM is federated with the FAIRiCUBE VM to provide read-only access to institutional users of data.

4.2 General Documentation and Support

The complete rasdaman documentation, containing, in particular, the ingest documentation, is available

online, plus a series of tutorials with interactive sandboxes, YouTube videos on this channel, etc. All

these are documented in the FAIRiCUBE rasdaman notebook in the project workspace, accessible to the
partners, as well as provided below in Table 1. Furthermore, on-demand tutorials and continuous

support are provided by JUB. An integration of respective links from the FAIRiCUBE Knowledge Base

will ensure user-friendly access to these resources.

Resource Link

FAIRiCUBE datacube

documentation for rasdaman

https://github.com/FAIRiCUBE/data-requests (preliminary location, containing

ingestion and more information in a simple-to-update wiki, in future to be

integrated into KB as central documentation turnpike)

rasdaman documentation https://doc.rasdaman.org/

Ingest documentation https://doc.rasdaman.org/05_geo-services-guide.html#data-import

Tutorials https://earthserver.eu/wcs

Sandbox https://standards.rasdaman.com/

https://github.com/FAIRiCUBE/data-requests
https://doc.rasdaman.org/
https://doc.rasdaman.org/05_geo-services-guide.html#data-import
https://earthserver.eu/wcs
https://standards.rasdaman.com/

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

13 / 24

YouTube videos https://www.youtube.com/@PeterBaumannRasdaman/featured

Table 1: rasdaman resources

4.3 Data Ingest Logistics

The rasdaman team, as part of its user support, performs ingestion for the Use Case partners based on

their requests. In parallel, work is going on to automate ingestion from GitHub issues, earlier through a

GitHub form and since recently through a Web GUI on top of GitHub.

Any potentially open issues get resolved in direct discussion between data requesters and the support

team. Likewise, after completion of the ingestion, a joint inspection takes place for data validation.

Finally, the GitHub issue is closed. In brief, the workflow is:

• Use case partners create a data-request indicating key parameters, such as source/origin of

data, etc. through the WebGUI as specified in chapter 3.1;

• Rasdaman’s team validates and asks back (via Pull Request communication) where necessary
until enough information is provided for creating the datacube;

• The ingest process is created and executed;

• After ingestion, the rasdaman team performs an internal quality control;

• Finally, the datacube is then validated by the use case partners, typically in a virtual meeting.

In addition, those FAIRiCUBE use case partners who are interested in performing ingestion themselves
can add their own datacubes directly using the automated ETL ingestion suite of rasdaman, which is

based on the OGC WCS-T standard.

4.4 Datacubes Currently Available

Following the procedure described, a number of datacubes have established based on the respective

Use Case requests, communicated via the data inventory sheet in combination with GitHub requests.

Most of the datacubes resemble timeseries, with a temporal resolution between a few days and several

years.

The authoritative list of datacubes is provided with Deliverable D5.1 (List of Datacube Resources Made
Available). For the reader’s convenience, here is a snapshot of the datacubes available at the time of

submission of this deliverable:

• Dominant Leaf Type

• European Settlement Map

• Grassland Status

• Forest Type

• Imperviousness

• Tree Cover Density

• Water and wetness

• LGN

• Near Surface Air Temperature

• Corine land cover

https://www.youtube.com/@PeterBaumannRasdaman/featured

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

14 / 24

Figure 6: Footprints of rasdaman datacubes on the FAIRiCUBE server., including federated datasets

In addition, about 220 Copernicus datacubes (Sentinels, C3S, CLMS, etc.) are available via the

EarthServer federation, including (but not limited to):

• Sentinel-1 GRDH (polarisations DV-VV and DV-VH)

• Sentinel-2 L2A (including derived products, like TCI)

• Sentinel-3 OLCI (all products L2)

• Sentinel-5p (all products, L2)

To ensure early availability in several datacubes, only an initial set of layers had been imported while

some discussions on the interpretation of the timestamps were still going on (some metadata, such as
multi-annual data from EEA, were not always unambiguously clear). The goal was to give the Use Case

partners an early opportunity to test their algorithms. In the meantime, this discussion has converged,

and a clear concept has been found (cf. Temporal Semantics).

4.5 Datacube Ingestion: Technical Details

Creation and maintenance of datacubes in rasdaman are mostly automated. A single short configuration

file per datacube regulates the complete process, from input file origin over intermediate processing
steps up to placing incoming pixels into the right space and time position in the cube. Also, image

pyramids are created and maintained automatically.

Internally, data ingest relies on the OGC WCS-T standard. However, as this is very low-level and

operates on single files, an intelligent ETL (Extract, Transform, Load) suite has been built on top of

WCS-T in rasdaman which automates most of the tasks. The definition of each datacube is governed
by a recipe (such as for Sentinel-1 radar, Sentinel-2 optical, regular vs irregular grids, etc.), which is

configured by the provision of an ingredient file crafted specifically for the import task. Ingredients

include required information like:

• the input data directory;

• metadata not available in the input files (whereby common situations, such as TIFF / TFW file

pairs, are detected automatically);

• whether WMS support is requested (in which case rasdaman builds and maintains pyramids
automatically); and

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

15 / 24

• whether data import should be done by copying into the database (“ingest”) or just registering
the input files for further query processing directly on these files (“in-situ”).

Also, “virtual datacubes” can be built from existing, even heterogeneous datacubes, such as the

integration of Sentinel-2 data in different UTM zone grid tiles into a single Sentinel-2 datacube.

This ETL suite detects common situations automatically and is additionally highly configurable for all

sorts of data import situations, including customized pre-processing of input data as necessary. Simple
pre-processing steps can be captured in the resource metadata associated to the ingested data set;

more comprehensive pre-processing will be documented as a comment to the data request form. This

way, the import action can be fully automated once a datacube has been defined.

The initial data requirements in FAIRiCUBE are covered by the existing predefined recipe selection but
the definition of custom recipes is also quite straightforward. A sample ingredient file for a Sentinel-2

timeseries is shown in the paragraph below. Notice the “automated” parameter set to “true” for

continuous ingestion of incoming data (see next sections for details).

{
"config": {

"service_url": "http://localhost:8080/rasdaman/ows",
"automated": true

},

"input": {
"coverage_id": "S2_${crsCode} ${resolution} ${level}",

"paths": ["S2*.zip"],
"resolutions": ["10m", "20m", "60m", "TCI"],

"levels": ["L1C", "LA"],

"crss": ["32757"]
},

"recipe": {
"name": "sentinel2",

"options": {
"coverage": {

"metadata": {

"type": "xml",

"global": { "Title":"Sentinel-2 data served by rasdaman""

}
}

},

"tiling": "ALIGNED [0:0, 0:1999, 0:1999] TILE SIZE 32000000",
"wms_import": true

}
}

The FAIRiCUBE Catalog contains a link to the datacubes provided that way. Conversely, each datacube

will contain a metadata element with a link to the corresponding STAC entry. This way, a mutual linkage

is provided. Establishing this mutual linking will be done automatically via an API call provided by the

catalog developers.

4.6 Problems Encountered

4.6.1 Data Problems

Problems encountered with the data include:

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

16 / 24

• Sometimes a link provided leads only to metadata, but these do not contain data links; this
requires extra search to spot where and how data can be downloaded.

Solution: remains manual work.

• Information supplied for the datasets requested was not always sufficient for datacube creation,
and the request forms practically never get filled in completely. Own investigation mostly helped,

but not always. In any case, this caused significant extra effort.

Solution: it proved helpful to have a data kickoff and a data handover meeting where concrete

information can be exchanged. Altogether, this remains extra work for WP5.

• Some data require a signed compliance statement, to be provided by the Use Case partner
requesting the data.

Solution: remains manual work.

• Issues with varying data quality in dataset series; for example, some Copernicus data sets
change spatial resolution over time making the timeseries inhomogeneous; further, due to

evolution of the sen2cor tool used by ESA, with processing parameters changing, some

characteristics can change which are known, e.g., to affect the accuracy of previously trained
models.

Solution: The solution chosen was a 2-stage approach: first, for each resolution occurring all
data have been put into a single datacube each so that each such datacube contains a

homogeneous resolution. Now users can choose to access the convenient virtual datacube which

performs automatic resolution adjustment or - if interpolation is a concern - to access the exact,
non-interpolated sub-datacube containing the region of interest; where resolution has been

enhanced it has been done using the nearest-neighbour method. On top of that, a common

virtual datacube was built containing all these datacubes offering them in a single resolution.

• In one dataset, the data semantics change over time: the imperviousness dataset for the year

2018 has percentage values from 0 - 100% whereas for 2006 it has numbers indicating 0-20%,
20-40 %, etc. Hence both time slices cannot be compared directly.

Solution: requires manual intervention and disclosing inhomogeneity to users.

• Categories sometimes have been extended with additional classes over time, in the same
dataset.

Solution: requires manual intervention and disclosing inhomogeneity to users.

• Generally, in some cases, legends have been observed to vary over the years.

Solution: Alerted by this as well as the imperviousness issue mentioned above it was decided

to investigate individually for each dataset whether this is just a change in visualization or –

deeper – in data semantics. remains manual work.

• Time specifications in the repositories that had to be harvested were sometimes inexact and

incomplete. While discussing how to get to an accurate temporal description it turned out that

temporal access functionality was required going beyond what today typically is offered by
rasdaman and other tools.

Solution: A detailed, advanced temporal selection capability is being developed currently

offering substantially increased calendar functionality.

• Copernicus data undergo evolution, documented in version numbers (e.g., at the time of this

writing a new Sentinel-2 baseline has been issued with productBaseline = 5.09). There is some
documentation, but checking whether new data are comparable with older timeslices or instead

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

17 / 24

data properties have changed remains a manual task. Information like this1 might be insufficient

as it does not mention changes in processing parameters etc., but only the renaming of products.

Even more substantially, ESA sometimes performs a reprocessing of Sentinel-2 data
retrospectively based on new findings, such as an improved DEM used for correction. This

retroactively (!) changes the radiometry of Sentinel-2 data offered. While accuracy improvement
on principle is something to applaud, we expect negative, yet difficult-to-detect implications,

such as on models trained on older versions of the pixels.

As an illustration below a Sentinel-1 scene is shown, left with an acquisition (and, hence, ESA

processing) time between June 2017 and May 2018, right with a Sentinel-1 patch from 2023
extracted from the ESA Copernicus archive. Obviously, not only changes in tools but even

variations in the processing parameters can have a significant impact2. Experience shows that
neural networks, for example, are highly sensitive to such changes.

Solution: manual inspection upon every product update. Upon retroactive reprocessing

pyramids may need to be recomputed, which constitutes a significant effort.

Figure 7: Sentinel-1 scene delivered by ESA with different processing parameters applied

4.6.2 Conceptual Problems

Occasionally problems surfaced which have not yet been solved in science nor standardization. In the
attempt to advance the state of the art, CU addressed these. Another class of challenges can be

summarized under the common “Analysis-Ready Data” topic of making access and processing of data

easier by pushing technicalities behind the curtain; to this end, research was done to enhance the

machine-readable semantics of OGC coverages aka datacubes.

4.6.2.1 Temporal Semantics

For the timeseries a special modelling approach was taken. Normally in such cases datacubes simply

receive a time axis allowing for selection of timeslices. For example, CORINE land cover data are issued
about every six years with validities 1986-1998, 2000 +/- 1 year, 2006 +/- 1 year, 2011-2012, 2017-

1 https://cloud.code-
de.org:8080/swift/v1/AUTH_279dbc97d5b5434fa8aeacf09c08c520/portal_prod/media/filer_public/a8/

72/a872bbde-859a-44fe-a31d-
3a33b8653471/20231025_reference_table_for_product_type_attribute_changes_in_the_new_catalogu

e_api_for_code-de_and_eo-lab.pdf

2 N. Djamai, R. Fernandes: Comparison of SNAP-Derived Sentinel-2A L2A Product to ESA Product over

Europe. Remote Sensing 2018, 10, 926, doi: 10.3390/rs10060926

https://cloud.code-de.org:8080/swift/v1/AUTH_279dbc97d5b5434fa8aeacf09c08c520/portal_prod/media/filer_public/a8/72/a872bbde-859a-44fe-a31d-3a33b8653471/20231025_reference_table_for_product_type_attribute_changes_in_the_new_catalogue_api_for_code-de_and_eo-lab.pdf
https://cloud.code-de.org:8080/swift/v1/AUTH_279dbc97d5b5434fa8aeacf09c08c520/portal_prod/media/filer_public/a8/72/a872bbde-859a-44fe-a31d-3a33b8653471/20231025_reference_table_for_product_type_attribute_changes_in_the_new_catalogue_api_for_code-de_and_eo-lab.pdf
https://cloud.code-de.org:8080/swift/v1/AUTH_279dbc97d5b5434fa8aeacf09c08c520/portal_prod/media/filer_public/a8/72/a872bbde-859a-44fe-a31d-3a33b8653471/20231025_reference_table_for_product_type_attribute_changes_in_the_new_catalogue_api_for_code-de_and_eo-lab.pdf
https://cloud.code-de.org:8080/swift/v1/AUTH_279dbc97d5b5434fa8aeacf09c08c520/portal_prod/media/filer_public/a8/72/a872bbde-859a-44fe-a31d-3a33b8653471/20231025_reference_table_for_product_type_attribute_changes_in_the_new_catalogue_api_for_code-de_and_eo-lab.pdf
https://cloud.code-de.org:8080/swift/v1/AUTH_279dbc97d5b5434fa8aeacf09c08c520/portal_prod/media/filer_public/a8/72/a872bbde-859a-44fe-a31d-3a33b8653471/20231025_reference_table_for_product_type_attribute_changes_in_the_new_catalogue_api_for_code-de_and_eo-lab.pdf

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

18 / 24

2018 (source). This results in “holes” of validity where no data should be delivered, according to the

CORINE specification. In summary, a timeslice is not an atomic point in time (such as 2018-01-

01T00:00) but it likewise does not stretch until, halfway up to the next timeslice. Rather, for capturing
the full temporal semantics it is necessary to capture such individual validity periods. CU realised that

advanced calendar functionality is needed for the temporal representation and retrieval of the datasets.

This sparked research on refining the calendar date/time modelling functionality.

As an interim workaround until calendar queries became available, the datacubes were built with an
integer (in OGC called “index”) axis allowing addressing by year (below visible by the name, such as

“imperviousness_2006_index”). After completion (after the reporting period but demonstrated in the

review) the datacubes were replaced with a genuine time axis and the new behaviour. In our example,

this final object is named “imperviousness_2006”.

CU finally created a new concept called “period of validity” of pixels in the vicinity of their actual
coordinate, combined with “query granularity”, and implemented it. After that, the rasdaman datacubes

were updated and a webinar was given to the consortium. Implementation was finished after the
reporting period of this deliverable, but a prototype was demonstrated in the February 2024 review. A

journal paper has been accepted by ACM Transactions on GIS.

4.6.2.2 Multiple Datacube Views

In design discussions it was requested to access timeslices of the same object in different ways:

• as individual 2D objects, one for each time point, selectable without indicating a time slicing
operation;

• As 3D x/y/t datacubes where the timeslice is obtained, as usual in a datacube, by indicating a

time coordinate as the selection (i.e., slice) point.

This extra complexity was resolved by establishing 2D x/y objects, with the year in the name, and
combining these into a virtual coverage offering the 3D x/y/t view including temporal subsetting. This

is reflected by the multiple objects (in OGC speak: “coverage”) per datacube listed in Deliverable D5.1.
By using the virtual coverage for combining these 2D layers into a single 3D object, data duplication

could be avoided.

4.6.2.3 Datacube Catalog

CU provided a condensed, datacube-tuned catalog integrated with the rasdaman dashboard to give an
overview of data holdings until the STAC integration could be accomplished (done at the time of this

writing). This catalog allows for hierarchically structured datacube assets, displayed in a Web browser

with folding and unfolding capabilities, as well as drilling down into datacube details. Figure 8 shows

the catalog; note the listing of both Sentinel and FAIRiCUBE data, reflecting the datacube federation.

The catalog information can be retrieved in a structured, machine-readable manner and therefore

enables an automatic feed of the central FAIRiCUBE STAC catalog.

https://land.copernicus.eu/en/products/corine-land-cover

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

19 / 24

Figure 8: rasdaman catalog, integrated with dashboard

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

20 / 24

5 EOX Ingestion Pipeline

5.1 Data Ingest Logistics

Technically, the pipeline provided on the EOX deployment is more a matter of registration than of

ingestion, as data uploaded to object storage only needs to be registered in services as required and

not ingested, i.e., copied. The EOX deployment provides a bucket on object storage for each use case
team to store relevant datasets. The credentials to access objects stored on object storage are

transparently injected in the user's EOxHub workspace as well as any integrated external services and
apps such as Sentinel Hub. Figure 9 shows the workflow on how to upload data to the FAIRiCUBE Hub

using the EOX platform.

Figure 9: Data ingestion pipeline workflow using EOX-platform.

As a first step, the use case representative requesting new data together with the ingestion handling
partner EOX reviews and decide which services are required to be available for the new data. The most

interesting services are either direct access to object storage via S3 protocol or the API suite provided

by Sentinel Hub like Process API, Batch API, Statistics API, openEO, WMS, etc. If Sentinel Hub services
are required, the data has to be converted to Cloud Optimized GeoTIFFs (https://docs.sentinel-

https://docs.sentinel-hub.com/api/latest/api/byoc/#converting-to-cog

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

21 / 24

hub.com/api/latest/api/byoc/#converting-to-cog) or ZARRs (https://docs.sentinel-

hub.com/api/latest/api/zarr) following the constraints and settings explained in the given links.

Concurrently with the data ingestion pipeline the metadata registration shall occur (see section 3.2 as

well as “D4_2 Public Listing (Catalog) of FAIRiCUBE data resources.docx”) for more details.

It turned out that the direct usage of data provided as CDF and NetCDF files, which is a widely used
standard, especially in the Meteorological world, is not very efficient when stored on S3 (or object

storage in general). It is therefore recommended to convert datasets to ZARRs or GeoTIFFs before using
it (see description for the conversion provided for the Sentinel-Hub above). The two formats are also

recommended in case direct s3 access is required.

There are two options of how to pre-process or convert own data that a user wants to use in the

FAIRiCUBE Hub:

• Upload the selected data without further pre-processing into the s3 bucket. This can be any
kind of spatial data set in any projection. If such a raw dataset has been uploaded, further

processing must be done directly on s3. For example, a Jupyter Notebook can be created that

converts the raw dataset into a projected Cloud Optimised GeoTIFF (COG) with a pixel size of
10m.

• Perform the pre-processing before uploading the dataset to the s3 bucket. If feasible, we would

recommend this option to save CPU and memory costs.

Regardless of which of the two options is chosen, in the end, the final data (dimensions) on s3 must

fulfil various conditions if to be registered in Sentinel Hub (https://docs.sentinel-

hub.com/api/latest/api/byoc/#a-note-about-cog-overviews- used-for-processing).

Box 1 Upload data requirements

Own data requirements:

Spatial raster dataset must be stored in ZARR format:

 COG block size: between 256 x 256 and 2048 x 2048.

Projection:

 The projection needs to be one of: WGS84 (EPSG:4326), WebMercator (EPGS:3857), any
UTM zone (EPSG:32601-32660, 32701-32760), or Europe LAEA (EPSG:3035).

Max. number of bands:

 100

The next step is to upload the data to the provided bucket on object storage, e.g., 'hub-fairicube0'. The

provided buckets are configured with a soft quota, i.e., with an alert at a certain size to make each team
aware of costs. The bucket can be mounted via fuse in each team member's workspace, for example

under a folder 's3'. All files which are saved in this folder are read- and writeable for all members of the
team. Additionally, the files can be made available via s3 protocol directly, for example, to be registered

in Sentinel Hub. Moreover, the credentials to access the bucket are injected in the JupyterLab session,
meaning they are available as env variables. This means for example that direct s3 access via tools like

's3cmd' works in the workspace out of the box. Example commands describing object storage usage:

pip install s3cmd

./local/bin/s3cmd put --access_key=$username --secret_key=$password –region=eu-central-1 --

host=s3.amazonaws.com test.txt s3://$endpoint

./local/bin/s3cmd ls --access_key=$username --secret_key=$password –region=eu-central-1 --

host=s3.amazonaws.com s3://$endpoint

https://docs.sentinel-hub.com/api/latest/api/byoc/#converting-to-cog
https://docs.sentinel-hub.com/api/latest/api/zarr
https://www.cogeo.org/
https://docs.sentinel-hub.com/api/latest/api/byoc/#a-note-about-cog-overviews- used-for-processing

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

22 / 24

After uploading the data, there are various possibilities to address the data in the Jupyter notebook on

the EOX platform:

 Direct reading the data from the s3 bucket

 Create a collection and read the data using the sentinel hub and API.

Now the data can be registered in services like Sentinel Hub as necessary. Registration in Sentinel Hub

can either be performed via API directly or using a Python library or a web dashboard.

Now the data requester can start using the new data either via the services the data is registered in or

directly from object storage. The final step, however, is to properly share the new data depending on
the data license and the willingness to maintain and cover costs incurred. As a minimum, the use case

team has to cover the storage costs of s3 object storage. There are two other types of s3 costs namely
for bandwidth and requests which can be either covered by the data provider or the requester depending

on configuration.

In case the use case team decides to provide direct s3 object storage access, they have to decide if

they want to configure the 'requester pays' option. Using this option requires any data user to have a

valid AWS account to cover the costs incurred by bandwidth and requests. If this option is not used all
costs need to be covered by the use case team. It has to be noted that opening a bucket this way can

incur significant costs as the use case team has no control over actual usage by external parties.

There are two options for sharing the data via the Sentinel Hub APIs. Either the collection ID is shared

publicly which allows other users to use it in their Sentinel Hub subscription and thus not incurring costs
for the use case team. Alternatively, the instance ID and potentially layer IDs are shared which means

that any usage needs to be covered by the Sentinel Hub subscription of the use case team.

5.2 Datacubes Currently Available

Any dataset or collection listed at https://catalog.fairicube.eu and showing ‘Sentinel Hub Resources’,
‘xcube Resources’, or `geoDB Resources’ are currently available. For example, the ESA WorldCover

dataset is available via Sentinel Hub using the provided collection ID as shown in Figure 10 below.

https://docs.sentinel-hub.com/api/latest/reference/#tag/byoc_collection
https://sentinelhub-py.readthedocs.io/en/latest/examples/byoc_request.html
https://catalog.fairicube.eu/
https://catalog.fairicube.eu/collections/index/items/ESA_WORLDCOVER_10M_2020_V1
https://catalog.fairicube.eu/collections/index/items/ESA_WORLDCOVER_10M_2020_V1

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

23 / 24

Figure 10: ESA World Cover

6 Summary

The ingest routine has been established and demonstrated through several user-selected data sets,
some bringing interesting challenges. Among others, data sets retrieved from their official sources

sometimes have been found corrupted (such as 0-length files). Issues are documented routinely, as per
the standard ingest workflow; by commenting on the existing GitHub pull request. The requesting use

case partner can react appropriately (such as pointing to an alternative source where available).

Various project-specific datasets have been ingested through the workflow described. Additionally, in

rasdaman, the federated Copernicus archive data are available in a location-transparent manner, while

EOX provides access to the Sentinel Hub data. All data ingested are readily available for access and

 FAIRiCUBE : Deliverable D5.2 Description of the datacube ingestion pipelines

24 / 24

processing. Therefore, the WP5 partners believe that a first stable state has been achieved. Next steps

include:

• Ingest more data, as always driven by Use Case priority;

• Link datacubes with the metadata records in the STAC Catalog (done at the time of the deliv-
erable update);

• Investigate to what extent the two (technologically quite different) stacks of rasdaman and

EOX can be combined under a common hood, to enable data sharing;

• Ingestion of point and vector sources, including the provision of reusable algorithms;

• Enhancing rasdaman to provide comprehensive calendar functionality on time-type axes (done

at the time of the deliverable update);

• Enhancing rasdaman to store additional information in the range type. During the reporting
period this was prototyped with some objects at the time of the deliverable update. At the

time of this writing, following thorough verification it will be propagated into all coverages.

