

FAIRICUBE –
F.A.I.R. INFORMATION CUBES

WP4 Share

D4.4 Operational FAIRiCUBE HUB

Deliverable Lead: EOX

Deliverable due date: 30-06-2024

Version: 1.0

14-06-2024

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

2 / 52

Document Control Page

Document Control Page

Title D4.4 Operational FAIRiCUBE HUB

Creator EOX

Description This document describes the operational FAIRiCUBE HUB as an Exploitation platform
which was deployed early in the project and gets continuously extended with concrete
services, apps and data offerings as required by the Use Cases.

Publisher “FAIRICUBE – F.A.I.R. information cubes” Consortium

Contributors CU, All

Date of delivery 30-06-2024

Type Text

Language EN-GB

Rights Copyright “FAIRICUBE – F.A.I.R. information cubes”

Audience ✓ Public

☐ Confidential

☐ Classified

Status ☐ In Progress

☐ For Review

✓ For Approval

☐ Approved

Revision History

Version Date Modified by Comments

0.1 23-06-2023 Christian Schiller, Stephan
Meißl, EOX

Initial draft

0.2 2023-07-10 Christian Schiller, Stephan
Meißl, EOX;

Shortened FARiCUBE Lab
description & cleanup
Added dynamic STAC Catalog
Added rasdaman description

0.3 2023-07-24 Mohit Kumar Basak Added information relevant to
rasdaman
Added operation scenarios

0.4 2024-05-31 Peter Baumann Enhanced rasdaman parts

1.0 2024-06-14 Christian Schiller
Peter Baumann

Updated Catalog Data Requests /
Metadata Editor, following reviewer
request
Update following reviewer request

1.0 2024-06-14 Jaume Targa Review and format checking

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

3 / 52

Disclaimer

This document is issued within the frame and for the purpose of the FAIRICUBE project. This project
has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No. 101059238. The opinions expressed and arguments employed herein do

not necessarily reflect the official views of the European Commission.

This document and its content are the property of the FAIRICUBE Consortium. All rights relevant to this

document are determined by the applicable laws. Access to this document does not grant any right or
license on the document or its contents. This document or its contents are not to be used or treated in

any manner inconsistent with the rights or interests of the FAIRICUBE Consortium or the Partners
detriment and are not to be disclosed externally without prior written consent from the FAIRICUBE

Partners. Each FAIRICUBE Partner may use this document in conformity with the FAIRICUBE Consortium

Grant Agreement provisions.

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

4 / 52

Table of Contents

Document Control Page ... 2
Disclaimer ... 3
Table of Contents .. 4
List of Tables .. 8
1 Introduction .. 9
2 FAIRiCUBE Lab, aka EOxHub deployment ...11

2.1 Control Plane ...11
2.1.1 Configuration Management ...12
2.1.2 GitHub as Identity Provider ...12
2.1.3 JupyterLab Profiles ...12
2.1.4 Keycloak ..13
2.1.5 Shared Jupyter Notebooks ..13
2.1.6 Shared Conda Environments ...15
2.1.7 Shared Secrets ...16
2.1.8 Shared Object Storage ..16
2.1.9 Apps ..16
2.1.10 Complete Configuration Example ...17

2.2 Worker Plane ...18
2.2.1 Interactive Development Environment - Jupyter Notebooks ..18
2.2.2 Data access ...19
2.2.3 User access ..19
2.2.4 Headless Notebook execution (i.e. non-interactive) ..21
2.2.5 Machine Learning Platform - MLflow ..22

3 Catalog ..23
3.1 Requests - Overview ...23
3.2 Dataset metadata processes ...23
3.3 Resource metadata processes ...26
3.4 Codelist Change processes ..30
3.5 Catalog UI – STAC Browser using fastAPI ..31

4 Community Collaboration Platform ...35
5 Knowledge Base ...37
6 FAIRiCUBE GitHub Repository ...39
7 Access to external resources ...41

7.1 On-the-fly data cube access: Sentinel Hub ...41
7.2 Mass processing service: Sentinel Hub Batch Processor ..41
7.3 Pre-generated data cubes with xcube ..42
7.4 Sentinel Hub Dashboard ...42
7.5 Data uploading – Example: Bring Your Own COG API ...42

8 The rasdaman Datacube Deployment ..43
8.1 Rasdaman in the Project Landscape ..43
8.2 Design Philosophy ..44
8.3 The rasdaman Engine ...45
8.4 Data & Ingestion ..45
8.5 Machine Learning ...46
8.6 APIs & Clients ..47
8.7 Development Environment ..48
8.8 Support ...50

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

5 / 52

8.9 Integration with the FAIRiCUBE Hub ..51
8.10 Access Control ...51
8.11 Development outlook ..51

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

6 / 52

List of Figures

Figure 1: FAIRiCUBE HUB Architecture .. 9

Figure 2: Keycloak for authorization ..13

Figure 3: FAIRiCUBE Catalog launcher tile ..14

Figure 4: FAIRiCUBE Catalog Notebook Viewer ...14

Figure 5: Example of a Conda-store environment configuration (here from DeepESDL).....................15

Figure 6: Examples of Kernel selection in a Conda environment (here from DeepESDL)15

Figure 7: Example of MLflow for experiment tracking (here from DeepESDL)17

Figure 8: FAIRiCUBE HUB Login ..19

Figure 9: JupyterLab profile selection - Use Case specific workspace profiles20

Figure 10: Information that FAIRiCUBE workspace is being prepared ...20

Figure 11: JupyterLab workspace launcher ...20

Figure 12: JupyterHub Control panel ...21

Figure 13: Greeting page after successful Login ...21

Figure 14: Screen presented to Users not configured to a Use Case ..21

Figure 15: Data Ingestion Requestt Web GUI – Landing page ...24

Figure 16: Data Ingestion Request Web GUI - Data entry Part-1 ...25

Figure 17: Data Ingestion Request Web GUI - Data entry Part-2 ...25

Figure 18: Data Ingestion Request Procedure ...26

Figure 19 : webGUI – Landing page ..27

Figure 20 : Screenshot of the a/p metadata webform (1) ..28

Figure 21 : Screenshot of the a/p metadata webform (2) ..29

Figure 22: Codelist change proposal Request ...30

Figure 23: Dynamic Catalog based on STAC -fastapi ...31

Figure 24: Data access catalog – List of dataset resources ..31

Figure 25: Data access catalog – Example of a dataset (NUTS3_2021) ..32

Figure 26: Data access catalog – Search interface associated with a dataset32

Figure 27: Analysis and processing resources catalog - Listing of available resources as collections ...33

Figure 28: Analysis and processing resources catalog – Example of a ML resource33

Figure 29: Analysis and processing resources catalog – Feature to browse available datasets34

Figure 30: Analysis and processing resources catalog – Example of a Non-ML resource featuring direct

data access ..34

Figure 31: Landing page of the Community collaboration platform ..36

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

7 / 52

Figure 32: rasdaman in the FAIRiCUBE HUB Architecture, with rasdaman parts highlighted44

Figure 33: Sample model application as a query result (left) and the schematic WCPS query generating

it ...47

Figure 34: sample rasdaman dashboard screenshot (see text for explanation of numbers)................48

Figure 35: Jupyter lab environment on FAIRiCUBE rasdaman server ..49

Figure 36: rasdaman Web GUI supporting interactive Web request generation49

Figure 37: rasdaman Web GUI supporting interactive Web request generation50

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

8 / 52

List of Tables

Table 1: List of GitHub repositories used by FAIRiCUBE ..39

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

9 / 52

1 Introduction

This is an overview documentation of the deliverable D4.4 Operational FAIRiCUBE HUB (DEMO) of the

FAIRiCUBE project, i.e. the FAIRiCUBE integrated datacube platform. It describes the deployed and

operated FAIRiCUBE HUB as an Exploitation Platform provided during the duration of the project. The

FAIRiCUBE Hub can be accessed at: https://eoxhub.fairicube.eu. Access is to the Hub is possible using

a valid GitHub account, but currently and additional (manual) registering step is configured. A collection

of links to the various resources currently available can be found at: https://fairicube.nilu.no/fairicube-

hub/

The FAIRiCUBE HUB consists of the FAIRiCUBE Lab, a Catalog, the Data Access Services, and the Data

Processing Services. The FAIRiCUBE Lab, acting as the central point of user activities, is based on an

instance of EOxHub, as well as rasdaman and other Open-Source components. The EOxHub instance

provides a Control Plane, a JupyterHub providing Jupyter Notebooks, and access APIs to the various

FAIRiCUBE Services (Figure 1).

Figure 1: FAIRiCUBE HUB Architecture

Below are the definitions of the components of the FAIRiCUBE HUB provided to avoid confusions and

ambiguities:

FAIRiCUBE Catalog: The integrated catalog providing metadata and references to ingested datasets,

processes, and models available from FAIRiCUBE.

FAIRiCUBE HUB: The overall FAIRiCUBE technical environment encompassing the FAIRiCUBE Catalog,

FAIRiCUBE Services and Applications, as well as the FAIRiCUBE Lab and the rasdaman workspace.

FAIRiCUBE Lab-EOxHub Workspace: A single container for all EOxHUB based workspaces providing

the interface to back-ends via various back-end protocols as well as an execution environment for user

provided workloads.

https://eoxhub.fairicube.eu/
https://fairicube.nilu.no/fairicube-hub/
https://fairicube.nilu.no/fairicube-hub/

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

10 / 52

• EOxHub Workspace-Worker Plane: The user area within the FAIRiCUBE Lab where users

can collaborate and share the content of their workspaces.

• EOxHub Workspace-Control Plane: The administration area within the FAIRiCUBE Lab

where all configuration and setup is managed

FAIRiCUBE rasdaman Workspace: consists of the rasdaman datacube engine, a multi-parallel

distributed database system specialized on the management and analytics of massive multi-dimensional

arrays (Chapter Error! Reference source not found.).

FAIRiCUBE Services/Apps: Components providing various ways to access the data and processing

facilities provided by FAIRiCUBE.

FAIRiCUBE Knowledge Base: Provides a set of tools to enable appropriate knowledge of how to

apply algorithms and ML techniques to solve similar demands.

FAIRiCUBE Community Collaboration Platform: focuses on the general technological information

and knowhow associated with the setup, usage and processing of datasets on the FAIRiCUBE Hub and

the usage of ML-Tools applied to these datasets.

FAIRiCUBE – GitHub Repository: FAIRiCUBE has setup and uses a GitHub repository very

extensively. In this FAIRiCUBE GitHub repository the catalog data, shared code, use case specific code,

as well as the content of the Knowledge Base and the Community Collaboration Platform is stored and

accessible to FAIRiCUBE users (Chapter Error! Reference source not found.).

The FAIRiCUBE HUB provides a complete working environment where users can access algorithms and

data remotely to obtain computing resources and tools that they might not otherwise have and avoid

the need to download and manage large volumes of data. This new approach removes the need to

transfer/download large e.g. Earth Observation data sets around the world, while increasing the

analytical power available research scientists, industry, operational service providers, regional

authorities, and policy analysts.

FAIRiCUBE provides:

Easy access to data and the tools to exploit these data.

Use of online cloud computing resources which removes the need to download and store large

volumes of data locally.

Data, visualisation, and processing options that are tailored to the needs of science and

operational users.

Personalised and private accounts that can be accessed from any location through the Internet.

A clear and intuitive user interface to access the platform functionality, including an interactive

map portal for visualising data and outputs.

Access to built-in processors or user-provided processors.

Processor outputs that can be used in other processors, shared with other users, or download.

Access to sufficient processing capacity for analysis of large volumes of data.

A customisable online development environment with all the necessary software tools and

libraries to develop processors and optionally make them available to other users.

A collaboration environment for groups to communicate via a platform forum, share software

code using the platform code repository, and track problems with a built-in issue tracker.

A Knowledge Base, enabling simple access to essential information on working with large

spatiotemporal datacubes. For more details on the Knowledge Base, please see deliverable D3.4

Processing knowledge base services.

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

11 / 52

2 FAIRiCUBE Lab, aka EOxHub deployment

The EOxHub deployment, aka FAIRiCUBE Lab, is separated in two parts, the Control and the Worker

Plane. The Control Plane offers the central Hub functionalities, data management and analysis, and

needs to run continuously. User workloads are executed in the Worker Plane which is scaled as needed.

As a central component, the FAIRiCUBE Lab provides users a workspace where they can install apps

like JupyterLab, manage service subscriptions, and administrate their data. The workspace provides a

runtime for user-defined workloads. The workspace connects the control plane of the EOxHub with the

worker plane.

2.1 Control Plane

The Control Plane was deployed early in the project and is readily available from EOxHub. It is

continuously extended with specific services, apps, and data offerings as required by the Uses Cases.

The Control Plane is initially configured to support at least the following:

• User Workspaces (Tenants)

• Service subscription management

• Marketplace

• Allocation functions for cloud resources and Data Services

• Deployment service

• Workload management functions

• Accounting and billing (voucher handling)

Cloud resources for the Worker Plane will be made available as needed by and agreed with the use

cases as they have to cover the corresponding cloud costs.

The operator control plane provides tenant specific workspaces to individual science teams or other

users. In order to do so, some stable workloads need to be always running in the Kubernetes cluster:

• User management & access control

• Metrics & monitoring

• Workload management & invocation

• Infrastructure provisioning

The control plane is declaratively deployed and operated through GitOps principles relying on the Flux

CD tooling. Important to mention is that the cluster management is nominally performed exclusively

through GitOps, i.e., operators don’t need to run any commands like kubectl directly on the cluster

and thus don’t need any access rights granted. In case of the necessity of troubleshooting or deeper

debugging, operators are assuming roles via Identity and Access Management (IAM) but never via

accounts directly.

The control plane relies on these managed services:

• Kubernetes service to provide a kubernetes cluster

• S3 for object storage

• Open ID Connect (OIDC) service for user management

• Network File System (NFS) for block storage

The main tools running in the control plane are

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

12 / 52

• Grafana to provide metrics dashboards

• Alert manager to send notifications for example to dedicated operations Slack channels

• Brigade for running scriptable, automated tasks

• Elastic stack of elasticsearch, fluentd, and kibana (EFK) to collect and present logs

2.1.1 Configuration Management

The configuration management of the FAIRiCUBE Lab is organized in a private GitHub repository

(https://github.com/FAIRiCUBE/flux-config/) to manage the workspace profiles for JupyterLab sessions,

installed applications for users of the FAIRiCUBE Lab teams, as well as all other team relevant

configurations. Currently there are four teams (Use Cases) configured with different profiles, apps,

secretes, buckets, etc. as required.

The configuration management relies on GitOps principles to deploy the desired configuration via the

Flux CD operator. GitHub issues at https://github.com/FAIRiCUBE/flux-config/issues are used to track

the status of various configuration requests. The sections below provide details of how the different

aspects of the FAIRiCUBE configuration are managed in the central configuration management and

which options are available.

2.1.2 GitHub as Identity Provider

The FAIRiCUBE Lab uses GitHub as Identity Provider. The YAML code below shows the configuration to

grant an administrator and a user access to the resources of a specific FAIRiCUBE team via userName

and role.

 allowedLogins:

 - approvalTimestamp: "2023-06-07T00:00:00Z"

 creationTimestamp: "2023-06-07T00:00:00Z"

 email: achtsnits@eox.at

 userName: achtsnits

 role: admin

 allowedLogins:

 - approvalTimestamp: "2023-06-07T00:00:00Z"

 creationTimestamp: "2023-06-07T00:00:00Z"

 email: stephan@meissl.name

 userName: schpidi

 role: user

2.1.3 JupyterLab Profiles

Different JupyterLab profiles can be configured and are available for authenticated and authorized users

as shown in Figure 9.

The YAML code below shows the configuration for one JupyterLab profile of the Use Case 4 (UC4.

spec:

 k8s-namespace: fairicubeuc4

 creationTimestamp: "2023-06-07T00:00:00Z"

 inventory:

 - creationTimestamp: "2023-06-07T00:00:00Z"

 entityId: eoxhub

https://github.com/FAIRiCUBE/flux-config/
https://github.com/FAIRiCUBE/flux-config/issues

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

13 / 52

 entityType: infra

 expirationDate: "2024-12-31"

 productKey: EOxHub - Default

 activations:

 - activationDate: "2023-06-07"

 creationTimestamp: "22023-06-07T00:00:00Z"

 data:

 profile_fairicubeuc4: display_name=FAIRiCUBE-

UC4,node_purpose=useruc4,mem_guarantee=30064771072,cpu_guarantee=7,mem_limit=32212254720,cpu_lim

it=7.5,s3_bucket_name=hub-fairicubeuc4,secret_names=hub-fairicubeuc4

 s3_bucket: "53687091200"

 storage: "53687091200"

 user: "2592000" #30d

 useruc4: "2592000" #30d

 url: https://eoxhub.fairicube.eu

 entityId: eoxhub

 entityType: infra

The main information is encoded in this line:

profile_fairicubeuc4: display_name=FAIRiCUBE-

UC4,node_purpose=useruc4,mem_guarantee=30064771072,cpu_guarantee=7,mem_limit=32212254720,cpu_lim

it=7.5,s3_bucket_name=hub-fairicubeuc4,secret_names=hub-fairicubeuc4

This profile, named “FAIRiCUBE-UC4”, provides a guaranteed minimum of 30 GB RAM with a maximal

amount of 32GB of RAM, and a guaranteed minimum of 7.5 CPUs. It further injects a secret, as described

below, and mounts the Use Case specific S3 bucket named "hub-fairicubeuc4".

2.1.4 Keycloak

Keycloak is used as authorization system. Users can be granted various rights for example to get access

to the shared folder to curate the shared Jupyter notebooks or to get access to conda-store to manage

conda environments.

Figure 2: Keycloak for authorization

2.1.5 Shared Jupyter Notebooks

Created Jupyter notebooks can easily be shared with other FAIRiCUBE users within the same customer

or team by making them available on a curated shared folder. Curation access to this shared folder is

granted via Keycloak as described above. From there they are automatically picked by the FAIRiCUBE

Lab and made available through the Notebook Catalog UI.

This UI is shown once a JupyterLab profile is started where the user sees the FAIRiCUBE Catalog tile on

the launcher as shown in the bottom of Figure 9. Through this UI it is possible to browse, execute, and

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

14 / 52

comment on Jupyter notebooks to steer interaction and foster collaboration. Also shown is the mounted

S3 bucket already made available for direct access to the provided datasets and the available Machine

Learning notebooks.

Figure 3: FAIRiCUBE Catalog launcher tile

At the final stage of expansion there will be various "Getting-started" and specific "Tutorial notebooks"

available for execution in the FAIRiCUBE Catalog (as shown below).

Figure 4: FAIRiCUBE Catalog Notebook Viewer

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

15 / 52

2.1.6 Shared Conda Environments

The FAIRiCUBE Lab bundles the open source conda-store tool (https://github.com/Quansight/conda-

store) to provide the familiarity and flexibility of conda environments to FAIRiCUBE users at

https://eoxhub.fairicube.eu/conda-store. The conda-store tool not only enables the usage of conda

environments but also supports through its UI the initial environment creation as well as the sharing of

created environment with other users. Figure 5 shows the conda environment management via an

environment.yml specification files. Team members can be granted the permissions to curate the

available environments for their team via Keycloak as described above.

Figure 5: Example of a Conda-store environment configuration (here from DeepESDL)

The kernel or conda environment to use in a specific notebook can be adjusted with a drop-down menu

in the top right corner of the notebook as shown in Figure 6.

Figure 6: Examples of Kernel selection in a Conda environment (here from DeepESDL)

https://github.com/Quansight/conda-store
https://github.com/Quansight/conda-store
https://deep.earthsystemdatalab.neteoxhub.fairicube.eu/conda-store
https://deep.earthsystemdatalab.neteoxhub.fairicube.eu/conda-store

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

16 / 52

2.1.7 Shared Secrets

Sometimes it is necessary to share configuration values, particularly secrets, within teams. In order not

the share them in external tools, with the danger of unintended disclosure, the FAIRiCUBE Lab supports

shared secrets configured via the central configuration management. The secrets themselves are never

stored in plaintext but only in a sealed state.

Technically, access credentials are added to JupyterLab sessions by adding them to the qhub kubernetes

secret, in the corresponding namespace, via flux. K8s secret values are just base64 encrypted strings

and it is always necessary to assess if it is feasible to check them in into git (even if it is a protected git

repository) or not. For sensitive values it is recommended to check them in into git as encrypted values

and only decrypt them within the k8s cluster. This functionality is established through the sealed-secrets

tooling (https://github.com/bitnami-labs/sealed-secrets) as described in the README of the repository

at https://github.com/FAIRiCUBE/flux-config#using-access-credentials-via-environment-variables.

The YAML code below shows an example of a k8s secret:

apiVersion: v1

data:

 test: cGFzc2Vk #your secret name and its value base64 encoded

kind: Secret

metadata:

 name: qhub

 namespace: fairicubeuc4

type: Opaque

2.1.8 Shared Object Storage

FAIRiCUBE Lab users are granted with ready-made access to object storage (S3), i.e., all necessary

access details like bucket name and credentials are available during runtime as environment variables.

This allows the users to directly leverage curated datasets made available to their team as well as to

curate datasets and other output artefacts themselves and share them within their team.

The team setup and the granted quota for storage is centrally managed in the configuration system

using a YAML code like the one below.

s3_bucket: "53687091200"

It is also possible to disseminate the team's data through other means, e.g., via public endpoints or

through Sentinel Hub.

2.1.9 Apps

Common data science and ML tooling may be pre-installed in conda environments on a per team basis

and are therefore available during runtime. In addition, it is also possible to install "always-running"

apps, to analyse ML experiment runs or share results without the need of a running a FAIRiCUBE Lab

JupyterLab session.

One example is MLflow tracking work with different ML frameworks like "scikit-learn" or "PyTorch" as

shown in Figure 7.

https://github.com/bitnami-labs/sealed-secrets
https://github.com/FAIRiCUBE/flux-config#using-access-credentials-via-environment-variables

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

17 / 52

Figure 7: Example of MLflow for experiment tracking (here from DeepESDL)

2.1.10 Complete Configuration Example

The YAML code below is a complete customer.yaml configuration for the fairicubeuc4 the examples

above.

apiVersion: hub.eox.at/v1alpha1

kind: Customer

metadata:

 name: fairicubeuc4

 namespace: core

spec:

 k8s-namespace: fairicubeuc4

 creationTimestamp: "2023-06-07T00:00:00Z"

 inventory:

 - creationTimestamp: "2023-06-07T00:00:00Z"

 entityId: eoxhub

 entityType: infra

 expirationDate: "2024-12-31"

 productKey: EOxHub - Default

 activations:

 - activationDate: "2023-06-07"

 creationTimestamp: "2023-06-07T00:00:00Z"

 data:

 profile_fairicubeuc4: "display_name=FAIRiCUBE-

UC4,node_purpose=useruc4,mem_guarantee=30064771072,cpu_guarantee=7,mem_limit=32212254720,cpu_lim

it=7.5,s3_bucket_name=hub-fairicubeuc4,secret_names=hub-fairicubeuc4"

 s3_bucket: "53687091200"

 storage: "53687091200"

 user: "2592000" #30d

 useruc4: "259200" #30d

 url: https://eoxhub.fairicube.eu

 entityId: eoxhub

 entityType: infra

 properties: {}

 allowedLogins:

 - approvalTimestamp: "2023-06-07T00:00:00Z"

 creationTimestamp: "2023-06-07T00:00:00Z"

 email: achtsnits@eox.at

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

18 / 52

 userName: achtsnits

 role: admin

 - approvalTimestamp: "2023-06-07T00:00:00Z"

 creationTimestamp: "2023-06-07T00:00:00Z"

 email: stephan@meissl.name

 userName: schpidi

 role: user

2.2 Worker Plane

Via the control plane, workloads are deployed and scheduled on the worker plane

The multi-tenant worker plane is responsible for the following tasks:

• Workload orchestration and scheduling on dynamically allocated cloud resources (e.g. GPU

nodes)

• User code execution on top of custom environments based on needs of science teams for

example on custom base images

• Flexible in terms of installed tooling (i.e., dynamic deployment via API)

These are the apps or tooling which either are deployed or can readily be deployed in the worker plane

as shown in the figure above:

• JupyterLab to interactively execute Jupyter notebooks written mostly in Python

• pygeoapi to programmatically execute user workloads for example Jupyter notebooks

• DVC (Data Version Control) for collaborative data management like ML artefacts

• MLflow or TensorBoard to support Machine Learning operations (MLOps)

• Almost any Docker image can be deployed and run in the worker plane

• fluentd to collect logs for debugging

Further apps are available, for example to show processing results in a FAIRiCUBE Viewer.

The core app deployed in each EOxHub workspace is a managed JupyterLab, allowing the interactive

execution of Jupyter notebooks close to the data. Jupyter notebooks can be executed either

interactively, for example to develop an algorithm, or in a headless way using a REST API provided by

pygeoapi.

FAIRiCUBE Lab provides Cloud Workspaces through the workflow management runtime for docker

containers and relies on object storage to persist data as shown in the figure below. It offers science

teams, projects, communities, etc. a cloud footprint with a subscription – a so-called “Workspace as a

Service”.

2.2.1 Interactive Development Environment - Jupyter Notebooks

The FAIRiCUBE Lab is centred on the usage of Jupyter Notebooks (Figure 11), allowing to execute them

close to the data for simple exchange and sharing of processing modules. The notebooks can either be

executed interactively using a managed JupyterLab environment, for example to develop an algorithm,

or in a headless way using a REST API, meaning without a graphical user interface.

The available data can be accessed in these Jupyter notebooks via different means depending on what

is best suited for the use case at hand and the skill level of the user. The available options span from

direct object storage access via the xcube or xarray Python libraries to the Process API of Sentinel Hub

and Open Geospatial Consortium (OGC) defined interfaces like the Web Coverage Service (WCS) and

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

19 / 52

Web Coverage Processing Service (WCPS). Jupyter notebooks can further utilize libraries like dask to

parallelize and scale processing jobs.

FAIRiCUBE Lab defines (via control plane) different computational profiles, as required by the Use Cases,

which are sets of kernel environments with specific configurations. Configurations differentiate by

variables like available GPU/CPU, memory size or storage capacity. Profiles can also be distinguished by

configuration of different Conda kernels.

The JupyterLab in FAIRiCUBE offers Conda and Conda store, a popular package manager for Python, to

create, manage and install environments with specific sets of packages and dependencies. It is possible

to manage different kernels with different settings for separated projects or profiles.

JupyterLab will be used as a development environment for machine learning models training and

deployment. In combination with MLflow setup this can serve as a complete machine learning lifecycle

development environment.

2.2.2 Data access

Various sources for datasets can be used in FAIRiCUBE. Beside datasets already available in FAIRiCUBE,

Data provided by the users can be also be used. These can be stored locally in an S3 bucket or even

uploaded to other locations, e.g to SentinelHub for further processing. However, it has to be noted that

certain restriction regarding data formats (e.g BYOC) may apply (see also Chapter Error! Reference

source not found.).

In addition, Data delivered via Sentinel Hub API can be integrated to be accessed directly within the

JupyterLab environment and used as input for model predictions or for training and development of

algorithms. Results of model inferences are storable and downloadable from within the FAIRiCUBE

environment or can be transferred elsewhere. Such an access to external data sources can also be made

for other data providers and their offerings (e.g. . WEkEO, and others)

2.2.3 User access

The FAIRiCUBE Lab is deployed at https://eoxhub.fairicube.eu. The authentication is using GitHub as

identity provider as shown in Figure 8.

Figure 8: FAIRiCUBE HUB Login

After a successful login the main tool provided by the FAIRiCUBE HUB Lab is JupyterHub allowing to

start configured JupyterLab profiles as shown in Figure 9. Configuration details are provided below.

https://eoxhub.fairicube.eu/

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

20 / 52

Figure 9: JupyterLab profile selection - Use Case specific workspace profiles

Once the desired Use Case specific workspace profile is selected and the "Start Button" has been

pressed, a user specific server will be started, as shown in Figure 10: Information that FAIRiCUBE

workspace is being prepared. The start-up procedure might require some minutes since the whole

workspace has to be prepared and provisioned.

Figure 10: Information that FAIRiCUBE workspace is being prepared

When the start of the respective server has successfully finished, the User's JupyterLab workspace will

be provided (Figure 11: JupyterLab workspace launcher).

Figure 11: JupyterLab workspace launcher

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

21 / 52

Beside the User's JupyterLab workspace, JupyterHub further provides the JupyterHub Control panel,

which can be reached via the Main Menu entries: File → Hub Control Panel.

This Control panel can be used to Stop the User's server at the end of a working Session (Figure 12:

JupyterHub Control panel). However, every inactive User session will be terminated by the system after

a pre-defined time interval of inactivity (culling). This feature is implemented to avoid unnecessary costs

due to forgotten sessions.

Figure 12: JupyterHub Control panel

In rare cases, e.g. when a user session hangs, it can be necessary to Stop a server manually (Figure

12). Thereafter the server can also be started again manually (Figure 13).

Figure 13: Greeting page after successful Login

If a User logs in and currently has no access rights to any of the Use Case workspaces, the User will be

confronted with the following screen (Figure 14).

Figure 14: Screen presented to Users not configured to a Use Case

It has to be noted here that the access to every FAIRiCUBE Use Case has to be configured manually by

the operators for each Use case via: https://github.com/FAIRiCUBE/flux-config/ e.g. for UC4 this can

be done at: https://github.com/FAIRiCUBE/flux-config/blob/master/fairicubeuc4/customer.yaml before

access is possible for the specific user.

2.2.4 Headless Notebook execution (i.e. non-interactive)

Any Jupyter notebook able to run on the FAIRiCUBE workspace offering (i.e. EOxHub) may also be

executed via API, leveraging the same capabilities (libraries, injected environment variables) and

respecting the same user resource constraints (quotas) as through direct invocation via the JupyterLab

interface.

Detailed information about the usage of this feature is provided at:

https://eurodatacube.com/documentation/headless-notebook-execution. This information will later be

also provided directly within the FAIRiCUBE knowledgebase.

https://github.com/FAIRiCUBE/flux-config/
https://github.com/FAIRiCUBE/flux-config/blob/master/fairicubeuc4/customer.yaml
https://eurodatacube.com/documentation/headless-notebook-execution

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

22 / 52

2.2.5 Machine Learning Platform - MLflow

Each Use Case team decides which apps shall be made available. One of these apps is MLflow.

MLflow is an open-source platform for managing the end-to-end machine learning lifecycle. It allows

the user to track experiments, package code into reproducible runs, and share and deploy models.

MLflow can be incorporated into Jupyter notebooks or other code and supports multiple programming

languages. MLflow provides a comprehensive solution for managing the machine learning lifecycle, from

tracking experiments to deploying models. It is widely used in industry and academia and is constantly

evolving to support the latest trends and technologies in the field of machine learning. At a high level,

MLflow consists of four main components: tracking, projects, models, and registry.

All components can be accessed via Python code in the FAIRiCUBE Lab.

The following components of can be made available for the user:

• MLflow Tracking: allows users to log and track training parameters, code, and output metrics

from their machine learning experiment

• MLflow Projects: provides a standard format for packaging and distributing machine learning

code, including dependencies, in a reproducible way

• MLflow Models: allows users to easily package models in a standard format for deployment

and export in multiple formats

• MLflow Model Registry: allows users to store, manage, and deploy models in a central

repository including versioning, and access control using role-based access control

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

23 / 52

3 Catalog

3.1 Requests - Overview

If a dataset or a process/analysis resource is not already available in FAIRiCUBE via one of the provided

Datastores (e.g. AWS, DIASes, Euro Data Cube, Earth Server Federation, etc.) then a User can issue a

Data Request to get the data ingested into FAIRiCUBE. Two type of Data request are provided by

FAIRiCUBE:

• data-requests: Request for data to be made available within FAIRiCUBE Lab.

◦ New Issue Data request (chapter Error! Reference source not found.)

• resource-metadata: Collect information for processing/analysis (a/p/) resources as well as

propose a change to a codelist.

◦ New Issue Resource request (see chapter 3.3)

◦ New Issue codelist change (see chapter Error! Reference source not found.)

The process to submit a data request or a resource-metadata request is implemented utilizing

specialized Web Interfaces. Triggering a New Issue provides an input form to help the user to submit

and fill all required fields. For the full details of these processes see 'D4_2 Public Listing (Catalog) of

FAIRiCUBE data resources.docx' and 'D4_3 Public Listing (Catalogue) of FAIRiCUBE processing-analysis

resources.docx', respectively.

3.2 Dataset metadata processes

EOX developed a Web-GUI (Figure 15) as an Input Frontend allowing to collect and edit the metadata

for the data resources. The input from this Web-GUI is collected, checked for consistency and errors

and then directly stored as static STAC json items in GitHub. This ensures that the items stored in the

GitHub repository act as the single "Source of Truth". The same interface is also available to edit already

ingested metadata items. Any new data request is addressed by the requester together with one of the

ingestion handling partners. Any progress, problems, discussions, etc. shall be documented in a GitHub

issue associated to the respective Pull Request, so that everybody interested can follow the progress

and provide additional feedback or information as necessary.

Once all metadata and data requirements are fulfilled and confirmed by the data requester, the ingestion

handling partners will perform the merge and the Pull request will be closed. The respective branch in

GitHub will also be closed and deleted. Any issues and discussions associated with the Pull Request are

still available after the branch has been merged and deleted. When the merge is done, the newly

submitted data is available as a STAC item (STAC-fastapi/pgSTAC to provide a STAC API) and available

via the Catalog Client, based on STAC Browser, deployed at https://catalog.fairicube.eu. A detailed flow-

chart of this process is provided in Figure 18. The WebGUI for metadata requests can also be used to

edit & update metadata on already ingested datasets. In Figure 15, a list of available datasets is shown,

each with an "Edit-Button" associated. The available "Link-Button" leads to the respective *.json file

located in the GitHub repository.

https://catalog.fairicube.eu/

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

24 / 52

Figure 15: Data Ingestion Requestt Web GUI – Landing page

Figures 16 and Figure 17 show the input page of the WebGUI, providing the input fields for the

metadata. Depending on the input field, drop-down lists and calendar tools are provided. During

submission of this form certain plausibility checks are performed.

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

25 / 52

Figure 16: Data Ingestion Request Web GUI - Data entry Part-1

Figure 17: Data Ingestion Request Web GUI - Data entry Part-2

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

26 / 52

Figure 18: Data Ingestion Request Procedure

3.3 Resource metadata processes

Creating metadata for a new a/p resource as well as updating existing metadata records is handled via

a dedicated web application. Specifically, the entry point for the user wanting to create/update a

metadata record is the webGUI illustrated in Figure 19 below, analogous in all respects to the webGUI

for managing dataset metadata described in deliverable 'D5.2 Description of the datacube ingestion

pipelines'. This process is detailed in deliverable 'D4.3 Public Listing (Catalogue) of FAIRiCUBE

processing/analysis resources) '. This webGUI is accessible only to authenticated users.

https://github.com/FAIRiCUBE/resource-metadata/tree/main/code/STAC-JSON-generation
https://github.com/FAIRiCUBE/resource-metadata/tree/main/code/STAC-JSON-generation
https://github.com/FAIRiCUBE/resource-metadata/tree/main/code/STAC-JSON-generation

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

27 / 52

Figure 19 : webGUI – Landing page

Adding and updating of the a/p resource metadata happens via a dedicated a/p metadata entry

webform, which is displayed when clicking on the Add or the Edit buttons. When the Edit button is

clicked, the webform is prefilled with the information of the metadata file to be updated.

The a/p metadata entry webform

The Python programming language, the Flask web micro-framework and the Keycloak identity and

access management solution were the software used to create the a/p metadata entry form application.

This form contains all the fields for documenting an analysis and processing resources. Further details

are provided in 'D4_3 Public Listing (Catalogue) of FAIRiCUBE processing-analysis resources.docx'. In

this document only a subset of the web form is provided in Figure 20 and Figure 21.

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

28 / 52

Figure 20 : Screenshot of the a/p metadata webform (1)

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

29 / 52

Figure 21 : Screenshot of the a/p metadata webform (2)

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

30 / 52

3.4 Codelist Change processes

The proposed approach to governance of the codelists accounts for the way STAC works with the list

of values (i.e., using enumerations). However, the integration of external codelists will be investigated

as needed. If possible and sensible (e.g., possible to collaborate with other projects on this),

investigation results will be considered in the next update to D4.3. The codelists are managed in the

'resource-metadata' GitHub repository in the FAIRiCUBE GitHub organization. It is possible to propose

the addition of new codelist values or the updating of existing ones by opening issues in the issue

tracker of this repository, using the ad hoc template illustrated in Figure 22 below. The codelist change

proposal template can be reached at: https://github.com/FAIRiCUBE/resource-

metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml

Figure 22: Codelist change proposal Request

https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

31 / 52

3.5 Catalog UI – STAC Browser using fastAPI

The dynamic FAIRiCUBE catalog can be accessed at: https://catalog.fairicube.eu/?.language=en. The

FAIRiCUBE catalog currently contains metadata of different collections (currently: data-access, ML-

collection, non-ML collection). Efforts to integrate all collections is ongoing. The following Figures below

show various aspects of the catalog interface. The first one, Figure 23, shows the landing age of the

catalog, with its currently 3 metadata collections for data, ML resources, and non-ML resources.

Figure 23: Dynamic Catalog based on STAC -fastapi

Figure 24: Data access catalog – List of dataset resources

Figure 24, show the "Data access page" with a list of dataset resources, while Figure 25 presents an

example of a detailed view of a dataset (here, NUTS3_2021) presenting the view of the geographic

coverage as well other details, like time stamp, projection and bounding box.

https://catalog.fairicube.eu/?.language=en

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

32 / 52

Figure 25: Data access catalog – Example of a dataset (NUTS3_2021)

Figure 26 present a view of the search interface showing the possibilities to provide search criteria to

be applied on the catalog.

Figure 26: Data access catalog – Search interface associated with a dataset

As mentioned above the catalog also currently contains 3 collections, and Figure 27 presents the 2

resource collections of Analysis and Processing resources.

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

33 / 52

Figure 27: Analysis and processing resources catalog - Listing of available resources as collections

In Figure 28 a detailed view of one item of the ML collection, here the "LeNet Classifier", resource is

shown. It details information e.g. about the model, the platform, the framework and much more

Figure 28: Analysis and processing resources catalog – Example of a ML resource

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

34 / 52

The Figure 29 below provides an view on the browse option available in the dynamic Stac browser.

Figure 29: Analysis and processing resources catalog – Feature to browse available datasets

Figure 30 shows an example of a Non-ML resource, providing a detailed description of the resource as

well as a button featuring direct data access.

Figure 30: Analysis and processing resources catalog – Example of a Non-ML resource featuring direct

data access

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

35 / 52

4 Community Collaboration Platform

The aim of this task is to develop an information exchange community collaboration platform, which will

serve as contact points for experts and scientists using datacubes for environmental studies. All partners,

particularly those contributing a use case, provide requirements for the Community collaboration

platform, to best support their ML workflows and processes. In addition, requirements enabling

collaboration, both within and across project teams, are collected and the functionality provided is

designed to support these needs.

Based on the collected requirements, new apps are developed and offered for deployment in users’

workspaces on the FAIRiCUBE HUB. These apps are based on existing Open-Source software, like

MLflow, as much as possible. The apps themselves will be released as Open-Source on GitHub again.

Care will be taken to assure close integration of ML capabilities with the data resources being provided.

The community collaboration platform focuses on the general technological information and knowhow

associated with the setup, usage and processing of datasets on the FAIRiCUBE Hub and the usage of

ML-Tools applied to these datasets.

The community collaboration platform is setup as a collection of markup documents, based on the

MkDoc definition, and collected in the FAIRiCUBE GitHub repository. This sub-repository is structured

according to the requirements provided by "Read The Docs"1, which acts as the target platform for

publication of the community collaboration platform. It allows project internal as well as external users

to submit their information, experiences and code to the platform and therefore share it with others.

"Read The Docs" features the automatic deployment of the documentation, and examples e.g. present

as Jupyter Notebooks, with every change of the documentation source, via the usage of a Webhook.

Therefore, there is no need for an extra maintenance effort to manage the documentation. Changes

are submitted to the GitHub repository, and if accepted by the owner, are then immediately present in

the community collaboration platform. The community collaboration platform GitHub repository is

accessible at: https://github.com/FAIRiCUBE/collaboration-platform. The Read The Docs" based

platform is accessible at: https://fairicube.readthedocs.io. A screenshot of the landing page is shown

below in Figure 31.

1 https://about.readthedocs.com/

https://github.com/FAIRiCUBE/collaboration-platform
https://fairicube.readthedocs.io/en/latest
https://about.readthedocs.com/

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

36 / 52

Figure 31: Landing page of the Community collaboration platform

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

37 / 52

5 Knowledge Base

The Knowledge Base is a toolkit to enable appropriate knowledge of how to apply algorithms and ML

techniques to solve UC’s and similar demands. The core task of the Knowledge Base (KB) is to provide

to the community a set of tools, documents, algorithms, code, tips and tricks, mistakes to avoid,

examples of use and so on. The architecture of the KB is composed by a web-application, a database

and multiple data sources. The web-application is coded using Python and the Django web-framework.

It consists in a set of web pages with static content and an interactive query tool.

The pages:

• “Query Tool” is the engine of the KB. It allows to query KB resources based on predefined or

customized queries.

• “Tips & Tricks” shares solutions adopted / workarounds to overcome various challenges faced

in the UC lifetime.

The “Metadata Catalog” and the “GitHub Project” items in the Menu directly interact respectively with

the Metadata Catalog and with the GitHub repositories of FAIRiCUBE. GitHub, websites and content

created by FAIRiCUBE are used as sources of the data used in Knowledge Base. A PostgreSQL database

is the engine of the query tool and contains thein formation, originating from the metadata of the

resources, on which to make SQL queries. The database does not contain all the metadata fields but

only those utilized to filter the various metadata records, where each record corresponds to a resource.

The result of a query is a table containing, for each resource found, the Name, Description and link to

the resource in the Metadata Catalog. This last is then used for a complete visualization of the resource.

The procedures of reading data on GitHub and ingesting it into this database are done automatically by

a specific Python function. In particular, the ingestion of resource metadata into the PostgreSQL is

executed through several steps

• identification of metadata in the 'resource-metadata' GitHub repository: issues representing

resource metadata (I.e., created through the resource metadata request form) are identified

through the label 'a/p metadata' and become input to step 2.

• Creation of key-value dictionaries: A Python program creates appropriate key-value dictionaries,

associating values to the corresponding metadata fields. These are then passed to a builder,

specific to the resource type, which creates the metadata in STAC-JSON files. Specifically, if

the file is not already present in the metadata folders it is inserted, otherwise the processing of

the next issue is done.

• Insertion of the record in the DB: if the file is not present in the DB (the resource ID is used as

the identifier) it is inserted using an appropriately selected list of fields.

The phase of checking if data are present or not in the folders and DB is necessary in order to write and

load only new files, thus saving resources and avoiding overwriting all files at each execution.

• Process automation: The entire process of creating STAC metadata and ingesting it into the

PostgreSQL database is fully automated using a Python script (executes all steps above

sequentially).

The Query Tool is organized into two parts:

• “Predefined Queries” allows to select from a list of common UC resources queries that have

been prepared to quickly get resources based on most widely utilized search criteria.

• “Custom Queries” allows users to build custom queries by selecting one or more parameters to

filter on and/or by specifying keywords

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

38 / 52

The Tips & Tricks section contains a number of solutions to problems and questions encountered during

the project. This section gives the user the opportunity to quickly solve known problems and also avoid

remaking same mistakes. Also in this case, the data sources are web pages and project resources.

To be noted that a “Self-training Library”, containing a set of links to web pages and project resources,

appropriately selected and organised into categories, aiming to support understanding and reuse of the

project outcomes and resources, originally designed to be included as an additional section of the

Knowledge Base, has been subsequently moved into the FAIRiCUBE documentation section of the

Community Collaboration Platform.

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

39 / 52

6 FAIRiCUBE GitHub Repository

FAIRiCUBE has setup and operates a GitHub repository (https://github.com/FAIRiCUBE) to manage the

large amount of information, configurations, know-how and code collected and developed in the project.

Currently this repository holds 24 sub-repositories.

Table 1: List of GitHub repositories used by FAIRiCUBE

browser STAC browser configured for FAIRiCUBE (STAC-fastapi)

catalog A repository of publicly available collections that are available for

access through FAIRiCUBE Hub2. Note that collections in this

registry are available via FAIRiCUBE Hub, but owned and

maintained by different providers.

collaboration-platform Community Collaboration Platform repository

common-code Common and useful code for all use cases

data-requests This space is used for issues and documentation of data ingestion

as part of FAIRiCUBE WP5 work.

FAIRiCUBE-Hub-issue-tracker This space is used for issues and discussions on general

FAIRiCUBE topics. In addition, issues are being utilized within a

few of the other FAIRiCUBE Repos:

flux-config This repository holds the teams and profiles configuration of

EOxHub on the NILU AWS tenant available at

https://eoxhub.fairicube.eu.

issues-yaml-generator A tool that downloads GitHub issues from the data-requests

repository and generate yaml files from the response markdown.

Knowledge-Base This repository is intended for sharing our current understanding

and getting feedback on the proposed architecture, structure and

functionalities of the KB as well as related look & feel.

lessons-learnt3 FAIRiCUBE lessons learnt consist of use cases challenges and

related successes, failures, solutions and workarounds,

documented using a dedicated template.

project-updater A now obsolete python tool that updates number and text fields in

Data Access project FAIRiCUBE from Inventory.xlsx using github's

GraphQL API mutations.

2 https://fairicube.eu/

3 https://github.com/FAIRiCUBE/lessons-learnt

https://github.com/FAIRiCUBE
https://fairicube.eu/
https://eoxhub.fairicube.eu/
https://github.com/FAIRiCUBE/lessons-learnt
https://fairicube.eu/
https://github.com/FAIRiCUBE/lessons-learnt

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

40 / 52

resource-metadata Manage information for processing/analysis resources, specifically:

issue form to collect md requirements, issue template to manage

codelists

Schemas For some data provision options, additional schema files are

required (e.g. when extending the Coverage data models as

required, XSD files are required to document the extensions).

stac-browser This is a Spatio-Temporal Asset Catalog (STAC)4 browser for static

catalogs. Minimal support for APIs is implemented, but it not the

focus of the Browser and may lead to issues.

stac-GUI-backend Repository for the stac-GU_backend developments

stac-GUI-front Repository for the stac-GU_frontend developments

uc1-eodash-catalog Template for creating eodash catalog repository

uc1-eodash-client This is a template repository for configuring and deploying

eodash-v55

uc1-urban-climate FAIRiCUBE Urban adaptation to climate change Use Case

uc2-agriculture-biodiversity-

nexus

FAIRiCUBE Agriculture - Biodiversity Nexus Use Case

uc3-biodiversity-occurence FAIRiCUBE Occurrence - Biodiversity Use Case

uc3-drosophola-genetics FAIRiCUBE drosophola-genetics Use Case

uc4-building-stock FAIRiCUBE Building Stock Use Case

uc5-occurence-cubes Validation of Phytosociological Methods through Occurrence Cubes

4 https://github.com/radiantearth/stac-spec

5 https://github.com/EOX-A/eodash-v5

https://github.com/radiantearth/stac-spec
https://github.com/EOX-A/eodash-v5
https://github.com/radiantearth/stac-spec
https://github.com/EOX-A/eodash-v5

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

41 / 52

7 Access to external resources

External resources often provide data and/or information which is not readily available within

FAIRiCUBE. However, such resources can be accessed as external resources, and their data/information

holdings can be utilized. One such external resource, already integrated into the FAIRiCUBE setup, is

the Sentinel Hub. The Sentinel Hub not only provides access to Sentinel data, but also provide methods

and tools for working with the large amount of data available. Detailed information about the usage of

this feature is provided at: https://eurodatacube.com/documentation/choose-your-workflow. This

information will later be also provided directly within the FAIRiCUBE Community Collaboration Platform,

accessible via the Knowledge Base.

7.1 On-the-fly data cube access: Sentinel Hub

RESTful APIs for seamless access to the data in ARD format.

• RESTful APIs for seamless access to the data in ARD format

◦ Data access through a unified API

◦ Whole archives of Sentinel, Landsat and Modis data available on-line

◦ Any custom raster data can be added

◦ Fast access, for real-time consumption and for intense compute processes such as

machine learning

• More than data access

◦ Package your algorithm with a request to get the results you need

◦ Let us do the work but keep control over the processing

◦ Cloud optimized and robust system, reducing processing time, and costs

◦ No need for super computer or huge storage on user's side

• Cloud-agnostic

◦ Currently operational at AWS, CreoDIAS and Mundi

◦ Data from different sources is available in one place in the same manner

• Proven scalability

◦ 100-200 million processed requests per month

◦ Users around the globe

Detailed information about the usage of this feature is provided at:

https://eurodatacube.com/documentation/choose-your-workflow#on-the-fly-data-cube-access-

sentinel-hub. This information will later be also provided directly within the FAIRiCUBE Community

Collaboration Platform, accessible via the Knowledge Base.

7.2 Mass processing service: Sentinel Hub Batch Processor

One of the main features offered by Sentinel Hub is the mass processing EDC Sentinel Hub service with

asynchronous response. This can be accessed via the EDC Sentinel Hub Batch Processing API. The

service allows you as a user to:

• Request data at large scale – either spatial or temporal

• Run your algorithm for a whole continent

• Pre-process vast amount of data

https://eurodatacube.com/documentation/choose-your-workflow
https://eurodatacube.com/documentation/choose-your-workflow#on-the-fly-data-cube-access-sentinel-hub
https://eurodatacube.com/documentation/choose-your-workflow#on-the-fly-data-cube-access-sentinel-hub

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

42 / 52

• Execute, go for a coffee and have results ready

Detailed information about the usage of this feature is provided at: https://docs.sentinel-

hub.com/api/latest/#/BATCH_API/batch_processor. This information will later be also provided

directly via the FAIRiCUBE Community Collaboration Platform, accessible via the Knowledge Base.

7.3 Pre-generated data cubes with xcube

This provides a Python-based solution for generating, exploiting, and publishing data cubes in an easy

way. This allows a user to utilize Sentinel, Landsat, and MODIS archives through Sentinel Hub as data

source, and additional data sets, e.g. from ESA CCI or Copernicus Services. Detailed information about

the usage of this feature is provided at: https://eurodatacube.com/documentation/choose-your-

workflow#pre-generated-data-cubes-with-xcube-python-based-solution-for-generating-exploiting-and-

publishing-data-cubes. This information will later be also provided directly within the FAIRiCUBE

Community Collaboration Platform, accessible via the Knowledge Base.

7.4 Sentinel Hub Dashboard

The Dashboard provides access to the Configuration Utility tool, your collections, and the information

about your usage of the services. You can also access your user settings and billing information. Further

information is provided: https://www.sentinel-hub.com/develop/dashboard

7.5 Data uploading – Example: Bring Your Own COG API

Bring Your Own COG API (or shortly "BYOC") enables you to import your own data (or other external

data not available directly) in Sentinel Hub and access it just like any other data you use. To be able to

do so, the following conditions should be met:

• Store your raster data in the cloud optimized GeoTIFF (COG) format on your own S3 bucket in

the supported region.

• Configure the bucket's permissions so that Sentinel Hub can read them.

• Import tiles using the Dashboard or API.

Further information is provided at: https://docs.sentinel-hub.com/api/latest/api/byoc and

https://sentinelhub-py.readthedocs.io/en/latest/examples/byoc_request.html. This information will

later be also provided directly within the FAIRiCUBE Community Collaboration Platform, accessible via

the Knowledge Base.

https://docs.sentinel-hub.com/api/latest/#/BATCH_API/batch_processor
https://docs.sentinel-hub.com/api/latest/#/BATCH_API/batch_processor
https://eurodatacube.com/documentation/choose-your-workflow#pre-generated-data-cubes-with-xcube-python-based-solution-for-generating-exploiting-and-publishing-data-cubes
https://eurodatacube.com/documentation/choose-your-workflow#pre-generated-data-cubes-with-xcube-python-based-solution-for-generating-exploiting-and-publishing-data-cubes
https://eurodatacube.com/documentation/choose-your-workflow#pre-generated-data-cubes-with-xcube-python-based-solution-for-generating-exploiting-and-publishing-data-cubes
https://www.sentinel-hub.com/develop/dashboard
https://docs.sentinel-hub.com/api/latest/api/byoc
https://sentinelhub-py.readthedocs.io/en/latest/examples/byoc_request.html

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

43 / 52

8 The rasdaman Datacube Deployment

Datacubes are the natural data structure for space/time-varying phenomena, such as 1D sensor

timeseries, 2D geo imagery, 3D x/y/t image timeseries and x/y/z geophysical data, 4D x/y/z/t

atmospheric and ocean data, and so on. Among the advantages of datacubes are: per sensor / data

source a single cube instead of zillions of files; homogenized semantic data description making them

analysis-ready; a single paradigm across all dimensions, allowing cross-dimensional data fusion.

Constructor (formerly: Jacobs) University (CU) provides datacube management and analytics based on

the rasdaman (“raster data manager”) engine. In this section, first the positioning in the overall project

landscape is explained, followed by a brief overview of rasdaman components, services, and

functionality. Finally, the current status is summarized. The rasdaman deployment is part of the

FAIRiCUBE Hub which offers the two technology pillars foreseen in the Grant Agreement:

"In order to assure that FAIRiCUBE functions across diverse technology providers, we have integrated

some of this diversity within the consortium, including two major European experts on datacube stand-

ardization with their competing products. We believe that the specific expertise of these players com-

plements each other, while at the same illustrating the power of standards to enable compatibility

across systems:

• Rasdaman has pioneered management and analytics of massive multi-dimensional arrays
("datacubes"), providing powerful tools to enable easy access and processing to these com-
plex data sources

• EOX has made a name for itself enabling access to gridded data and workflow management
runtime for Earth Observation services and apps for example in the Euro Data Cube
(https://eurodatacube.com/)

As both technology stacks utilize the OGC datacube standards CIS and WCS (plus WMS and WMTS –

not datacube standards per se, but useful), data can easily be accessed from both sides, enabling users

to utilize the frontend technology best suited to their requirements.

8.1 Rasdaman in the Project Landscape

In the overall orchestration the rasdaman components are integrated as highlighted in Figure 32. The

yellow area on the right-hand side reflects the backend for datacube management and analytics, the

bottom-left yellow area the frontend components of rasdaman (catalog, Jupyter notebooks, data

requests, user-provided server-side code, etc.).

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

44 / 52

Figure 32: rasdaman in the FAIRiCUBE HUB Architecture, with rasdaman parts highlighted

8.2 Design Philosophy

The rasdaman approach is to support and advance FAIR data, ultimately pushing all technicalities

“behind the curtain” so that users can focus on their real task on hand. In particular, users should NOT

need to know and deal with

• Location: where in the federation do my data sit, and do I have to bring them together for

fusion?

• Zillions of files: rather than a huge number of files with cumbersome file conventions to be

understood, let there be one single spatio-temporal datacube per variable (such as tempera-

ture) or group of variables (such as x/y wind components).

• Divergent resolution, coordinate reference systems, and other low-level but important data

properties: the system knows them anyway, so can generate a homogenized, analysis-ready

view.

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

45 / 52

• …and many more such aspects. Notably, research on how to make data more analysis ready is

a field of active research and standardization, with CU contributing actively through publica-

tions6 and input & guidance in standards development7.

For achieving this, the highly divergent input data have to be analysed and understood first (see D5.2),

which puts more effort on the data provider side – however, to the benefit of the data users who had

to do this job by themselves in the past. Therefore, rasdaman puts much emphasis on capturing as

much of the datacube semantics as possible, and utilizes that internally not only for easier-to-use

service, but, e.g., also to optimize queries.

8.3 The rasdaman Engine

The central component rasdaman workspace is the rasdaman engine, a multi-parallel distributed

database system specialized on the management and analytics of massive multi-dimensional arrays

(rather than conventional tables). Access interfaces consist of a domain-neutral array query language

(which ISO has adopted as Part 15 / Multi-Dimensional Arrays of the SQL standard8) and a geo-

specialized datacube query language, WCPS, which additionally knows about the semantics of space

and time, coined by CU and adopted by OGC9, ISO10, and EU INSPIRE11 (optional).

In the server, incoming queries undergo a series of highly effective optimizations on data (configurable

tiling, compression, etc.) and processing (logical and physical query optimization, parallelization,

optimized distributed processing, semantic caching, etc.). The resulting queries are efficient close to the

theoretical limit. Altogether, rasdaman’s GreenCubes® green computing approach, when compared to,

e.g., Python, makes evaluation faster and therefore more energy efficient. Server functionality can be

extended with any external code, written in languages such as Python, C++, Java. This allows for

faster evaluation (close to the data source) and providing functionality without disclosing the code. The

complete engine stack is implemented by the rasdaman team, making rasdaman a genuine European

technology asset.

8.4 Data & Ingestion

Based on the ingestion process (described in the WP5 deliverables D5.1 and D5.2), datacubes have

been established as requested by the Use Cases. The first step in the ingestion process, as per common

rule in FAIRiCUBE, is the creation of the Data Request via the WebGUI and feed it with all relevant

6 P. Baumann: On the Analysis-Readiness of Spatio-Temporal Earth Data and Suggestions for its

Enhancement. Environmental Modelling and Software, Volume 176, 2024,

https://doi.org/10.1016/j.envsoft.2024.106017

7 https://myogc.org/go/coveragesDWG and other worklines

8 https://www.iso.org/standard/84807.html

9 https://www.ogc.org/standard/wcps/

10 https://www.iso.org/standard/83611.html

11 https://knowledge-base.inspire.ec.europa.eu/ogc-compliant-inspire-coverage-data-and-service-

implementation_en

https://doi.org/10.1016/j.envsoft.2024.106017
https://myogc.org/go/coveragesDWG
https://www.iso.org/standard/84807.html
https://www.ogc.org/standard/wcps/
https://www.iso.org/standard/83611.html
https://knowledge-base.inspire.ec.europa.eu/ogc-compliant-inspire-coverage-data-and-service-implementation_en
https://knowledge-base.inspire.ec.europa.eu/ogc-compliant-inspire-coverage-data-and-service-implementation_en

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

46 / 52

information about the dataset. Tracking and management of the data request, as well as the creation

of the corresponding STAC metadata item, is done by using this GitHub mechanism. From this form a

machine-readable description is prepared listing input data, the datacube to be generated and updated

automatically thereafter, and other parameters. This so-called ingredients file is used by rasdaman to

drive the automatic ingest process. After ingestion, a validation process is performed first by the CU

team, then by the UC members to ensure the validity of the dataset. Only after successful finalization,

the relevant GitHub issue is then closed. See D5.2 for details. In addition to these datacubes, further

items had to be established, such as ML models stored server-side to be invoked in queries (see next).

8.5 Machine Learning

The models created by the Use Cases can be run directly inside the rasdaman server. Via the extensibility

feature mentioned above the PyTorch framework (upon recommendation by WER) has been integrated

into rasdaman so that now ML models build with PyTorch can be activated from a query, together with

the input data for the inference.

Implementation was done using the rasdaman extensibility mechanism of User Defined Functions

(UDFs). This feature allows dynamic loading of external code at query time, where this functionality can

be invoked seamlessly integrated as if it were a function of the query language. To this end, some

adapter code has to be written, originally in the only supported language, C++.

For PyTorch, the initial idea was to use torch directly which is implemented in C++ and, therefore,

allows for a direct coupling. It turned out, however, that PyTorch is not just a python wrapper but

performs own data preparation, and so the torch coupling delivered wrong results. Consequently, it was

necessary to add Python as an additional language for UDFs. This was accomplished in the project,

leading to a dual result:

• Via a UDF function nn.predict(), models that have been registered with rasdaman can be passed

to PyTorch as part of the query, and the result can be processed further in the query or delivered

directly.

• In general, any Python code can act as a UDF in rasdaman. As Python is so common among

data scientists such a Python coupling provides an additional advantage for them.

Figure 33 shows a sample model application to a region in the Netherlands using a model provided by

WER. This close integration allows a very simple, interactive application of models to any datacube, any

region, and any time – if desired, combined with the full set of WCPS operators.

Current status is that models, in order to be available in queries, have to be provided on the server in

a designated directory by someone authorized (such as WER). In future, it is planned to generalize this

to also allow passing of models on the fly, as part of a query. Further, models should migrate into the

database and get attributes which allow users to meaningfully select their model of choice. One such

criterion is the region (in space and time) of applicability of a particular model (minimizing the risk of

applying a machine learning model on out-of-distribution data).

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

47 / 52

Figure 33: Sample model application as a query result (left) and the schematic WCPS query

generating it

8.6 APIs & Clients

Manifold geo APIs are offered for clients, with strong support (OGC Reference Implementation, INSPIRE

Good Practice, etc.), all compliant with OGC standards WMS, WMTS, WCS, WCPS and the OGC specs in

progress, OAPI-Coverages and GeoDataCube. This enables a wide range of 3rd party clients to

effortlessly tap into datacubes, such as map navigation (ex: Leaflet), virtual globes (ex: NASA

WorldWind, Microsoft Cesium), Web GIS (ex: QGIS, ArcGIS), and high-end analytics (ex: GDAL, Python,

R, openeo, ML). ￼

Additionally, the rasdaman FAIRiCUBE dashboard12 offers a configurable frontend which can be set up,

through a single JSON file, ranging from simple kiosks to powerful expert mode. Figure 34 shows the

current configuration for the project, with several features in use:

• The simplest way to view data is through the blue buttons at . These are configured to display

a dataset on the central background map; in the Figure, forest types have been selected for

display, over ESA’s Sentinel-2 true colour image.

• For datacube discovery, search and catalog widgets are available by clicking the esp. blue tiles

. The hierarchically structured catalog is shown in the Figure as well, including all datacubes

available to the project partners: Cubes ingested (cf. WP5), cubes made available via the

EarthServer federation (such as the CoperniCUBE datacubes based on the Copernicus dataspace

ecosystem), and cubes ingested for sister project AD4GD.

• A timeslider  is shown at the bottom of the dashboard when datacubes with a time axis are

displayed. Any point in time or time range can be selected for display. Similar selection mecha-

nisms (not shown here) exist for height/depth selection if datacubes shown have a vertical axis.

• Power users can enter queries in the WCPS query editor . In the example shown, a classifi-

cation of coastal regions in the Netherlands is performed, highlighting (in red) areas with near-

coast settlements at low elevation, hence endangered by rising sea levels . The query per-

forms, invisible to the user, distributed data fusion between a local dataset (settlement) and

EU_DEM sitting in CoperniCUBE.

As can be seen in the catalog window in Figure 34, currently the total of data amounts to about 1.6 PB.

Further functionality is available in addition, and more widget types are being added continuously. For

example, there is a juxtapose comparison of different layers of height/time/etc, and wind barbs (arrows)

as used in aviation will become available soon.

12 https://fairicube.rasdaman.com/rasdaman-dashboard

https://fairicube.rasdaman.com/rasdaman-dashboard/
https://fairicube.rasdaman.com/rasdaman-dashboard

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

48 / 52

Figure 34: sample rasdaman dashboard screenshot (see text for explanation of numbers)

8.7 Development Environment

A datacube development ecosystem for developing python- and ML-based applications or doing zero-

coding analytics was prepared for the Use Cases:

• Jupyter notebooks. A fully fledged Jupyter Lab installation13 is available on the rasdaman

FAIRiCUBE server, configured after the advice of the WER AI experts (Figure 35). It can be

invoked from anywhere via its Web API, but Use Cases have also own logins to the server, to

operate close to the data sources. Headless operation is possible, i.e. Jupyter notebooks can be

start/run a command line/script.

13 https://fairicube.rasdaman.com/jhub/user/jupyter/lab

https://fairicube.rasdaman.com/jhub/user/jupyter/lab?
https://fairicube.rasdaman.com/jhub/user/jupyter/lab

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

49 / 52

Figure 35: Jupyter lab environment on FAIRiCUBE rasdaman server

• OGC-compliant Web APIs. As listed above, the rasdaman stack supports OGC WMS, WMTS,

WCS, and WCPS, and additionally INSPIRE-compliant data. Further, the not yet adopted OGC

specifications of OAPI-Coverages and GeoDataCube are supported experimentally. An additional

Web developer frontend14 (Figure 36) aims at supporting developers. It operates on the level

of Web requests, allowing developers to compose requests in a point-and-click fashion and then

copy the resulting request string.

Figure 36: rasdaman Web GUI supporting interactive Web request generation

14 https://fairicube.rasdaman.com/rasdaman/ows

https://inspire-wcs.eu/
https://fairicube.rasdaman.com/rasdaman/ows

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

50 / 52

• ChatCUBE. Finally, based on the WCPS consulting CU gave over time, a chatbot named Chat-

CUBE was implemented using OpenAI for explaining WCPS (Figure 37). For experts, this en-

hances productivity (“what was the exact syntax?”); for non-experts it allows immersion at their

own pace (“how can WCPS aggregate?”). ChatCUBE is available in beta on the rasdaman project

landing page15.

Figure 37: rasdaman Web GUI supporting interactive Web request generation

8.8 Support

Several webinars have been held to the FAIRiCUBE partners, addressing standards concepts, how to

use datacubes in rasdaman, new functionality added, etc. GitHub Issues are used for exchange, but

also direct email contact with the CU team.

15 https://fairicube.rasdaman.com/

https://fairicube.rasdaman.com/

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

51 / 52

8.9 Integration with the FAIRiCUBE Hub

At the time the report was due, the high-level concept for integration was given to CU by the

coordinators: For each rasdaman datacube, a STAC record is generated referencing the datacube;

conversely, in the datacube metadata a backlink to its STAC was foreseen. Based on this, refinement

was done between CU and EOX which allowed a first demonstration at the review. Meantime, integration

is growing, and routine procedures are in place.

8.10 Access Control

Commonly, access control contains the aspects of authentication (to verify authenticity of a user) and

authorization (what an authenticated user is allowed to do). For authentication, rasdaman offers a

built-in user/password management. An alternative mechanism, based on some external identity

provider such as eduGAIN, has been explored in an OGC testbed earlier. In FAIRiCUBE, GitHub has been

proposed as an option (after original deliverable deadline, so this is reflecting the time of update of this

deliverable). This has to be explored and agreed further as a next step.

For authorization, the rasdaman database engine employs standard Role-Based Access Control (RBAC)

enhanced with datacube-specific features. RBAC is based on privileges the system offers (in case of

rasdaman datacubes: read datacube, write datacube, perform OGC W*S operations, etc.). Users can

get assigned such privileges directly. Alternatively, roles can be defined which bundle privileges. Such

roles then can get assigned to users, granting these users the privileges coming with the roles.

Specifically, for datacubes, this concept common to databases has been extended to define privileges

not only on complete datacubes, but on space/time regions inside. Just like in SQL, the query language

provides statements so that the administrator (having appropriate privileges) can control such access

rules.

At ingestion time, access rights get assigned to the objects created which henceforth determine the

degree of availability to various user groups. As at this time it is still undecided under what regime the

data will be available to the public, in rasdaman several roles have been defined in preparation. Project

partners have logins, further ones can be added anytime. This way, access privileges can easily be

adjusted once a common policy becomes available. Currently, access is denied to the general public,

but this can be changed anytime as soon as the project has a general policy.

On top of these technical mechanisms, an overall project governance decision needs to be made on

accessibility of the FAIRiCUBE datasets (obviously, with a bias towards open access). This is still pending

at the time of this deliverable update. Currently, access is limited to project partners; this will be changed

anytime from a technical perspective, depending on the outcome of the governance discussion.

8.11 Development outlook

The rasdaman pillar in FAIRiCUBE is fully operational and accessible to the partners, including ML

integration and JupyterLab. In the strive for analysis-readiness, some further research needs have been

spotted:

• Enriched semantics of datacubes by differentiating between numerical and categorical data; in

standardization, this is foreseen in Sensor Web Enablement (SWE), and support for it was

implemented in rasdaman. However, work remains to be done as (i) the SWE model part is

rather complex, from a coverage perspective, and has certain shortcomings and (ii) more

FAIRiCUBE: D4.4 Operational FAIRiCUBE HUB

52 / 52

information is to be added, see next. For example, the multispectral image example in the SWE

Common example16 contains URLs that no longer resolve (such as http://sweet.jpl.nasa.gov;

the SWEET Ontology has long been transitioned to BioPortal17), lacks unit of measure, and

defines pixel intensity as having type „count“ while it should be „quantity“. However, in the SWE

Common18 textual specification which actually comprises the standard, correct and complete

examples are available, underscoring the necessity of both text and examples. On a side note,

some units are quite complex, such as Radiance in Sentinel-2 data whose correct uom is "W.m-

2.Sr-1.um-1" (watt per steradian per square metre), but this is due to the underlying physics.

This complexity is not generally a concern as the data of interest to Use Cases tend to have

simpler uom such as degree Celcius (“CEL”) or meter per second (“m/s”).

Significant progress has been achieved in FAIRiCUBE towards a consistent modelling, but this

needs to be continued and documented as a best practice in the second project period.

• Due to erroneous interpretation of the Sensor Web Enablement (SWE) Common data models,

relevant semantic information is lost. The element foreseen for provision of information about

the variable (also referred to as Observable Property) the band provides is misused for provision

of the datatype. This section of the encoding must be revisited and aligned with the

requirements of the SWE Common data models.

• While the OGC coverage standard, CIS, through the utilization of SWE Common types is bound

to the use of UCUM for provision of UoM, other alternatives have developed since the publication

of the SWE Common models. An example of this is QUDT19, that takes a more semantic

approach, and provides URIs for each concept. Altogether, this requires further work in

standardization to establish and communicate common best practices.

• Based on particular requests for time handling, the standardized concept of gridded coverages

was extended with information about “period of validity” and “temporal query granularity”. This

has been implemented, a publication is under way, and an interesting carry-over into spatial

coordinates is being investigated which might solve the age-old discussion about “pixel-in-

center” versus “pixel-in-corner” as well as “pixel-is-area” and “pixel-is-point”.

• ML has been integrated, forming AI-Cubes, however this needs further work. At this stage,

one model has been received from WER, but more models are needed to validate the new

service feature.

16 https://schemas.opengis.net/sweCommon/2.0/examples/image_data.xml

17 https://bioportal.bioontology.org/ontologies/SWEET

18 https://portal.ogc.org/files/?artifact_id=41157

19 https://qudt.org/

http://sweet.jpl.nasa.gov/
https://schemas.opengis.net/sweCommon/2.0/examples/image_data.xml
https://bioportal.bioontology.org/ontologies/SWEET
https://portal.ogc.org/files/?artifact_id=41157
https://qudt.org/

