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Disclaimer 

This document is issued within the frame and for the purpose of the FAIRICUBE project. This project 

has received funding from the European Union’s Horizon research and innovation programme under 

grant agreement No. 101059238. The opinions expressed and arguments employed herein do not 
necessarily reflect the official views of the European Commission. 

 
This document and its content are the property of the FAIRICUBE Consortium. All rights relevant to this 

document are determined by the applicable laws. Access to this document does not grant any right or 
license on the document or its contents. This document or its contents are not to be used or treated in 

any manner inconsistent with the rights or interests of the FAIRICUBE Consortium or the Partners’ 

detriment and are not to be disclosed externally without prior written consent from the FAIRICUBE 
Partners. Each FAIRICUBE Partner may use this document in conformity with the FAIRICUBE Consortium 

Grant Agreement provisions. 
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1 Introduction 

WP3 aims to provide guidance, recommendations, technical expertise, and implementation support 

expertise to all use case efforts in terms of data analysis and processing. While the tasks will be executed 

by the use case developers, support will be given to assist in all data handling steps after ingestion and 
provision on both the Rasdaman- and EOxHub services as part of FAIRiCUBE’s overall data and model 

services. Special emphasis is given to the data-driven machine learning (ML) model generation. 
 

This deliverable needs to be seen as one item of a classical and logical execution of a machine learning 
application. Given the availability/ingestion of data, we first perform an exploratory data analysis to get 

familiar with the data, analyse statistical parameters and distribution, and check for completeness, 

outliers and other characteristics which could be relevant to the choice of the machine learning. This in-
depth data analysis is covered by the deliverable D3.1 UC exploratory data analysis. 
 
Subsequently, the raw data might require conversion into features through a data engineering process. 

This could imply a combination of several input data sources or applying simple mathematical operations 

to enhance the meaningfulness of the raw data given the relationships that are to be revealed. The more 
a priori information is available, the better the feature engineering process can be performed. Based on 

the findings from the exploratory data analysis, the formulation of the research question, and the 
relationship between raw data sources/features, machine learning algorithms can be recommended to 

establish a baseline model if this is not provided by use case owners. Starting from the most efficient 
machine learning algorithm, more advanced ML methods can be identified to form a machine learning 

strategy. Several different methods might also be tested to recommend a method based on 

computational demands and accuracy of the ML output. Typically, the testing of ML algorithms is 
performed on a subset of the original input data or selected cases. The feature engineering process, 

testing of ML algorithms and the recommendation of a cascade to ML algorithms, as well as analysing 
the output of ML methods is covered by deliverable D3.2 Machine learning strategy specific for each use 
case. 

 
As the FAIRiCUBE Hub ultimately wants to also provide resource estimations and guidance for ML 

applications, we want to collect and share computational parameters, timings, and requirements and 
give an outlook on the expected scalability of the ML problems defined by the use cases. For each ML 

algorithm identified and executed as described in D3.2 we collect information on e.g., disk storage, CPU 

runtime, main memory consumption, describe the hardware and environment where the ML algorithm 
is executed on and list essential libraries that are needed to exactly replicate the ML application. This 

technical documentation of the ML execution is covered in this deliverable D3.3 Processing and ML 
applications. 
 
In summary, the exploratory data analysis (D3.1) can be seen as essential input to the development of 

a UC-specific machine learning strategy (D3.2) whereas the technical description in D3.3 (this document) 

acts as a reference to follow up on the execution and serves as valuable input to estimate the demands 
for other ML applications.  
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2 Processing and ML applications  

Monitoring computational resources can provide three significant advantages. Firstly, it allows us to 

provide insights and estimations to other users who may be running similar jobs on similar hardware. 

This information can serve as a starting point to scale it for different hardware configurations. This will 
help the project planning of especially computational heavy tasks. Usually, regular processing and 

several basic machine learning methods scale linearly.  
 

Secondly, information on hardware requirements and resource usage can directly translate into costs of 
cloud resources which is also frequently unknown during the project planning. Finally, collecting 

information on the actual performance and demands of computational tasks can be the starting point 

for numerical optimization especially when expectations are not met by the measures. Optimization can 
of course include the careful balance of computational efforts/needs with the output metrics as well. Not 

in all cases is the optimal solution the most accurate one but a well-selected compromise of resources 
and sufficient accuracy.  

 

In this chapter, we will begin by providing a brief overview of the monitoring methods that we applied 
(chapter 2.1). Subsequently, we will present a detailed account of the computational tasks/jobs 

performed for each use case, along with hardware/software resources consumed during the execution 
(chapter 3.1 - 3.4.). As use case 2 (UC2) has spent significant resources on the development of user-

defined functions (UDFs) which are executed close to the Rasdaman database engine and lay out the 
foundation of machine learning applications, there will be a main focus on the UDF development (chapter 

3.2). All other use cases did not significantly design and/or deliver processing steps and will focus on 

the listing of the processing resources. 

2.1 Monitoring methods  

Monitoring of computational resources and demands have long been driven by limitations of the 

availability of computational resources. Nowadays, there seems to be no limit concerning the availability 
but more on the financial aspect of securing [cloud] resources and the environmental implications of 

executing computational jobs. In the following, we have listed parameters and methods to measure 
these parameters that appear useful to us to estimate costs and also prepare environmental impact 

assessments as a result of the energy consumption. The monitoring methods focus on the execution on 

local (laptop) or pseudo-local (single virtual machines) hardware where direct access to build-in 
monitoring tools are available (see chapter 2.1.1) or where we can execute automatic resource 

monitoring scripts (see chapter 2.1.2). 

2.1.1 Manual 

Table 1 : Monitoring methods and tools 

 How to monitor 

Storage  

Data size in grid points Variable allocation, variable monitoring in IDE, only the main variables 
need to be listed  

Data size in MB/GB Allocation on disk 

Main memory  

Available on machine/node Linux: Settings / About (View information about your system) 

Consumed on 
machine/node 

Top / Htop in % 

Compute resources  

Description of CPU/GPU Linux: Settings / About (View information about your system) 

Compute wall time Either count with clock or include time measures in script 
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Max. energy consumed Linux: powertop (Power est.),  
MacOS: power metrics command 

CO2 consumed CO2 conversion factor available? 

Network  

Network traffic in MB/GB  

Cost   

Storage not applicable directly if executed on local resources, for AWS we can pull 
out numbers based on the information provided above 

Compute   

Network  

Software environment  

Programming language self-explanatory 

Essential libraries main libraries/dependencies that are used in execution 

 

Monitoring on EOX Hub requires an account associated with the hub in question. Firstly, a GitHub account 
is required with access to the FAIRiCUBE project. Secondly, you communicate your GitHub to EOX to 

access the urban-climate hub in our case (i.e., UC1 hub). Finally, you connect to 
https://eoxhub.fairicube.eu using your GitHub credentials. Once connected, the user can create, run, 

and share Jupyter notebooks using AWS (Amazon Web Services) resources configured by EOxHub.  
 

AWS is a service that provides cloud-computing resources. The payment model for AWS is based on the 

pay-as-you-go principle, which means that you are only charged for the services you use when running 
computations using AWS resources. In addition, one can specify a configuration that is planned to be 

used (memory, clock speed,…). The exact AWS allocated CPU changes with time, and it is hard to identify 
the exact used type of CPU. However, using the billing report (see Figure 1), the CPU that was most 

likely used during UC1 processing is “c5.4xlarge”1 (with memory limited to 7GB and clock speed to 1.8 

GHz following the configuration of the profile). Interestingly, the memory usage is provided in real time 
in the EOXhub app, and JupyterHub interface, so we can check the exact memory usage of a given 

process. 
 

 

 
Figure 1 : AWS billing report for April 2023 (where most of the work has been run). 

2.1.2 Automatic 

To automatize resources monitoring we have implemented a python library called Measurer.  Measurer 
can be simply called from any python source code to compute parameter values.2 In Table 2, we report 

 
1 Check the complete list here: https://aws.amazon.com/ec2/instance-types/ 
2 https://github.com/FAIRiCUBE/common-code/tree/main/record-computational-demands-

automatically 

https://eoxhub.fairicube.eu/
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each measure and how it is calculated in our library. Note that at this level our library works only on 

python scripts. 

 

Table 2 : How does Measurer compute the metrics values? 

Metric How is it computed in Measurer? 

Data size (MB) Compute the difference between data added to 

disk and data removed from disk. 

Data size in grid points Return the ‘shape array’ of the input data  

Largest allocated array in grid points Return ‘shape array’ of the largest array in the 

code 

Main memory available (GB) Return the system’s virtual memory available 
variable using ‘psutil’ library 

Main memory consumed (GB) Return the memory consumed between two lines 

of code using the ‘tracemalloc’ library 

The sum of allocated variable sizes (GB) Return the size of the total allocated variables in 

the code 

Description of CPU/GPU Use the ‘platform’ library to return machine and 
processor details 

Wall time in seconds Return total time using the ‘time’ library  

Energy consumed (kW) Use the EmissionsTracker function from the 
‘codecarbon’ library 

Network traffic (MB) Use the ‘net_io_counters’ function from the ‘psutil’ 

library 

CO₂-equivalents [CO₂eq] (kg) Use the EmissionsTracker function from the 
‘codecarbon’ library 

Programming language Returns e.g. ‘python’ 

Essential libraries Read lines in the code that contain ‘import’ and 
return the list of libraries 

2.1.3 Validation of the automatic resource monitoring 

In this subsection, we evaluate the measurer library compared to the manual monitoring of two main 

tasks from UC1 and UC3. The first task (in Table 3) corresponds to a simple regression model that was 
run on a server platform (AWS configured by EOxHub). The second task corresponds to an ML-assisted 

gap filling (in Table 4) that was run on a local machine. 

 
Table 3 : Manual vs Automatic resource computation on Gradient Boosting Regressor running on 

EOXHub. 

 Gradient Boosting 

Regressor (Manual) 

Gradient Boosting 

Regressor (Automatic) 

Deviation 

Abs(manual-

automatic)/manual) 

Compute platform AWS configured by 

EOxHub 

AWS configured by 

EOxHub 

~ 

Storage    

Data size in grid points 1673 x 5 1673 x 5 ~ 

Data size in MB/GB 0.05 MB (input) 0.27 
MB (output) 

0.0 MB 100% 

Main memory    

Available on 

machine/node 

32 GB 61.46 GB 92% 

Consumed on 

machine/node 

520.5 MB 14.1 MB 97% 

Compute resources    
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Description of CPU/GPU C5.4xlarge with 1.8 GHz 
CPU 

 

x86_64 
with 8 physical cores 

and 16 logical cores 0.0 
GHz CPU 

 

☒ 

Compute wall time 6.45 s 4.10 s 36% 

Max. energy consumed - 36.7 W - 

CO2 consumed - 13.g - 

Network    

Network traffic in 

MB/GB 

- 0.01611 MB - 

Cost    

Storage    

Compute    

Network    

Software 

environment 

   

Programming language Python Python ~ 

Essential libraries NumPy 

, time, os, pandas, 

math, joblib, 
matplotlib.pyplot, 

seaborn, psutil, sklearn 

numpy 

, time, os, pandas, 

math, joblib, 
matplotlib.pyplot, 

seaborn, psutil, sklearn 

~ 

 
 

Table 4 : Manual vs Automatic resource computation of k-means clustering (including elbow method) 

on local resources. 

 k-means clustering 

including elbow method 

(Manual) 

k-means clustering 

including elbow method 

(Automatic) 

Deviation 

Abs(manual-

automatic)/manual) 

Compute platform Laptop Laptop ~ 

Storage    

Data size in grid points 50024 x 122 (input), 

50024x x1 (output) 

50024 x 122 (largest 

array) 

~  

Data size in MB/GB 30 MB (input), 1 MB 

(output) 

1 MB (output file size 

added to storage) 

~ 

Main memory    

Available on 
machine/node 

32 GB 31 GB ~ 

Consumed on 
machine/node 

640 MB (2%) 206 MB (>1%) 67 % 

Compute resources    

Description of CPU/GPU Intel Core i7-

1085H@2,7 GHz x 12 

Machine type: x86_64 

Processor type: x86_64 
Number of physical 

cores: 6 
Number of logical cores: 

12 
Min CPU frequency: 

800.0 GHz 

Max CPU frequency: 
5100.0 GHz 

No GPU available 
 

~ 

Compute wall time 30 s 40 s 33 % 
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Max. energy consumed 1 W 0.4 W 60 % 

CO2 consumed   0.01 g  

Network    

Network traffic in 
MB/GB 

no no  

Cost     

Storage No direct costs (local 
laptop) 

No direct costs (local 
laptop) 

 

Compute  No direct costs (local 

laptop) 

No direct costs (local 

laptop) 

 

Network No direct costs (local 
laptop) 

No direct costs (local 
laptop) 

 

Software 
environment 

   

Programming language Python Python ~ 

Essential libraries Pandas, NumPy, Sklearn Pandas, NumPy, Sklearn ~ 

 
Obviously, according to the current results, the automatic computation of resources requires further 

tuning to be considered as the main tool for documenting the computational resources. For instance, at 
this level, ‘total consumed memory on machine’ computes what a program allocates between two lines 

of code. However, a program requires more than only the memory used by a few lines of code (e.g., 

importing libraries, etc). For example, we have noticed that running the regressor requires more than 
520 MB according to the task manager but only 14 MB was reported (see Table 3). 

 
Also, the measurer library fails to return the exact frequency of the processor when a program is run on 

a server (e.g., on AWS configured by EOxHub). From Table 3, we notice that ‘Available on machine’ is 

almost doubled compared to the manual reporting. This is because, even though we allocate a memory 
of only 32GB from AWS, some more resources are allocated to us randomly when free. 

 
Overall, the measurer library is an interesting initiative to automatize the documentation of 

computational resources. However, at this level, it warrants further improvement to be considered as 

the main tool. As a result, as for now, we consider manual reporting for the rest of the report.   

2.2 Provisioning of resource monitoring data 

Our resource monitoring will be ingested and stored on the project’s Knowledge Base (KB) using an 
online form (see Figure 2). The online form for the ingestion of the monitoring resource metadata allows 

the upload of the CSV file resulting from the measurer's calculations. After the online form submission 

(i.e., after the user clicks on the submit button) and after having done all the necessary checks on the 
info provided, the application:  

• Creates the related STAC-JSON file (so that the metadata resource can follow the pipeline for 

publication into the STAC catalog).   

• Ingests needed information into the KB Postgres DB tables. In particular, the database contains 
two tables, one with information on the resources and the other with information on the 

measurements (linked to related resources by the “resource_id” foreign key). In this way, 

queries can be made on the measurements related to consumed compute resources using the 
query tool.  
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Figure 2 : Knowledge base form for ingestion of the computational resources. 
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3 Examples of resource monitoring data by UC 

In the following, we will give examples from all use cases (UCs) of which processing resources are 

monitored. Note that UC5 started delayed and is not yet at the data processing stage. This is not a 

complete overview but should provide insights into typical compute-tasks which are covered in each UC. 
A complete overview will be given by including all the resource records in the Knowledge Base (KB) as 

described in chapter 2.2. 

3.1 UC1 Urban adaptation to climate change 

Together with use case owners, we share a bucket (called S3 bucket) through the EOxHub profile to 

ingest, process and share data. We have used the currently configured EOxHub profile with an AWS 
resource (most likely c5.4xlarge CPU) of 7 GB of RAM and 1.8 GHz CPU. Using Jupyter notebooks, we 

have succeeded in running our Machine Learning tests (three algorithms using the sklearn.cluster 
library).  

 

On the ML part, and because the algorithms were not memory/time consuming on this specific study, 
we did not have any problem running it within the currently configured EOxHub profile. All the code was 

implemented in python using the library sklearn for clustering and seaborn for visualization. For reading 
the data (that is in CSV format), we have used the Pandas library. The data size is less than 110 KB 

(only a matrix of size 1,000 * 6, i.e., 1,000 cities and 6 features). Hence, the clustering algorithms were 

not time/memory demanding. However, generating the csv file from the original data (gridded data) 
was time-consuming, but still possible (see  
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Table 5). 

 

Table 1 provides an overview of the resource usage for each main process, starting from the calculation 
of ratios to the execution of ML algorithms. We can clearly see that the process that consumed resources 

the most is “Calculating level 1 land classification ratios” (e.g., more than 900 MB of memory usage and 
more than 2 hours). This is because it requires uploading and processing data from different cities. On 

the other hand, running the clustering algorithms required between 1 and 10 MB only. Calculating level 
1 land classification ratios was very time-consuming (more than 2 hours). However, we can clearly see 

that the overall ML process was fast (around 10 seconds), with clustering algorithms running in less than 

1 second, except Mean-Shift that required more than 7 seconds. In addition, running Bidirectional LSTM 
and Gradient boosting regressor for gap filling was very fast, however with a relatively high memory 

usage, 968 MB and 520 MB respectively. 
 

Cost-wise, in addition to the AWS fixed daily deduction of around 3$, calculating level 1 land classification 

ratios and the clustering processes cost between 20$ and 25$ each for computing (i.e., using AWS 
resources). 

  



FAIRiCUBE : Deliverable 3.3  

15 / 25 

Table 5: UC1 Processing resources usage overview 

 Calculating 

level 1 

land 

classificati

on ratios 

Upload 

the 

ratios 

data 

(csv) 

k-means 

clustering 

with elbow 

method 

k-means 

with 

selected k 

= 4 

Mean Shift 

(window 

size = 

0.25) 

Bidirectional 

LSTM running 

(100 epochs) 

Gradient 

Boosting 

Regressor 

Compute 

platform 

AWS 
configured 
by EOxHub 

AWS 
configur
ed by 
EOxHub 

AWS 
configured 
by EOxHub 

AWS 
configured 
by EOxHub 

AWS 
configured 
by EOxHub 

AWS 
configured by 
EOxHub 

AWS 
configured by 
EOxHub 

Storage        

Data size in 

grid points 

827,993x 
402,621 

    51 x 34 1673 x 5 

Data size in 
MB/GB 

6.77 GB 1.1 MB    0.01 MB 
(input) 0.03 
MB (output) 

0.05 MB 
(input) 0.27 
MB (output) 

Main 

memory 

       

Available on 
machine/node 

7 GB 
 

30 GB 30 GB 

Consumed 

on 
machine/no

de 

900MB 1.3MB 9.5MB 1.2MB 2.7MB 968.3 MB 520.5 MB 

Compute 
resources 

       

Description 
of CPU/GPU 

C5.4xlarge with 1.8 
GHz CPU 
 

C5.4xlarge with 1.8 GHz 
CPU 
 

C5.4xlarge with 1.8 GHz CPU 
 

Compute 
wall time 

2 h 15 min 0.01 s 1.43 s 0.08 s 7.75 s 11.93 s 6.45 s 

Max. energy 

consumed 

       

CO2 

consumed 

       

Network        

Network 

traffic in 

MB/GB 

       

Cost           

Storage        

Compute  21.59$ 24.41$ - - 

Network        

Software 

environme

nt 

       

Programmin

g language 

Python Python Python Python Python Python Python 

Essential 
libraries 

sentinel 
hub, 
shapely, 
geopandas 

Pandas sklearn.clus
ter 

sklearn.clus
ter 

sklearn.clus
ter 

Numpy, 
pandas, math, 
matplotlib.pypl
ot, time, os, 

sklearn, keras 

numpy 
, time, os, 
pandas, math, 
joblib, 

matplotlib.pypl
ot, seaborn, 
psutil, sklearn 
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3.2 UC2 Agriculture and Biodiversity Nexus 

Design and delivery of processing steps 

While rasdaman provides an excellent environment for storing and handling multi-dimensional array 

data, supporting arithmetic computation, with spatio-temporal awareness, it has no specific support for 
machine learning at this moment. Neither for using ML models for inference nor for ML algorithms to 

train models on available data. Rasdaman however is extensible through the addition of User Defined 
Functions (UDFs), which can be integrated into the core rasdaman server (see Figure 3) and thus operate 

directly on the data stored in the data cubes. Such data locality can result in performance benefits, which 

are always welcome in the usual time-consuming and compute-demanding machine learning. Particularly 
when applying deep learning (DL) models on complex multi-dimensional and large datasets. 

 
Rasdaman supports the use of UDFs at two different levels (see Figure 3). The closest one to the server 

(rasserver) uses C++ as programming language and works on the core data cubes that have no specific 

notion of spatio-temporal data dimensions. Those are only available at a higher layer that provides 
rasdaman’s spatial capabilities. At this level, the UDFs use the Java programming language, and it is 

where Web Coverage Processing Service (WCPS) requests are processed first in rasdaman.  
 

 
Figure 3 : User-Defined Functions in rasdaman (from Rasdaman documentation) 

Since deep learning models are frequently used for processing Earth Observation (satellite) data, it 

seems particularly relevant to add DL capabilities to rasdaman, with the (reasonable) expectation that it 

will be needed to realize the use case. The known main applications of DL in EO are (1) image 
classification, (2) image (pixel) segmentation, (3) object detection, and (4) image generation (new types 

of applications will be added for sure).  
 

To implement a first proof-of-concept of DL integration into rasdaman we selected to work on image 

segmentation, which can be used for many purposes and could be based on an available convolutional 
neural network (CNN) model developed and trained in another project for the classification of Dutch 

crop types using Sentinel-2 data as input. This model has been developed using the Python PyTorch 
framework, while the core rasdaman server is programmed in C++ and has no direct support for Python 

code. Hence a bridge needed to be established between these two worlds, which has been achieved by 
(1) the use of standard PyTorch functionality to ‘trace’ the existing model into TorchScript format (which 

has no Python dependencies), and (2) writing a rasdaman UDF in C++ using the libtorch implementation 

of PyTorch to load and run the TorchScript model (see Figure 4). All code and further information are 
published as part of the FAIRiCUBE project on GitHub1. 

 
1 https://github.com/FAIRiCUBE/uc2-agriculture-biodiversity-nexus/tree/main/rasdaman-ml-udf 

https://github.com/FAIRiCUBE/uc2-agriculture-biodiversity-nexus/tree/main/rasdaman-ml-udf
https://github.com/FAIRiCUBE/uc2-agriculture-biodiversity-nexus/tree/main/rasdaman-ml-udf
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This approach allows using the model for inference on data in data cubes (supporting model training is 

a next step). Since the UDF has been added at the core level, a further bridging UDF (in Java) has been 

added so that WCPS requests can be used to start model inference and return the results as a spatial 
data cube. 

 
Extensive support has been provided by rasdaman to achieve this implementation. As one of the next 

developments it is now being investigated if a more direct use of Python is possible for executing ML 
code as a UDF. 

 

Resource metadata1 for the example crop classification model used has been entered using the GitHub 
form as well, so that it can be included in the FAIRiCUBE catalogue. 

 
Processing and ML execution 

The UDF-based DL solution described before has been deployed on a Virtual Machine (VM) provided by 

rasdaman for use by the use cases. Some initial testing on this configuration has been performed, 
showing that the solution works and can produce the same model inference results as the original model 

when run on a local computer. An example of the WCPS query with which the model can be invoked is 
given in Figure 5. 

 

 
Figure 5 : Example WCPS query for applying the crop classification model 

 
A result produced by the model can be seen in Figure 6. For actual use however the 76 possible crop 

classes that the model can infer should not be visualized with a continuous colour ramp as used in this 
image. It is also noteworthy that for post-processing and interpretation of the output returning the per-

class probabilities and not only the inferred class with the maximum probability is needed. However, the 

inferred crop classes in this test output exactly match those inferred by the original PyTorch model when 
used outside of rasdaman. 

 

 
1 https://github.com/FAIRiCUBE/resource-metadata/issues/7 

 

Figure 4 : Integration of DL model inference in rasdaman 

https://github.com/FAIRiCUBE/resource-metadata/issues/7
https://github.com/FAIRiCUBE/resource-metadata/issues/7
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Figure 6 : Model inference result, showing crop classes by green to yellow colour ramp 

 
On the provided rasdaman VM an initial test of this proof of concept has been carried out to get a sense 

of its scalability and compute requirements. The VM runs Ubuntu Linux 20.04.6 LTS on an x86_64 

architecture, with 8 vCPUs (Intel Xeon) @ 2.3 GHz, and 32 GB memory. For the Python programming, 
Python 3.10 was used, and PyTorch 1.13.x (2.0.1 works as well). The C++ programming has been done 

in C++ 14, and a matching version of the libtorch library. All further needed C++ libraries for rasdaman 
were already provided on the server. 

 
The tests were based on the WCPS request shown in Figure 5, by varying the selected portion of the 

input data (image) to use for model inference and measuring the wall time (wall-clock time, which is 

the elapsed real time, so different from only the CPU processing time). The results are presented in 
Table 6 with the listing of computational resources in Table 7. 

 

Table 6 : Rasdaman crop classification inference - WCPS wall times 

Input 

portion 

Width 

(pixels) 

Height 

(pixels) 

Total 

Pixels 

Size Wall time 

(seconds) 

25% 1373 542 744166 3.0 MiB 6 

50% 2745 1085 2978325 11.4 MiB 25 

75% 4118 1627 6699986 25.6 MiB 52 

100% 5490 2170 11913300 45.5 MiB 92 

 
These test results show that the current scaling is linear (see Figure 7), not only in processing time but 

in memory usage as well. An issue to be addressed then (typical for deep learning on satellite imagery) 

is that larger images quickly don’t fit into the available memory (either CPU or GPU) anymore and some 
form of data partitioning (and distributed processing) must be implemented to be able to handle model 

(training and) inference for larger areas. Potentially some of Rasdaman’s distributed architecture can 
be leveraged for this (to be further investigated). 

 

 

Figure 7 : Initial inference scalability testing 
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Table 7 : UC2 Processing resources usage overview 

 Example crop classification inference 

Compute platform Multi-user VM, shared rasdaman instance 

Storage  

Data size in grid points 5490px x 2170px (x 28 channels) (input), 5490px x 2170px (x 1 channel) 

(output) 

Data size in MB/GB 668 MiB (input TIFF), approx. 45 MiB (output TIFF) 

Main memory  

Available on 
machine/node 

32 GiB 

Consumed on 

machine/node 

Not measured, estimated at least 22 GiB (69%) based on neural network 

architecture 

Compute resources  

Description of CPU/GPU 8 vCPUs on Intel Xeon @ 2.3 GHz 

Compute wall time 92 s (measured in Jupyter Notebook cell executing the WCPS request) 

Max. energy consumed Unknown – not measured on VM 

CO2 consumed Unknown (cannot be calculated) 

Network  

Network traffic in MB/GB Data already in data cube on a server, 45 MiB download of inference 

result 

Cost   

Storage Undetermined (included in the cost of VM provisioning by rasdaman) 

Compute  Undetermined (included in the cost of VM provisioning by rasdaman) 

Network Undetermined (included in the cost of VM provisioning by rasdaman) 

Software 

environment 

 

Programming language Python, Java, C++ 

Essential libraries rasdaman 10.x, PyTorch 

 

Future work 
With this proof-of-concept, the integration of machine learning inference in rasdaman via UDFs has been 

demonstrated and tested. Rasdaman will further develop and generalize the approach internally and 

meanwhile has also enabled the use of Python code for writing UDFs. This should allow for easier 
integration with the Python-oriented machine learning community and prevalent ML frameworks such 

as TensorFlow, PyTorch, and SciKit-Learn. In case project time and resources allow, use case 2 can 
perform additional testing of new facilities. 

 

3.3 UC3 Biodiversity occurrence cubes – Drosophila landscape 
genomics 

According to the machine learning strategy as described in D3.2 we have developed a gap filling method 

based on k-means cluster denoted as ML baseline which will first be in focus to list the required 
processing resources (Table 8). The split in columns follows the Python scripting tasks to first introduce 

gaps in the data, apply k-means with the elbow method to determine the optimal number of clusters 

and finally the k-means cluster labels to fill the gaps. For these tasks, it is expected that the 
computational demand scales linearly with size of the input data. 
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Table 8 : UC3 Processing resources usage overview, ML baseline (k-means) 

 Introduce Gaps k-means clustering 

(including elbow 

method) 

Gap filling using k-

means cluster labels 

Compute platform Laptop Laptop Laptop 

Storage    

Data size in grid points 50024 x 122 (input), 

50024x x122 (output) 

50024 x 122 (input), 

50024x x1 (output) 

50024 x 122 (input), 

50024x x122 (output) 

Data size in MB/GB 30 MB (input), 30 MB 

(output) 

30 MB (input), 1 MB 

(oputput) 

30 MB (input), 30 MB 

(output) 

Main memory    

Available on 
machine/node 

32 GB 32 GB 32 GB 

Consumed on 
machine/node 

320 MB (1%) 640 MB (2%) 640 MB (2%) 

Compute resources    

Description of CPU/GPU Intel Core i7-

1085H@2,7 GHz x 12 

Intel Core i7-

1085H@2,7 GHz x 12 

Intel Core i7-

1085H@2,7 GHz x 12 

Compute wall time 3 s 30 s 2 s 

Max. energy consumed 1 W  1 W 1 W 

CO2 consumed    

Network    

Network traffic in 

MB/GB 

no no no 

Cost     

Storage No direct costs (local 

laptop) 

No direct costs (local 

laptop) 

No direct costs (local 

laptop) 

Compute  No direct costs (local 
laptop) 

No direct costs (local 
laptop) 

No direct costs (local 
laptop) 

Network No direct costs (local 

laptop) 

No direct costs (local 

laptop) 

No direct costs (local 

laptop) 

Software 

environment 

   

Programming language Python Python Python 

Essential libraries Pandas, NumPy Pandas, NumPy, Sklearn Pandas, NumPy 

 

More advanced and tuned machine learning methods are applied following the ML baseline which are 
usually more computationally demanding (  
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Table 9) but provide better accuracy. For these tasks, it is expected that the computational demand 

does not scale linearly with size of the input data. Finally, a trade-off between execution time and 

resources and gained accuracy in the prediction can be weighed against each other to form a decision 
basis for further recommendations and upscaling of the ML application. 
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Table 9 : UC3 Processing resources usage overview, advanced ML methods 

 Variational Autoencoder (VAE) Generative Adversarial Networks 

(GAN) 

Compute platform Laptop Laptop 

Storage   

Data size in grid 

points 

50024 x 122 (input), 50024x x122 

(output) 

50024 x 122 (input), 50024x x122 

(output) 

Data size in MB/GB 30 MB (input), 30 MB (output) 
 

 

Main memory   

Available on 
machine/node 

32 GB 32 GB 

Consumed on 

machine/node 

8 GB 10 GB 

Compute 

resources 

  

Description of 
CPU/GPU 

AMD Ryzen 9 / 
NVIDIA RTX 3070 (8GB) 

AMD Ryzen 9 / 
NVIDIA RTX 3070 (8GB) 

Compute wall time 30 s 5 min 

Max. energy 
consumed 

  

CO2 consumed   

Network   

Network traffic in 
MB/GB 

no no 

Cost    

Storage No direct costs (local laptop) No direct costs (local laptop) 

Compute  No direct costs (local laptop) No direct costs (local laptop) 

Network No direct costs (local laptop) No direct costs (local laptop) 

Software 

environment 

  

Programming 

language 

Python Python 

Essential libraries Pytorch, NumPy, Pandas Pytorch, NumPy, Pandas 

3.4 UC4 Spatial and temporal assessment of neighbourhood building 
stock 

According to the machine learning strategy as described in D3.2 and the preceding exploratory data 

analysis, we have been testing several methods to estimate building heights as input for further 
calculations of the energy performance and the classification of building compositions. The three 

methods as described by their consumption of compute resources in Table 10 are very different in terms 
of their numerical background were 

• Factor x Number of levels is a brute force minimization of the difference between a constant 

building story height multiplied by the number of stories and the ground truth building height 

data 

• Geoclimate-Random Forest is the model inference of a published ML model to our test data 
• DTM – DSM is a simple subtraction of data layers with a more demanding aggregation method 

to convert from DTM / DSM point data to an outline of buildings. 

 
For height estimation, all computational efforts can be seen as moderate and pose no bottleneck in 

terms of runtime. Scaling up any of the methods to additional cities is feasible.  
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On the other hand, Energy demand calculation for buildings in Oslo requires almost one hour of running 

time, however, only around 500 MB of memory is used.  

 

Table 10 : UC4 Processing resources usage overview 

 Building height estimation  

 Factor x Number 
of levels 

Geoclimate-
Random Forest 

DTM - DSM Energy demand calculation 
(Oslo) 

Compute 
platform 

Laptop Laptop Laptop Laptop 

Storage     

Data size in grid 
points (GeoTiff) 

1218x1126 1526x1367 1203x1022 - 

Data size in MB/GB 11MB 18MB 22MB 20MB (input) 

Intermediate data 
size in MB/GB 

200MB 300MB 1.5GB  

Data formats Geojson and 
GeoTiff 

Geojson and 
GeoTiff 

Pointcloud (xyz) 
and GeoTiff 

Shape file 

Main memory     

Available on 
machine 

32GB 32GB 32GB 32GB 

Consumed on 
machine 

8GB 6GB 17GB 530MB 

Compute 
resources 

    

Description of 
CPU/GPU 

8-Core Processor, 
1550 MHz/ 

nvidia geforce 
1080 ti 

8-Core Processor, 
1550 MHz/ 

nvidia geforce 
1080 ti 

8-Core Processor, 
1550 MHz/ 

nvidia geforce 
1080 ti 

13th Gen Intel(R) Core (TM) 
i7-1355U   1.70 GHz 

Compute wall time 2min 10min 5min 56min 

Max. energy 
consumed 

    

CO2 consumed     

Network     

Network traffic in 
MB/GB 

    

Cost      

Storage No direct costs 
(local PC) 

No direct costs 
(local PC) 

No direct costs 
(local PC) 

No direct costs (local PC) 

Compute  No direct costs 
(local PC) 

No direct costs 
(local PC) 

No direct costs 
(local PC) 

No direct costs (local PC) 

Network No direct costs 

(local PC) 

No direct costs 

(local PC) 

No direct costs 

(local PC) 

No direct costs (local PC) 

Software 
environment 

    

Programming 
language 

Python Python Python Python 

Essential libraries Geopandas, QGis, 
gdal, geocube, 
folium, numpy, 
osmnx, rioxarray 

Geopandas, gdal, 
geocube, folium, 
numpy, osmnx, 
rioxarray 

Geopandas, gdal, 
geocube, folium, 
numpy, osmnx, 
rioxarray 

Geopandas, pandas, numpy, 
matplotlib.pyplot, Fiona, 
rasterio, os, shapely 

3.5 UC5 Validation of Phytosociological Methods through Occurrence 
Cubes 

The use case on the validation of phytosociological methods through occurrence cubes (UC5) started 
with a significant delay compared to the other use cases due to staffing issues and exploitation of  

synergies with a sister project funding under the same call. UC5 aims to validate the traditional methods 
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applied in phytosociology to characterize and classify plant communities and to develop a new 

phytosociological approach to characterize and predict the presence of plant communities for yet 

unknown localities. This will be approached by linking distribution data of plant taxa and vegetation 
communities based on habitat types with EO environmental data.  

Currently, UC5 is in the data exploration phase which is prerequisite for entering the machine learning 

phase. No significant data processing or machine learning algorithms has been applied within the UC5 

work and therefore no consumption of resources can be reported and documented yet. A future 
scheduled update of this deliverable will cover the progress from UC5 as well. 
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4 Summary and conclusion 

All use cases (except UC5) have now started to execute data-driven processing techniques to answer 

their respective scientific questions and we have only started to document the computational resources 

that have been used. This collection will grow over time and will be a valuable catalogue to estimate the 
demands for similar tasks, give insights for further optimization and is an essential input to weight 

computational costs with gained improvements.  
 

Currently, we have started the standardization of collecting numerical parameters as tables, and we will 
assess the need for any additional parameters in the future. Furthermore, we have implemented a library 

to compute these parameters more systematically, automatically, and transparently. This library 

warrants further development to consider other parameters and improve the calculation of the current 
ones. In addition, we employed a form to ingest the parameter values to the project’s knowledge base 

to keep track of all use case experiences.   


