

FAIRICUBE –
F.A.I.R. INFORMATION CUBES

Project Number: 101059238

WP 3 Process

D3.3 Processing and ML applications

Deliverable Lead: NIL

Deliverable due date: 30/06/2024

Version: 3.2
2024-05-13

 FAIRiCUBE : Deliverable 3.3

2 / 25

Document Control Page

Document Control Page

Title D3.3 Processing and ML applications

Creator NIL

Description D3.3 Processing and ML applications

Publisher “FAIRICUBE – F.A.I.R. information cubes” Consortium

Contributors NIL, WER, NHM, S4E, EPS

Date of delivery 30/06/2024

Type Text, Data

Language EN-GB

Rights Copyright “FAIRICUBE – F.A.I.R. information cubes”

Audience ☒ Public

☐ Confidential

☐ Classified

Status ☐ In Progress

☐ For Review

☒ For Approval

☐ Approved

Revision History

Version Date Modified by Comments

0.1 16/05/2023 Stefan Jetschny, NIL Draft setup, headings, and partner

/ contributor assignments

 26/05/2023 Rob Knapen, WER Use Case 2 contribution

0.2 11/06/2023 Stefan Jetschny Ready for partial review, only UC4

contribution missing

1.0 21/06/2023 Stefan Jetschny Ready for review, minor comments
still open

1.1 28/06/2023 Jaume Targa and Stefan
Jetschny

Review and minor modifications
according to review comments.

2.0 07/11/2023 Stefan Jetschny Planned update according to

project proposal to reflect the
progress of the work, read-through

version for assigning writing-tasks

2.1 14/12/2023 Mohamed-Bachir Belaid Updating structure, adding
automatic monitoring, validation,

updating UC contribution

2.2 10/01/2024 Jaume Targa Review

3.0 15/04/2024 Stefan Jetschny Preparation for scheduled M24

update

3.1 23/04/2024 Stefan Jetschny Review with feedback from General

Project Review Consolidated

Report, UC5 chapter has been

added as a placeholder for future

progress

3.2 12/05/2024 Mirko Gregor (S4E) Internal review

FAIRiCUBE : Deliverable 3.3

3 / 25

Disclaimer

This document is issued within the frame and for the purpose of the FAIRICUBE project. This project

has received funding from the European Union’s Horizon research and innovation programme under

grant agreement No. 101059238. The opinions expressed and arguments employed herein do not
necessarily reflect the official views of the European Commission.

This document and its content are the property of the FAIRICUBE Consortium. All rights relevant to this

document are determined by the applicable laws. Access to this document does not grant any right or
license on the document or its contents. This document or its contents are not to be used or treated in

any manner inconsistent with the rights or interests of the FAIRICUBE Consortium or the Partners’

detriment and are not to be disclosed externally without prior written consent from the FAIRICUBE
Partners. Each FAIRICUBE Partner may use this document in conformity with the FAIRICUBE Consortium

Grant Agreement provisions.

FAIRiCUBE : Deliverable 3.3

4 / 25

Table of Contents

Document Control Page ... 2

Disclaimer ... 3

Table of Contents .. 4

1 Introduction .. 6

2 Processing and ML applications... 7

2.1 Monitoring methods .. 7

2.1.1 Manual ... 7

2.1.2 Automatic ... 8

2.1.3 Validation of the automatic resource monitoring ... 9

2.2 Provisioning of resource monitoring data ..11

3 Examples of resource monitoring data by UC ..13

3.1 UC1 Urban adaptation to climate change ..13

3.2 UC2 Agriculture and Biodiversity Nexus ...16

3.3 UC3 Biodiversity occurrence cubes – Drosophila landscape genomics19

3.4 UC4 Spatial and temporal assessment of neighbourhood building stock22

3.5 UC5 Validation of Phytosociological Methods through Occurrence Cubes23

4 Summary and conclusion ..25

FAIRiCUBE : Deliverable 3.3

5 / 25

List of Figures
Figure 1 : AWS billing report for April 2023 (where most of the work has been run). ______________ 8

Figure 2 : Knowledge base form for ingestion of the computational resources. __________________ 12

Figure 3 : User-Defined Functions in rasdaman (from Rasdaman documentation) ________________ 16

Figure 4 : Integration of DL model inference in rasdaman ___________________________________ 17

Figure 5 : Example WCPS query for applying the crop classification model _____________________ 17

Figure 6 : Model inference result, showing crop classes by green to yellow colour ramp __________ 18

Figure 7 : Initial inference scalability testing __ 18

List of Tables
Table 1 : Monitoring methods and tools __ 7

Table 2 : How does Measurer compute the metrics values? __________________________________ 9

Table 3 : Manual vs Automatic resource computation on Gradient Boosting Regressor running on

EOXHub. ___ 9

Table 4 : Manual vs Automatic resource computation of k-means clustering (including elbow method)

on local resources. __ 10

Table 5: UC1 Processing resources usage overview __ 15

Table 6 : Rasdaman crop classification inference - WCPS wall times___________________________ 18

Table 7 : UC2 Processing resources usage overview _______________________________________ 19

Table 8 : UC3 Processing resources usage overview, ML baseline (k-means) ____________________ 20

Table 9 : UC3 Processing resources usage overview, advanced ML methods ____________________ 22

Table 10 : UC4 Processing resources usage overview ______________________________________ 23

FAIRiCUBE : Deliverable 3.3

6 / 25

1 Introduction

WP3 aims to provide guidance, recommendations, technical expertise, and implementation support

expertise to all use case efforts in terms of data analysis and processing. While the tasks will be executed

by the use case developers, support will be given to assist in all data handling steps after ingestion and
provision on both the Rasdaman- and EOxHub services as part of FAIRiCUBE’s overall data and model

services. Special emphasis is given to the data-driven machine learning (ML) model generation.

This deliverable needs to be seen as one item of a classical and logical execution of a machine learning
application. Given the availability/ingestion of data, we first perform an exploratory data analysis to get

familiar with the data, analyse statistical parameters and distribution, and check for completeness,

outliers and other characteristics which could be relevant to the choice of the machine learning. This in-
depth data analysis is covered by the deliverable D3.1 UC exploratory data analysis.

Subsequently, the raw data might require conversion into features through a data engineering process.

This could imply a combination of several input data sources or applying simple mathematical operations

to enhance the meaningfulness of the raw data given the relationships that are to be revealed. The more
a priori information is available, the better the feature engineering process can be performed. Based on

the findings from the exploratory data analysis, the formulation of the research question, and the
relationship between raw data sources/features, machine learning algorithms can be recommended to

establish a baseline model if this is not provided by use case owners. Starting from the most efficient
machine learning algorithm, more advanced ML methods can be identified to form a machine learning

strategy. Several different methods might also be tested to recommend a method based on

computational demands and accuracy of the ML output. Typically, the testing of ML algorithms is
performed on a subset of the original input data or selected cases. The feature engineering process,

testing of ML algorithms and the recommendation of a cascade to ML algorithms, as well as analysing
the output of ML methods is covered by deliverable D3.2 Machine learning strategy specific for each use
case.

As the FAIRiCUBE Hub ultimately wants to also provide resource estimations and guidance for ML

applications, we want to collect and share computational parameters, timings, and requirements and
give an outlook on the expected scalability of the ML problems defined by the use cases. For each ML

algorithm identified and executed as described in D3.2 we collect information on e.g., disk storage, CPU

runtime, main memory consumption, describe the hardware and environment where the ML algorithm
is executed on and list essential libraries that are needed to exactly replicate the ML application. This

technical documentation of the ML execution is covered in this deliverable D3.3 Processing and ML
applications.

In summary, the exploratory data analysis (D3.1) can be seen as essential input to the development of

a UC-specific machine learning strategy (D3.2) whereas the technical description in D3.3 (this document)

acts as a reference to follow up on the execution and serves as valuable input to estimate the demands
for other ML applications.

FAIRiCUBE : Deliverable 3.3

7 / 25

2 Processing and ML applications

Monitoring computational resources can provide three significant advantages. Firstly, it allows us to

provide insights and estimations to other users who may be running similar jobs on similar hardware.

This information can serve as a starting point to scale it for different hardware configurations. This will
help the project planning of especially computational heavy tasks. Usually, regular processing and

several basic machine learning methods scale linearly.

Secondly, information on hardware requirements and resource usage can directly translate into costs of
cloud resources which is also frequently unknown during the project planning. Finally, collecting

information on the actual performance and demands of computational tasks can be the starting point

for numerical optimization especially when expectations are not met by the measures. Optimization can
of course include the careful balance of computational efforts/needs with the output metrics as well. Not

in all cases is the optimal solution the most accurate one but a well-selected compromise of resources
and sufficient accuracy.

In this chapter, we will begin by providing a brief overview of the monitoring methods that we applied
(chapter 2.1). Subsequently, we will present a detailed account of the computational tasks/jobs

performed for each use case, along with hardware/software resources consumed during the execution
(chapter 3.1 - 3.4.). As use case 2 (UC2) has spent significant resources on the development of user-

defined functions (UDFs) which are executed close to the Rasdaman database engine and lay out the
foundation of machine learning applications, there will be a main focus on the UDF development (chapter

3.2). All other use cases did not significantly design and/or deliver processing steps and will focus on

the listing of the processing resources.

2.1 Monitoring methods

Monitoring of computational resources and demands have long been driven by limitations of the

availability of computational resources. Nowadays, there seems to be no limit concerning the availability
but more on the financial aspect of securing [cloud] resources and the environmental implications of

executing computational jobs. In the following, we have listed parameters and methods to measure
these parameters that appear useful to us to estimate costs and also prepare environmental impact

assessments as a result of the energy consumption. The monitoring methods focus on the execution on

local (laptop) or pseudo-local (single virtual machines) hardware where direct access to build-in
monitoring tools are available (see chapter 2.1.1) or where we can execute automatic resource

monitoring scripts (see chapter 2.1.2).

2.1.1 Manual

Table 1 : Monitoring methods and tools

 How to monitor

Storage

Data size in grid points Variable allocation, variable monitoring in IDE, only the main variables
need to be listed

Data size in MB/GB Allocation on disk

Main memory

Available on machine/node Linux: Settings / About (View information about your system)

Consumed on
machine/node

Top / Htop in %

Compute resources

Description of CPU/GPU Linux: Settings / About (View information about your system)

Compute wall time Either count with clock or include time measures in script

FAIRiCUBE : Deliverable 3.3

8 / 25

Max. energy consumed Linux: powertop (Power est.),
MacOS: power metrics command

CO2 consumed CO2 conversion factor available?

Network

Network traffic in MB/GB

Cost

Storage not applicable directly if executed on local resources, for AWS we can pull
out numbers based on the information provided above

Compute

Network

Software environment

Programming language self-explanatory

Essential libraries main libraries/dependencies that are used in execution

Monitoring on EOX Hub requires an account associated with the hub in question. Firstly, a GitHub account
is required with access to the FAIRiCUBE project. Secondly, you communicate your GitHub to EOX to

access the urban-climate hub in our case (i.e., UC1 hub). Finally, you connect to
https://eoxhub.fairicube.eu using your GitHub credentials. Once connected, the user can create, run,

and share Jupyter notebooks using AWS (Amazon Web Services) resources configured by EOxHub.

AWS is a service that provides cloud-computing resources. The payment model for AWS is based on the

pay-as-you-go principle, which means that you are only charged for the services you use when running
computations using AWS resources. In addition, one can specify a configuration that is planned to be

used (memory, clock speed,…). The exact AWS allocated CPU changes with time, and it is hard to identify
the exact used type of CPU. However, using the billing report (see Figure 1), the CPU that was most

likely used during UC1 processing is “c5.4xlarge”1 (with memory limited to 7GB and clock speed to 1.8

GHz following the configuration of the profile). Interestingly, the memory usage is provided in real time
in the EOXhub app, and JupyterHub interface, so we can check the exact memory usage of a given

process.

Figure 1 : AWS billing report for April 2023 (where most of the work has been run).

2.1.2 Automatic

To automatize resources monitoring we have implemented a python library called Measurer. Measurer
can be simply called from any python source code to compute parameter values.2 In Table 2, we report

1 Check the complete list here: https://aws.amazon.com/ec2/instance-types/
2 https://github.com/FAIRiCUBE/common-code/tree/main/record-computational-demands-

automatically

https://eoxhub.fairicube.eu/

FAIRiCUBE : Deliverable 3.3

9 / 25

each measure and how it is calculated in our library. Note that at this level our library works only on

python scripts.

Table 2 : How does Measurer compute the metrics values?

Metric How is it computed in Measurer?

Data size (MB) Compute the difference between data added to

disk and data removed from disk.

Data size in grid points Return the ‘shape array’ of the input data

Largest allocated array in grid points Return ‘shape array’ of the largest array in the

code

Main memory available (GB) Return the system’s virtual memory available
variable using ‘psutil’ library

Main memory consumed (GB) Return the memory consumed between two lines

of code using the ‘tracemalloc’ library

The sum of allocated variable sizes (GB) Return the size of the total allocated variables in

the code

Description of CPU/GPU Use the ‘platform’ library to return machine and
processor details

Wall time in seconds Return total time using the ‘time’ library

Energy consumed (kW) Use the EmissionsTracker function from the
‘codecarbon’ library

Network traffic (MB) Use the ‘net_io_counters’ function from the ‘psutil’

library

CO₂-equivalents [CO₂eq] (kg) Use the EmissionsTracker function from the
‘codecarbon’ library

Programming language Returns e.g. ‘python’

Essential libraries Read lines in the code that contain ‘import’ and
return the list of libraries

2.1.3 Validation of the automatic resource monitoring

In this subsection, we evaluate the measurer library compared to the manual monitoring of two main

tasks from UC1 and UC3. The first task (in Table 3) corresponds to a simple regression model that was
run on a server platform (AWS configured by EOxHub). The second task corresponds to an ML-assisted

gap filling (in Table 4) that was run on a local machine.

Table 3 : Manual vs Automatic resource computation on Gradient Boosting Regressor running on

EOXHub.

 Gradient Boosting

Regressor (Manual)

Gradient Boosting

Regressor (Automatic)

Deviation

Abs(manual-

automatic)/manual)

Compute platform AWS configured by

EOxHub

AWS configured by

EOxHub

~

Storage

Data size in grid points 1673 x 5 1673 x 5 ~

Data size in MB/GB 0.05 MB (input) 0.27
MB (output)

0.0 MB 100%

Main memory

Available on

machine/node

32 GB 61.46 GB 92%

Consumed on

machine/node

520.5 MB 14.1 MB 97%

Compute resources

FAIRiCUBE : Deliverable 3.3

10 / 25

Description of CPU/GPU C5.4xlarge with 1.8 GHz
CPU

x86_64
with 8 physical cores

and 16 logical cores 0.0
GHz CPU

☒

Compute wall time 6.45 s 4.10 s 36%

Max. energy consumed - 36.7 W -

CO2 consumed - 13.g -

Network

Network traffic in

MB/GB

- 0.01611 MB -

Cost

Storage

Compute

Network

Software

environment

Programming language Python Python ~

Essential libraries NumPy

, time, os, pandas,

math, joblib,
matplotlib.pyplot,

seaborn, psutil, sklearn

numpy

, time, os, pandas,

math, joblib,
matplotlib.pyplot,

seaborn, psutil, sklearn

~

Table 4 : Manual vs Automatic resource computation of k-means clustering (including elbow method)

on local resources.

 k-means clustering

including elbow method

(Manual)

k-means clustering

including elbow method

(Automatic)

Deviation

Abs(manual-

automatic)/manual)

Compute platform Laptop Laptop ~

Storage

Data size in grid points 50024 x 122 (input),

50024x x1 (output)

50024 x 122 (largest

array)

~

Data size in MB/GB 30 MB (input), 1 MB

(output)

1 MB (output file size

added to storage)

~

Main memory

Available on
machine/node

32 GB 31 GB ~

Consumed on
machine/node

640 MB (2%) 206 MB (>1%) 67 %

Compute resources

Description of CPU/GPU Intel Core i7-

1085H@2,7 GHz x 12

Machine type: x86_64

Processor type: x86_64
Number of physical

cores: 6
Number of logical cores:

12
Min CPU frequency:

800.0 GHz

Max CPU frequency:
5100.0 GHz

No GPU available

~

Compute wall time 30 s 40 s 33 %

FAIRiCUBE : Deliverable 3.3

11 / 25

Max. energy consumed 1 W 0.4 W 60 %

CO2 consumed 0.01 g

Network

Network traffic in
MB/GB

no no

Cost

Storage No direct costs (local
laptop)

No direct costs (local
laptop)

Compute No direct costs (local

laptop)

No direct costs (local

laptop)

Network No direct costs (local
laptop)

No direct costs (local
laptop)

Software
environment

Programming language Python Python ~

Essential libraries Pandas, NumPy, Sklearn Pandas, NumPy, Sklearn ~

Obviously, according to the current results, the automatic computation of resources requires further

tuning to be considered as the main tool for documenting the computational resources. For instance, at
this level, ‘total consumed memory on machine’ computes what a program allocates between two lines

of code. However, a program requires more than only the memory used by a few lines of code (e.g.,

importing libraries, etc). For example, we have noticed that running the regressor requires more than
520 MB according to the task manager but only 14 MB was reported (see Table 3).

Also, the measurer library fails to return the exact frequency of the processor when a program is run on

a server (e.g., on AWS configured by EOxHub). From Table 3, we notice that ‘Available on machine’ is

almost doubled compared to the manual reporting. This is because, even though we allocate a memory
of only 32GB from AWS, some more resources are allocated to us randomly when free.

Overall, the measurer library is an interesting initiative to automatize the documentation of

computational resources. However, at this level, it warrants further improvement to be considered as

the main tool. As a result, as for now, we consider manual reporting for the rest of the report.

2.2 Provisioning of resource monitoring data

Our resource monitoring will be ingested and stored on the project’s Knowledge Base (KB) using an
online form (see Figure 2). The online form for the ingestion of the monitoring resource metadata allows

the upload of the CSV file resulting from the measurer's calculations. After the online form submission

(i.e., after the user clicks on the submit button) and after having done all the necessary checks on the
info provided, the application:

• Creates the related STAC-JSON file (so that the metadata resource can follow the pipeline for

publication into the STAC catalog).

• Ingests needed information into the KB Postgres DB tables. In particular, the database contains
two tables, one with information on the resources and the other with information on the

measurements (linked to related resources by the “resource_id” foreign key). In this way,

queries can be made on the measurements related to consumed compute resources using the
query tool.

FAIRiCUBE : Deliverable 3.3

12 / 25

Figure 2 : Knowledge base form for ingestion of the computational resources.

FAIRiCUBE : Deliverable 3.3

13 / 25

3 Examples of resource monitoring data by UC

In the following, we will give examples from all use cases (UCs) of which processing resources are

monitored. Note that UC5 started delayed and is not yet at the data processing stage. This is not a

complete overview but should provide insights into typical compute-tasks which are covered in each UC.
A complete overview will be given by including all the resource records in the Knowledge Base (KB) as

described in chapter 2.2.

3.1 UC1 Urban adaptation to climate change

Together with use case owners, we share a bucket (called S3 bucket) through the EOxHub profile to

ingest, process and share data. We have used the currently configured EOxHub profile with an AWS
resource (most likely c5.4xlarge CPU) of 7 GB of RAM and 1.8 GHz CPU. Using Jupyter notebooks, we

have succeeded in running our Machine Learning tests (three algorithms using the sklearn.cluster
library).

On the ML part, and because the algorithms were not memory/time consuming on this specific study,
we did not have any problem running it within the currently configured EOxHub profile. All the code was

implemented in python using the library sklearn for clustering and seaborn for visualization. For reading
the data (that is in CSV format), we have used the Pandas library. The data size is less than 110 KB

(only a matrix of size 1,000 * 6, i.e., 1,000 cities and 6 features). Hence, the clustering algorithms were

not time/memory demanding. However, generating the csv file from the original data (gridded data)
was time-consuming, but still possible (see

FAIRiCUBE : Deliverable 3.3

14 / 25

Table 5).

Table 1 provides an overview of the resource usage for each main process, starting from the calculation
of ratios to the execution of ML algorithms. We can clearly see that the process that consumed resources

the most is “Calculating level 1 land classification ratios” (e.g., more than 900 MB of memory usage and
more than 2 hours). This is because it requires uploading and processing data from different cities. On

the other hand, running the clustering algorithms required between 1 and 10 MB only. Calculating level
1 land classification ratios was very time-consuming (more than 2 hours). However, we can clearly see

that the overall ML process was fast (around 10 seconds), with clustering algorithms running in less than

1 second, except Mean-Shift that required more than 7 seconds. In addition, running Bidirectional LSTM
and Gradient boosting regressor for gap filling was very fast, however with a relatively high memory

usage, 968 MB and 520 MB respectively.

Cost-wise, in addition to the AWS fixed daily deduction of around 3$, calculating level 1 land classification

ratios and the clustering processes cost between 20$ and 25$ each for computing (i.e., using AWS
resources).

FAIRiCUBE : Deliverable 3.3

15 / 25

Table 5: UC1 Processing resources usage overview

 Calculating

level 1

land

classificati

on ratios

Upload

the

ratios

data

(csv)

k-means

clustering

with elbow

method

k-means

with

selected k

= 4

Mean Shift

(window

size =

0.25)

Bidirectional

LSTM running

(100 epochs)

Gradient

Boosting

Regressor

Compute

platform

AWS
configured
by EOxHub

AWS
configur
ed by
EOxHub

AWS
configured
by EOxHub

AWS
configured
by EOxHub

AWS
configured
by EOxHub

AWS
configured by
EOxHub

AWS
configured by
EOxHub

Storage

Data size in

grid points

827,993x
402,621

 51 x 34 1673 x 5

Data size in
MB/GB

6.77 GB 1.1 MB 0.01 MB
(input) 0.03
MB (output)

0.05 MB
(input) 0.27
MB (output)

Main

memory

Available on
machine/node

7 GB

30 GB 30 GB

Consumed

on
machine/no

de

900MB 1.3MB 9.5MB 1.2MB 2.7MB 968.3 MB 520.5 MB

Compute
resources

Description
of CPU/GPU

C5.4xlarge with 1.8
GHz CPU

C5.4xlarge with 1.8 GHz
CPU

C5.4xlarge with 1.8 GHz CPU

Compute
wall time

2 h 15 min 0.01 s 1.43 s 0.08 s 7.75 s 11.93 s 6.45 s

Max. energy

consumed

CO2

consumed

Network

Network

traffic in

MB/GB

Cost

Storage

Compute 21.59$ 24.41$ - -

Network

Software

environme

nt

Programmin

g language

Python Python Python Python Python Python Python

Essential
libraries

sentinel
hub,
shapely,
geopandas

Pandas sklearn.clus
ter

sklearn.clus
ter

sklearn.clus
ter

Numpy,
pandas, math,
matplotlib.pypl
ot, time, os,

sklearn, keras

numpy
, time, os,
pandas, math,
joblib,

matplotlib.pypl
ot, seaborn,
psutil, sklearn

FAIRiCUBE : Deliverable 3.3

16 / 25

3.2 UC2 Agriculture and Biodiversity Nexus

Design and delivery of processing steps

While rasdaman provides an excellent environment for storing and handling multi-dimensional array

data, supporting arithmetic computation, with spatio-temporal awareness, it has no specific support for
machine learning at this moment. Neither for using ML models for inference nor for ML algorithms to

train models on available data. Rasdaman however is extensible through the addition of User Defined
Functions (UDFs), which can be integrated into the core rasdaman server (see Figure 3) and thus operate

directly on the data stored in the data cubes. Such data locality can result in performance benefits, which

are always welcome in the usual time-consuming and compute-demanding machine learning. Particularly
when applying deep learning (DL) models on complex multi-dimensional and large datasets.

Rasdaman supports the use of UDFs at two different levels (see Figure 3). The closest one to the server

(rasserver) uses C++ as programming language and works on the core data cubes that have no specific

notion of spatio-temporal data dimensions. Those are only available at a higher layer that provides
rasdaman’s spatial capabilities. At this level, the UDFs use the Java programming language, and it is

where Web Coverage Processing Service (WCPS) requests are processed first in rasdaman.

Figure 3 : User-Defined Functions in rasdaman (from Rasdaman documentation)

Since deep learning models are frequently used for processing Earth Observation (satellite) data, it

seems particularly relevant to add DL capabilities to rasdaman, with the (reasonable) expectation that it

will be needed to realize the use case. The known main applications of DL in EO are (1) image
classification, (2) image (pixel) segmentation, (3) object detection, and (4) image generation (new types

of applications will be added for sure).

To implement a first proof-of-concept of DL integration into rasdaman we selected to work on image

segmentation, which can be used for many purposes and could be based on an available convolutional
neural network (CNN) model developed and trained in another project for the classification of Dutch

crop types using Sentinel-2 data as input. This model has been developed using the Python PyTorch
framework, while the core rasdaman server is programmed in C++ and has no direct support for Python

code. Hence a bridge needed to be established between these two worlds, which has been achieved by
(1) the use of standard PyTorch functionality to ‘trace’ the existing model into TorchScript format (which

has no Python dependencies), and (2) writing a rasdaman UDF in C++ using the libtorch implementation

of PyTorch to load and run the TorchScript model (see Figure 4). All code and further information are
published as part of the FAIRiCUBE project on GitHub1.

1 https://github.com/FAIRiCUBE/uc2-agriculture-biodiversity-nexus/tree/main/rasdaman-ml-udf

https://github.com/FAIRiCUBE/uc2-agriculture-biodiversity-nexus/tree/main/rasdaman-ml-udf
https://github.com/FAIRiCUBE/uc2-agriculture-biodiversity-nexus/tree/main/rasdaman-ml-udf

FAIRiCUBE : Deliverable 3.3

17 / 25

This approach allows using the model for inference on data in data cubes (supporting model training is

a next step). Since the UDF has been added at the core level, a further bridging UDF (in Java) has been

added so that WCPS requests can be used to start model inference and return the results as a spatial
data cube.

Extensive support has been provided by rasdaman to achieve this implementation. As one of the next

developments it is now being investigated if a more direct use of Python is possible for executing ML
code as a UDF.

Resource metadata1 for the example crop classification model used has been entered using the GitHub
form as well, so that it can be included in the FAIRiCUBE catalogue.

Processing and ML execution

The UDF-based DL solution described before has been deployed on a Virtual Machine (VM) provided by

rasdaman for use by the use cases. Some initial testing on this configuration has been performed,
showing that the solution works and can produce the same model inference results as the original model

when run on a local computer. An example of the WCPS query with which the model can be invoked is
given in Figure 5.

Figure 5 : Example WCPS query for applying the crop classification model

A result produced by the model can be seen in Figure 6. For actual use however the 76 possible crop

classes that the model can infer should not be visualized with a continuous colour ramp as used in this
image. It is also noteworthy that for post-processing and interpretation of the output returning the per-

class probabilities and not only the inferred class with the maximum probability is needed. However, the

inferred crop classes in this test output exactly match those inferred by the original PyTorch model when
used outside of rasdaman.

1 https://github.com/FAIRiCUBE/resource-metadata/issues/7

Figure 4 : Integration of DL model inference in rasdaman

https://github.com/FAIRiCUBE/resource-metadata/issues/7
https://github.com/FAIRiCUBE/resource-metadata/issues/7

FAIRiCUBE : Deliverable 3.3

18 / 25

Figure 6 : Model inference result, showing crop classes by green to yellow colour ramp

On the provided rasdaman VM an initial test of this proof of concept has been carried out to get a sense

of its scalability and compute requirements. The VM runs Ubuntu Linux 20.04.6 LTS on an x86_64

architecture, with 8 vCPUs (Intel Xeon) @ 2.3 GHz, and 32 GB memory. For the Python programming,
Python 3.10 was used, and PyTorch 1.13.x (2.0.1 works as well). The C++ programming has been done

in C++ 14, and a matching version of the libtorch library. All further needed C++ libraries for rasdaman
were already provided on the server.

The tests were based on the WCPS request shown in Figure 5, by varying the selected portion of the

input data (image) to use for model inference and measuring the wall time (wall-clock time, which is

the elapsed real time, so different from only the CPU processing time). The results are presented in
Table 6 with the listing of computational resources in Table 7.

Table 6 : Rasdaman crop classification inference - WCPS wall times

Input

portion

Width

(pixels)

Height

(pixels)

Total

Pixels

Size Wall time

(seconds)

25% 1373 542 744166 3.0 MiB 6

50% 2745 1085 2978325 11.4 MiB 25

75% 4118 1627 6699986 25.6 MiB 52

100% 5490 2170 11913300 45.5 MiB 92

These test results show that the current scaling is linear (see Figure 7), not only in processing time but

in memory usage as well. An issue to be addressed then (typical for deep learning on satellite imagery)

is that larger images quickly don’t fit into the available memory (either CPU or GPU) anymore and some
form of data partitioning (and distributed processing) must be implemented to be able to handle model

(training and) inference for larger areas. Potentially some of Rasdaman’s distributed architecture can
be leveraged for this (to be further investigated).

Figure 7 : Initial inference scalability testing

FAIRiCUBE : Deliverable 3.3

19 / 25

Table 7 : UC2 Processing resources usage overview

 Example crop classification inference

Compute platform Multi-user VM, shared rasdaman instance

Storage

Data size in grid points 5490px x 2170px (x 28 channels) (input), 5490px x 2170px (x 1 channel)

(output)

Data size in MB/GB 668 MiB (input TIFF), approx. 45 MiB (output TIFF)

Main memory

Available on
machine/node

32 GiB

Consumed on

machine/node

Not measured, estimated at least 22 GiB (69%) based on neural network

architecture

Compute resources

Description of CPU/GPU 8 vCPUs on Intel Xeon @ 2.3 GHz

Compute wall time 92 s (measured in Jupyter Notebook cell executing the WCPS request)

Max. energy consumed Unknown – not measured on VM

CO2 consumed Unknown (cannot be calculated)

Network

Network traffic in MB/GB Data already in data cube on a server, 45 MiB download of inference

result

Cost

Storage Undetermined (included in the cost of VM provisioning by rasdaman)

Compute Undetermined (included in the cost of VM provisioning by rasdaman)

Network Undetermined (included in the cost of VM provisioning by rasdaman)

Software

environment

Programming language Python, Java, C++

Essential libraries rasdaman 10.x, PyTorch

Future work
With this proof-of-concept, the integration of machine learning inference in rasdaman via UDFs has been

demonstrated and tested. Rasdaman will further develop and generalize the approach internally and

meanwhile has also enabled the use of Python code for writing UDFs. This should allow for easier
integration with the Python-oriented machine learning community and prevalent ML frameworks such

as TensorFlow, PyTorch, and SciKit-Learn. In case project time and resources allow, use case 2 can
perform additional testing of new facilities.

3.3 UC3 Biodiversity occurrence cubes – Drosophila landscape
genomics

According to the machine learning strategy as described in D3.2 we have developed a gap filling method

based on k-means cluster denoted as ML baseline which will first be in focus to list the required
processing resources (Table 8). The split in columns follows the Python scripting tasks to first introduce

gaps in the data, apply k-means with the elbow method to determine the optimal number of clusters

and finally the k-means cluster labels to fill the gaps. For these tasks, it is expected that the
computational demand scales linearly with size of the input data.

FAIRiCUBE : Deliverable 3.3

20 / 25

Table 8 : UC3 Processing resources usage overview, ML baseline (k-means)

 Introduce Gaps k-means clustering

(including elbow

method)

Gap filling using k-

means cluster labels

Compute platform Laptop Laptop Laptop

Storage

Data size in grid points 50024 x 122 (input),

50024x x122 (output)

50024 x 122 (input),

50024x x1 (output)

50024 x 122 (input),

50024x x122 (output)

Data size in MB/GB 30 MB (input), 30 MB

(output)

30 MB (input), 1 MB

(oputput)

30 MB (input), 30 MB

(output)

Main memory

Available on
machine/node

32 GB 32 GB 32 GB

Consumed on
machine/node

320 MB (1%) 640 MB (2%) 640 MB (2%)

Compute resources

Description of CPU/GPU Intel Core i7-

1085H@2,7 GHz x 12

Intel Core i7-

1085H@2,7 GHz x 12

Intel Core i7-

1085H@2,7 GHz x 12

Compute wall time 3 s 30 s 2 s

Max. energy consumed 1 W 1 W 1 W

CO2 consumed

Network

Network traffic in

MB/GB

no no no

Cost

Storage No direct costs (local

laptop)

No direct costs (local

laptop)

No direct costs (local

laptop)

Compute No direct costs (local
laptop)

No direct costs (local
laptop)

No direct costs (local
laptop)

Network No direct costs (local

laptop)

No direct costs (local

laptop)

No direct costs (local

laptop)

Software

environment

Programming language Python Python Python

Essential libraries Pandas, NumPy Pandas, NumPy, Sklearn Pandas, NumPy

More advanced and tuned machine learning methods are applied following the ML baseline which are
usually more computationally demanding (

FAIRiCUBE : Deliverable 3.3

21 / 25

Table 9) but provide better accuracy. For these tasks, it is expected that the computational demand

does not scale linearly with size of the input data. Finally, a trade-off between execution time and

resources and gained accuracy in the prediction can be weighed against each other to form a decision
basis for further recommendations and upscaling of the ML application.

FAIRiCUBE : Deliverable 3.3

22 / 25

Table 9 : UC3 Processing resources usage overview, advanced ML methods

 Variational Autoencoder (VAE) Generative Adversarial Networks

(GAN)

Compute platform Laptop Laptop

Storage

Data size in grid

points

50024 x 122 (input), 50024x x122

(output)

50024 x 122 (input), 50024x x122

(output)

Data size in MB/GB 30 MB (input), 30 MB (output)

Main memory

Available on
machine/node

32 GB 32 GB

Consumed on

machine/node

8 GB 10 GB

Compute

resources

Description of
CPU/GPU

AMD Ryzen 9 /
NVIDIA RTX 3070 (8GB)

AMD Ryzen 9 /
NVIDIA RTX 3070 (8GB)

Compute wall time 30 s 5 min

Max. energy
consumed

CO2 consumed

Network

Network traffic in
MB/GB

no no

Cost

Storage No direct costs (local laptop) No direct costs (local laptop)

Compute No direct costs (local laptop) No direct costs (local laptop)

Network No direct costs (local laptop) No direct costs (local laptop)

Software

environment

Programming

language

Python Python

Essential libraries Pytorch, NumPy, Pandas Pytorch, NumPy, Pandas

3.4 UC4 Spatial and temporal assessment of neighbourhood building
stock

According to the machine learning strategy as described in D3.2 and the preceding exploratory data

analysis, we have been testing several methods to estimate building heights as input for further
calculations of the energy performance and the classification of building compositions. The three

methods as described by their consumption of compute resources in Table 10 are very different in terms
of their numerical background were

• Factor x Number of levels is a brute force minimization of the difference between a constant

building story height multiplied by the number of stories and the ground truth building height

data

• Geoclimate-Random Forest is the model inference of a published ML model to our test data
• DTM – DSM is a simple subtraction of data layers with a more demanding aggregation method

to convert from DTM / DSM point data to an outline of buildings.

For height estimation, all computational efforts can be seen as moderate and pose no bottleneck in

terms of runtime. Scaling up any of the methods to additional cities is feasible.

FAIRiCUBE : Deliverable 3.3

23 / 25

On the other hand, Energy demand calculation for buildings in Oslo requires almost one hour of running

time, however, only around 500 MB of memory is used.

Table 10 : UC4 Processing resources usage overview

 Building height estimation

 Factor x Number
of levels

Geoclimate-
Random Forest

DTM - DSM Energy demand calculation
(Oslo)

Compute
platform

Laptop Laptop Laptop Laptop

Storage

Data size in grid
points (GeoTiff)

1218x1126 1526x1367 1203x1022 -

Data size in MB/GB 11MB 18MB 22MB 20MB (input)

Intermediate data
size in MB/GB

200MB 300MB 1.5GB

Data formats Geojson and
GeoTiff

Geojson and
GeoTiff

Pointcloud (xyz)
and GeoTiff

Shape file

Main memory

Available on
machine

32GB 32GB 32GB 32GB

Consumed on
machine

8GB 6GB 17GB 530MB

Compute
resources

Description of
CPU/GPU

8-Core Processor,
1550 MHz/

nvidia geforce
1080 ti

8-Core Processor,
1550 MHz/

nvidia geforce
1080 ti

8-Core Processor,
1550 MHz/

nvidia geforce
1080 ti

13th Gen Intel(R) Core (TM)
i7-1355U 1.70 GHz

Compute wall time 2min 10min 5min 56min

Max. energy
consumed

CO2 consumed

Network

Network traffic in
MB/GB

Cost

Storage No direct costs
(local PC)

No direct costs
(local PC)

No direct costs
(local PC)

No direct costs (local PC)

Compute No direct costs
(local PC)

No direct costs
(local PC)

No direct costs
(local PC)

No direct costs (local PC)

Network No direct costs

(local PC)

No direct costs

(local PC)

No direct costs

(local PC)

No direct costs (local PC)

Software
environment

Programming
language

Python Python Python Python

Essential libraries Geopandas, QGis,
gdal, geocube,
folium, numpy,
osmnx, rioxarray

Geopandas, gdal,
geocube, folium,
numpy, osmnx,
rioxarray

Geopandas, gdal,
geocube, folium,
numpy, osmnx,
rioxarray

Geopandas, pandas, numpy,
matplotlib.pyplot, Fiona,
rasterio, os, shapely

3.5 UC5 Validation of Phytosociological Methods through Occurrence
Cubes

The use case on the validation of phytosociological methods through occurrence cubes (UC5) started
with a significant delay compared to the other use cases due to staffing issues and exploitation of

synergies with a sister project funding under the same call. UC5 aims to validate the traditional methods

FAIRiCUBE : Deliverable 3.3

24 / 25

applied in phytosociology to characterize and classify plant communities and to develop a new

phytosociological approach to characterize and predict the presence of plant communities for yet

unknown localities. This will be approached by linking distribution data of plant taxa and vegetation
communities based on habitat types with EO environmental data.

Currently, UC5 is in the data exploration phase which is prerequisite for entering the machine learning

phase. No significant data processing or machine learning algorithms has been applied within the UC5

work and therefore no consumption of resources can be reported and documented yet. A future
scheduled update of this deliverable will cover the progress from UC5 as well.

FAIRiCUBE : Deliverable 3.3

25 / 25

4 Summary and conclusion

All use cases (except UC5) have now started to execute data-driven processing techniques to answer

their respective scientific questions and we have only started to document the computational resources

that have been used. This collection will grow over time and will be a valuable catalogue to estimate the
demands for similar tasks, give insights for further optimization and is an essential input to weight

computational costs with gained improvements.

Currently, we have started the standardization of collecting numerical parameters as tables, and we will
assess the need for any additional parameters in the future. Furthermore, we have implemented a library

to compute these parameters more systematically, automatically, and transparently. This library

warrants further development to consider other parameters and improve the calculation of the current
ones. In addition, we employed a form to ingest the parameter values to the project’s knowledge base

to keep track of all use case experiences.

