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Disclaimer 

 
 

This document is issued within the frame and for the purpose of the FAIRICUBE project. This project 

has received funding from the European Union’s Horizon research and innovation programme under 

grant agreement No. 101059238. The opinions expressed and arguments employed herein do not 

necessarily reflect the official views of the European Commission. 

 

This document and its content are the property of the FAIRICUBE Consortium. All rights relevant to this 

document are determined by the applicable laws. Access to this document does not grant any right or 

license on the document or its contents. This document or its contents are not to be used or treated in 

any manner inconsistent with the rights or interests of the FAIRICUBE Consortium or the Partners 

detriment and are not to be disclosed externally without prior written consent from the FAIRICUBE 

Partners. Each FAIRICUBE Partner may use this document in conformity with the FAIRICUBE Consortium 

Grant Agreement provisions. 
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1 Introduction 

WP3 aims to provide guidance, recommendations, technical expertise, and implementation support 
expertise to all use case efforts in terms of data analysis and processing. While the tasks will be executed 

by the use case developers, support will be given to assist in all data handling steps after ingestion and 
provision on both the Rasdaman- and EOxHub services as part of FAIRiCUBE’s overall data and model 

services. Special emphasis is given to the data driven machine learning (ML) model generation. 

 
This deliverable needs to be seen as one item of a classical and logical execution of a machine learning 

application. Given availability/ingestion of data, we first perform an exploratory data analysis to get 
familiar with the data, analyze statistical parameters and distribution, check for completeness, outliers 

and other characteristics which could be relevant for the choice of the machine learning. This in-depth 
data analysis is covered by the deliverable D3.1 UC exploratory data analysis. 
 

Subsequently, the raw data might require conversion into features through a data engineering step. 
This could imply a combination of several input data sources or applying simple mathematical operations 

to enhance the meaningfulness of the raw data given the relationships that are to be revealed. The 
more prior information is available, the better the feature engineering process can be performed. Based 

on the findings from the exploratory data analysis, the formulation of the research question and the 

relationship between raw data sources/features, machine learning algorithms can be recommended to 
establish a baseline model if this is not provided by use case owners. Starting from the most efficient 

machine learning algorithm, more advanced ML methods can be identified to form a machine learning 
strategy. Several different methods might also be tested to recommend a method based on 

computational demands and the accuracy of the ML output. Typically, the testing of ML algorithms is 
performed on a subset of the original input data or on selected cases. The feature engineering process, 

testing of ML algorithms and the recommendation of a cascade to ML algorithms, as well as analyzing 

the output of ML methods is covered by this deliverable D3.2 Machine learning strategy specific for each 
use case. 

 
As the FAIRiCUBE Hub ultimately wants to also provide resource estimations and guidance for ML 

applications, we want to collect and share computational parameters, timings, requirements and give 

an outlook on the expected scalability of the ML problems defined by the use cases. For each ML 
algorithm identified and executed as described in D3.2, we collect information on e.g., disk storage, 

CPU runtime, and main memory consumption, describe the hardware and environment where the ML 
algorithm is executed on and list essential libraries that are needed to exactly replicate the ML 

application. This technical documentation of the ML execution is covered in the deliverable D3.3 
Processing and ML applications. 
 

In summary, the exploratory data analysis (D3.1) can be seen as an essential input to the development 
of a UC specific machine learning strategy (D3.2) whereas the technical description in D3.3 acts as a 

reference to follow up on the execution and serves as valuable input to estimate the demands for other 
ML applications. In the following, the machine learning strategy is described for each use case. 
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2 Machine learning strategies  

Developing a sound machine learning strategy can be considered as matching the findings from the 
data exploratory analysis, the formulation of the data analysis objective, the defined accuracy 

expectations from use case owners with the available & suitable machine learning algorithms. This can 
be a cascade of algorithms sorted after computational costs and/or transparency of the results. Usually, 

the more complex a ML algorithm is, the better the expected performance can be at a cost of higher 

computational efforts and less possibilities to debug/reproduce the exact numerical operations that lead 
to the output of the ML algorithm. Weighting available resources, the numerical efforts and the quality 

of the ML application by analysis of output metrics yields the most optimal ML algorithm that addresses 
the scientific problem that was formulated upfront. 

 
In the following, we will provide details on the machine-learning strategies of all use cases (UCs). Note 

that UC5 started delayed and is not yet at the data processing stage/application of machine learning 

stage. 

2.1 UC1 Urban adaptation to climate change 

This use case aims to provide data to cities and other stakeholders (such as European institutions or 

city networks) to support the decision-making process. Some of the data need to be processed and 
analysed to make sense for decision makers (e.g., extract useful patterns instead of presenting the 

whole data). For example, the land use/land cover dataset (the five classes of level-1 i.e., 1. Artificial 
surfaces 2. Agricultural areas 3. Natural and semi-natural areas 4. Water 5. Wetlands) can be processed 

to identify the cities that are similar w.r.t land use and hence provides a clearer picture to decision-

makers. 
 

Figure 1 presents the expected processing workflow in UC1. The flowchart describes the data flow and 

processing steps for the first part of the use case, namely the analysis of cities across the EU. In this 

part, a preparatory step is the calculation of descriptive indicators for a large number of cities across 

the EU and for several years. These indicators are partly derived from EU-wide spatial datasets (land-

based and climate data) and partly are already available as socio-economic indicators. All the indicators 

are eventually collected into a data cube where the spatial coordinates are not the traditional geographic 

coordinates, but rather the city identifiers, which can in turn be linked back to geographic coordinates 

by using either the city boundaries or the city centre point coordinates.  

There are three different types of data sources:   

• Land-based data, mostly derived from the Copernicus Land Monitoring Service (CLMS).   

• Climate data, mostly originating from the Copernicus Climate Change Service (C3S); and    

• Socio-economic data from the Urban Audit database hosted by Eurostat.   

  

Additional spatial datasets already publicly available in the EDC Hub will also be used.   

  
The following processing steps are being implemented:  

• Land and climate data are harmonised and ingested in a spatial data cube (spatial coordinates 

are lat/lon). Harmonisation consists for example in ensuring that the dimensions all share the 

same projection and geographical extent.  

• The spatial data cube is used to compute various city indicators. One indicator has one value 

per city/timestamp.  

• The spatial data cube will also be used in the subsequent spatially aware analysis (e.g. green 

distribution with cities) and for visualization purposes.  

• These land- and climate-based indicators are then fed into a city data cube (technically 

implemented as a Postgres database for the time being). The city data cube differs from the 

spatial data cube because the spatial dimension (coordinates) are not the traditional geographic 
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coordinates (e.g. lat/lon) but rather the city identifiers. The spatial dimension in the traditional 

sense can be at any time recovered by linking the identifiers to the city boundaries or centre 

point coordinates. This data representation is less memory-intense and is more practical for 

further analysis.  

• At the same time, socio-economic data is ingested. Socio-economic data do not have spatially 

explicit coordinates, but rather they are indexed by the city identifier. Therefore, indicators are 

directly fed into the city data cube, and derived indicators are computed.  

• Attempts at ML-based gap filling have been made on the socioeconomic data but with limited 

success due to the large extent of the gaps. Rather the original dataset has been heavily filtered 

down to the indicators that have sufficient data.  

• Cluster analysis is then carried out on the city data cube. The goal is to generate different 

clustering scenarios driven by different themes/questions (e.g. urban heat, flood retention, 

green infrastructure). This can be achieved by weighted clustering, where a weight is assigned 

to each feature (indicator) to control its influence on the clustering. An advantage of weighted 

clustering is also that it can be easily tuned to different needs, thereby generating multiple 

scenarios relatively quickly.  

• Ultimately, this framework can be used to run simulations, by tuning the indicators values and 

measuring their influence on the outcome.  

• The city data cube can be linked to visualisation tools to create dashboards and city fact sheets  

 

 

 

2.1.1 Clustering based on land use 

To get a general overview of the cities that are similar with respect to area coverage, clustering can be 

used. Clustering is a type of Unsupervised Machine Learning tool that aims to put a given data into 

different clusters, each containing data points that are similar with respect to a set of features. 
 

K-means is one of the most commonly used clustering algorithms due to its simplicity and efficiency in 
practice. Other algorithms include Mean-Shift, Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN), Expectation–Maximization Clustering and Agglomerative Hierarchical Clustering (AHC) 

Figure 1 : UC1 data analysis and processing workflow  
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each useful on some type of data/problem. Additionally, Deep Learning can be used to reduce the 

number of features prior to implementing any clustering. This does not apply to this specific problem, 

because we only have 5 features (classes’ ratios) as input. In addition, the features are already 
normalized, so there is no need for encoding/normalization steps. 

 
For the task of clustering cities with respect to coverage ratios, we have experimented with three 

different clustering algorithms:  k-means, Mean-Shift and AHC. Below, we will provide a report on the 
results obtained from each approach: 

 

K-means is a clustering algorithm that starts with randomly selected K mean points and associates 
every data point to the closest mean. The means are incrementally updated until no significant change 

is noticed.  A limitation of the k-means algorithm is the requirement to specify the number of clusters 
(K) as a parameter, which can be a drawback in some cases. However, this can be overcome using the 

Elbow Method. The elbow method runs k-means using multiple K values and selects the minimum K for 

which the inertia (squared sum of the distance between each point and its mean) starts to converge to 
a minimum value. For example, in this specific problem, a good choice of K would be 4, see Figure 1. 

Applying k-means with K = 4, has yielded four clusters of cities distributed as presented in Figure 2. 
  

 
Figure 2 : Elbow metho to select k, the number 

of clusters. 

 

 
Figure 3 : Distribution of the four clusters using k-

means. 

 
 

Mean-Shift is based on shifting a window (with a pre-defined size) to the mean of the data points that 

are within the window. When it is no longer possible to shift the window (the centre of the window is 
the mean itself), the visited points are grouped into a single cluster and start constructing the next 

cluster by placing the window into a randomly selected data point. The main advantage of this algorithm 
is that there is no need for defining the number of clusters beforehand. However, we need to define 

the size of the window. In this study we tried different sizes and discovered that with size = 0.25, the 

number of clusters is acceptable (4 clusters). With a higher value, we get a lower number of clusters (a 
single cluster with size = 0.35). On the other hand, we get a higher number of clusters with smaller size 

value (9 clusters with size = 0.2). The distribution of the four clusters using Mean-Shift is presented in 
Figure 4. We clearly see that Mean-Shift puts most points (93% of the data) in a single cluster. This 

shows that this algorithm is not suitable for this specific study. 

 
Agglomerative Hierarchical Clustering (AHC) builds a hierarchy of clusters by constructing a 

parent cluster from two closest sub-clusters (children). The Algorithm builds a hierarchy until every 
point is associated to a cluster. The user then can select any level of the hierarchy to be considered as 

clusters outcome. For this specific problem, we have built the hierarchy and selected 4 as the number 
of clusters (to be consistent with k-means). The distribution of the clusters is presented in Figure 5.   
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Figure 4 : Distribution of the four clusters using 

Mean-Shift. 

 

 
Figure 5 : Distribution of the four clusters using 

AHC. 

 
 

In order to obtain an overview of each approach/cluster, we have cross-plotted the data points using 
each pair of features, as it is impossible to visualize a 5-dimensional clustering. We notice that very few 

cities have high water and wetland areas (see Figure 5), hence we consider the other three features 

(Artificial surfaces, Agricultural areas, and Natural and semi-natural areas) for plotting clusters (see 
Figure 6). The first observation is that Mean-Shift did not cluster the cities in an equitable way. It seems 

to group most of the cities into a single cluster, which is not meaningful in the context of this study. 
 

On the other hand, k-means and AHC have yielded almost similar clustering. However, we can see some 

few overlapping using AHC (see Figure 6). Hence, based on the resulting clusters, the k-means algorithm 
seems to produce more meaningful clusters. 

Following the plots in Figure 6, a possible significance of each cluster using k-means is the following: 
 

• Cluster 0 represents cities with high artificial surfaces (e.g., Vienna, Austria). 
• Cluster 1 represents cities with high natural and semi-natural areas (e.g., Stara Zagora, 

Bulgaria). 

• Cluster 2 represents cities with a balance between artificial surfaces and agricultural areas (e.g., 
Linz, Austria). 

• Cluster 3 represents cities with high agricultural areas (e.g., Rugby, Great Britain). 
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Figure 6 : Clustering with respect to Water and Wetlands 

 
Figure 7 : Plotting clusters with respect to the three main features. 
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In this Machine Learning application, we have generated clusters of cities based on the input of five 

level-1 land use classes (1. Artificial surfaces; 2. Agricultural areas; 3. Natural and semi-natural areas; 
4. Water; 5. Wetlands). We have used three different clustering algorithm (k-means, Mean-shift and 
AHC), and identified k-means as the baseline giving its consistent output (see clusters significance 

above). For further analysis, we will consider more features to have a multi-dimensional cluster of cities. 
For example, socio-economical features (e.g., population density), or climate features (e.g., heights 

temperature) can give more insight of cities from different perspectives.  

2.1.2 Socioeconomic data gap filling 

Obviously, clustering using only the land cover does not give a general insight into cities. Hence, using 

indicators from the socioeconomic data in addition will be useful. Unfortunately, the socioeconomic data 

reported by Eurostat is very limited and contains many gaps. In what follows, we propose several 
possible Machine Learning (ML) strategies to recover the missing data. 

 

2.1.2.1 Using time series:  

A possible direction into gap fills in missing indicator values of some specific years is to use the 

information of the other years i.e., the time series. For example, if the total population of a given city 

is increasing in the few last years, one can predict an increase -w.r.t some ratio- for the next year. 

Clearly, some time series are very complex and hardly predictable.  One of the most known ML strategies 

for learning from time series is LSTM, for Long Short-Term Memory. LSTM is a type of Recurrent Neural 

Networks (RNNs) that learns from sequences of connected data and retain information over long 

sequences. Given a sequence size s, the LSTM model is trained to predict a value at time t using the 

previous s data points in the time series.  Furthermore, Bidirectional LSTM (BLSTM) is an extension 

of LSTM, that learns both in forward and backward directions.  

As an example, we have used a Bidirectional LSTM for ‘Total population’ prediction. 

In the Eurostat data, the ‘Total population’ of some cities is available over 31 years (from 1991 to 2022). 

We selected two cities, one with simple linear increasing time series (Helsinki in Figure 8), and one with 

a more complex time series (Bari in Figure 9). 

  

 

We have trained two BLSTMs, one for each city. We have selected the first 70% years for training, with 

sequence length of 3 (e.g., predict 2010 using 2009, 2008 and 2007), and the last years for testing. 

After training over 100 epochs, the predicted time series vs the actual for Helsinki and Bari are presented 

in Figure 10 and Figure 11, respectively. We can clearly see that the prediction for Helsinki is close to 

the real values (with a Mean Absolute Percentage Error of 0.63%), this is thanks to the simple linear 

trend of the time series. On the other hand, for Bari, the prediction does not follow a linear pattern, but 

it is far from exactly following the actual trend even with a Mean Absolute Percentage Error of 0.53%. 

Figure 8 : Total population over the years in Helsinki Figure 9 : Total population over the years in Bari 
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Limitations: This approach is limited in our context. First, the number of data points is small for an 

effective training (only 31 data points) in case of complex sequences. To have acceptable results, a time 

series need to contain at least 50 data points for training. 

Most importantly, we can notice that the time series are city/indicator specific. In this case, we need to 

train a model for each time series which is computationally expensive. Furthermore, no model can be 

useful for cities with 0 data points (unless we use a model of some similar city, which is hard to 

determine). 

Finally, in Eurostat gap filling, this approach can be useful for cities/indicators with a few missing years 

(between 1 and 5), that follow regular trends (e.g., linear). 

 

2.1.2.2 Using correlations between indicators: 

Some indicators are related to each other. For instance, the ‘Proportion of population aged 75 years 

and over’ is related to ‘Total Population’. Hence, we can use ML regression models to approximate the 

value of a given indicator using other available inputs. Regression models are approaches that learn a 

function to estimate the value of a given feature using a set of input features. Regression models range 

from simple linear regression (that only learns linear functions) to complex deep learning models.  

 

As show case, we have implemented an ML model to estimate: the ‘Total number of hours of sunshine 

per day [EN1002V]’ using two inputs: ‘Average temperature of warmest month - degrees [EN1003V]’ 

and ‘Average temperature of coldest month - degrees [EN1004V]’. To train the model, we need data 

points that have the three features available i.e., 1,673 data points in Eurostat. Then the trained model 

can be used to gap-fill data points where the two input features are available, but not the target feature 

i.e., 299 data points in Eurostat. In Figure 12 we present the correlation matrix (computed using the 

1,673 data points) between the three features. Clearly, a positive correlation exists between the target 

feature (number of sunshine hours) and the input features (temperature of warmest month, and 

temperature of coldest month). This is especially true for ‘temperature of warmest month’ where the 

correlation reaches 74%, this is promising for a regression model to be efficient. 

Figure 10 : Predicted vs Actual for Helsinki Figure 11 : Predicted vs Actual for Bari 
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To predict EN1002V using EN1003V and EN1004V, we have trained several regression models on 70% 

of the selected data (the 1,673 data points). The Gradient Boosting Regressor (that uses an 

ensemble of decision trees for regression) was the most effective reaching mean squared error of 0.48 

(error of less than 30 minutes of sunshine on average). Furthermore, the F1 score reached 0.677 

indicating promising results. The distribution of the predicted vs the actual number of sunshine hours is 

presented in Figure 13. The distributions show close prediction to actual values.  

Figure 12 : Correlation matrix between ‘Total number of hours of sunshine per day 

[EN1002V]’, ‘Average temperature of warmest month - degrees [EN1003V]’ and ‘Average 

temperature of coldest month - degrees [EN1004V]’ 
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Limitations: The results show that regression models can be effective in recovering missing data. The 

model above was useful to gap-fill in almost 300 data points. However, this approach requires designing 

regression models for each indicator and manually defining the potentially related input features. 

Furthermore, training data is not sufficient for each indicator. For example, it is not possible to predict 

the ‘Proportion of households that are lone-pensioner households [DE3008I]’ using the input features:  

‘Lone pensioner (above retirement age) households [DE3008V]’, and ‘Proportion of population aged 65-

74 years [DE1028I]’ because 0 training data points are available (no data point that has all the three 

indicators available).  

 

2.1.2.3 A more general solution: 

Above, we have shown the usefulness of both time series patterns and interdependence between 

indicators to gap-fill missing data. A more general solution is to take into consideration both the time 

and indicator dimensions in a single model to predict missing values. Furthermore, due to the absence 

of data for some cities, one may consider learning from cities with similar characteristics. In Figure 14 

we present a potential ML architecture that considers all these information in a single model. Here, we 

first cluster cities w.r.t some pre-defined features, then we collect all available [indicators, years] 

matrices and feed it to a bidirectional LSTM architecture that takes into consideration the 

interdependence between indicators as well as the time series connections to predict values of a specific 

‘city cluster/indicator/year’. Implementing such a model was not possible due to the limitations 

mentioned below. 

 

 

 

 

 

 

Figure 13 : Sunshine hours distribution (predicted vs actual) 
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Limitations: Obviously, this model requires a large amount of training data that is not available in 

Eurostat. In Eurostat, we only have 9 cities that have 20 indicators with all available years. In addition, 

it is hard to pre-define features for which we should cluster cities at the first step, mostly, these features 

are the ones we want to gap fill. Finally, predicting values of a specific cluster of cities does not 

necessarily generalize to all cities in the same cluster.   

 

Overall, gap-filling the Eurostat data is very challenging due to the absence of enough training data. 

Here, we have explored some low-hanging fruits (time series analysis, regression models). However, 

these strategies require some manual effort, and do not recover enough data. Finally, a more general 

solution requires more training data.    

2.2 UC2 Agriculture and Biodiversity Nexus 

2.2.1 General concept 

This use case aims to study the effects of agriculture and farming activities on biodiversity, specifically 

in agricultural areas. As an overall guiding principle a detection and attribution approach will be followed, 
based on causal machine learning to relate (detected) changes in biodiversity to farm management 

practices (attribution), using (spatially detailed) data cubes as primary information sources. 
 

 
Figure 15 : Attributing biodiversity change to human drivers and pressure 

Causal machine learning improves probabilistic approaches by adding causal reasoning, which for 

humans is a crucial element in learning about and understanding how the world works. Cause-and-
effect relationships drive data, but regular statistical analysis alone is insufficient to recover those causal 

relationships from that data. The causality is part of the data generator, not of the data itself. In that 
sense, causal inference allows the discovery of the characteristics of the data generator. It is particularly 

Figure 14 : Possible architecture for a general solution. 
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helpful in cases when fully Randomized Controlled Trials cannot be conducted, which clearly applies 

when working in the environmental / nature domain. Causal machine learning, including causal inference 

and causal discovery, can leverage provided causal graphs (e.g. for answering counterfactual (“what 
if?”) questions) or learn causal graphs from observational data. It is a promising field of study in machine 

learning, but also still a very active research topic. 
 

The concept of a framework for the detection and attribution of biodiversity change has been proposed 
by Gonzalez et al. (2023)1. Where possible for this use case we will try implement elements of this 

framework. 

 
Figure 16 : Steps in the detection and attribution framework for biodiversity change 

The causal machine learning approach in this use case is intended to identify the causal factors that 

contribute to changes in biodiversity within agricultural landscapes. This involves distinguishing between 
correlation and causation, which could lead to designing effective conservation and management 

strategies. Causal models facilitate counterfactual analysis, which (in this use case) involves comparing 
observed biodiversity outcomes with what would have happened in terms of biodiversity if a particular 

agricultural intervention or land management decision had, or had not, been implemented. This helps 

attribute changes in biodiversity to specific agricultural practices. 

2.2.2 Conceptual ML and processing workflow 

In the detection and attribution framework for biodiversity change, three main categories of data can 

be considered: biodiversity related data, environmental data, and agricultural data. Using these as 
pillars, a conceptual diagram of the proposed ML and processing workflow has been sketched for 

clarification and to serve as guidance for the various types of data engineering and ML tasks that might 

be needed (see Figure 17). It is worth noting that this workflow diagram might still change as the 
insights into the available data, data cube functionality, existing research (literature), and possible ML 

algorithms evolve. This is in line with the exploratory and experimental nature of data science and 
machine learning.  

 

 
1 Gonzalez A, Chase JM, O’Connor MI. 2023 A framework for the detection and attribution of biodiversity change. Phil. Trans. R. Soc. B 

378: 20220182. https://doi.org/10.1098/rstb.2022.0182 
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The diagram indicates the three pillars (biodiversity, environment, and agriculture) that play a role in 

the use case. The data engineering and ML tasks flow from the bottom of the diagram to the top, where 
they merge into the application of causal machine learning. By applying these types of ML algorithms, it 

is expected that not only associations in the data between agricultural activities and changes in 
biodiversity are detected, but also causality can be indicated and explained. For example, an increase in 

the presence of herb-rich grasslands causing an increased presence of a species under study. The 

datasets at the bottom marked with a red border note the inputs with additional requirements (such as 
restricted access and privacy sensitivity). 

2.2.3 Status 

In this section the workflow diagram is used to indicate the overall progress for the use case, as of 
November 2023. The traffic sign icons show the general state, work on items that are not marked by 

an icon still has to be started.  
 

Figure 17 : UC2 data analysis and processing workflow 
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Figure 18 : Progress within UC2 data analysis and processing workflow 

 
Tags associated with items and icons refer to further explanation, as follows: 
  
Biodiversity (B) 

- B.1: For species focused data the work on selecting species observations relevant to the use 

case is in progress, as well as the ingestion into rasdaman data cubes. Currently, two data 
sources are being used, the Dutch NDFF database (which requires a license to use the data), 

and the GBIF data (via our B-Cubed sister project). Both supply species observation data, NDFF 
as observations with geometries indicating ranges and GBIF as grid references for occupancy. 

Both need work to translate into spatial coverage-oriented data cubes. 

- B.2: Due to project constraints the biodiversity aspect of the use case will be limited to species-
focused data and leave ecosystem-focused data and variables for a possible follow-up as 

refinement. 
- B.3: Given species observation data the work species distribution modelling (SDM) has started 

with some initial modelling using common Maximum Entropy (MaxEnt) and Random Forest type 
models. Since data is not fully ingested into data cubes and the de-facto Java-based MaxEnt 

model for SDM could not yet be run on the available processing environments, first 

experimenting will be done on local system configurations, 
- B.4: Depending on the result of the species distribution modelling, a method still needs to be 

devised to calculate an index of biodiversity per spatial unit (i.e. grid cell of a chosen resolution). 
This can be one of the common biodiversity indices, such as the Shanon or Simpson index, but 

also a combination of a newly developed index (if needed). 

 
Environment (E) 

- E.1: Selection of needed environmental data is in progress. Some of this data is shared with 
other use cases. Every dataset requires discussion on how exactly the data needs to be 

represented in one or more data cubes. Such specifications must be provided by the use case 
to the data ingestion work package. 

- E.2: Some of the environmental data needs processing before it is suitable for ingestion into a 

data cube, this work is in progress or will be started when needed. Since most of it is a one-
time activity, no specific data pipelines are being build. Some of the work is performed as part 

of the use case work package using GIS software, depending on expertise and what is most 
efficient. 
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- E.3: Based on the specification provided by the use case and processed data (when applicable), 

rasdaman takes care of the ingestion of the data into their system and makes it available as 

data cubes. 
 

Agriculture (A) 
- A.1: In the Netherlands, as in many EU countries, farmers need to provide information about 

their parcels and the crops grown on them every year. Part of this data is publicly available. 
However, the ownership information of all parcels and data about farming activities in general 

is not. Also, the available crop parcel data is in vector (polygon) format and thus needs to be 

gridded with a usable spatial resolution first before it can be ingested into a data cube. Work 
on this is in progress. 

- A.2: Detailed (per-farm) data about farming activities cannot easily be obtained, as it turned 
out and despite ongoing efforts. It basically requires data-sharing consent by each farmer 

involved, which is too impractical for this project. An alternative approach will have to be 

researched and might involve working with anonymized farm private data or synthesizing 
characteristic farm-type data that would still allow to showcase of the full detection and 

attributed framework approach the use case aims for. 
- A.3: Based on the availability of crop parcel and farming activity data it needs to be investigated 

which Key Performance Indicators are sensible to derive and use. For example, the Hill-Shannon 
Diversity (indicating crop diversification) and Edge Density (indicating the spatial configuration 

of parcels). Values for these indicators then will have to be calculated in gridded (cell-based) 

format and made available for ingestion into data cubes by rasdaman. 
 

Causal / Explainable Machine Learning (C) 
- C.1: The ultimate step of the use case relates to the attribution part of the framework, in which 

biodiversity changes are causally related to agricultural activities if such a relation can be found. 
It still needs active research on ML toolkits and technologies that can be applied, but also 

requires the availability of the envisioned biodiversity, agriculture, and environmental data 

cubes. The delays in preparing those data cubes put this final activity at risk. It might not be 
possible to fully achieve it within the scope of the project. 
 

2.2.4 Biodiversity Pillar Data Engineering and Machine Learning 

Despite decades of research in biodiversity science, there still exists an information gap in biodiversity 
science, and it is a major obstacle for reducing the large uncertainties associated with answering those 

questions. Scientists, public administrations, and environmental organizations adopt a wide variety of 
data collection and monitoring protocols, while coordination is insufficient and multiple biases (including 

spatial, temporal, and taxonomic) are present in the data. To help resolve some of such issues, in 2013 

a framework of Essential Biodiversity Variables (EBVs) was proposed1. Since then, not only has the 
acceptance of this concept grown, but research has also been published on the integration of in-situ 

observations and remote sensing data through modelling for the purpose of EBVs. In use case 2 we 
therefore have chosen to focus our biodiversity data related work around these variables as well. Figure 

19 shows an overview of the six broad classes that the EBVs are grouped in2 (note that the use case 
will be limited to only considering some of the species focused EBV classes). 
 

 
1 Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H., Scholes, R. J., Bruford, M. W., Brummitt, N., Butchart, S. H., 
Cardoso, A. C., Coops, N. C., Dulloo, E., Faith, D. P., Freyhof, J., Gregory, R. D., Heip, C., Höft, R., Hurtt, G., Jetz, W., . . . Wegmann, M. 
(2013). Ecology. Essential biodiversity variables. Science, 339(6117), 277-278. https://doi.org/10.1126/science.1229931 
2 Fernández, N., Ferrier, S., Navarro, L. M., & Pereira, H. M. (2020). Essential Biodiversity Variables: Integrating In-Situ Observations and 
Remote Sensing Through Modeling. In Remote Sensing of Plant Biodiversity (pp. 485-501). Springer International Publishing. 
https://doi.org/10.1007/978-3-030-33157-3_18 
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Figure 19 : Essential Biodiversity Variables 

Fittingly, the data structure of an EBV is thought of as a space-time-biology hypercube, which should 
be a good fit for the multidimensional array data cubes used in this project. For this however we need 

the biology dimension to describe taxonomy and values to inform about presence/absence or population 

abundance. A key issue then becomes how to transform the in-situ observation data into ‘gridded’ data 
that matches the available data cube technology in the FAIRiCUBE project, in case of UC2 the rasdaman 

implementation of data cubes. The two foreseen steps in this transformation are: (1) primary data 
aggregation; and (2) model-based estimation (gap filling). 
 

2.2.4.1 Primary data aggregation 
 

Following the EBV production workflow described in literature the steps to take for the aggregation of 

the primary data, i.e. the species distribution data acquired from the Dutch NDFF (“Nationale Databank 
Flora en Fauna”) and from GBIF, include: (1) data harmonization, (2) data aggregation, (3) uncertainty 
estimation, and (4) metadata annotation. 

 
In this case the required data harmonization is minimal, since it is part of the work already performed 

by the NDFF and GBIF organizations. Sufficient care must be taken though when selecting and filtering 
the species distribution data from both databases. Initially, we only had three NDFF datasets from 2016 

to work with (nesting birds, other species of interest, and plants). In the second phase we got available 

extended dataset covering the same spatial extent of study area but including all available species 
records for the period of years 2014 – 2022 as described in deliverable D3.1. 

 
The NDFF nesting birds dataset has been selected for an initial data aggregation study (note that GBIF 

can provide species occurrence data already aggregated into grid cells of choice). For the moment the 
aggregation procedure is being developed in a Jupyter Notebook, which is available on the project’s 

GitHub site. The algorithm is as follows (for more details please see the notebook): 

 
i. Load the CSV file with the species distribution data into a Pandas DataFrame. 

ii. Perform initial clean-up and prepare the WKT (geometry) data to match GeoPandas 
requirements. 

iii. Lift the Pandas DataFrame into a GeoDataFrame (A) (which supports spatial operations). 

iv. Select only the observations inside the study area of the use case. 
v. Extend the observation octagons by spatial buffering with the radius. 

vi. Load a prepared grid (e.g. with 100m x 100m grid cells) into another GeoDataFrame (B). 
vii. Calculate the spatial overlap (by union) (C) between A and B. 

viii. In C, calculate the species abundance proportion for the overlapping geometries (by area). 

ix. Merge (using a spatial join) the grid B with C, by covered geometries, creating dataset D. 
x. Dissolve (aggregate) D by either counting the observations or summing the abundance shares. 

xi. Assign the aggregated values to the cells of grid B, giving the final output. 
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Figure 20 shows a combination of multiple datasets created during the aggregation. The blue dots and 

hatched circles (octagons) are the individual observations, with the GPS accuracy octagon extended by 
the recorded radius. These get spatially intersected with the grid cells (see Figure 21), after which the 

intersections are used to calculate the shares of the abundance to assign to the cells. All shares are 
then summed per cell to get the final aggregated value. In the background the agricultural fields in the 

area are shown. The empty (not coloured) cells indicate ‘unknown’ abundance, since no species absence 
data is included in the processing. 

 

  
 

 

 
In the second phase of data aggregation effort, we focused on breeding bird species of year 2018 and 
specifically on selection of Farmland Bird species (please see further explanation in section 2.2.4.2 of 

this report). Outcome of this aggregation procedure serves as an input to species distribution models 
(section 2.2.4.2). Following steps were taken to reach aggregated data layer: 

Figure 20 : A view of multiple datasets from the aggregation process 

Figure 21 : Examples of intersections generated during processing 



FAIRiCUBE : Deliverable 3.2  

25 / 45 

I. Load the Geopackage file with the species distribution data into a GeoPandas DataFrame (A). 

II. Select only the observations of birds. 

III. Select only the observations from year 2018. 
IV. Select only the observations inside the study area of the use case. 

V. Select only the observations of Farmland Birds and breeding birds. 
VI. Create GeoDataFrame for each farmland bird species. 

VII. Load a prepared grid (e.g. with 100m x 100m grid cells) into another GeoDataFrame (B). 
VIII. Calculate the spatial overlap (by union) (C) between A and B for each farmland bird species. 

IX. In C, calculate the species abundance proportion for the overlapping geometries (by area) for 

each farmland bird species. 
X. Merge (using a spatial join) the grid B with C, by covered geometries, creating dataset D. 

XI. Dissolve (aggregate) D by either counting the observations or summing the abundance 
shares. 

XII. Assign the aggregated values to the cells of grid B and remove records with 0 value. 

XIII. Create point dataset as centroids of grid cells of B and copy attribute values from b, giving the 
final output. 

 

  
Figure 22 : Example of grid with abundance share and points generated per individual species 

The approach described above, needs some expert input to judge its validity, how it can be improved, 

and how eventually the uncertainty estimation can be done. When available, we might use existing 
species suitability maps for that, although they typically are not more detailed than 1km grid cells. 

 

This work is shared with similar ongoing developments in use case 5 for the validation of phyto-
sociological (describing and classifying species composition of plant communities) methods through 

FAIRiCUBE Occurrence Cubes, which are split into species cubes and plant community cubes, that have 
common characteristics (such as the latitude, longitude, time, species (groups) dimensions). The 

‘cubing’ approach can be largely the same as well, though with slight differences to cover both plants 
and animals. The concluding step of metadata annotation is expected to be part of the FAIRiCUBE data 

ingestion process where the result of the processing will be loaded into a rasdaman data cube. 

 
It is worth to note that the spatial processing steps required in this algorithm can get time consuming. 

The species distribution data has many records, and the choice (need) to work with small grid cells (e.g. 
10 – 100m) results in many (potential) spatial intersections that have to be checked and geometrically 

calculated. When processing times get too long (even when using spatial indexing such as R-trees or 
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similar), use of distributed processing can help. Possible options are Dask1 or PySpark2. However, for 

both, it is recommended to check first if all needed spatial operations are supported. 

 

2.2.4.2 Model-based estimation 
After the primary data has been aggregated, the next step in creating biodiversity variables is usually 

some kind of model-based estimation of species distributions (species distribution modelling, SDM). 

SDM is a methodology – a set of procedures, definitions, and techniques about the relationship between 
species distributions (or other biotic response variables describing aspects of biodiversity) and the 

physical (abiotic) environment. SDMs are quantitative, empirical models of species–environment 
relationships typically developed using species location data (abundance, occurrence) and those 

environmental variables thought to influence species distributions.3 One of the most popular tools for 
SDM are MaxEnt4 (maximum entropy) models, that use presence-only occurrence data and relevant 

environmental variables such as remote sensing derived vegetation indices, land use, digital elevation 

model and climate (e.g. Worldclim5 is a popular resource for global climate and weather data) to create 
(probabilistic) habitat (suitability) maps. MaxEnt models predict species occurrence by finding the 

distribution that is most spread out, or closest to uniform (i.e. having maximum entropy), while 
considering the limits of the environmental variables of known locations. In general, MaxEnt is a machine 

learning approach that can be used to estimate the probability of presence of a phenomenon, from 

known occurrence points and explanatory variables. The trained model can then be used to predict 
presence in different data if the corresponding explanatory variables are known. However, while MaxEnt 

models are generally very robust for presence-only data, they do (need to) make a lot of assumptions. 
When presence-absence data is available other types of models or ensemble modelling might give better 

results. And, while MaxEnt and Random Forest are established ML approaches for SDM, the recent 
advances made in deep learning, including generative modelling (and availability of compute resources) 

has made these interesting alternative approaches6. They can, for example, also learn to take species 

co-occurrence into account7. 
 

At the time of writing the focus is shifting from the selection, acquisition, and aggregation of the primary 
data to the follow-up steps of: (1) Identification of confounders (the environmental variables) from 

existing data cubes or ingesting new data when needed; (2) Model learning and evaluation using a few 

selected approaches (MaxEnt modelling results might already exist but perhaps only at a coarser 
resolution); (3) Uncertainty estimation of (the best possible) model; and (4) metadata annotation, which 

should again be covered by the FAIRiCUBE data ingestion process. 
 

A first set of experiments is currently being run using the MaxEnt8 model on observation data for 21 

selected farmland bird species in our study region. These selected species are commonly used to 
calculate a ‘Farmland Bird Indicator’, that can serve as a proxy for assessing the biodiversity status of 

agricultural landscapes in Europe9. It includes birds that are dependent on farmland for feeding and 
nesting and are not able to thrive in other habitats. For these species the observation data from NDFF 

for 2018 is used. 
 

As environmental variables the following datasets are used (all from 2018): 

- LGN: Land use classes of the Netherlands, grouped into monitoring classes. 
- OHN: Object Heights (in the Netherlands) on the land surface, derived from the AHN elevation 

dataset. 

 
1 https://www.dask.org 
2 https://spark.apache.org/docs/latest/api/python/ 
3 Elith, J., & Franklin, J. (2013). Species Distribution Modeling. Encyclopedia of Biodiversity: Second Edition, 692–705. 
https://doi.org/10.1016/B978-0-12-384719-5.00318-X 
4 Steven J. Phillips, Robert P. Anderson, Robert E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. 
Ecological Modelling, 190:231-259, 2006. 
5 https://worldclim.org 
6 Estopinan, J., Servajean, M., Bonnet, P., Munoz, F., & Joly, A. (2022). Deep Species Distribution Modeling From Sentinel-2 Image Time-
Series: A Global Scale Analysis on the Orchid Family. Front Plant Sci, 13, 839327. https://doi.org/10.3389/fpls.2022.839327 
7 Rademaker, M., Hogeweg, L., & Vos, R. (2019). Modelling the niches of wild and domesticated Ungulate species using deep learning. 
bioRxiv. https://doi.org/10.1101/744441 
8 Steven J. Phillips, Miroslav Dudík, Robert E. Schapire. [Internet] Maxent software for modeling species niches and distributions (Version 
3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. 
9 https://agridata.ec.europa.eu/Qlik_Downloads/InfoSheetEnvironmental/infoC35.html#_ftn1 

https://www.dask.org/
(https:/spark.apache.org/docs/latest/api/python
https://worldclim.org/
https://www.dask.org/
https://spark.apache.org/docs/latest/api/python/
https://worldclim.org/
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- NDVI: Normalized Difference Vegetation Index, 4 seasonal images (February, May, August, 

September) derived from Sentinel 2 data.  

 
Due to the used MaxEnt model software requiring a Java runtime, for which installation is under 

discussion at EOX, all processing has been done locally. In total 32306 species observation points 
derived from observation records have been used (0.8 MiB input file), and each species has been 

modelled individually (10 cross validation runs and 500 iterations of MaxEnt, taking about 17 hours on 
a M2 MacBook Pro with 16 GiB memory).To evaluate the performance of the model on the classification 

task per species the ROC (Receiver Operating Characteristics) curve can be used. It shows the true 

positive rate against the false positive rate at classification thresholds. The closer the curve is to the top 
left corner the better the model performs. The AUC (Area Under the Curve) indicates how well the 

model can distinguish between classes (Figure 21,22). 
 

In this study the (10 run) average AUC value per species varied between 0.71 and 0.93, with an outlier 

of 0.56 which can probably be related to faulty/noisy input data. The relative contribution of each of 
the selected environmental variables also differs per species and needs to be further analysed. OHN 

always seems to be one of the least contributing variables. Below are examples of results of two species 
Gallinago gallinago (Common snipe) and Carduelis carduelis (European goldfinch) as obtained from 

MaxEnt. 
 

MaxEnt results for Common Snipe MaxEnt results for European Goldfinch 

Species: Gallinago gallinago (Common snipe) 
https://en.wikipedia.org/wiki/Common_snipe 
 

Species: Carduelis carduelis (European goldfinch) 
https://en.wikipedia.org/wiki/European_goldfinch 

Mean AUC: 0.93 
AUC stddev: 0.02 
Training samples: 98 
Test samples: 11 
Datapoints: 10098 

Mean AUC: 0.79 
AUC stddev: 0.03 
Training samples: 418 
Test samples: 47 
Datapoints: 10418 

 
Figure 23 : ‘Snipe’ ROC and mean AUC 

 
Figure 24 : ‘Goldfinch’ ROC and mean AUC 

 

 
Figure 25 : ‘Snipe’ occurrence probabilities 

 
Figure 26 : ‘Goldfinch’ occurrence probabilities 

 

  

https://en.wikipedia.org/wiki/Common_snipe
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Variable contribution (and permutation importance): 
LGN: 69.3% [74.7%] 
NDVI August: 10.2% [9.2%] 
NDVI February: 8.8% [8.3%] 
NDVI May: 8.6% [5.1%] 
OHN: 1.7% [1.6%] 
NDVI September: 1.4% [1.2%] 

Variable contribution (and permutation importance): 
NDVI February: 57.3% [40.3%] 
NDVI May: 19.8% [26.2%] 
NDVI September: 9.4% [15.1%] 
NDVI August: 6.8% [15.1%] 
LGN: 5.9% [6.6%] 
OHN: 0.8% [1.2%] 

 
Based on these initial study results we plan to further experiment with the MaxEnt model, e.g. by using 

other environmental variables (confounders) and looking at known characteristics of the bird species 
abundance or comparing the results with for example expert-based species distribution maps. Besides 

that, we intend to explore other machine learning models such as random forest and, if possible, run 

them on FAIRiCUBE Hub instead of locally. 

2.2.5 Agricultural Pillar Data Engineering and Machine Learning 

Regarding the agriculture aspect of the use case the intention was to make use of data from existing 

initiatives to reward farmers for more nature friendly agricultural management. The most challenging 

aspect of this data as it turns out is that it is privacy sensitive and not easily shared by farmers since it 
directly involves their business operation. Even when permission to use the data is given, proper 

pseudonymization / anonymization must be considered. Including any accidentally ‘leaking’ of such 
privacy sensitive data, e.g. by overfitted ML models from which data points can then still be extracted. 

 

While attempts were made to obtain (data usage) consents from a sufficient large number of farmers, 
among others by cooperating with internal projects that also needed them, in practice this has turned 

out to be too time-consuming and thus impractical for this project. As an alternative we intent to look 
at synthesizing usable sample data representing realistic (but fictious) farms. For example, by using a 

farm typology (average arable, dairy, and mixed farms in the Netherlands) and available regional 
statistical agricultural data. Further details of this are still being explored.   

 

Information about nature friendly farm activities can possibly still be derived from the internal dataset 
called ANLb (“Agrarisch Natuur- en Landschapsbeheer”), which records field management practices that 

are more nature friendly and improve sustainability. Other input can come from current studies that are 
establishing and collecting Key Performance Indictors (KPIs) for farms, both arable and livestock (mostly 

dairy farms now). While still in development and most KPIs also requiring farm specific and sensitive 

data, some can be derived from open data (however the link between crop parcels and farms will not 
be known). The KPIs related to biodiversity that are currently considered are the (1) Hill-Shannon 
Diversity (in this case measuring the crop diversification), and the (2) Edge Density (m/ha) which 
indicates how many field borders there are (fewer large fields are assumed to be better for biodiversity). 

 
All currently known KPI calculations are formula/decision rule based, therefore no need for machine 

learning is expected. However, it might turn out that available data points are too sparse (e.g. not many 

farmers agreeing to use of their data for the project), in which case weakly supervised learning or 
generative modelling can be considered to improve and partially solve the data sparsity.  

 
A further crucial aspect will be the way the data, which typically is in vector (geometry) format (e.g. 

parcel boundaries), is transformed (‘gridded’) into raster data. For the Dutch parcel registration data 

(‘basisregistratie percelen’) currently a spatial resolution of 10m x 10m is considered, which needs to 
be carefully aligned with the other types of data in use, as will also be described in the following section. 

2.2.6 Environmental Pillar Data Engineering and Machine Learning 

This pillar concerns the more ‘classical’ Earth Observation data storage and processing, which should 

be most native to the available FAIRiCUBE platform. No specific need for machine learning is expected 
now. Rasdaman offers extensive data processing functionality via its query language (rasql), and if 

needed it can be extended with User Defined Functions (UDFs). 
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Most interesting (and challenging) will be that the environmental data usually is available as raster data, 

while the other two kinds of data used (biodiversity and agriculture) are vector data (or ‘plain’ tabular 
data with columns for coordinates or a location indication). These need to be matched by choosing an 

adequate grid (including cell size), one (or more) suitable coordinate reference systems (CRS), and 
proper transformations. Specifically for machine learning, mis-aligning grid cells or deforming the data 

too much (e.g. by accumulating transformation errors) can easily lead to a garbage-in, garbage-out 
situation, that might go undetected or take a long time to figure out. For deep learning a possible way 

to counter can be to focus on models that generalize better, for example by including (or simulating) 

coordinate transformations as part of the regular data augmentations. 
 

Ingestion of data into data cubes is ongoing, while procedures and validation approaches are being 
developed and tested. Common datasets, such as remote sensing-based data (e.g. Sentinel imagery) 

and products derived by Copernicus, are readily available (though in rather ‘raw’ form). For this use 

case specifically the Dutch land use dataset (LGN) for multiple years has been ingested and a virtual 
data cube created by rasdaman. Access to it has been tested with a Python Notebook (using the WCPS 

API and running on EOXHub). A required next step to use the data for machine learning / deep learning 
is to bridge between this WCPS API (common in the EO domain) and the Datasets and DataLoaders 

used by the frequently applied Python ML frameworks, such as PyTorch and Tensorflow (Keras). No 
existing implementations (e.g. software libraries or packages) that handle this have been found so far. 

2.2.7 Causal / Explainable Machine Learning 

The final goal of this use case is the discovery of causal associations (following already mentioned 

detection and attribution framework approach) between agricultural activities and changes in 
biodiversity, i.e., to not only find correlations in the combination of biodiversity, agriculture, and 

environmental data, but try to detect causalities. Its achievability depends on all previously mentioned 

steps to be successfully finished in time (which starts to get more critical now), without losing relevant 
details from the data, i.e., too much aggregation will prohibit detection of fine-grained relations. 

 

 
This topic is still a bit further away on the horizon with details about possible machine learning strategies 
hard to give. At a minimum the focus should be on interpretable models, the use of global and local 

model-agnostic methods (e.g. LIME (Local Interpretable Model-Agnostic Explanations) and SHAP 

(SHapely Additive exPlanations)) of explainability, feature visualization and saliency maps for deep 
learning models, up to causal association rules data mining, and causal machine learning. The latter, 

Figure 27 : UC2 Model serving - Dashboard application (proposed mockup, October 2022) 
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however, will require the use of known causal graphs from the problem domain (agriculture – 

environment – biodiversity interactions), which might be difficult to find (in literature). 

 
Meanwhile good progress is being made in setting up the processing environment for machine learning 

and deep learning. Specifically for the later, EOXHub has added headless execution of Python Notebooks 
that offers access to GPUs. As well as MLFlow Tracking for recording details on performed ML 

experiments and TensorBoard for the visualization of deep learning model training progress and results. 
 

Decisions or requirements concerning the ‘end’ products (such as the dashboard mock-up in Figure 27)  

for the use case can impact choices to be made earlier on in the data engineering and machine learning. 
E.g., it might be good to ‘reason backwards’ from the end product as well when thinking about the grid, 

cell size, algorithms, and attributes to keep, when gridding data, in order to not lose relevant features 
and/or labels for machine learning purposes. 

 

Further important aspects to consider for model serving and deployed applications are those of data, 
model, and concept drifts that over time can affect the operation (e.g., prediction accuracy). However, 

as products of a research project such concerns might be a bit less relevant. 

2.3 UC3 Biodiversity occurrence cubes – Drosophila landscape genomics 

UC3 aims to exploit the massive collection of DNA sequenced data of natural populations of the fruit fly 

Drosophila melanogaster. Apart from the challenge to adapt the data for storage as data cubes, the 
WP3 supports the processing and potentially application of machine learning algorithm to enrich the 

data set and reveal further insights while making advantage of the scalability and accessibility of data 
storage and processing capabilities of the FAIRiCUBE Hub. 

 

As a first demonstrator task, gap filling of missing data in the genetic information of pools of individuals 
that were sequenced jointly (Pool-Seq) was identified. The provided data set DESTv21  comprises of 

more than 730 population-based samples of Drosophila melanogaster distributed over the globe. In a 
first step, we focus on populations in North America, which are predominantly collected along the East 

Coast. Many of these samples are densely collected across multiple seasons and years. This dataset, 

available at the so-called ”Variant Call Format” (VCF), contains data entries for several millions of 
genomic positions for each population. These positions do not necessarily carry data for the entire 

number of populations. Additionally, missing data in one genomic position does not necessarily reflect 
which populations miss data in another position. To perform valid statistical analysis, positions with 

missing data cannot be included and the data used for various studies only represents a subset of the 
data available. 

 

 
 

 

 
1 https://dest.bio/ 

https://dest.bio/
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Figure 28 : UC3 data analysis and processing workflow. Machine Learning based gap filling methods 

can be applied to genomic data (lower left green cylinder: ”VCF”) to avoid non-usability of valid 

information and data on samples due to lack of data in other samples. 

 

 
As described in the exploratory data analysis in deliverable D3.1, the provided test data that was 

generated to develop this method is without missing data, in contrary to the original DESTv2 dataset 

which characterized by different levels of missing allelic information in the population samples (D2.2). 
To evaluate the accuracy of an applied gap filling method, artificial missing data will therefore be 

introduced that mimic actual gap characteristics. The number of missing data sums up to about 5% of 
the total amount of allele frequencies and the distribution of the number of subsequent single nucleotide 

polymorphism (SNP) positions follows the observed exponential function of number of gap-occurrence 

with gap-size. Most of the gaps that have been introduce consist of single SNP locations. 
 

A previous attempt has been made to gap-fill the data set by imputing missing allele frequency data 
based on information from close-by populations using inverse distance weighting based on geographic 

and temporal distance of neighbouring population. The DESTv2 dataset is particularly well suited for 
this, as many populations are closely sampled across space and time. To consider isolation-by-distance, 

due to limited dispersal among populations which reduces the relatedness (and potentially the similarity 

in allele frequencies), we restrict the inference to neighbours, which are within a user-defined 
geographic distance (in kilometres) and temporal distance (days between sampling dates). Moreover, 

we used inverse-distance-weighting (IDW) to average allele frequencies of neighbouring populations as 
a function of their proximity to the population with the missing allele frequency. This approach has been 

tested against a dataset who's artificially introduced gaps are distributed similar to the real dataset and 

provided satisfying results. However, assumption is that all neighbouring populations can have an equal 
relation regardless of geological boundaries. In the following this gap filling approach is addressed as 

empirical baseline. 
 

An alternative approach will be provided through clustering of the existing populations regardless of 
origin of time and space. This is justified since mutation pattern can occur independently and 

recurrently. In preparation of the clustering data using machine learning techniques, the allele frequency 

data is loaded from TSV files, stripped off the header information, and converted to a NumPy array. In 
the context of the clustering approach, the populations are considered data points that are to be 

clustered, and allele frequencies are the features by which the clustering is performed. However, as 
there are 50,024 allele frequencies per population in the test dataset, we attempt a ML clustering in 

50,024 dimensions and choosing a clustering algorithm by reviewing and visualizing cross plots of data 

is impossible. As an outcome of exploratory data analysis in deliverable D3.1, we have identified the 
position of allele frequencies with the highest variance across the populations which widens the 
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spectrum of differences in allele frequencies. After all, we do not want to cluster based on similarities 

of data but by different characteristics. By selecting only 99.5 % of the most variable allele frequencies, 

we reduce the dimensionality of our clustering to 251. Based on this, we can still not truly identify 
patterns of the data but can attempt a blind run of a k-means algorithm with application of the elbow 

method to find an optimal number of clusters k as input for the actual clustering.  
 

k-means algorithms are usually the first choice in clustering attempts due to their simplicity and 
computational efficiency (see also chapter 2.1 for description of other clustering methods). After 

initialisation with random k centres of clusters, each data point is assigned to the closest cluster centre 

and an iterative process, the centres of the clusters are updated by re-calculating the means (centroids) 
of each cluster and re-assigning data points. The performance of k-means clustering depends on the 

number of chosen clusters k, the initialization of cluster centres and, most importantly, on the nature 
of data. Specifically, the dataset needs to exhibit higher-dimensional spheres as imposed by definition 

of the distance metrics to the nearest cluster centre and the calculation of means to update the new 

cluster centre. If data clusters shape differently, alternatives such as spherical k-means algorithms or 
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) can be explored. Data with high 

dimensions can be further reduced in dimensionality using auto-encoder deep neural networks (DNN) 
which try to extract relevant characteristics instead of all dimensions of the data points – similar to our 

attempt to identify the most variable allele frequency positions. A subsequent application of e.g., k-
means is then performing the actual clustering of lower-dimension data. 

 

To find the optimal number of clusters k for our k-means clustering we apply the elbow method and 
perform several k-means clustering with a range of k from 1-15 and calculate the WCSS (Within-Cluster 

Sum of Square) for each run. When analysing Figure 29 and the plot of WCSS as a function of number 
of clusters k, we can observe a typical “elbow” shape of the curve which recommends k=5 for an optimal 

k-means clustering. A subsequent test with the silhouette method confirms this choice. 
 

 
Figure 29 : Applying the elbow method to determine the optimal number of classes  

for the k-means clustering. 

We can therefore perform a k-means clustering with k=5 and assign each population to a cluster 
number. Arguably, the recommended number of clusters is low which indicates large similarities in the 

allele frequency information across the populations and reflects the evolutionary history of world-wide 

D. melanogaster population very well (Kapun et al. 2020). The number and distribution of the clusters 
potentially thus reflects the geographic sampling and the evolutionary history of the investigated 

populations.  
 

In the subsequent gap-filling step we can replace missing allele frequency data in one population with 

a mean value from populations belonging to the same cluster. The gap filling has been tested for 
selections of populations in Europe and North America separately. When assuming the introduced gaps 
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to be of zero values, we can calculate the summed difference and root mean square (RMS) error of data 

with and without gap. After gap-filling, we can compare the summed difference and RMS and calculate 

the ratio that indicates how well the gap-filling performed. The results of both the k-means clustering 
with k=5 and the previous inverse-distance weighting method are shown in Table 1. In the following 

the k-means gap filling approach is addressed as machine learning (ML) baseline. 
 

Table 1: Statistics on the gap filling methods applied to selected populations. 

   North American 
populations  

European populations  

Number of populations  121  332  
Number of samples  6 152 952  16 708 016  
Number of gaps  125 000  338 000  
Total number of NaN  309 753  837 327  
Percentage of gaps  5.03  5.01  
Summed difference of gap data 

(rounded)  
33794  90059  

Summed difference after k-

mean gap filling (rounded)  
8216  256  

RMS error of gap data  0.05189  0.05508  
  
 

In order to improve the accuracy of the gap-filling we now employ sequential deep learning models. 
There are two types of models that we use: generative models and non-generative models. Generative 

models try to learn a probability distribution over the data and calculate missing values by sampling 
from the learned distribution. On the other hand, non-generative models try to impute the missing 

values directly from the data by exploiting the relationship between the known data points. 
 

Table 2 shows the RMSE scores for the methods used to impute missing allele frequencies. The deep 

learning methods are benchmarked against the empirical and ML baseline. The best performing methods 
are the Masked Autoencoder, Variational Autoencoder and Generative Adversarial Network.  A VAE 

operates within the framework of unsupervised learning, compressing data while maintaining the 
structure of input data. It introduces stochasticity in its encoding process, resulting in a structured, 

continuous latent space ideal for generating new samples. Similarly, Masked Autoencoders function in 

unsupervised settings, primarily focusing on reconstructing incomplete input data. They operate by 
masking a portion of the input data and learning to predict these masked values, effectively training the 

model to identify and fill in missing information. This approach is particularly useful in handling 
incomplete datasets, as it enables the model to learn the underlying structure of the data and accurately 

impute the missing values based on learned patterns.  
  

GANs, on the other hand, comprise two neural networks: a generator and a discriminator, functioning 

in a competitive setup. The generator fabricates data aiming to pass as genuine, while the discriminator 
improves its ability to differentiate between real and synthetic data. Over time, the generator becomes 

increasingly proficient at producing realistic data. 
 

 
Apart from MAE, VAE and GAN, we tried several other well-known machine learning and deep learning 

architectures such as: the KNN imputer that imputes missing values with K-nearest neighbours, 

Gaussian Process Regression (GPR) that imputes values by sampling from a learned distribution from 
the available data,  Temporal CNN (TCN) is tailored towards sequential data based on supervised 

learning, LSTM/Bidirectional LSTM (LSTM/BiLSTM)  are the go-to methods for sequential tasks and has 
the ability to learn sequential dependencies. These methods outperformed the inverse distance method 

and performed admirably.  
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Table 2 : RMSE on missing allele frequency imputation 

Methods  RMSE NA  RMSE EU  

No gap filling  0.05189  0.05508  

Inverse distance (empirical baseline)  0.04330 = 19%  0.04511 = 18%  

k-means clustering (ML baseline)  0.01137 = 79%  0.00131 = 98%  

Masked Autoencoder (MAE) 0.00142 = 97% 0.00231 = 96% 

Variational Autoencoder (VAE)  0.00467 = 92%  0.00093 = 98%  

Generative Adversarial Networks (GAN)   0.00019 = 99%  0.00134 = 98% 

  

VAE and GAN stand out in gap filling for genomic sequences due to their capability to generate plausible 
data points, crucial for handling the high-dimensional nature of genetic data. VAEs adeptly learn data 

distributions, enabling accurate imputations of missing values, while GANs, with their distinctive network 
architecture, create realistic sequences, enhancing data authenticity. However, the performance of 

GANs is hard to replicate as these models are notorious to train. It requires a lot of fine-tuning and 

balancing training between the generator and the discriminator. On the other hand, MAE also show 
comparable effectiveness in reconstructing incomplete data and predicting missing information, a key 

aspect in genomic studies where accurate and biologically plausible imputations are essential. All these 
models surpass traditional methods by innovatively maintaining genomic sequence integrity, however 

the family of autoencoder models are simpler, faster and easier to train. 

 
Generally, even the fairly simple k-means ML clustering produce a highly accurate reconstruction of the 

missing data. Deep learning methods beyond the ML baseline model increase the accuracy as they have 
more layers and parameters which are capable of learning high dimensional interactions and 

correlations, especially in this case, where the input is a long sequence of 50,024 allele frequencies. 
The models defined above are capable of extracting features in such high dimensions. Also, another 

factor that contributes to DL methods’ superior performance over ML baselines is that the DL models 

have been defined and implemented in a such a manner that the sequence of allele frequencies is 
preserved. This is imperative in this case as we are dealing with sequential data. 

 
As a next step, we will focus on the actual DESTv2 with gaps that comprises of more than 730 

population-based samples of Drosophila melanogaster distributed over the globe and more than 3 

million SNP positions. This data will have gaps where we don’t know the true values to compare against. 
Only the general distribution of Allele frequencies and a-priori information can be used to validate the 

results. It will further be numerically challenging to handle the whole records of more than 3 million 
SNP positions at once, we will therefore consider a window approach to input missing data piece by 

piece.  

2.4 UC4 Spatial and temporal assessment of neighbourhood building 
stock 

 

To create a building stock model that can be used to estimate the building energy performance, climate 
gas emissions and the building’s material composition, we take the join outcome of the IEE Project 

EPISCOPE and TABULA1 as a starting point (see also the final EPISCOPE report2). Country wise, a 
building classification is presented and a straightforward energy performance and building composition 

estimation is published there. Given the availability of the input parameters (construction year, building 

type and total floor area) we can thereby directly link public city data to our desired output parameters.  
 

First, we will focus on the parameter total floor area which can be derived from the building volume 
being – in the simplest definition of the building Level of Detail 1(LoD) - the product of the ground area 

 
1 https://episcope.eu 
2 https://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE_FinalReport.pdf 

https://episcope.eu/
https://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE_FinalReport.pdf
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and the building height. However, finding complete height buildings datasets is challenging. Gap filling 

is therefore a must and different methods need to be considered. Even though we strictly only need the 

number of floors and the ground area of a building to relate to the EPISCOPE building classification, we 
see the building height as a more widely available data source which can be further improved using gap 

filling.  
 

Many approaches exist in literature for estimating building heights from data. Those include a simple 
multiplication of the number of floors by a constant ceiling height, machine learning tree-based 

approaches, estimation from digital elevation models and more advanced as, for example, estimations 

based on satellite data. In the context of our FAIRiCUBE use case, three approaches were used to 
estimate building heights. The city of Halle, Germany, was selected as a test case as we have available 

the ground truth building height data, the input data to all methods in focus (see also deliverable D3.1) 
and the published machine learning model could be applied without problems. For larger cities, like 

Vienna, Austria or Oslo, Norway which were identified originally as target cities, we ran into numerical 

issue of the published ML method most likely due to the size of the cities. Once we conclude from the 
city of Halle test case, we revert to the original selected European test cities to allow for synergies with 

other FAIRiCUBE use case, e.g. UC 1. 
 

We now focus on the first method which is using Open Street Map (OSM) to extract the number of 
building floors and multiplying them by a constant ceiling height. Given the limited availability of ceiling 

height data for Halle, a region around Halle was selected to get a better representation of the ceiling 

height constant. The dataset contained information of 230,255 buildings of which only 20% (18,837) 
had the number of levels and just 850 both heights and number of levels. The average level height for 

the dataset was 2.5 m. In a brute force attempt, we tested different constants ranging from 2.4 m to 
4.3 m as potential ceiling heights and calculated the mean absolute error (MAE) and root mean squared 

error (RMSE). The optimal ceiling height was given with 3.0 m with a MAE of 2.7 m. Later, the dataset 

was cropped to the outline of the city of Halle and building heights were computed. The results are 
shown in Figure 30.  
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Figure 30 : Building heights [m] estimated by the multiplication of the number of levels by a constant. 

 

Despite its easy implementation, the number of floors times a constant ceiling height method is not 
always applicable as the number of floors for a whole city is rarely available. Moreover, the method can 

introduce bias, as the height of the levels is generally heterogeneous and can vary significatively 

between buildings, city neighbourhoods and cities.  

Regarding machine learning (ML), tree-based algorithms are the most used for this kind of application. 

In this work we have used a random forest ML algorithm, implemented in the ready-to-use Geoclimate1 

software, a geospatial processing toolbox for environmental and climate studies.  
 

A decision tree is a kind of flow-chart with tree structure with nodes, leaves and branches. On each 
node, a test is carried out on an attribute of a dataset. The outcome of the test represents a new branch 

on the tree, and it is stored in a terminal node known as leaf. Then recursively introduce new tests on 

each of the terminal nodes (leaves) hence splitting the tree until a stopping criterion is met. The last 
output is compared to a known true value and the loop repeats. A metrics is used to select the paths 

maximizing information gain. What the random forest does is to combine the output of multiple decision 
trees to reach a single result with lowest bias and variance in the results.   

 
The random forest model for the estimation of building heights implemented in Geoclimate was trained 

on a dataset of 14 French communes with reference heights provided by BDTopo IGN. For inference 

(prediction), the software first retrieves the building layer of Open Street Map (OSM) and to compute 
62 geographical indicators from a building’s closest environment. These features are fed as features 

(predictors) into the random forest algorithm to predict building heights. Geoclimate is open source. As 

 
1 Jérémy Bernard et al., Estimated height of the OpenStreetMap buildings of 24 French communes using the 

GeoClimate Software (version 0.0.1) (2021), , doi:10.5281/zenodo.5746612. 

https://github.com/orbisgis/geoclimate
https://github.com/orbisgis/geoclimate
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the machine learning model is available through the paper publication, we can directly apply it to other 

cities, like our city of Halle, Germany. For a wider application, to especially larger cities, a re-write or at 

least debugging of the existing ML inference is however necessary. Figure 31 shows the prediction of 
building heights for Halle, Germany. 

 
 

  
Figure 31 : Building heights estimated by random forest algorithm using the Geoclimate software for 

the city of Halle, Germany. 

 

Despite the capability of Geoclimate at the current development state, the software still needs fixing 
some stability issues. Debugging and improving the code can be challenging as it requires knowledge 

on Apache Groovy, a java syntax-compatible object-oriented programming language for the Java 

platform not so known in the data science community. 
 

A third approach is using estimating building heights form the difference between a Digital Surface 
Model (DSM) and Digital Terrain Model (DTM) data as illustrated in Figure 32. Only building heights 

greater than 3.0m were included in the results shown in Figure 33. Of all the three methods described 
here, this method is the most stable and least computationally demanding one as it only requires the 

subtraction of two data layers. However, high resolution DSM data is not widely available in Europe 

whereas DTM data is available through the digital elevation model (DEM) provided by the Copernicus 
land monitoring service1. 

 

 
1 https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 

https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
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Figure 32 : Illustration of Digital Surface Model (DSM) and Digital Terrain Model (DTM). 

 

F  

Figure 33 : Building heights estimated by the difference of DSM and DTM  

for the city of Halle, Germany. 

 
Table 3: Descriptive statistics of building heights in all the GeoTiff layers. 

Parameter Ground truth Number of levels 
x factor 

Geoclimate DSM-DTM Copernicus 
building 

height 

dataset 

Max 62.3 45 66.0 30.4 45.0 

Mean 8.12 11.9 10.3 9.6 7.7 
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Min 0.06 6.0 3.4 3.0 3.0 

 

As a final step of the building height estimation task, the output of the three different methods and the 

Copernicus building height dataset is compared against the ground truth. The ground truth data was 

provided as 53 separated files in cityGML format which is an extension of the GML standard that handles 
3D data such as varying building height information complying to level-of-detail 2 (LoD 2). Note that 

the ground truth is still not 100% accurate as it is also combines the processed input from several data 
sources as described in deliverable D3.1. A QGis script was created to convert each GML file into GeoJson 

and posterior merge into a single GeoJson files. Finally, the merged GeoJson was rasterized and 
exported as GeoTiff to make it directly comparable to the output of our building height estimation layers.   

 

Binary overlap layers between the GeoTiff layer of the ground truth and the results in all the three 
estimation methods were generated. The different overlap layers were used as a binary mask to extract 

data from the different estimation results and the ground truth.   
 

Table 4 shows a descriptive statistic of the layers overlapping with the ground truth.  

 

Table 4: Descriptive statistics of building heights in all the GeoTiff layers. 

Parameter Ground truth Number of 

levels x factor 

Geoclimate DSM-DTM Copernicus 

building 
height 

Max 62.3 45 66.0 30.4 45.0 

Mean 8.12 11.9 10.3 9.6 7.7 

Min 0.06 6.0 3.4 3.0 3.0 

 
 

To evaluate the accuracy of all estimation methods, the root mean square error (RMSE) with respect to 

the ground truth data was calculated. The result is presented in Table 5. 
 

Table 5: RMSE in the estimation of building heights by different methods  

with respect to the ground truth. 

Method RMSE [m] 

Number of levels x constant 2.41 

Geoclimate-random forest 3.18 

DSM - DTM 2.46  

Copernicus building height dataset 3.38 

 

Originally, the city of Halle, Germany, was a testcase to perform the building height estimation using 

several methods. The data availability was good and the provided ML algorithm for the random forest 
regression was running stable. However, depending on the data availability and completeness for other 

cities we are not able to recommend a method that will likely succeed in all cases.  
 

Naturally, the preferred and recommended approach is to obtain local data from municipalities, similar 

to the Halle ground truth data. This kind of data seems to be very fragmented within European cities 
and is not available as a European data layer. The Copernicus urban atlas building height layer1 is a 

good starting point but is as well an advanced version of the DST-DTM method. If local building height 
data is not available, we can refer to the methods tested in this work. According to Table 4 the lowest 

RMSE is given by the method number of levels x constant. However, given the sparsity of the OSM data 
number of building levels, building heights cannot be estimated for a majority of buildings. A more 

complete estimation can be provided via subtracting DSM – DTM data which however might not widely 

 
1 https://land.copernicus.eu/local/urban-atlas/building-height-2012 

https://land.copernicus.eu/local/urban-atlas/building-height-2012?tab=mapview
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be available for European cities at our target spatial resolution of at least 10 m. The European data 

layer digital elevation model (DEM)1 is for example provided at a spatial resolution of only 25m. 

  
From the viewpoint of the data basis, the most stable method is actually the Geoclimate ML method 

using OSM input data. OSM data may however vary in accuracy and quality due to its crowd source 
approach. If we can overcome the numerical issues of executing the Geoclimate ML model on large 

cities, we can obtain a good base line estimation of building heights or number of stories per building. 
 

We now have derived a building stock model according to the LoD 1, e.g., each building is approximated 

as a building block with volume given by ground area and height. As a next step in our task, we will 
assign the building volumes with construction year and classify according to the building types as defined 

by the Episcope data base. Combining all the input layers finally allows us to estimate energy 
performance, building material composition and additional measures. 

 

2.4.1 Processing workflow 

The overall progress for UC4, as of December 2023, is presented in Figure 34. Same logic as in UC2 
holds here, meaning that the traffic sign icons show the general state. However, processes that haven’t 

been marked by any sign icons has not started yet. Explanation of the data sources and processes are 
provided below based on the provided tags in Figure 34. 

 
 

 
Figure 34 : Progress within UC4 data analysis and processing workflow 

 

 
 

 
 

 
1 https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 

https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
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Data sources 

 

Ground-based data 
A.1. Cadastral data: Here a combination of community-based data, and local data are considered. Open 

Street Map (OSM) is used to extract building geometries, while local data containing building information 
like age and functionality is collected from municipalities. From the OSM data only polygons are 

extracted, meaning that, point and multi-polygon geometries have been excluded. In addition, A set of 
point data from the municipality of Oslo is collected. The spatial data present a static information about 

the building cadastre in Oslo, like construction year, building type, number of floors, etc. 

 
A.2. Energy consumption: So far, UC4 has been using average energy mixes for different building 

archetypes to estimate the heating demands. This approach has been taken since UC4 did not have an 
energy mix map projecting the final energy mixes consumed at residential level. It has been identified 

a couple of potential sources to either make such a map or use an existing one.  

 
Remote sensing data 

B.1. Elevation and building typology: Data representing Digital Surface Model (DSM) and Digital Terrain 
Model (DTM) are used here to estimate building height and subsequently their geometries. 

 
B.2. SAR and infrared imagery: It is of interest to test the feasibility of using Synthetic Aperture Radar 

(SAR) imagery to estimate building heights. In addition, it is of interest to test the possibility of using 

infrared data to estimate heat leakage (relative thermal inefficiencies of buildings). European Space 
Agency and Sentinel hub are the two sources that are considered for SAR and infrared data, respectively. 

 
Tabular data 

C. Building archetype information (like environmental footprint per mass of building and heat transfer 

coefficient of different building elements) is collected from different sources. TABULA/EPISCOPE 
datasheet is the main source of information here. It contains information about architype building 

information in certain countries in Europe with their corresponding climate information. In addition, 
other sources of information are used to estimate in-use mass of materials to estimate availability of 

secondary construction materials from buildings and estimation of embodied environmental impacts 

associated with them. 
 

Processing work 
E.1. Spatial overlay: Cadastral data are spatially merged here. It might happen a building has a several 

purpose in its use (like, a building might have grocery store underneath, or coffee shop etc.). In the 
overlaying process, UC4 exclude building that might have multipurpose/functionality to ensure that the 

energy balance calculation do not underestimate energy needed for heating. 

 
E.2. Canopy Height Model (CHM): Canopy Height Model contains the height difference between DSM 

and DTM. However, before this, mosaic of DTM and DSM is created, as the attained raster images are 
not in one peace. 

 

E.3. Height estimation: Each building geometry is masked over CHM data, and the average height 
attained from each masked image is stored. The height value is later used to estimate the volume of 

each residential building and calculate the shaded wall between residential buildings. 
 

E.4. Energy demand calculation: This block estimates the energy needed for each residential building 
based on the energy calculation formula provided by TABULA/EPISCOPE1. The estimations are based 

on three archetypical scenarios for each residential building: 1) the as-built design, 2) intermediate 

renovation, and 3) advance renovation. For newly constructed buildings, the as-built design is 
compatible with intermediate renovated or advance renovated building. Figure 35 presents the as-built 

energy demand for space heating for residential buildings in Oslo. 

 
1 Diefenbach et al. (2013). TABULA Calculation Method – Energy Use for Heating and Domestic Hot 

Water. URL: www.building-typology.eu 
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Figure 35 : As-built annual energy needs for space heating (kWh/m2) for residential buildings in Oslo. 

E.5. Energy system and GHG emissions calculations: Based on the attained energy demand from Process 

E.4, a series of energy systems are modelled to satisfy the energy demand. TABULA/EPISCOPE are used 
to extract the list of potential energy systems for the designated countries. In addition, GHG emissions 

associated with each energy system are calculated to present embodied environmental impacts.  
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E.6. Intermediate data cube: some of the attained intermediate results in UC4 might have potential use 

for other purposes. Hence, such results are stored in grided format. Figure 36presents an example of 
such results. It shows the grided building height for the city of Oslo. Such an image might be of interest 

for identification of rooftops with high potential for photovoltaic panel or green roof applications.  
 

 
Figure 36 : Canopy height results for residential buildings in Oslo. 
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2.4.2 Next step 

Based on the progress of UC4, the following activities are expected to take place: (1) extension of 

building energy calculations and data gap filling, (2) testing validation of the attained energy 

calculations, (3) identification of the deriving forces in energy retrofitting, (4) stochastic modelling of 

identified drivers on energy retrofitting, and (5) performing multi-objective optimization programming. 

 

Points 1 and 2 in the overseen activities are linked to each other. This implies that the energy 

performance calculating will first be extended to cover the energy demand and potential energy mix 

delivered to a combination of building types for the four cities of choice in UC4. Here, the energy demand 

and delivery estimation and estimate in-use building materials and GHG emissions associated with each 

scenario. Secondly, the estimate results (concerning the energy performance and in-use materials) will 

quality controlled with reference values. The second step is a crucial step and requires local values. At 

this stage, we are attained local data from Norway to carry out a validation test for the city of Oslo. The 

similar approach is expected to be taken for the remaining cities. Besides, the work will test potential 

data gap filling approaches and document the findings. 

 

Based on the validation results from each city under investigation, statistical modelling will be carried 

out to identify key factors influencing renovation rate of residential buildings like income, energy price, 

age, and education of registered residents in a neighbourhood. The importance of such factors will be 

assessed based on findings from other scientific works. After the identification of important factors and 

their causalities, a stochastic model will be developed to test the effect of different actions in the future. 

This will be useful as it assists in understanding the dynamics of different factors and how they influence 

the energy retrofitting. 

 

The last step will deal with optimization modelling to calculate optimal solutions to meet the climate and 

energy goals that each city is aiming to achieve by 2030. 
 

2.5 UC5 Validation of Phytosociological Methods through Occurrence 
Cubes 

The use case on the validation of phytosociological methods through occurrence cubes (UC5) started 
with a significant delay compared to the other use cases due to staffing issues and exploitation of  

synergies with a sister project funding under the same call. UC5 aims to validate the traditional methods 
applied in phytosociology to characterize and classify plant communities and to develop a new 

phytosociological approach to characterize and predict the presence of plant communities for yet 
unknown localities. This will be approached by linking distribution data of plant taxa and vegetation 
communities based on habitat types with EO environmental data.  

Currently, UC5 is in the data exploration phase which is prerequisite for entering the machine learning 

phase. No machine learning strategy can therefore be reported and documented yet. A future scheduled 
update of this deliverable will cover the progress from UC5 as well. 
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3 Summary and conclusion 

Given the status of the data ingestion, the UC owners progress to identify and describe scientific 
research questions in terms of data relationships that are to be discovered and exploited, and the results 

from the exploratory data analysis (deliverable D3.2) a first draft of a machine learning strategy was 
created for each use case.  

 

UC1 performed several unsupervised clustering exercises using different ML algorithms to find 
similarities of European cities according to the Urban Atlas land classification. Based on only the level 1 

coverage ratios, several clusters have been identified and described. A k-means clustering was 
established as a baseline model. 

 
UC2 invested valuable resources to implement, develop and showcase a ML model inference close to a 

high performing data base engine which – besides the compute aspect – is usually a bottleneck in ML 

applications. Following the outlined machine learning strategy, the focus is currently how to create 
occurrence cubes from sparse biodiversity observation data. 

 
UC3 performed a gap filling exercise of allele frequency data of DNA-sequenced populations to improve 

an empirical base line model. First an unsupervised k-means clustering (ML base line mode) was used 

to identified similarities in genetic information which can be exploited to infer the missing data. In a 
next step, more advanced ML methods using deep neural networks could further improve the accuracy 

of the gap filling. Variational Autoencoder (VAE) and Generative Adversarial Networks (GAN) provided 
the best results given modest increase in computational efforts. 

 
UC4 tested several published methods to estimate the building height which can as well seen as a gap-

filling exercise as some data sources provide sparse building heights or at least the number of building 

stories. One of the methods used a provided ML model, others are based on simpler numerical relations. 
Subtracting a digital elevation model from the digital surface model finally provided the lowest error 

metrics for the selected test city. 
 

Finally, UC5 started with a significant delay, and the machine learning phase has not been explored yet. 

 
 
 


