Using skin temperature increments from microwave observations in a coupled atmosphere-ocean model

Tracy Scanlon*, Alan Geer, Niels Bormann, Philip Browne, Tony McNally

*Funded by EUMETSAT under the Fellowship Programme

Microwave Imagers at ECMWF

All-Sky Assimilation of Microwave Imagers

• ECMWF uses 4D-Var for initial conditions for the medium range weather forecast.

 Microwave imager data helps to improve atmospheric humidity, cloud and precipitation analyses.

Microwave imagers give their largest forecast impact from a small fraction of precipitating scenes. Number IFSOI Precipitating Cloudy Clear 30 50 10 20 40 60 n Fraction of AMSR2 total FSOI [%]

FSOI for AMSR2 (July – August 2016) split by clear, cloudy and precipitating conditions.

FSOI - Forecast Sensitivity to Observation Impact – an adjoint approach to measure the impact of observations on the short-term forecast *(see Dahoui et al. (2017))*

History of All-Sky Assimilation at ECMWF

Assimilate Retrievals	Assimilate Radiances		
Temperature			
Humidity			
Surface windspeed Cloud and precipitation			
Sea ice			
Skin temperature Soil moisture, snow Vegetation			
Rough history and future plans for all-sky / all-surface assimilation at ECMWF	direct radiance assimilation (late 1990s)	all-sky radiance assimilation (~2010) (see Bauer et. al. 2010, Geer et al., 2010, Geer and Bauer, 2010 and 2011)	all-sky all-surface radiance assimilation (2025)

Background

Introduction

• In the near future, ECMWF plans to move towards a coupled atmosphere-ocean system.

• Information from microwave imagers can be exploited over oceans to help drive the ocean model.

- To do this, low frequency (6 and 10 GHz) channels are required with appropriate QC.
- Important for upcoming missions carrying low-frequency channels, such as CIMR.

Why is skin temperature important?

Adding 6 and 10 GHz to the NWP System

Coastline Screening at 6 GHz

Sun-Glint Screening

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

(a) Sun-glint in AMSR2 Background departures

11

RFI Screening for 10 GHz on AMSR2

Sources identified by placing satellites in theoretical orbits, calculating the glint and comparing this with background departures.

Cold Air Outbreaks at 6 and 10 GHz

Background Departures After Screening – Monthly averages

Generating Skin Temperature Increments

Skin Temperature Increments for July 2022

Skin Temperature Increments for January 2023

Correcting the Propagation of Tropical Instability Waves

(a) 2022-08-06: Initial SKT 7.5°N 301 Crests of waves 2.5°N Temperature [K] 0 moving between 2.5°S 300 5°S 7.5°S background and - 299 160°W 140°W 120°W 100°W 80°W analysis 0.150 - 298 -0.225 -0.150 0.075 0.225 -0.300 -0.075 0.000 0.300 2 . Skin Temperature Increments [K] Skin - 297 301.0 0 296 ⊻ 300.5 -138-136-134-132 -130-128 -126-140(b) 2022-08-06: Final SKT Temperature 300.0 0 Skin Temperature [K] 0 299.5 300 299 Shift of -0.8° consistent 3 299.0 298 with an input SST delay of 2 days 297 296 298.0--138-136 -134-132 -130 -128 -126 -140-140-130-110-120-100-150-90Longitude [°] Initial SKT Final SKT

Sensitivity of SKT increments to 6 and 10 GHz

Skin Temperature Increments in the Coupled Atmosphere-Ocean System

Courtesy of Philip Browne (ECMWF)

Impact of MW on Fit of In-Situ Ocean Observations

Summary

• Microwave observations with primary sensitivity to the surface are being used for the first time.

• Meaningful skin temperature increments can be generated using microwave observations.

• Use of these increments in the coupled system result in a better fit to in-situ ocean observations.

- The following changes will become operational at CY50R1:
 - Activation of 6 and 10 GHz from AMSR2 and GMI.
 - Activation of skin temperature increments from these sensors.
 - Use of the skin temperature increments in the coupled system.

Tracy.Scanlon@ecmwf.int

Scanlon, T., Geer, A., Bormann, N. and Browne, P. (2024). Improving ocean surface temperature for NWP using allsky microwave imager observations. Technical Report RR64, doi:10.21957/c16be07b23

