Riteria For Plurigarmonicity Of M-Harmonic Functions

Madraximov Ruzimbay Masharipovich

Tashkent State Pedagogical University, Professor of the "General Mathematics" department, mruzimbay@mail.ru

Omonov Olim Isoqovich

Tashkent State Pedagogical University,

o.i.omonov@mail.ru

Abstract: It is proved in the paper that if a function f(z) is M-harmonic in a polydisk U^n , then the function $f^2(z)$ is M-harmonic in a polydisk U^n , then the function

subharmonic. In addition, the case is $\tilde{\Delta}f = \tilde{\Delta}f^{\alpha} = 0 (\alpha \neq 0, \alpha \neq 1, \alpha \in \mathbb{R})$ proved to f(z) be a n -harmonic function. Moreover, if the function is harmonic on the unit ball and $f^{m}(z)$ is M-harmonic, then it is proved that $f^{m}(z)$ is pluriharmonic. At the same time, if the function is harmonic and M-harmonic in the polydisk $U^2 \subset C^2$, then it is proved that it is n-harmonic.

Keywords — holomorphic function, harmonic function, subharmonic function, -harmonic function, -subharmonic function, pluriharmonic function, plurisubharmonic function, M-harmonic function, M-subharmonic function.

INTRODUCTION.

Suppose an B open unit ball in C^n with center at the origin

B, a $\varphi_a(z)$ – linear fractional biholomoric mapping of the ball $(B = \{z \in C^n : |z| < 1\}, \partial B = \{\omega \in C^n : |\omega| = 1\})$ onto itself of the following form:

$$\varphi_{a}(z) = \frac{a - P_{a}(z) - \left(1 - |a|^{2}\right)^{\frac{1}{2}} \left(z - P_{a}(z)\right)}{1 - \langle z, a \rangle}.$$

At $a \in B$, $a \neq 0$, $\varphi_a(0)$ $\varphi_0(z) = -z$, where the angle brackets denote the

$$\langle z, w \rangle = \sum_{i=1} z_i \overline{w}_i,$$

Hermitian product dot of

$$|z| = \langle z, z \rangle^{\frac{1}{2}}, \quad P_a(z) = \frac{\langle z, a \rangle}{\langle a, a \rangle} a$$

$$P_0(z) = 0, \quad Obviously \quad \varphi_a(0) = a, \quad \varphi_a(a) = 0.$$

If $G = \{z \in C^n : \langle z, a \rangle \neq 1\}$, then φ_a holomorphically maps G to C^n . It is clear that $G \supset \overline{B}$, since |a| < 1

The invariant Laplace operator Δ of functions on doubly smooth functions in B is defined as follows:

$$\tilde{\Delta}f(z) = \Delta(f \circ \varphi_z)(0)$$

where $z \in B$, Δ – are the usual Laplacian [3: 54].

The operator Δ is called invariant because it commutes with automorphisms of the ball B in the following sense: $\tilde{\Delta}(f \circ \varphi) = (\tilde{\Delta}f) \circ \varphi_{\text{where}} f \in C^2(G)_{G \subset B}$), and φ^{-} is any biholomorphic automorphism of the ball B

For an arbitrary $\lambda \in C$, let us denote by X_{λ} the space of all functions $f \in C^2(B)(f \in C^2(U^n))$, satisfying the equation

$$\tilde{\Delta}f(z) = \lambda \cdot f(z)$$

Case $\lambda = 0$ is the most interesting. We will call elements of the space $X_0 M$ -harmonic functions.

Definition 1.1. Let B be the unit ball in C^n . The function $f \in C^2(B)$ is called *M* -harmonic (*M* -subharmonic) $\Delta f = 0$ $(\Delta f \ge 0)$ if where

$$\Delta f = (1 - |z|^2)(\Delta f - 4\sum_{i,j=1}^n z_i \overline{z}_j \frac{\partial^2 f}{\partial z_i \partial \overline{z}_j})$$
 is the

invariant Laplacian in B [3: 55].

For the polycircle $U^n \subset \square^n$ a similar definition holds. **Definition 1.2.** Let $U^n - be$ the unit polydisk in C^n . The function $f \in C^2(U^n)$ is called *M*-harmonic (*M*subharmonic) in U^n if $\tilde{\Delta}f = 0$ $(\Delta f \ge 0)$, where $\Delta f = 2\sum_{i=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial^{2} f}{\partial z_{i} \partial \overline{z}_{i}}$ the invariant

Laplacian in U^n [4: 24].

n /

U. Rudin in [3] obtained the following result: if the function f(z) is harmonic and M-harmonic in B, then f(z) is pluriharmonic in B.

R.M. Madrakhimov and M.D. Vaisov in [7] proved the following theorem: if the function f(z) is harmonic and Msubharmonic in B, then f(z) is pluriharmonic in B.

2. Main results. Theorem 2.1. If a function f is M. harmonic in U^n , then f^2 is M -subharmonic in U^n .

Proof. For the function f^2 , the invariant Laplacian has the following form:

$$\begin{split} \tilde{\Delta}f^2 &= 4\sum_{j=1}^n \left(1 - \left|z_j\right|^2\right)^2 \frac{\partial f}{\partial z_j} \frac{\partial f}{\partial \overline{z}_j} = 4\sum_{j=1}^n \left(1 - \left|z_j\right|^2\right)^2 \left|\frac{\partial f}{\partial z_j}\right|^2 \\ \text{it follows that for} & \forall z_j \in B \quad \left(j = 1, \dots, n\right) \quad \text{with} \\ \left(1 - \left|z_j\right|^2\right)^2 &> 0 \quad \left|\frac{\partial f}{\partial z_j}\right|^2 \geq 0 \\ \text{and} \quad f^2 &= 0 \quad \text{, then} \quad \tilde{\Delta}f^2 \geq 0 \\ \text{, then} \quad \tilde{\Delta}f^2 \geq 0 \quad \text{. This} \\ \text{means that the function} \quad f^2 &= M \quad \text{-subharmonic function.} \\ \text{Theorem 2.2. Suppose that} \quad \tilde{\Delta}f = \tilde{\Delta}f^\alpha = 0 \quad (\alpha \neq 0, \alpha \neq 1, \alpha \in R) \text{ is in } U^n \subset C^n, \text{ then} \quad f(Z) \quad \text{is } n \quad \text{-harmonic in } U^n \\ \text{.} \end{split}$$

Proof. For the function f^{α} , the invariant of the Laplace operator has the form:

$$\begin{split} \tilde{\Delta}f^{\alpha} &= 2\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial^{2}f^{\alpha}}{\partial z_{j}\partial \bar{z}_{j}} = 2\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \left(\alpha(\alpha - 1)f^{\alpha - 2}\frac{\partial f}{\partial z_{j}}\frac{\partial f}{\partial \bar{z}_{j}} + \alpha f^{\alpha - 1}\frac{\partial^{2}f}{\partial z_{j}\partial \bar{z}_{j}}\right) = 2\alpha(\alpha - 1)f^{\alpha - 2}\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2}\frac{\partial f}{\partial z_{j}}\frac{\partial f}{\partial \bar{z}_{j}} + 2\alpha f^{\alpha - 1}\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2}\frac{\partial^{2}f}{\partial z_{j}\partial \bar{z}_{j}} = 0. \end{split}$$

From the conditions of the theorem

$$\binom{2}{2}^{2} \frac{\partial^{2} f}{\partial z_{j} \partial \overline{z}_{j}} = 0$$

and $\alpha \neq 0$,
it follows that

$$\tilde{\Delta}f^{2} = 2\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial^{2}f^{2}}{\partial z_{j}\partial\overline{z}_{j}} = 2\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \left(2\frac{\partial f}{\partial \overline{z}_{j}} \neq \partial f}{\partial \overline{z}_{j}} + 2f\frac{\alpha \partial^{2}f}{\partial \overline{z}_{j}\partial\overline{z}_{j}}\right) = \stackrel{\text{it}}{\text{follows}} \quad \text{that}$$

$$= 4\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial \overline{z}_{j}} + 4f\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial^{2}f}{\partial z_{j}\partial\overline{z}_{j}} = 4\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial \overline{z}_{j}} \frac{\partial f}{\partial \overline{z}_{j}} \quad \text{. It is known that if } f \text{ is a}$$

$$\text{real function then} \quad \text{real function then} \quad \text{real function then}$$

By conditions the the of theorem. $\Delta f = 2\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial^{2} f}{\partial z_{j} \partial \overline{z}_{j}} = 0$ and if f is a real $\frac{\partial f}{\partial \overline{z}_j} = \frac{\overline{\partial f}}{\partial z_j}$. From the following two

function, then equalities

real function, then

 $a^2 f$

 $\Delta f = 2\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|\right)$

$$\sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial \overline{z}_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_{j}} = \sum_{j=1}^{n} \left(1 - \left|z_{j}\right|^{2}\right)^{2} \frac{\partial f}{\partial z_{j}} \frac{\partial f}{\partial z_$$

For
$$\forall z_j \in B(j=1,...,n)$$
. Then
 $\left|\frac{\partial f}{\partial z_j}\right|^2 = \frac{\partial f}{\partial z_j}\frac{\partial f}{\partial \overline{z}_j} = 0$. It follows that $\frac{\partial f}{\partial z_j} = 0$
 $\frac{\partial f}{\partial \overline{z}_j} = 0$ Then, $\frac{\partial^2 f}{\partial z_j \partial \overline{z}_j} = 0$. This means that the function

 $J_{\text{is}} n_{\text{-harmonic.}}$

Theorem 2.3. Let B be the unit ball in C^n and u(z) satisfy the following conditions:

a) Function u(z) is harmonic in B; b) Function $u^m(z)$ is M-harmonic in B.

Then $u^m(z)$ is pluriharmonic in B.

Proof. Since the $u^m(z)$ M-harmonic function is realanalytic in B, it can be expanded into a series of homogeneous polynomials:

$$\underbrace{\begin{array}{c} (2.1)\\ \sum_{k=1}^{\infty} P_k(z) \end{array}}^{(2.1)} =$$

where $P_k(z)$ is a homogeneous polynomial in $z_1, \ldots, z_n, \overline{z_1}, \ldots, \overline{z_n}$ of degree k. The series converges uniformly on compact subsets of B, and successive derivatives $u^m(z)$

of $u^m(z)$ can be obtained by differentiation along the series.

Each polynomial in (2.1) can be written as

$$P_k(z) = \sum_{p+q=k} f_{p,q}$$

where $f_{p,q}$ are polynomials in which the total order in z_1, \ldots, z_n is p and the total order in $\overline{z}_1, \ldots, \overline{z}_n$ is q. Each term of the polynomial $f_{p,q}$ has the form $M(z) = Cz_1^{\alpha_1} \ldots z_n^{\alpha_n} \overline{z}_1^{\beta_n} \ldots \overline{z}_n^{\beta_n}$, $\alpha_1 + \ldots + \alpha_n = p$, $\beta_1 + \ldots + \beta_n = q$. From the conditions of the theorem,

$$\tilde{\Delta}u^{m}(z) = (1 - |z|^{2})(\Delta u^{m}(z) - 4\sum_{i,j=1}^{n} z_{i}\bar{z}_{j}\frac{\partial^{2}u^{m}(z)}{\partial z_{i}\partial\bar{z}_{j}}) = 0$$

and

$$\Delta u^{m} = 4 \sum_{i=1}^{n} \frac{\partial^{2} u^{m}}{\partial z_{i} \partial \overline{z}_{i}} = 4 \sum_{i=1}^{n} m(m-1)u^{m-2} \frac{\partial u}{\partial z_{i} \partial \overline{z}_{i}} + 4 \sum_{i=1}^{n} mu^{m-1} \frac{\partial^{2} u}{\partial z_{i} \partial \overline{z}_{i}} = 4m(m-1)u^{m-2} \sum_{i=1}^{n} \frac{\partial u}{\partial z_{i} \partial \overline{z}_{i}} = 4m(m-1)u^{m-2} \sum_{i=1}^{n} \left|\frac{\partial u}{\partial z_{i}}\right|^{2}.$$

Let us prove the theorem for the following cases:

a) Let
$$m$$
 be an even number. Then
 $u^{m-2}\sum_{i=1}^{n} \left|\frac{\partial u}{\partial z_{i}}\right|^{2} \ge 0$
. It is easy to see that
 $\Delta u^{m} = 4\sum_{i,j=1}^{n} z_{i}\overline{z}_{j} \frac{\partial^{2}u^{m}}{\partial z_{i}\partial\overline{z}_{j}} \ge 0$
. From this we obtain the

inequality

$$\sum_{i,j=1}^{n} z_i \overline{z}_j \frac{\partial^2 u^m}{\partial z_i \partial \overline{z}_j} = \sum_{k=2}^{\infty} \sum_{p+q=k} pqf_{p,q} \ge 0$$

Consequently, at $pq \neq 0$ all polynomials $f_{p,q}$ vanish, since in this case $\sum_{p+q=k} pqf_{p,q}(0) = 0$, and from the minimum principle we obtain that $\sum_{p+q=k} pqf_{p,q} \equiv 0$, it follows that $pqf_{p,q} = 0$ for all p and q. Hence $f_{pq} = 0$ or p = 0 or q = 0. This means that expansion (2.8) consists only of terms of the form $f_{p,0}$ and $f_{0,q}$, i.e. $P_k(z)$ is a pluriharmonic polynomial, and the sum of series (2.1), i.e. u(z) is a pluriharmonic function and the theorem is proven.

$$u^{m-2}\sum_{i=1}^{n} \left| \frac{\partial u}{\partial z_i} \right|^2 \ge 0$$

b) Let m be an odd number, then

1 12

$$u^{m-2} \sum_{i=1}^{n} \left| \frac{\partial u}{\partial z_i} \right|^2 \leq 0$$

or . We have proved the case of
$$u^{m-2} \sum_{i=1}^{n} \left| \frac{\partial u}{\partial z_i} \right|^2 \geq 0$$

in a). Let us prove it for the case of
$$u^{m-2} \sum_{i=1}^{n} \left| \frac{\partial u}{\partial z_i} \right|^2 \leq 0$$

. It was proved above that

$$\Delta u^{m} = 4m(m-1)u^{m-2}\sum_{i=1}^{n} \left|\frac{\partial u}{\partial z_{i}}\right|^{2}.$$
 Therefore,

$$\Delta u^{m} = 4 \sum_{i,j=1}^{n} z_{i} \overline{z}_{j} \frac{\partial^{2} u^{m}}{\partial z_{i} \partial \overline{z}_{j}} \leq 0$$

. From this we obta

in that

$$\sum_{i,j=1}^{n} z_i \overline{z}_j \frac{\partial^2 u^m}{\partial z_i \partial \overline{z}_j} = \sum_{k=2}^{\infty} \sum_{p+q=k} pqf_{p,q} \le 0$$

Consequently, at $pq \neq 0$ all polynomials $f_{p,q}$ vanish, since in this case $\sum_{p+q=k} pqf_{p,q}(0) = 0$, and from the maximum principle we obtain that $\sum_{p+q=k} pqf_{p,q} \equiv 0$, it follows that $pqf_{p,q} = 0$ for all p and q. Hence $f_{pq} = 0$ or p = 0 or q = 0. This means that expansion (2.2) consists only of terms of the form $f_{p,0}$ and $f_{0,q}$, i.e. $P_k(z)$ is a pluriharmonic polynomial, and the sum of series (2.1), i.e. u(z) is a pluriharmonic function and the theorem is proven.

Note. If the function u(z) is harmonic in B, then is $u^2(z)$ harmonic.

The answer to this question is negative, as the following example shows function

$$u(z) = z_1 z_2 + \overline{z_1} \overline{z_2} \qquad z \in B \subset C^2$$

Since $\Delta u = 0$ in B, and $\Delta u^2 = 8(z_1 \overline{z_1} + z_2 \overline{z_2})$, if $z_1 \overline{z_1} \neq 0, \ z_2 \overline{z_2} \neq 0$, the function $u^2(z)$ is not harmonic in $B \cap \{z_1 \neq 0, \ z_2 \neq 0\}$.

It is known that the sphere and the polycircle are biholomorphically inequivalent. If we consider the question in the polycircle in a similar way, then we get a weaker result.

It is known that the ball and the polydisk are biholomorphically nonequivalent. If we consider a similar question in the polydisk, we obtain a weaker result.

Note that if a function
$$u(z)$$
 is $\tilde{\Delta}u_j = 0$ (for all $j = 1, ..., n$), then it is n -harmonic in U^n . Now we give an example of a function satisfying $\tilde{\Delta}_{U^n} u = 0$, but not n -harmonic on U^n , for U^n , $\omega \in T$. By

$$P(z,\omega) = \frac{\left(1 - |z|^2\right)}{\left|1 - z\overline{\omega}\right|^2}$$

we denote the Poisson kernel on U^2 . As we see, for a fixed $\omega \in T$, $\alpha > 0$ $\tilde{\Delta}P^{\alpha}(z,\omega) = 2\alpha(\alpha-1)P^{\alpha}(z,\omega)$ If is $\alpha_i = \lambda_i + \frac{1}{2}$, i = 1, 2. Then $\tilde{\Delta}_i P^{\lambda_i + \frac{1}{2}} (z_i, \omega_i) = 2 \left(\lambda_i^2 - \frac{1}{4}\right) P^{\lambda_i + \frac{1}{2}} (z_i, \omega_i)$ Thus, if $F(z_1, z_2) = P^{\lambda_1 + \frac{1}{2}}(z_1, \omega_1) P^{\lambda_2 + \frac{1}{2}}(z_2, \omega_2)$ $\tilde{\Delta}_{U^{2}}F(z_{1},z_{2}) = 2\left(\lambda_{1}^{2} + \lambda_{2}^{2} - \frac{1}{2}\right)F(z_{1},z_{2})$ Therefore, for any λ_1, λ_2 satisfying $\lambda_1^2 + \lambda_2^2 = \frac{1}{2}$. $\tilde{\Delta}_{U^2} F(z_1, z_2) = 0$. If λ_1 and λ_2 are not equal to $\overline{2}$, then the function $F(z_1, z_2)$ is not n-harmonic in U^2 .

It is quite clear that every n – harmonic function u(Z) in U^n satisfies $\Delta u = \tilde{\Delta} u = 0$. For n = 2 we will prove the opposite of this proposition.

Theorem 2.4. Let $U^2 \subset C^2$ and function u(z) satisfy the following conditions:

a) function
$$u(z)$$
 is harmonic in U^2 ;
b) function $u(z)$ is harmonic in U^2 .
Then $u(z)$ is 2 -harmonic in U^2 .

Proof. If $\mathcal{U}(\mathcal{L})$ is a harmonic and M-harmonic function in $\lambda^2 u$ $\partial^2 u$

$$\frac{\partial^2 u}{\partial z_1 \partial \overline{z_1}} + \frac{\partial^2 u}{\partial z_2 \partial \overline{z_2}} = 0$$

and
$$\left(1 - |z_1|^2\right)^2 \frac{\partial^2 u}{\partial z_1 \partial \overline{z_1}} + \left(1 - |z_2|^2\right)^2 \frac{\partial^2 u}{\partial z_2 \partial \overline{z_2}} = 0$$

From

American Journal of Advanced Scientific Research (AJASR) ISSN: 2195-1381 Vol. 1 Issue 6, September – 2024, Pages: 5-9

 $\frac{\partial^2 u}{\partial z_2 \partial \overline{z}_2} = -\frac{\partial^2 u}{\partial z_1 \partial \overline{z}_1}$

the obtained equalities it follows that U_{2}^{2} and we arrive at the equation:

$$(2.3) (1 - |z_1|^2)^2 \frac{\partial u}{\partial z_1 \partial \bar{z}_1} - (1 - |z_2|^2)^2 \frac{\partial u}{\partial z_1 \partial \bar{z}_1} = \frac{\partial u}{\partial z_1 \partial \bar{z}_1} (|z_2|^2 - |z_1|^2)(2 - |z_1|^2 - |z_2|^2) = 0.$$

From equation (2.3) follow the relations $\frac{\partial u}{\partial z_1 \partial \overline{z_1}} = 0$ or $|z_1| = |z_2|$

Similarly, expressing the first term through the second, i.e.

$$\frac{\partial^2 u}{\partial z_1 \partial \overline{z_1}} = -\frac{\partial^2 u}{\partial z_2 \partial \overline{z_2}}$$

we arrive at the equation

(2.4)
$$(1 - |z_2|^2)^2 \frac{\partial u}{\partial z_2 \partial \bar{z}_2} - (1 - |z_1|^2)^2 \frac{\partial u}{\partial z_2 \partial \bar{z}_2} = \frac{\partial u}{\partial z_2 \partial \bar{z}_2} (|z_1|^2 - |z_2|^2)(2 - |z_1|^2 - |z_2|^2) = 0$$
(2).

From equation (2.4) follow the relations $\frac{\partial u}{\partial z_2 \partial \overline{z}_2} = 0$ $|z_1| = |z_2|$. This means that the function u(z) satisfies the $\frac{\partial u}{\partial z_2 \partial \overline{z}_2} = 0$ $\frac{\partial u}{\partial z_2 \partial \overline{z}_2} = 0$ conditions $\frac{\partial u}{\partial z_2 \partial \overline{z}_2} = 0$ and $\frac{\partial u}{\partial z_2 \partial \overline{z}_2} = 0$ $|z_1| = |z_2|$ and $u \in C^2(U^2)$, i.e. it is an 2-harmonic

function in U^2

If in the previous theorem we consider U^n (n>2) instead of U^2 , then the question remains open..

References

- [1] [1] Ronkin L. I. Introduction to the Theory of Entire Functions of Many Variables. M. Nauka, 1971. 432.
- [2] [2] Shabat B.V. "Introduction to complex analysis" Part 2. M. Science. 1976.-321.
- [3] [3] Rudin U. Theory of functions in the unit ball from. // M. Mir. 1984.-457.
- [4] [4] Stoll M., Invariant potential theory in the unit ball of ⁿ, London Mathematical Society Lecture Note Series, 199. Cambridge University Press, Cambridge. 2003.-181.
- [5] [5] Madrakhimov R.M., Omonov O.I. Pluroharmonicity of Mharmonic functions, // Ilm sarchashmalari - Urganch-2018-12, pp. 12-14.
- [6] [6] Forelli F. pluriharmonicity in terme of harmonic slices//Math.Scand. 1977. V. 41. P. 358-364.

- [7] [7] Madrakhimov R.M., Vaisova M.D. Criteria of pluriharmonicity of harmonic functions // Dan RUzyu Tashkent, 2008, No. 5. Pp. 19-20.
- **[8]** [8] Madrakhimov R.M. Some criteria of pluriharmonicity. Izvestiya AN UzSSR. Ser. Phys. Mat. Nauk No. 3. 1986.