
WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

2.4.8 Control Instructions

Instructions in this group a�ect the flow of control.

blocktype ::= typeidx | valtype?
instr ::= . . .

| nop
| unreachable
| block blocktype instr⇤ end
| loop blocktype instr⇤ end
| if blocktype instr⇤ else instr⇤ end
| br labelidx
| br_if labelidx
| br_table vec(labelidx ) labelidx
| return
| call funcidx
| call_indirect tableidx typeidx

The nop instruction does nothing.

The unreachable instruction causes an unconditional trap.

The block, loop and if instructions are structured instructions. They bracket nested sequences of instructions,
called blocks, terminated with, or separated by, end or else pseudo-instructions. As the grammar prescribes, they
must be well-nested.

A structured instruction can consume input and produce output on the operand stack according to its annotated
block type. It is given either as a type index that refers to a suitable function type, or as an optional value type
inline, which is a shorthand for the function type [] ! [valtype?].

Each structured control instruction introduces an implicit label. Labels are targets for branch instructions that
reference them with label indices. Unlike with other index spaces, indexing of labels is relative by nesting depth,
that is, label 0 refers to the innermost structured control instruction enclosing the referring branch instruction, while
increasing indices refer to those farther out. Consequently, labels can only be referenced from within the associated
structured control instruction. This also implies that branches can only be directed outwards, “breaking” from the
block of the control construct they target. The exact e�ect depends on that control construct. In case of block or
if it is a forward jump, resuming execution after the matching end. In case of loop it is a backward jump to the
beginning of the loop.

Note: This enforces structured control flow. Intuitively, a branch targeting a block or if behaves like a break
statement in most C-like languages, while a branch targeting a loop behaves like a continue statement.

Branch instructions come in several flavors: br performs an unconditional branch, br_if performs a conditional
branch, and br_table performs an indirect branch through an operand indexing into the label vector that is an
immediate to the instruction, or to a default target if the operand is out of bounds. The return instruction is a
shortcut for an unconditional branch to the outermost block, which implicitly is the body of the current function.
Taking a branch unwinds the operand stack up to the height where the targeted structured control instruction was
entered. However, branches may additionally consume operands themselves, which they push back on the operand
stack after unwinding. Forward branches require operands according to the output of the targeted block’s type, i.e.,
represent the values produced by the terminated block. Backward branches require operands according to the input
of the targeted block’s type, i.e., represent the values consumed by the restarted block.

The call instruction invokes another function, consuming the necessary arguments from the stack and returning the
result values of the call. The call_indirect instruction calls a function indirectly through an operand indexing into a
table that is denoted by a table index and must have type funcref. Since it may contain functions of heterogeneous
type, the callee is dynamically checked against the function type indexed by the instruction’s second immediate,
and the call is aborted with a trap if it does not match.

18 Chapter 2. Structure


