
CHAPTER 3

Validation

3.1 Conventions

Validation checks that a WebAssembly module is well-formed. Only valid modules can be instantiated.

Validity is defined by a type system over the abstract syntax of a module and its contents. For each piece of abstract
syntax, there is a typing rule that specifies the constraints that apply to it. All rules are given in two equivalent

forms:

1. In prose, describing the meaning in intuitive form.

2. In formal notation, describing the rule in mathematical form.14

Note: The prose and formal rules are equivalent, so that understanding of the formal notation is not required to read
this specification. The formalism o�ers a more concise description in notation that is used widely in programming
languages semantics and is readily amenable to mathematical proof.

In both cases, the rules are formulated in a declarative manner. That is, they only formulate the constraints, they do
not define an algorithm. The skeleton of a sound and complete algorithm for type-checking instruction sequences
according to this specification is provided in the appendix.

3.1.1 Contexts

Validity of an individual definition is specified relative to a context, which collects relevant information about the
surrounding module and the definitions in scope:

• Types: the list of types defined in the current module.

• Functions: the list of functions declared in the current module, represented by their function type.

• Tables: the list of tables declared in the current module, represented by their table type.

• Memories: the list of memories declared in the current module, represented by their memory type.

• Globals: the list of globals declared in the current module, represented by their global type.
14 The semantics is derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schu�, Ben Titzer, Dan Gohman, Luke

Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly15. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

15 https://dl.acm.org/citation.cfm?doid=3062341.3062363

25

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

• Element Segments: the list of element segments declared in the current module, represented by their element
type.

• Data Segments: the list of data segments declared in the current module, each represented by an ok entry.

• Locals: the list of locals declared in the current function (including parameters), represented by their value
type.

• Labels: the stack of labels accessible from the current position, represented by their result type.

• Return: the return type of the current function, represented as an optional result type that is absent when no
return is allowed, as in free-standing expressions.

• References: the list of function indices that occur in the module outside functions and can hence be used to
form references inside them.

In other words, a context contains a sequence of suitable types for each index space, describing each defined entry
in that space. Locals, labels and return type are only used for validating instructions in function bodies, and are
left empty elsewhere. The label stack is the only part of the context that changes as validation of an instruction
sequence proceeds.

More concretely, contexts are defined as records C with abstract syntax:

C ::= { types functype⇤,
funcs functype⇤,
tables tabletype⇤,
mems memtype⇤,
globals globaltype⇤,
elems reftype⇤,
datas ok⇤,
locals valtype⇤,
labels resulttype⇤,
return resulttype?,
refs funcidx⇤ }

In addition to field access written C.field the following notation is adopted for manipulating contexts:

• When spelling out a context, empty fields are omitted.

• C, fieldA⇤ denotes the same context as C but with the elements A⇤ prepended to its field component se-
quence.

Note: Indexing notation like C.labels[i] is used to look up indices in their respective index space in the context.
Context extension notation C, fieldA is primarily used to locally extend relative index spaces, such as label indices.
Accordingly, the notation is defined to append at the front of the respective sequence, introducing a new relative
index 0 and shifting the existing ones.

3.1.2 Prose Notation

Validation is specified by stylised rules for each relevant part of the abstract syntax. The rules not only state
constraints defining when a phrase is valid, they also classify it with a type. The following conventions are adopted
in stating these rules.

• A phrase A is said to be “valid with type T ” if and only if all constraints expressed by the respective rules
are met. The form of T depends on what A is.

Note: For example, if A is a function, then T is a function type; for an A that is a global, T is a global type;
and so on.

• The rules implicitly assume a given context C.

26 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

• In some places, this context is locally extended to a context C 0 with additional entries. The formulation
“Under context C 0, . . . statement . . . ” is adopted to express that the following statement must apply under
the assumptions embodied in the extended context.

3.1.3 Formal Notation

Note: This section gives a brief explanation of the notation for specifying typing rules formally. For the interested
reader, a more thorough introduction can be found in respective text books.16

The proposition that a phrase A has a respective type T is written A : T . In general, however, typing is dependent
on a context C. To express this explicitly, the complete form is a judgement C ` A : T , which says that A : T
holds under the assumptions encoded in C.

The formal typing rules use a standard approach for specifying type systems, rendering them into deduction rules.
Every rule has the following general form:

premise1 premise2 . . . premisen
conclusion

Such a rule is read as a big implication: if all premises hold, then the conclusion holds. Some rules have no
premises; they are axioms whose conclusion holds unconditionally. The conclusion always is a judgment C ` A :
T , and there is one respective rule for each relevant construct A of the abstract syntax.

Note: For example, the typing rule for the i32.add instruction can be given as an axiom:

C ` i32.add : [i32 i32] ! [i32]

The instruction is always valid with type [i32 i32] ! [i32] (saying that it consumes two i32 values and produces
one), independent of any side conditions.

An instruction like local.get can be typed as follows:

C.locals[x] = t

C ` local.get x : [] ! [t]

Here, the premise enforces that the immediate local index x exists in the context. The instruction produces a value
of its respective type t (and does not consume any values). If C.locals[x] does not exist then the premise does not
hold, and the instruction is ill-typed.

Finally, a structured instruction requires a recursive rule, where the premise is itself a typing judgement:

C ` blocktype : [t⇤1] ! [t⇤2] C, label [t⇤2] ` instr⇤ : [t⇤1] ! [t⇤2]

C ` block blocktype instr⇤ end : [t⇤1] ! [t⇤2]

A block instruction is only valid when the instruction sequence in its body is. Moreover, the result type must match
the block’s annotation blocktype. If so, then the block instruction has the same type as the body. Inside the body an
additional label of the corresponding result type is available, which is expressed by extending the context C with
the additional label information for the premise.

16 For example: Benjamin Pierce. Types and Programming LanguagesPage 27, 17. The MIT Press 2002
17 https://www.cis.upenn.edu/~bcpierce/tapl/

3.1. Conventions 27

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

3.2 Types

Most types are universally valid. However, restrictions apply to limits, which must be checked during validation.
Moreover, block types are converted to plain function types for ease of processing.

3.2.1 Limits

Limits must have meaningful bounds that are within a given range.

{min n,max m?}

• The value of n must not be larger than k.

• If the maximum m? is not empty, then:

– Its value must not be larger than k.

– Its value must not be smaller than n.

• Then the limit is valid within range k.

n  k (m  k)? (n  m)?

` {min n,max m?} : k

3.2.2 Block Types

Block types may be expressed in one of two forms, both of which are converted to plain function types by the
following rules.

typeidx

• The type C.types[typeidx] must be defined in the context.

• Then the block type is valid as function type C.types[typeidx].

C.types[typeidx] = functype

C ` typeidx : functype

[valtype?]

• The block type is valid as function type [] ! [valtype?].

C ` [valtype?] : [] ! [valtype?]

3.2.3 Function Types

Function types are always valid.

28 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

[tn1] ! [tm2]

• The function type is valid.

` [t⇤1] ! [t⇤2] ok

3.2.4 Table Types

limits reftype

• The limits limits must be valid within range 232 � 1.

• Then the table type is valid.

` limits : 232 � 1

` limits reftype ok

3.2.5 Memory Types

limits

• The limits limits must be valid within range 216.

• Then the memory type is valid.

` limits : 216

` limits ok

3.2.6 Global Types

mut valtype

• The global type is valid.

` mut valtype ok

3.2.7 External Types

func functype

• The function type functype must be valid.

• Then the external type is valid.
` functype ok

` func functype ok

3.2. Types 29

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

table tabletype

• The table type tabletype must be valid.

• Then the external type is valid.
` tabletype ok

` table tabletype ok

mem memtype

• The memory type memtype must be valid.

• Then the external type is valid.
` memtype ok

` mem memtype ok

global globaltype

• The global type globaltype must be valid.

• Then the external type is valid.
` globaltype ok

` global globaltype ok

3.2.8 Import Subtyping

When instantiating a module, external values must be provided whose types are matched against the respective
external types classifying each import. In some cases, this allows for a simple form of subtyping (written “”
formally), as defined here.

Limits

Limits {min n1,max m?
1} match limits {min n2,max m?

2} if and only if:

• n1 is larger than or equal to n2.

• Either:

– m?
2 is empty.

• Or:

– Both m?
1 and m?

2 are non-empty.

– m1 is smaller than or equal to m2.

n1 � n2

` {min n1,max m?
1}  {min n2,max ✏}

n1 � n2 m1  m2

` {min n1,max m1}  {min n2,max m2}

30 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

Functions

An external type func functype1 matches func functype2 if and only if:

• Both functype1 and functype2 are the same.

` func functype  func functype

Tables

An external type table (limits1 reftype1) matches table (limits2 reftype2) if and only if:

• Limits limits1 match limits2.

• Both reftype1 and reftype2 are the same.
` limits1  limits2

` table (limits1 reftype)  table (limits2 reftype)

Memories

An external type mem limits1 matches mem limits2 if and only if:

• Limits limits1 match limits2.
` limits1  limits2

` mem limits1  mem limits2

Globals

An external type global globaltype1 matches global globaltype2 if and only if:

• Both globaltype1 and globaltype2 are the same.

` global globaltype  global globaltype

3.3 Instructions

Instructions are classified by stack types [t⇤1] ! [t⇤2] that describe how instructions manipulate the operand stack.

stacktype ::= [opdtype⇤] ! [opdtype⇤]
opdtype ::= valtype | ?

The types describe the required input stack with operand types t⇤1 that an instruction pops o� and the provided
output stack with result values of types t⇤2 that it pushes back. Stack types are akin to function types, except that
they allow individual operands to be classified as ? (bottom), indicating that the type is unconstrained. As an
auxiliary notion, an operand type t1 matches another operand type t2, if t1 is either ? or equal to t2. This is
extended to stack types in a point-wise manner.

` t  t ` ?  t

(` t  t0)⇤

` [t⇤]  [t0⇤]

3.3. Instructions 31

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

Note: For example, the instruction i32.add has type [i32 i32] ! [i32], consuming two i32 values and producing
one.

Typing extends to instruction sequences instr⇤. Such a sequence has a stack type [t⇤1] ! [t⇤2] if the accumulative
e�ect of executing the instructions is consuming values of types t⇤1 o� the operand stack and pushing new values
of types t⇤2.

For some instructions, the typing rules do not fully constrain the type, and therefore allow for multiple types. Such
instructions are called polymorphic. Two degrees of polymorphism can be distinguished:

• value-polymorphic: the value type t of one or several individual operands is unconstrained. That is the case
for all parametric instructions like drop and select.

• stack-polymorphic: the entire (or most of the) stack type [t⇤1] ! [t⇤2] of the instruction is unconstrained. That
is the case for all control instructions that perform an unconditional control transfer, such as unreachable,
br, br_table, and return.

In both cases, the unconstrained types or type sequences can be chosen arbitrarily, as long as they meet the con-
straints imposed for the surrounding parts of the program.

Note: For example, the select instruction is valid with type [t t i32] ! [t], for any possible number type t.
Consequently, both instruction sequences

(i32.const 1) (i32.const 2) (i32.const 3) select

and

(f64.const 1.0) (f64.const 2.0) (i32.const 3) select

are valid, with t in the typing of select being instantiated to i32 or f64, respectively.

The unreachable instruction is valid with type [t⇤1] ! [t⇤2] for any possible sequences of operand types t⇤1 and t⇤2.
Consequently,

unreachable i32.add

is valid by assuming type [] ! [i32 i32] for the unreachable instruction. In contrast,

unreachable (i64.const 0) i32.add

is invalid, because there is no possible type to pick for the unreachable instruction that would make the sequence
well-typed.

The Appendix describes a type checking algorithm that e�ciently implements validation of instruction sequences
as prescribed by the rules given here.

3.3.1 Numeric Instructions

t.const c

• The instruction is valid with type [] ! [t].

C ` t.const c : [] ! [t]

32 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

t.unop

• The instruction is valid with type [t] ! [t].

C ` t.unop : [t] ! [t]

t.binop

• The instruction is valid with type [t t] ! [t].

C ` t.binop : [t t] ! [t]

t.testop

• The instruction is valid with type [t] ! [i32].

C ` t.testop : [t] ! [i32]

t.relop

• The instruction is valid with type [t t] ! [i32].

C ` t.relop : [t t] ! [i32]

t2.cvtop_t1_sx ?

• The instruction is valid with type [t1] ! [t2].

C ` t2.cvtop_t1_sx ? : [t1] ! [t2]

3.3.2 Reference Instructions

ref.null t

• The instruction is valid with type [] ! [t].

C ` ref.null t : [] ! [t]

Note: In future versions of WebAssembly, there may be reference types for which no null reference is allowed.

ref.is_null

• The instruction is valid with type [t] ! [i32], for any reference type t.
t = reftype

C ` ref.is_null : [t] ! [i32]

3.3. Instructions 33

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

ref.func x

• The function C.funcs[x] must be defined in the context.

• The function index x must be contained in C.refs.

• The instruction is valid with type [] ! [funcref].

C.funcs[x] = functype x 2 C.refs

C ` ref.func x : [] ! [funcref]

3.3.3 Vector Instructions

Vector instructions can have a prefix to describe the shape of the operand. Packed numeric types, i8 and i16 , are
not value types. An auxiliary function maps such packed type shapes to value types:

unpacked(i8x16) = i32
unpacked(i16x8) = i32
unpacked(txN) = t

The following auxiliary function denotes the number of lanes in a vector shape, i.e., its dimension:

dim(txN) = N

v128.const c

• The instruction is valid with type [] ! [v128].

C ` v128.const c : [] ! [v128]

v128.vvunop

• The instruction is valid with type [v128] ! [v128].

C ` v128.vvunop : [v128] ! [v128]

v128.vvbinop

• The instruction is valid with type [v128 v128] ! [v128].

C ` v128.vvbinop : [v128 v128] ! [v128]

v128.vvternop

• The instruction is valid with type [v128 v128 v128] ! [v128].

C ` v128.vvternop : [v128 v128 v128] ! [v128]

34 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

v128.vvtestop

• The instruction is valid with type [v128] ! [i32].

C ` v128.vvtestop : [v128] ! [i32]

i8x16.swizzle

• The instruction is valid with type [v128 v128] ! [v128].

C ` i8x16.swizzle : [v128 v128] ! [v128]

i8x16.shu✏e laneidx 16

• For all laneidx i, in laneidx 16, laneidx i must be smaller than 32.

• The instruction is valid with type [v128 v128] ! [v128].

(laneidx < 32)16

C ` i8x16.shu✏e laneidx 16 : [v128 v128] ! [v128]

shape.splat

• Let t be unpacked(shape).

• The instruction is valid with type [t] ! [v128].

C ` shape.splat : [unpacked(shape)] ! [v128]

shape.extract_lane_sx ? laneidx

• The lane index laneidx must be smaller than dim(shape).

• The instruction is valid with type [v128] ! [unpacked(shape)].

laneidx < dim(shape)

C ` shape.extract_lane_sx ? laneidx : [v128] ! [unpacked(shape)]

shape.replace_lane laneidx

• The lane index laneidx must be smaller than dim(shape).

• Let t be unpacked(shape).

• The instruction is valid with type [v128 t] ! [v128].

laneidx < dim(shape)

C ` shape.replace_lane laneidx : [v128 unpacked(shape)] ! [v128]

3.3. Instructions 35

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

shape.vunop

• The instruction is valid with type [v128] ! [v128].

C ` shape.vunop : [v128] ! [v128]

shape.vbinop

• The instruction is valid with type [v128 v128] ! [v128].

C ` shape.vbinop : [v128 v128] ! [v128]

shape.vrelop

• The instruction is valid with type [v128 v128] ! [v128].

C ` shape.vrelop : [v128 v128] ! [v128]

ishape.vishiftop

• The instruction is valid with type [v128 i32] ! [v128].

C ` ishape.vishiftop : [v128 i32] ! [v128]

shape.vtestop

• The instruction is valid with type [v128] ! [i32].

C ` shape.vtestop : [v128] ! [i32]

shape.vcvtop_half ?_shape_sx ?_zero?

• The instruction is valid with type [v128] ! [v128].

C ` shape.vcvtop_half ?_shape_sx ?_zero? : [v128] ! [v128]

ishape1.narrow_ishape2_sx

• The instruction is valid with type [v128 v128] ! [v128].

C ` ishape1.narrow_ishape2_sx : [v128 v128] ! [v128]

ishape.bitmask

• The instruction is valid with type [v128] ! [i32].

C ` ishape.bitmask : [v128] ! [i32]

36 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

ishape1.dot_ishape2_s

• The instruction is valid with type [v128 v128] ! [v128].

C ` ishape1.dot_ishape2_s : [v128 v128] ! [v128]

ishape1.extmul_half _ishape2_sx

• The instruction is valid with type [v128 v128] ! [v128].

C ` ishape1.extmul_half _ishape2_sx : [v128 v128] ! [v128]

ishape1.extadd_pairwise_ishape2_sx

• The instruction is valid with type [v128] ! [v128].

C ` ishape1.extadd_pairwise_ishape2_sx : [v128] ! [v128]

3.3.4 Parametric Instructions

drop

• The instruction is valid with type [t] ! [], for any operand type t.

C ` drop : [t] ! []

Note: Both drop and select without annotation are value-polymorphic instructions.

select (t⇤)?

• If t⇤ is present, then:

– The length of t⇤ must be 1.

– Then the instruction is valid with type [t⇤ t⇤ i32] ! [t⇤].

• Else:

– The instruction is valid with type [t t i32] ! [t], for any operand type t that matches some number type
or vector type.

C ` select t : [t t i32] ! [t]

` t  numtype

C ` select : [t t i32] ! [t]

` t  vectype

C ` select : [t t i32] ! [t]

Note: In future versions of WebAssembly, select may allow more than one value per choice.

3.3. Instructions 37

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

3.3.5 Variable Instructions

local.get x

• The local C.locals[x] must be defined in the context.

• Let t be the value type C.locals[x].

• Then the instruction is valid with type [] ! [t].

C.locals[x] = t

C ` local.get x : [] ! [t]

local.set x

• The local C.locals[x] must be defined in the context.

• Let t be the value type C.locals[x].

• Then the instruction is valid with type [t] ! [].

C.locals[x] = t

C ` local.set x : [t] ! []

local.tee x

• The local C.locals[x] must be defined in the context.

• Let t be the value type C.locals[x].

• Then the instruction is valid with type [t] ! [t].

C.locals[x] = t

C ` local.tee x : [t] ! [t]

global.get x

• The global C.globals[x] must be defined in the context.

• Let mut t be the global type C.globals[x].

• Then the instruction is valid with type [] ! [t].

C.globals[x] = mut t

C ` global.get x : [] ! [t]

global.set x

• The global C.globals[x] must be defined in the context.

• Let mut t be the global type C.globals[x].

• The mutability mut must be var.

• Then the instruction is valid with type [t] ! [].

C.globals[x] = var t

C ` global.set x : [t] ! []

38 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

3.3.6 Table Instructions

table.get x

• The table C.tables[x] must be defined in the context.

• Let limits t be the table type C.tables[x].

• Then the instruction is valid with type [i32] ! [t].

C.tables[x] = limits t

C ` table.get x : [i32] ! [t]

table.set x

• The table C.tables[x] must be defined in the context.

• Let limits t be the table type C.tables[x].

• Then the instruction is valid with type [i32 t] ! [].

C.tables[x] = limits t

C ` table.set x : [i32 t] ! []

table.size x

• The table C.tables[x] must be defined in the context.

• Then the instruction is valid with type [] ! [i32].

C.tables[x] = tabletype

C ` table.size x : [] ! [i32]

table.grow x

• The table C.tables[x] must be defined in the context.

• Let limits t be the table type C.tables[x].

• Then the instruction is valid with type [t i32] ! [i32].

C.tables[x] = limits t

C ` table.grow x : [t i32] ! [i32]

table.fill x

• The table C.tables[x] must be defined in the context.

• Let limits t be the table type C.tables[x].

• Then the instruction is valid with type [i32 t i32] ! [].

C.tables[x] = limits t

C ` table.fill x : [i32 t i32] ! []

3.3. Instructions 39

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

table.copy x y

• The table C.tables[x] must be defined in the context.

• Let limits1 t1 be the table type C.tables[x].

• The table C.tables[y] must be defined in the context.

• Let limits2 t2 be the table type C.tables[y].

• The reference type t1 must be the same as t2.

• Then the instruction is valid with type [i32 i32 i32] ! [].

C.tables[x] = limits1 t C.tables[y] = limits2 t

C ` table.copy x y : [i32 i32 i32] ! []

table.init x y

• The table C.tables[x] must be defined in the context.

• Let limits t1 be the table type C.tables[x].

• The element segment C.elems[y] must be defined in the context.

• Let t2 be the reference type C.elems[y].

• The reference type t1 must be the same as t2.

• Then the instruction is valid with type [i32 i32 i32] ! [].

C.tables[x] = limits t C.elems[y] = t

C ` table.init x y : [i32 i32 i32] ! []

elem.drop x

• The element segment C.elems[x] must be defined in the context.

• Then the instruction is valid with type [] ! [].

C.elems[x] = t

C ` elem.drop x : [] ! []

3.3.7 Memory Instructions

t.load memarg

• The memory C.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than the bit width of t divided by 8.

• Then the instruction is valid with type [i32] ! [t].

C.mems[0] = memtype 2memarg.align  |t|/8
C ` t.load memarg : [i32] ! [t]

40 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

t.loadN_sx memarg

• The memory C.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than N/8.

• Then the instruction is valid with type [i32] ! [t].

C.mems[0] = memtype 2memarg.align  N/8

C ` t.loadN_sx memarg : [i32] ! [t]

t.store memarg

• The memory C.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than the bit width of t divided by 8.

• Then the instruction is valid with type [i32 t] ! [].

C.mems[0] = memtype 2memarg.align  |t|/8
C ` t.store memarg : [i32 t] ! []

t.storeN memarg

• The memory C.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than N/8.

• Then the instruction is valid with type [i32 t] ! [].

C.mems[0] = memtype 2memarg.align  N/8

C ` t.storeN memarg : [i32 t] ! []

v128.loadNxM_sx memarg

• The memory C.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than N/8 ·M .

• Then the instruction is valid with type [i32] ! [v128].

C.mems[0] = memtype 2memarg.align  N/8 ·M
C ` v128.loadNxM_sx memarg : [i32] ! [v128]

v128.loadN_splat memarg

• The memory C.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than N/8.

• Then the instruction is valid with type [i32] ! [v128].

C.mems[0] = memtype 2memarg.align  N/8

C ` v128.loadN_splat memarg : [i32] ! [v128]

3.3. Instructions 41

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

v128.loadN_zero memarg

• The memory C.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than N/8.

• Then the instruction is valid with type [i32] ! [v128].

C.mems[0] = memtype 2memarg.align  N/8

C ` v128.loadN_zero memarg : [i32] ! [v128]

v128.loadN_lane memarg laneidx

• The lane index laneidx must be smaller than 128/N .

• The memory C.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than N/8.

• Then the instruction is valid with type [i32 v128] ! [v128].

laneidx < 128/N C.mems[0] = memtype 2memarg.align  N/8

C ` v128.loadN_lane memarg laneidx : [i32 v128] ! [v128]

v128.storeN_lane memarg laneidx

• The lane index laneidx must be smaller than 128/N .

• The memory C.mems[0] must be defined in the context.

• The alignment 2memarg.align must not be larger than N/8.

• Then the instruction is valid with type [i32 v128] ! [v128].

laneidx < 128/N C.mems[0] = memtype 2memarg.align  N/8

C ` v128.storeN_lane memarg laneidx : [i32 v128] ! []

memory.size

• The memory C.mems[0] must be defined in the context.

• Then the instruction is valid with type [] ! [i32].

C.mems[0] = memtype

C ` memory.size : [] ! [i32]

memory.grow

• The memory C.mems[0] must be defined in the context.

• Then the instruction is valid with type [i32] ! [i32].

C.mems[0] = memtype

C ` memory.grow : [i32] ! [i32]

42 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

memory.fill

• The memory C.mems[0] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] ! [].

C.mems[0] = memtype

C ` memory.fill : [i32 i32 i32] ! []

memory.copy

• The memory C.mems[0] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] ! [].

C.mems[0] = memtype

C ` memory.copy : [i32 i32 i32] ! []

memory.init x

• The memory C.mems[0] must be defined in the context.

• The data segment C.datas[x] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] ! [].

C.mems[0] = memtype C.datas[x] = ok
C ` memory.init x : [i32 i32 i32] ! []

data.drop x

• The data segment C.datas[x] must be defined in the context.

• Then the instruction is valid with type [] ! [].

C.datas[x] = ok
C ` data.drop x : [] ! []

3.3.8 Control Instructions

nop

• The instruction is valid with type [] ! [].

C ` nop : [] ! []

unreachable

• The instruction is valid with type [t⇤1] ! [t⇤2], for any sequences of operand types t⇤1 and t⇤2.

C ` unreachable : [t⇤1] ! [t⇤2]

Note: The unreachable instruction is stack-polymorphic.

3.3. Instructions 43

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

block blocktype instr⇤ end

• The block type must be valid as some function type [t⇤1] ! [t⇤2].

• Let C 0 be the same context as C, but with the result type [t⇤2] prepended to the labels vector.

• Under context C 0, the instruction sequence instr⇤ must be valid with type [t⇤1] ! [t⇤2].

• Then the compound instruction is valid with type [t⇤1] ! [t⇤2].

C ` blocktype : [t⇤1] ! [t⇤2] C, labels [t⇤2] ` instr⇤ : [t⇤1] ! [t⇤2]

C ` block blocktype instr⇤ end : [t⇤1] ! [t⇤2]

Note: The notation C, labels [t⇤] inserts the new label type at index 0, shifting all others.

loop blocktype instr⇤ end

• The block type must be valid as some function type [t⇤1] ! [t⇤2].

• Let C 0 be the same context as C, but with the result type [t⇤1] prepended to the labels vector.

• Under context C 0, the instruction sequence instr⇤ must be valid with type [t⇤1] ! [t⇤2].

• Then the compound instruction is valid with type [t⇤1] ! [t⇤2].

C ` blocktype : [t⇤1] ! [t⇤2] C, labels [t⇤1] ` instr⇤ : [t⇤1] ! [t⇤2]

C ` loop blocktype instr⇤ end : [t⇤1] ! [t⇤2]

Note: The notation C, labels [t⇤] inserts the new label type at index 0, shifting all others.

if blocktype instr⇤1 else instr⇤2 end

• The block type must be valid as some function type [t⇤1] ! [t⇤2].

• Let C 0 be the same context as C, but with the result type [t⇤2] prepended to the labels vector.

• Under context C 0, the instruction sequence instr⇤1 must be valid with type [t⇤1] ! [t⇤2].

• Under context C 0, the instruction sequence instr⇤2 must be valid with type [t⇤1] ! [t⇤2].

• Then the compound instruction is valid with type [t⇤1 i32] ! [t⇤2].

C ` blocktype : [t⇤1] ! [t⇤2] C, labels [t⇤2] ` instr⇤1 : [t⇤1] ! [t⇤2] C, labels [t⇤2] ` instr⇤2 : [t⇤1] ! [t⇤2]

C ` if blocktype instr⇤1 else instr
⇤
2 end : [t⇤1 i32] ! [t⇤2]

Note: The notation C, labels [t⇤] inserts the new label type at index 0, shifting all others.

br l

• The label C.labels[l] must be defined in the context.

• Let [t⇤] be the result type C.labels[l].

• Then the instruction is valid with type [t⇤1 t⇤] ! [t⇤2], for any sequences of operand types t⇤1 and t⇤2.

44 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

C.labels[l] = [t⇤]

C ` br l : [t⇤1 t
⇤] ! [t⇤2]

Note: The label index space in the context C contains the most recent label first, so that C.labels[l] performs a
relative lookup as expected.

The br instruction is stack-polymorphic.

br_if l

• The label C.labels[l] must be defined in the context.

• Let [t⇤] be the result type C.labels[l].

• Then the instruction is valid with type [t⇤ i32] ! [t⇤].

C.labels[l] = [t⇤]

C ` br_if l : [t⇤ i32] ! [t⇤]

Note: The label index space in the context C contains the most recent label first, so that C.labels[l] performs a
relative lookup as expected.

br_table l⇤ lN

• The label C.labels[lN] must be defined in the context.

• For each label li in l⇤, the label C.labels[li] must be defined in the context.

• There must be a sequence t⇤ of operand types, such that:

– The length of the sequence t⇤ is the same as the length of the sequence C.labels[lN].

– For each operand type tj in t⇤ and corresponding type t0Nj in C.labels[lN], tj matches t0Nj .

– For each label li in l⇤:

� The length of the sequence t⇤ is the same as the length of the sequence C.labels[li].

� For each operand type tj in t⇤ and corresponding type t0ij in C.labels[li], tj matches t0ij .

• Then the instruction is valid with type [t⇤1 t⇤ i32] ! [t⇤2], for any sequences of operand types t⇤1 and t⇤2.

(` [t⇤]  C.labels[l])⇤ ` [t⇤]  C.labels[lN]

C ` br_table l⇤ lN : [t⇤1 t
⇤ i32] ! [t⇤2]

Note: The label index space in the context C contains the most recent label first, so that C.labels[li] performs a
relative lookup as expected.

The br_table instruction is stack-polymorphic.

3.3. Instructions 45

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

return

• The return type C.return must not be absent in the context.

• Let [t⇤] be the result type of C.return.

• Then the instruction is valid with type [t⇤1 t⇤] ! [t⇤2], for any sequences of operand types t⇤1 and t⇤2.

C.return = [t⇤]

C ` return : [t⇤1 t
⇤] ! [t⇤2]

Note: The return instruction is stack-polymorphic.

C.return is absent (set to ✏) when validating an expression that is not a function body. This di�ers from it being
set to the empty result type ([✏]), which is the case for functions not returning anything.

call x

• The function C.funcs[x] must be defined in the context.

• Then the instruction is valid with type C.funcs[x].

C.funcs[x] = [t⇤1] ! [t⇤2]

C ` call x : [t⇤1] ! [t⇤2]

call_indirect x y

• The table C.tables[x] must be defined in the context.

• Let limits t be the table type C.tables[x].

• The reference type t must be funcref.

• The type C.types[y] must be defined in the context.

• Let [t⇤1] ! [t⇤2] be the function type C.types[y].

• Then the instruction is valid with type [t⇤1 i32] ! [t⇤2].

C.tables[x] = limits funcref C.types[y] = [t⇤1] ! [t⇤2]

C ` call_indirect x y : [t⇤1 i32] ! [t⇤2]

3.3.9 Instruction Sequences

Typing of instruction sequences is defined recursively.

Empty Instruction Sequence: ✏

• The empty instruction sequence is valid with type [t⇤] ! [t⇤], for any sequence of operand types t⇤.

C ` ✏ : [t⇤] ! [t⇤]

46 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

Non-empty Instruction Sequence: instr⇤ instrN

• The instruction sequence instr⇤ must be valid with type [t⇤1] ! [t⇤2], for some sequences of operand types
t⇤1 and t⇤2.

• The instruction instrN must be valid with type [t⇤] ! [t⇤3], for some sequences of operand types t⇤ and t⇤3.

• There must be a sequence of operand types t⇤0, such that t⇤2 = t⇤0 t0⇤ where the type sequence t0⇤ is as long
as t⇤.

• For each operand type t0i in t0⇤ and corresponding type ti in t⇤, t0i matches ti.

• Then the combined instruction sequence is valid with type [t⇤1] ! [t⇤0 t
⇤
3].

C ` instr⇤ : [t⇤1] ! [t⇤0 t
0⇤] ` [t0⇤]  [t⇤] C ` instrN : [t⇤] ! [t⇤3]

C ` instr⇤ instrN : [t⇤1] ! [t⇤0 t
⇤
3]

3.3.10 Expressions

Expressions expr are classified by result types of the form [t⇤].

instr⇤ end

• The instruction sequence instr⇤ must be valid with some stack type [] ! [t0⇤].

• For each operand type t0i in t0⇤ and corresponding value type ti in t⇤, t0i matches ti.

• Then the expression is valid with result type [t⇤].

C ` instr⇤ : [] ! [t0⇤] ` [t0⇤]  [t⇤]

C ` instr⇤ end : [t⇤]

Constant Expressions

• In a constant expression instr⇤ end all instructions in instr⇤ must be constant.

• A constant instruction instr must be:

– either of the form t.const c,

– or of the form ref.null,

– or of the form ref.func x,

– or of the form global.get x, in which case C.globals[x] must be a global type of the form const t.

(C ` instr const)⇤

C ` instr⇤ end const

C ` t.const c const C ` ref.null t const C ` ref.func x const
C.globals[x] = const t

C ` global.get x const

Note: Currently, constant expressions occurring in globals, element, or data segments are further constrained
in that contained global.get instructions are only allowed to refer to imported globals. This is enforced in the
validation rule for modules by constraining the context C accordingly.

The definition of constant expression may be extended in future versions of WebAssembly.

3.3. Instructions 47

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

3.4 Modules

Modules are valid when all the components they contain are valid. Furthermore, most definitions are themselves
classified with a suitable type.

3.4.1 Functions

Functions func are classified by function types of the form [t⇤1] ! [t⇤2].

{type x, locals t⇤, body expr}

• The type C.types[x] must be defined in the context.

• Let [t⇤1] ! [t⇤2] be the function type C.types[x].

• Let C 0 be the same context as C, but with:

– locals set to the sequence of value types t⇤1 t⇤, concatenating parameters and locals,

– labels set to the singular sequence containing only result type [t⇤2].

– return set to the result type [t⇤2].

• Under the context C 0, the expression expr must be valid with type [t⇤2].

• Then the function definition is valid with type [t⇤1] ! [t⇤2].

C.types[x] = [t⇤1] ! [t⇤2] C, locals t⇤1 t
⇤, labels [t⇤2], return [t⇤2] ` expr : [t⇤2]

C ` {type x, locals t⇤, body expr} : [t⇤1] ! [t⇤2]

3.4.2 Tables

Tables table are classified by table types.

{type tabletype}

• The table type tabletype must be valid.

• Then the table definition is valid with type tabletype .
` tabletype ok

C ` {type tabletype} : tabletype

3.4.3 Memories

Memories mem are classified by memory types.

48 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

{type memtype}

• The memory type memtype must be valid.

• Then the memory definition is valid with type memtype .
` memtype ok

C ` {type memtype} : memtype

3.4.4 Globals

Globals global are classified by global types of the form mut t.

{type mut t, init expr}

• The global type mut t must be valid.

• The expression expr must be valid with result type [t].

• The expression expr must be constant.

• Then the global definition is valid with type mut t.
` mut t ok C ` expr : [t] C ` expr const

C ` {type mut t, init expr} : mut t

3.4.5 Element Segments

Element segments elem are classified by the reference type of their elements.

{type t, init e⇤,mode elemmode}

• For each ei in e⇤:

– The expression ei must be valid with some result type [t].

– The expression ei must be constant.

• The element mode elemmode must be valid with reference type t.

• Then the element segment is valid with reference type t.
(C ` e : [t])⇤ (C ` e const)⇤ C ` elemmode : t

C ` {type t, init e⇤,mode elemmode} : t

passive

• The element mode is valid with any reference type.

C ` passive : reftype

3.4. Modules 49

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

active {table x, o↵set expr}

• The table C.tables[x] must be defined in the context.

• Let limits t be the table type C.tables[x].

• The expression expr must be valid with result type [i32].

• The expression expr must be constant.

• Then the element mode is valid with reference type t.

C.tables[x] = limits t
C ` expr : [i32] C ` expr const
C ` active {table x, o↵set expr} : t

declarative

• The element mode is valid with any reference type.

C ` declarative : reftype

3.4.6 Data Segments

Data segments data are not classified by any type but merely checked for well-formedness.

{init b⇤,mode datamode}

• The data mode datamode must be valid.

• Then the data segment is valid.
C ` datamode ok

C ` {init b⇤,mode datamode} ok

passive

• The data mode is valid.

C ` passive ok

active {memory x, o↵set expr}

• The memory C.mems[x] must be defined in the context.

• The expression expr must be valid with result type [i32].

• The expression expr must be constant.

• Then the data mode is valid.
C.mems[x] = limits C ` expr : [i32] C ` expr const

C ` active {memory x, o↵set expr} ok

50 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

3.4.7 Start Function

Start function declarations start are not classified by any type.

{func x}

• The function C.funcs[x] must be defined in the context.

• The type of C.funcs[x] must be [] ! [].

• Then the start function is valid.
C.funcs[x] = [] ! []

C ` {func x} ok

3.4.8 Exports

Exports export and export descriptions exportdesc are classified by their external type.

{name name, desc exportdesc}

• The export description exportdesc must be valid with external type externtype.

• Then the export is valid with external type externtype.
C ` exportdesc : externtype

C ` {name name, desc exportdesc} : externtype

func x

• The function C.funcs[x] must be defined in the context.

• Then the export description is valid with external type func C.funcs[x].

C.funcs[x] = functype

C ` func x : func functype

table x

• The table C.tables[x] must be defined in the context.

• Then the export description is valid with external type table C.tables[x].

C.tables[x] = tabletype

C ` table x : table tabletype

mem x

• The memory C.mems[x] must be defined in the context.

• Then the export description is valid with external type mem C.mems[x].

C.mems[x] = memtype

C ` mem x : mem memtype

3.4. Modules 51

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

global x

• The global C.globals[x] must be defined in the context.

• Then the export description is valid with external type global C.globals[x].

C.globals[x] = globaltype

C ` global x : global globaltype

3.4.9 Imports

Imports import and import descriptions importdesc are classified by external types.

{module name1, name name2, desc importdesc}

• The import description importdesc must be valid with type externtype.

• Then the import is valid with type externtype.
C ` importdesc : externtype

C ` {module name1, name name2, desc importdesc} : externtype

func x

• The function C.types[x] must be defined in the context.

• Let [t⇤1] ! [t⇤2] be the function type C.types[x].

• Then the import description is valid with type func [t⇤1] ! [t⇤2].

C.types[x] = [t⇤1] ! [t⇤2]

C ` func x : func [t⇤1] ! [t⇤2]

table tabletype

• The table type tabletype must be valid.

• Then the import description is valid with type table tabletype.
` tabletype ok

C ` table tabletype : table tabletype

mem memtype

• The memory type memtype must be valid.

• Then the import description is valid with type mem memtype.
` memtype ok

C ` mem memtype : mem memtype

52 Chapter 3. Validation

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

global globaltype

• The global type globaltype must be valid.

• Then the import description is valid with type global globaltype.
` globaltype ok

C ` global globaltype : global globaltype

3.4.10 Modules

Modules are classified by their mapping from the external types of their imports to those of their exports.

A module is entirely closed, that is, its components can only refer to definitions that appear in the module itself.
Consequently, no initial context is required. Instead, the context C for validation of the module’s content is con-
structed from the definitions in the module.

• Let module be the module to validate.

• Let C be a context where:

– C.types is module.types,

– C.funcs is funcs(it⇤) concatenated with ft⇤, with the import’s external types it⇤ and the internal func-
tion types ft⇤ as determined below,

– C.tables is tables(it⇤) concatenated with tt⇤, with the import’s external types it⇤ and the internal table
types tt⇤ as determined below,

– C.mems is mems(it⇤) concatenated with mt⇤, with the import’s external types it⇤ and the internal
memory types mt⇤ as determined below,

– C.globals is globals(it⇤) concatenated with gt⇤, with the import’s external types it⇤ and the internal
global types gt⇤ as determined below,

– C.elems is rt⇤ as determined below,

– C.datas is okn, where n is the length of the vector module.datas,

– C.locals is empty,

– C.labels is empty,

– C.return is empty.

– C.refs is the set funcidx(module with funcs = ✏ with start = ✏), i.e., the set of function indices
occurring in the module, except in its functions or start function.

• Let C 0 be the same context as C, except that C 0.globals is just the sequence globals(it⇤).

• For each functypei in module.types, the function type functypei must be valid.

• Under the context C 0:

– For each tablei in module.tables, the definition tablei must be valid with a table type tt i.

– For each memi in module.mems, the definition memi must be valid with a memory type mt i.

– For each global i in module.globals, the definition global i must be valid with a global type gt i.

– For each elemi in module.elems, the segment elemi must be valid with reference type rt i.

– For each datai in module.datas, the segment datai must be valid.

• Under the context C:

– For each funci in module.funcs, the definition funci must be valid with a function type ft i.

– If module.start is non-empty, then module.start must be valid.

3.4. Modules 53

WebAssembly Specification, Release 2.0 (Draft 2024-08-22)

– For each import i in module.imports, the segment import i must be valid with an external type it i.

– For each export i in module.exports, the segment export i must be valid with external type et i.

• The length of C.mems must not be larger than 1.

• All export names export i.name must be di�erent.

• Let ft⇤ be the concatenation of the internal function types ft i, in index order.

• Let tt⇤ be the concatenation of the internal table types tt i, in index order.

• Let mt⇤ be the concatenation of the internal memory types mt i, in index order.

• Let gt⇤ be the concatenation of the internal global types gt i, in index order.

• Let rt⇤ be the concatenation of the reference types rt i, in index order.

• Let it⇤ be the concatenation of external types it i of the imports, in index order.

• Let et⇤ be the concatenation of external types et i of the exports, in index order.

• Then the module is valid with external types it⇤ ! et⇤.

(` type ok)⇤ (C ` func : ft)⇤ (C 0 ` table : tt)⇤ (C 0 ` mem : mt)⇤ (C 0 ` global : gt)⇤

(C 0 ` elem : rt)⇤ (C 0 ` data ok)n (C ` start ok)? (C ` import : it)⇤ (C ` export : et)⇤

ift⇤ = funcs(it⇤) itt⇤ = tables(it⇤) imt⇤ = mems(it⇤) igt⇤ = globals(it⇤)
x⇤ = funcidx(module with funcs = ✏ with start = ✏)

C = {types type⇤, funcs ift⇤ ft⇤, tables itt⇤ tt⇤,mems imt⇤ mt⇤, globals igt⇤ gt⇤, elems rt⇤, datas okn, refs x⇤}
C 0 = C with globals = igt⇤ |C.mems|  1 (export .name)⇤ disjoint

module = {types type⇤, funcs func⇤, tables table⇤,mems mem⇤, globals global⇤,
elems elem⇤, datas datan, start start?, imports import⇤, exports export⇤}

` module : it⇤ ! et⇤

Note: Most definitions in a module – particularly functions – are mutually recursive. Consequently, the definition
of the contextC in this rule is recursive: it depends on the outcome of validation of the function, table, memory, and
global definitions contained in the module, which itself depends onC. However, this recursion is just a specification
device. All types needed to construct C can easily be determined from a simple pre-pass over the module that does
not perform any actual validation.

Globals, however, are not recursive and not accessible within constant expressions when they are defined locally.
The e�ect of defining the limited context C 0 for validating certain definitions is that they can only access functions
and imported globals and nothing else.

Note: The restriction on the number of memories may be lifted in future versions of WebAssembly.

54 Chapter 3. Validation

