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Abstract—Performing autonomous navigation in cluttered and
unstructured terrains still remains a challenging task for legged
and wheeled mobile robots. To accomplish such a task, online
planners shall incorporate new terrain information perceived
while the robot is moving within its environment. While hybrid
mobility robots offer high flexibility in traversing challenging
terrains by leveraging the advantages of both wheeled and legged
locomotion, the effective hybrid planning of the mobility actions
that transparently combine both modes of locomotion has not
been extensively explored.

In this work, we present a hierarchical online hybrid primitive-
based planner for autonomous navigation with wheeled-legged
robots. The framework is handled by a Behavior Tree (BT) and
it takes into account recovery methods to deal with possible
failures during the execution of the navigation/mobility plan.
The framework was evaluated in multiple irregular and heavily
cluttered simulated environments randomly generated and in
real-world trials, using the CENTAURO robot platform. With
these experiments, we demonstrated autonomous capabilities
without any human intervention, even in case of collision or
planner failures.

Index Terms—Motion and Path Planning, Reactive and Sensor-
Based Planning, Field Robots

I. INTRODUCTION

UNTIL today, legged and mobile robots, in general, are not
yet extensively explored in real-world unstructured en-

vironments, which impose highly cluttered terrain challenges
on them, e.g., in the field of inspection, maintenance, and
search and rescue operations. An essential capability that is
necessary for these robots to deal autonomously with complex
terrain challenges and complete their tasks is the ability to
safely navigate in cluttered/unstructured grounds, negotiat-
ing different obstacles of various shapes and dimensions. In
addition, to deal with perception errors, dynamic obstacles,
partially perceived entities, or other uncertainties, a robot
needs an online planner that can adapt on the fly the navigation
and mobility plan when these unexpected conditions occur,
comprising the original plan. Online capabilities allow the
continuous elaboration of the plans, taking into account the
online perceived information about the terrain and environment

This work was supported by European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 101016007 CONCERT and
the Italian Fondo per la Crescita Sostenibile - Sportello “Fabbrica intelligente”,
PON I&C 2014 - 2020, project number F/190042/01-03/X44 RELAX.

1Alessio De Luca, Luca Muratore and Nikos G. Tsagarakis are with
the Humanoids and Human Centered Mechatronics Laboratory, Istituto
Italiano di Tecnologia, 16153, Genoa, Italy alessio.deluca@iit.it
luca.muratore@iit.it nikos.tsagarakis@iit.it

2Alessio De Luca is also with DIBRIS, University of Genoa, 16145, Genoa,
Italy.

in general during the execution of its navigation plan. This is
because, with offline methods, the plan is evaluated only at
the beginning of the task without considering new information
coming from the sensors. For this reason, it can be reliable
only in a limited area surrounding the robot while it may not
be adequate and inaccurate after a few meters of navigation.
This is valid, especially in irregular environments where there
are obstacles that hide portions of the terrain, preventing it
from being seen from the starting configuration.

To deal with online planning updates, different methods
have been proposed. A possible way is to take into account
the forces and contacts between the robot and the environment,
like in [1]-[2]. Here, the planner has the objective of selecting
the best contact points to obtain a sequence of feasible robot
configurations, preventing the robot from falling or slipping
while navigating towards the goal location. However, this
approach may require a long computational time and there
is a need for accurate contact and force estimation. Online re-
planning can also be done using sampling-based methods as
in [3]-[4] where whole-body motions are connected to build
a tree by using Center of Mass (CoM) primitives or a more
general robot state as in [5], but, with complex robots, this can
be slow and memory inefficient. Another solution is to employ
Model Predictive Control (MPC) like [6]-[7], continuously
obtaining plans that are valid for a small horizon, requiring a
fine-tuning of the model and parameters. Other methods were
proposed to perform online planning, like the work presented
in [8], which considers a fusion of sampling-based techniques
and model-based optimization validated on a quadcopter in
different scenarios. A different strategy, introduced in [9],
involves the possibility of merging offline path planning and
online foothold planning. The work was validated on the
quadruped LittleDog in different small scenarios. Considering
similar approaches, the work in [10] presented a comparison
among search-based planners for legged robots, showing the
advantages of ARA* compared to A* and Dijkstra. Later, in
[11], the same team proposed a motion planning framework
for quadrupedal locomotion embedding robot attitude planner
and a terrain model to describe feasible footholds, having as
a drawback a high computation time, requiring more than 10
minutes to plan a solution.

However, the majority of the works presented are carried out
on quadrupeds and humanoids that have reduced kinematic
complexity compared to the CENTAURO robot [12], which
has four articulated 5DoF legs, ending in 360° steerable
wheels, making it a hybrid mobility platform. A more similar
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robotic platform is the Momaro robot [13], where the team
developed a framework to deal with semi-autonomous loco-
manipulation tasks in [14]. Although, no online updates were
demonstrated and the validation was done in simple envi-
ronments only. Autonomous navigation with the CENTAURO
robot was demonstrated in [15], but only driving capability
was considered to reshape the support polygon based on the
environment, reducing the complexity and capabilities of the
platform, not being able to traverse more cluttered scenarios.

In addition to the planning side, one important aspect to
enhance autonomy is the possibility of reacting to failures
in the execution. A potential approach to implement this is
with the use of Behavior Trees (BTs) [16], which proved to
be more reactive, modular, and easier to extend compared
to Finite State Machines as stated in [17] and [18]. Never-
theless, to the author’s knowledge, the use of behavior trees
in legged and especially hybrid robot navigation is limited.
The two relevant works in [19] and [20], mainly focused,
respectively, on multi-robot task reallocation in case of failures
and reactive push recovery, without directly addressing the
challenge of autonomous navigation that also incorporates
recovery methods in case of failures during the execution in
cluttered environments.

In our previous work [21] we proposed a framework to
perform autonomous navigation in an offline manner with the
use of a set of motion primitives, employing a search-based
planner. In this work, we extend the framework by proposing
a hierarchical planning architecture composed of search-based
global and local planners. The framework is embedded with
online and reactive functionalities, being able to update the
locomotion plan while the robot is moving, and autonomously
respond to possible failures during the execution. The whole
framework is managed by a BT demonstrating successful
results in both simulation and real-world environments. This
results in a much more reliable and robust execution in
cluttered and unknown terrains, increasing the autonomy of
the robot in dealing with such challenges while executing nav-
igation tasks. The main contribution of the proposed approach
is, therefore the following:

• Exploitation of a two-level online framework for au-
tonomous navigation;

• Autonomous recovery behaviors in case of failures;
• A Behavior Tree implementation for managing the online

navigation framework in a reactive way;
The proposed framework and the above contributions were
extensively validated in extensive simulation trials consider-
ing varying complexity cluttered environments and eventually
experimentally under different terrain/obstacle arrangements
using the CENTAURO hybrid mobility robotic platform. The
rest of the paper is organized as follows: in Section II
we describe the proposed framework explaining its different
components. In Section III, we present the experiments carried
out and the results obtained, and finally in Section IV we draw
the conclusions.

II. PROPOSED FRAMEWORK

In our previous work [21], we designed and validated an
offline method for hybrid navigation with wheeled-legged

robots. The method was based on the use of parametrized
motion primitives to adapt to different robots. Here, we extend
our framework by combining a two-level hybrid planner
together with a Plan Evaluator, recovery methods, and a two-
level mapping, as can be seen in Fig. 1. In the following
sections, we are going to illustrate in more detail the overall
architecture of the proposed framework and the functionality
and implementation of the involved components.

A. Traversability Extractor

This component is responsible for the extraction and the
definition of the elevation and validity map used by the two-
level hybrid planner. In particular, we employed the software
of [22]-[23] to obtain a representation of the environment as
elevation maps, starting from point clouds that are filtered to
obtain a foothold validity map. The filtering process is carried
out taking into account a safety threshold used to inflate the
edges of the obstacles perceived based on the size of the end-
effector (in our case, the wheel radius of the CENTAURO
robot), marking those areas as non-valid. In this work, we
consider two different mapping processes, the first uses the
information coming from the 3D LiDAR, a Velodyne Puck 16
1. The result of this mapping part is called global map and it
has a resolution of 0.04m and a dimension of 12m x 8m. In
addition, we explore an Intel Realsense D435i 2 sensor, which
is an RGB-D camera, to obtain a second map with a resolution
of 0.02m and dimension 3.5m x 3.0m, called d435i map. At
this point, we build the local map by merging the information
obtained from the two sensors. In particular, the local map is
the d435i map in which the unknown elements are filled up
with the information obtained by the Velodyne. This allows
us to obtain a map with a better resolution with respect to
the global map and to deal with the smaller Field of View of
the RGB-D camera compared to the Velodyne. In fact, with
this approach, we always use the data coming from the D435i,
which is more dense and accurate up to the limits of the local
map, and we integrate them with the information coming from
the LiDAR being able to extend the knowledge of the only
d435i map.

Both maps are centered in the base link position of the robot
and move together with it, incorporating the updates based on
the new information perceived. The global and local maps are
used respectively by the global and local planners. In addition,
the local map is also used by the Plan Evaluator described in
the next subsections.

Fig. 2 presents the global and the local maps of an environ-
ment, marking non-valid areas in red.

B. Global Planner

The global planner has the objective of guiding the move-
ments of the robot inside the map with its resulting plan
without directly commanding the execution. For the global
planner, we used the same implementation we proposed in our
previous work [21], based on the ARA* [24]. In more detail,
the inputs of the planner are the global map obtained using

1https://velodynelidar.com/products/puck/
2https://www.intelrealsense.com/depth-camera-d435i/
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Fig. 1: Overview of the framework provided. In green, we have the perception component, in blue the two-level online planning
component, and in orange the motion execution which sends the controls to the robot.

Fig. 2: (A) Global map of the environment considered. (B)
Local map of the surrounding of the robot. The maps are built
using different safety thresholds and resolutions. Red is used
to identify non-valid areas.

only the Velodyne Puck 16 Lidar sensor, the initial robot pose,
the target position and orientation we want the robot to reach,
and the primitives available (whole-robot driving, stepping,
and single-wheel driving) together with their parameters, based
on the platform considered. This planner was validated in our
previous work performing autonomous navigation in an offline
way with the CENTAURO robot.

However, for complex terrain scenarios, the computation of
a long global plan can require several seconds to be found.
To improve this, we have also considered a simpler global
planner based on RRT [25] in which the nodes are expanded
from the starting position to the goal one, taking into account
a few constraints. In particular, to avoid having nodes that are
too close or too far from each other, the distance between two
nodes cannot be smaller than 0.05m or longer than 0.12m
and should be guaranteed a minimum and maximum distance
among the end-effectors, based on the platform considered. In
addition, for each node randomly sampled, a validity check
is performed to consider only the nodes for which there is
at least one valid element in the traversability map for each
contact point’s neighborhood. We have not used directly this
method because we do not check the feasibility among state
transitions to speed up the execution of the planner. This will
be handled by the local planner in a more exact way. Having
a fast global planner allows to react faster to failures, without

the need of stopping the robot’s motion for a long time to wait
for a new plan to follow. In addition, a global planner based
on a random selection of nodes can be an appropriate choice
because, in case of failures, it is difficult that it will select the
same path, making the robot move and possibly find a new
way to the goal.

The approach of this second method, which is proposed
here, is generally coarser and it is not ensured to be feasible
to track it completely, but the computational time can be
significantly decreased by more than one order of magnitude,
based on the complexity of the environment considered. On
the other hand, to enhance feasibility, a solution is to use the
search-based global planner, speeding it up by acting on the
ϵ parameter of the ARA*, looking for less optimal solutions.
This parameter can be modified based on the complexity of
the environment with a tradeoff between the optimality of the
solution and planning time.

Fig. 3 compares the two approaches in terms of planning
time, considering two different values of ϵ for the search-based
and also the global planner we used in our previous work (with
bigger safety thresholds in the map, as explained in Section
III). Note that, the tests without data are the ones in which the
global planner was not able to find a solution or the solution
required more than 100 s.

C. Local Planner
The local planner is responsible for producing the sequence

of actions that are sent to the robot in order to be executed. The
implementation of the local planner is based on our previous
work, using a search-based approach, considering a higher
resolution for the map and for the discretization of the robot’s
movements compared to the search-based global planner, as
explained in Section II-A.

The local planner is defined in an online fashion so that,
while the robot is moving, the planner is continuously invoked
to advance the state of the robot in which the starting position
is extracted from the previous local plan found considering a
node about 0.5m ahead of the current state. The target position
instead is obtained from the global plan and it is selected to be
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Fig. 3: Time comparison for the first solution of the global
planner using RRT-based and different versions of the search-
based planners with 14 randomly generated scenarios. Note
that the time axis is in logarithmic scale.

at a maximum distance of 1m from the actual robot position.
Since the two planners have different values in the parameters,
the local planner cannot track exactly the global plan. To
avoid constraining too much the local planner, it considers as
a possible goal a small area around the node extracted from
the global plan, without the need to track it completely. For
example, a solution provided by the local planner can avoid an
obstacle by moving around it, even if the global plan considers
passing over the obstacle.

Once the local plan is found, it is acquired by the Planner
Manager and sent to the Node Executor, which acquires the
new information and continues the execution by sending the
position and velocity references to the robot via our control
framework CartesIO [26] and Xbot2 middleware [27].

D. Plan Evaluator

The Plan Evaluator is a safety module with the objective
of checking if any of the contact points are in a non-valid
area. If this is true, the PoseValid condition returns FAILURE
and the motion is stopped. The evaluator, through the action
FindValidContact, tries to find a valid position for the wheels,
which is collected by the Planner Manager and sent to the
executor, canceling the old plan received. In this way, the
robot stops its execution, which can be dangerous and prone to
failures, moving the wheel-feet end effectors to valid positions.
Then the local planner starts again from this new, valid
configuration. If the distance between the actual position of
the wheel and the valid one is small enough, the movement
is achieved via single-wheel driving; otherwise, a stepping
maneuver can be considered for safety reasons.

E. Planner Manager

To manage the global and local planners, together with
possible recovery methods, we decided to employ Behavior
Trees, which were used in different applications ranging from
human-robot interaction [28] to robot navigation in human
search tasks [29].

The BT design can be seen in Fig. 4. The objective of
this component is to manage the communication between the

other components in order to guarantee the correct and safe
execution of the task by the robot. The general flow, managed
by the BT, in case of no failures, is the following:

• The BT acquires a target position that the robot has to
reach from the user or an external module;

• The BT requests a solution to the global planner to reach
the target, and acquires it;

• The local planner is invoked by the BT and searches a
plan between the robot position and one of the first nodes
in the global plan;

• The global plan is kept fixed during the robot movements
while the local plan is updated continuously moving the
starting point based on the previous local plan found and
the goal point based on the global one.

The last step is iterated until the robot reaches the target
point defined.

In case of failures during the execution, these are tracked
by the Recovery sub-tree of the BT implemented and the Po-
seValid condition. Four main failure conditions are considered
including: i) Foot In Non-Valid Area, ii) Plan Not Found, iii)
Robot Is Stuck, or iv) a Failure in Stepping. In particular, if
one of these failure conditions occurs, it is signaled by the
Node Executor or the Planner Evaluator and caught by the
BT, which checks the type of failure and reacts according to
it. In the following, we illustrate the failures in more detail.

1) Foot in Non-Valid Area: due to errors in the localization,
motion tracking, or new terrain features discovered while
moving, one of the wheeled foot end-effectors of the robot
may be in contact with a non-valid area. This can be dangerous
because it can bring to collisions with the environment but
especially on elevated surfaces where non-valid areas are
marked in the proximity of the edges of a platform. For this
reason, a check is continuously run to stop the execution in
case of such a condition.

If this failure is activated, the robot stops moving, and the
FindValidContact action is invoked to find a valid position
for the end-effectors that are in a non-valid region of the
map, reshaping the support polygon. At this point, the Planner
Manager directly sends the nodes to the Node Executor, and
then restarts the online execution following the global path.

2) Plan Not Found: if the robot is moving and the local
plan is not found in front of it (or a timer expires), a new call
to the local planner is made for N times. In case of continuous
failure, the Planner Manager stops the robot’s motion and asks
for a new global plan starting from the current robot position,
restarting the execution. The same procedure is considered
if the local planner fails while the robot has already stopped
moving, but without iterating N times, since the robot is fixed
and no new information is obtained. This is done automatically
as a reactive recovery method to the failure. The new call to the
global planner takes into account the new information acquired
while the robot was moving and this can result in a different
guiding path, especially if the sample-based global planner is
used.

3) Robot Is Stuck: during whole-robot driving it may
happen that errors in the localization or mapping bring the
robot to hit an object. Since we do not have any force sensor
on the end-effectors, we check this failure by looking at the
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Fig. 4: Designed BT to manage online re-planning and react to failures. The left part of the tree is used to deal with the online
updates of the planners and check for pose validity, while the right one is the recovery sub-tree.

robot’s position. The actual robot’s velocity is evaluated and
if this is lower than a threshold, set to 0.005 m/s, the robot
is considered to be stuck. Such a situation arises when the
robot is constrained by the environment or when the cartesian
controller cannot solve the requested velocity. In this case, the
recovery behavior stops the robot and reverts the last action
performed to arrive at the previous valid node in the plan. Now
the local planner is invoked again, from the actual position
and the robot can proceed with the execution. This failure is
generally avoided by the Plan Evaluator, however, in case of
obstacles not perceived by the sensors the robot can collide
with the environment and stop the execution.

4) Failure In Stepping: while the robot is moving, we
continuously monitor the CoM state and the support polygon
of the robot to access the robot balance stability and detect
potential conditions that can lead to falling incidents. In
particular, before lifting the wheel to perform a stepping
action, we evaluate the CoM distance from the borderline of
the support triangle that will result from the lifting action.
In case this distance is smaller than a minimum distance
threshold, set to 0.04 m, this failure condition is triggered,
suspending the execution of the stepping action. At this point,
the robot moves the wheels with single-wheel actions to
bring the CoM more inside the support triangle, checking the
feasibility of the end-effectors on the local map. Then the
CoM distance is evaluated again before executing the stepping
action. If the distance of the CoM from the borderline of the
support polygon is larger than the safe threshold, the stepping
action is performed, otherwise, the failure is triggered again.
In the latter case, the robot goes back to the previous valid
state and plans again locally from that configuration.

In case these recovery behaviors do not allow the robot
to continue with the execution, the local planner is invoked
to drive the robot in the reverse direction of the current
global plan, with the objective of moving away the robot
from the obstacles making it easier to see the terrain area
of interest. Up to now, we do not deal with any other type
of failure conditions. In particular, if the robot is in the
middle of a cluttered area and the planners (global and local)
continually fail due to errors in the map or the complexity of
the environment, the robot will be stuck and it will require

human intervention to release it from such condition.

III. EXPERIMENTS AND RESULTS

The presented framework was validated on the hybrid
wheeled-legged robot CENTAURO, firstly in simulation en-
vironments and then on the real robotic platform.

A. Simulation

Under the Gazebo simulation environment, we perform
several tests, considering different random cluttered terrain
scenarios generated with a parametrized script that randomly
selects objects3 specifying the types and the desired number
of the objects, the area covered, the minimum and maximum
dimension and mass. Here we discarded some unfeasible
scenarios with a collection of obstacles in a line that prevents
the robot to traverse the scene. Some of the examples of the
scenarios generated and considered can be seen in Fig. 5.

For all the simulations considered we used as a safety
threshold for the mapping process, a value of 0.16m for the
global map and 0.14m for the local map. Compared with our
previous work we are able to obtain more robust navigation
without the need to be far from obstacles. In fact, in the
previous approach, only the global map was used. Since it
has a coarser resolution, the inflation around obstacles and
edges was bigger to avoid touching obstacles, having a safety
threshold set to 0.24m. In this case, instead, we can reduce
the safety distance threshold, permitting the robot to drive
closer to obstacles without touching them, taking advantage
of the higher resolution of the local map. In addition, the
introduction of the Plan Evaluator and associated recovery
methods enable us to be more robust against errors in the
mapping and localization drifts.

We present the results obtained from 14 random terrain
scenarios with different complexity set by the number of
obstacles and their position arrangement on the map. Please
note that the generated terrain scenarios, for which the global
planners were not able to find a solution or the time required
was too long, were discarded from the results presented in
this section. This is related to the fact that the majority of the

3https://github.com/ADVRHumanoids/world generator
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Fig. 5: Scenarios randomly generated with our terrain gener-
ator tool. The cluttered terrain arrangements contain several
objects of random pose, dimension, and inertial properties.

obstacles have a depth dimension close to the diameter of the
wheel, therefore with the selected safety thresholds their top
surfaces are considered as not valid, preventing the planner
to find a solution. In addition, the existence of holes in the
bricks causes differences in the elevation perceived, resulting
in non-valid areas. Two examples can be seen in Fig. 6.

For each of the scenarios considered, we run 3 different
experiments and the results are summarized in Tab. I. In the
scenarios considered, the global planner is always able to
find a solution and, based on the terrain properties of each

Fig. 6: Examples of simulated scenarios in which the global
planner fails to find a solution.

TABLE I: Results of the simulation experiments.

Test Succ. Exec Tot. Global Tot. Local Avg. Plan
Rate Time [s] Plans Plans Time [ms]

1 3/3 142 ± 17 1 ± 0.5 244 ± 18 270 ± 612
2 3/3 165 ± 6 2 ± 0.5 333 ± 27 218 ± 748
3 3/3 148 ± 37 2 ± 1 314 ± 30 213 ± 469
4 3/3 131 ± 47 2 ± 1 277 ± 32 150 ± 321
5 1/3 249 ± 0 3 ± 0 617 ± 0 399 ± 924
6 3/3 115 ± 13 1 ± 0.5 273 ± 28 159 ± 725
7 2/3 261 ± 51 4 ± 2 482 ± 48 549 ± 814
8 3/3 140 ± 18 2 ± 1 245 ± 17 395 ± 762
9 3/3 205 ± 94 3 ± 2 314 ± 51 253 ± 617

10 3/3 199 ± 48 3 ± 2 369 ± 82 281 ± 685
11 3/3 239 ± 31 1 ± 0 315 ± 91 375 ± 545
12 3/3 173 ± 14 1 ± 0 223 ± 82 167 ± 560
13 3/3 167 ± 6 2 ± 1 348 ± 13 554 ± 958
14 2/3 184 ± 17 3.5 ± 0.5 416 ± 47 258 ± 641

scenario, we can have a different number of calls to the local
planner. Of course, the use of the ARA* based approach or
the RRT-based one for the global planner can affect the result
in terms of execution time, because of the sub-optimality of
the sample-based implementation. In order to have a more
accurate and feasible global solution, we used the search-based
global planner for the scenarios in which the global planning
time was lower than 1-2s. On the contrary, when the planning
time was too high, we enabled the RRT-based global planner
to obtain a fast solution.

Looking at the results, we can see that a low number of
global plans acquired implies that repetitive failures in the
local plan or execution are not very frequent, while a high
number of local plans helps to validate the local planner and
its online nature. The average local planning time is lower
than 400ms, being able to adapt to the changes in the map,
while its standard deviation is higher, since we set a timer
for the local planner to 3.5s so, in constrained configurations,
the local planner may need more time than the average one.
The failure incidents experienced in the simulation are mainly
related to collisions with the environment which occupy free
navigation areas, and prevent the planner to find a solution.

With the goal of demonstrating the online updates, we also
run an experiment in simulation in which the robot starts from
an empty space and we manually add an obstacle in front of it.
In this case, the new object is included in the map and the local
planner is no more able to follow the global plan, so it stops
the robot and requests a new global plan to deal with the new
obstacle perceived. The execution is automatically adapted to
the new plan for avoiding the obstacle and reaching the goal
location previously assigned. A sequence of this behavior can
be seen in Fig. 7. Here we placed the object a meter in front
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Fig. 7: Online updates of the global and local planners after
perceiving a new object blocking the way in simulation. (A)
Starting global plan is found, (B) an object is discovered and
a new global plan is found, (C) local plan follows the new
global plan, (D) the robot overcomes the obstacle.

Fig. 8: Stepping recovery. (A) CoM is not in the support trian-
gle before the lifting phase, (B) change position of the wheels,
(C) support polygon changed, (D) stepping is accomplished.

of the robot to have a clear acquisition from the sensors. If we
place it much closer to the wheels, then the ”Robot Is Stuck”
failure would have been triggered, stopping the execution and
correcting the plan as described in section II.

In Fig. 8 instead, we can see the results of the ”Failure in
stepping” in which, after the failure is signaled, the wheels are
moved to regulate the support polygon to increase the CoM
distance from the borderline of the support polygon.

The demonstrated results would not have been possible
to achieve with our previous work. Using only the offline
global planner, the map considered would have needed higher
thresholds, preventing possible solutions to be found in such
irregular and cluttered environments. In addition, with offline
methods, there is no chance to deal with new information
perceived. The use of offline methods, as well as the absence
of the BT, implies no updates of the plan, nor reactive recovery
behaviors, failing the execution of the task in case of collisions
or other failures.

Fig. 9: Scenarios considered for real robot execution.

B. Real Robot

After successfully evaluating the proposed methods in sim-
ulation, we perform validation trials on real environments
using our CENTAURO robot. We carried out similar tests,
dealing with scenarios of increasing complexity, starting from
objects in a configuration to force the reshaping of the support
polygon, to configurations in which stepping on and down
obstacles was required, with environments in which the solu-
tion can not be trivially retrieved. In these experimental tests,
we considered the search-based global planner to enhance
feasibility when the planning time was small enough, and we
used the same parameters of the simulations for the mapping,
motion primitives, and planners. The only differences are
related to:

• the update frequency of the map, which is half of the
simulated one;

• the reduction of the motion execution speed on the robot
for safety reasons as well as for favoring localization
precision. Setting single wheel velocity to half of the
simulated one that is 0.20 m/s.

Fig. 9 introduces some of the scenarios we have considered.
All the environments were crossed without falling down or
other major collision incidents thanks to the Plan Evaluator
that ensured to stop the robot when close to the edges of the
obstacles and moved the wheels far away if very close or in
contact with them. In particular, in scenarios 2, 3, and 4, the
robot is required to step on the bricks to complete the task.
The small area of the brick’s top surface makes the task more
constrained since the robot needs to correctly negotiate the
shape of the support polygon to keep the equilibrium while
crossing the obstacles without colliding with them. A video
of the results achieved, showing the real robot’s execution,
together with Rviz view and BT monitoring, can be seen at
the following link 4.

In Tab. II are summarized the results obtained on the real
robot experiments. Also for the real robot, we can see that the
number of global plans requested is close to 1 demonstrating
that the online updates of the planner and the autonomous

4https://youtu.be/tr5gCxs78vg
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TABLE II: Results of the real robot experiments.

Test Succ. Exec Tot. Global Tot. Local Avg. Plan
Rate Time [s] Plans Plans Time [ms]

1 4/4 242 ± 94 2 ± 1 103 ± 31 450 ± 932
2 3/4 225 ± 55 2 ± 1 79 ± 21 399 ± 777
3 1/4 335 ± 0 2 ± 0 115 ± 0 415 ± 879
4 2/4 275 ± 92 4 ± 2 98 ± 5 467 ± 889

recovery are able to follow the global candidate and unstuck
the robot in case of the failure conditions considered. Since
on the real robot, the update frequency of the local map is
half of the simulation, we had to increase the timer’s duration
for the local planner to 7.5 s, resulting in a lower number of
local plans found within the execution time.

The failures we experienced on the real platforms, in
particular in scenarios 3 and 4, are mainly related to the errors
in the localization (visual odometry), especially in the roll,
pitch, and elevation (z) of the pelvis. In fact, the local planner
was able to find a solution to move on and arrive at the goal,
however, due to the z error, a wheel was sometimes lifted of
few centimeters after stepping actions. The error in the pelvis
roll and pitch angles instead, causes the pelvis to be wrongly
oriented, making the ankles to be not perpendicular to the
ground forcing to stop the execution to avoid overloading the
robot’s ankle joints.

IV. CONCLUSIONS

In this paper, we presented the concept and implementa-
tion of a hybrid online planning framework, which enables
autonomous navigation for wheeled-legged robotic platforms.
The framework was validated both in simulation and on the
real CENTAURO robot, demonstrating the capabilities ac-
quired with respect to our previous work in terms of planning
performance, accuracy, and recovery during failures. Thanks
to the introduction of the BT the recovery methods can be
addressed in a reactive way, improving safety and drastically
reducing the incidents in which the robot is blocked and cannot
continue its navigation, improving the robot autonomy and
reducing the need for human intervention. Future works will
address the introduction of manipulation actions to rearrange
obstacles when navigation is not possible. In addition, we
will consider the introduction of moving/dynamic obstacles,
and the execution of outdoor experiments, validating the
framework in more realistic outdoor terrain environments.
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[5] W. Reid, R. Fitch, A. Göktoǧan, and S. Sukkarieh, “Sampling-based
hierarchical motion planning for a reconfigurable wheel-on-leg planetary
analogue exploration rover,” Journal of Field Robotics, vol. 37, 10 2019.

[6] S. Xin and S. Vijayakumar, “Online dynamic motion planning and
control for wheeled biped robots,” in IEEE Int. Conf. Intell. Robots
Syst., 2020, pp. 3892–3899.

[7] C. Rosmann, A. Makarow, and T. Bertram, “Online motion planning
based on nonlinear model predictive control with non-euclidean rotation
groups,” in Eur. Control Conf., 2021, pp. 1583–1590.

[8] L. Campos, D. Gomez-Gutierrez, R. Aldana, R. Guardia, and J. Vilchis,
“A hybrid method for online trajectory planning of mobile robots in
cluttered environments,” IEEE Robot. Automat. Lett., vol. 2, pp. 935–
942, 04 2017.

[9] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Learn-
ing, planning, and control for quadruped locomotion over challenging
terrain,” The Int. Journal of Robotics Research, vol. 30, no. 2, pp. 236–
258, 2011.

[10] M. A. Arain, I. Havoutis, C. Semini, J. Buchli, and D. G. Caldwell,
“A comparison of search-based planners for a legged robot,” in Int.
Workshop on Robot Motion and Control, 2013, pp. 104–109.

[11] C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini,
“Motion planning for quadrupedal locomotion: Coupled planning, terrain
mapping, and whole-body control,” IEEE Trans. Robot., vol. 36, no. 6,
pp. 1635–1648, 2020.

[12] N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, E. M.
Hoffman, M. Kamedula, G. F. Rigano, J. Malzahn, S. Cordasco, P. Guria,
A. Margan, and N. G. Tsagarakis, “Centauro: A hybrid locomotion and
high power resilient manipulation platform,” IEEE Robot. Automat. Lett.,
vol. 4, no. 2, pp. 1595–1602, 2019.

[13] M. Schwarz, T. Rodehutskors, M. Schreiber, and S. Behnke, “Hybrid
driving-stepping locomotion with the wheeled-legged robot momaro,”
in IEEE Int. Conf. Robot. Autom., 2016, pp. 5589–5595.

[14] T. Klamt and S. Behnke, “Anytime hybrid driving-stepping locomotion
planning,” in IEEE Int. Conf. Intell. Robots Syst., 2017, pp. 4444–4451.

[15] V. S. Raghavan, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Agile legged-wheeled reconfigurable navigation planner applied on the
centauro robot,” in Int. Conf. Robot. Autom., 2020, pp. 1424–1430.

[16] M. Colledanchise and P. Ogren, Behavior Trees in Robotics and AI: An
Introduction, 07 2018.

[17] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of
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