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Abstract
In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing
embracing unconventional approaches will become increasingly prevalent. At the same time,
adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed,
reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for
unconventional computing with nanotechnologies to guide future research, and this collection
aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic
computing using electron spins, memristive devices, two-dimensional nanomaterials,
nanomagnets, and various dynamical systems. They also address other paradigms such as Ising
machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory,
quantum memories and algorithms, computing with skyrmions and spin waves, and
brain-inspired computing for incremental learning and problem-solving in severely
resource-constrained environments. These approaches have advantages over traditional Boolean
computing based on von Neumann architecture. As the computational requirements for artificial
intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional
approaches to computing and signal processing will appear on the horizon, and this roadmap will
help identify future needs and challenges. In a very fertile field, experts in the field aim to present
some of the dominant and most promising technologies for unconventional computing that will be
around for some time to come. Within a holistic approach, the goal is to provide pathways for
solidifying the field and guiding future impactful discoveries.
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Introduction

In the ‘Beyond Moore’s Law’ era, domain-specific computing embracing unconventional approaches will
become increasingly prevalent with increasing edge intelligence. Several shortcomings plague current
computational models and the underlying technologies: (1) exorbitant energy cost, which drains resources
and will ultimately affect our environment; (2) slowing of Dennard scaling and Moore’s law since we are
reaching the limits of transistor downscaling, which would impact the economy in the long run; (3) difficulty
in reconciling fast switching times with long memory retention: conventional computing systems face a
trade-off between memory speed and capacity owing to hierarchical memory structures, which would have
adverse consequences for a world that is always data-hungry; (4) limited parallelism: while conventional
computing can achieve some parallelism through multi-core processors, not all computing tasks can be
efficiently parallelized, leading to slow data processing; and (5) the von Neumann bottleneck which limits the
size, weight and power (SWaP) of our current computational technologies.

New unconventional computing paradigms have emerged to contend with some or all of these
challenges. At the same time, adopting a wide variety of nanotechnologies to implement unconventional
computing will benefit energy cost, computational speed, reduced footprint, cyber-resilience, and data
processing prowess. The time is ripe to lay out a roadmap for unconventional computing with
nanotechnologies to guide future research, and this collection aims to fulfill that need. The authors provide a
holistic roadmap for unconventional computing with electron spins, memristive devices, nanomaterials,
mixed-dimensional heterojunctions, nanomagnets, and assorted dynamical systems. The authors address the
similarities and differences between the paradigms discussed in the manuscript, emphasizing the underlying
connections. For example, the manuscript distinguishes between neuromorphic computing and
brain-inspired computing. Although both are based on the behavior of a biological brain, the former is
usually associated with neural networks, while the latter aims to delve deeper into the architecture of the
brain, taking into account regions with different memory and processing functions. They also address other
paradigms for solving combinatorial optimization and graph-theoretic problems, such as Ising machines and
simulated bifurcation, computing in the presence of uncertainties such as Bayesian inference engines,
probabilistic computing with p-bits, processing in memory to circumvent the von-Neumann bottleneck,
quantum memories and algorithms for solving NP problems, computing with skyrmions and spin waves for
massive parallelism, and brain-inspired computing for incremental learning and solving problems in severely
environments with severe constraints on resources, see figure 1. All of these approaches have advantages over
conventional Boolean computing predicated on the von-Neumann architecture. With the computational
need for artificial intelligence growing at a rate 50-fold faster than Moore’s law for electronics, more
unconventional approaches to computing and signal processing will appear on the horizon, and this
roadmap will aid in identifying future needs and challenges.

In particular, Ising and Boltzmann machines are similar in their (physics-based) computing approaches.
In contrast, simulated bifurcation is related to both and can be viewed as a natural progression of the
underlying idea. They embed the solution to a problem in the ground state configuration of several
interacting devices, which are programmed by biasing each one and adjusting the weight of the synaptic
connection between them. They have two significant advantages. First, since they compute by relaxing to the
ground state, no external energy needs to be pumped into them to maintain them in an excited state. That
makes them highly frugal in the use of energy. Second, they are very forgiving of errors since the
computational activity is elicited from the cooperative actions of many devices working in unison, and the
failure of one or few devices does not impair circuit functionality. Computing with large-scale dynamical
systems, whose natural response mimics the execution of algorithms without any software, shares these
characteristics. For example, the combination of dynamical systems with the memcomputing paradigm is a
promising direction for solving combinatorial optimization problems, including prime factorization, at
scale. Brain-inspired computing can also become more efficient with this feature. Probabilistic computing
employing p-bits and quantum computing utilizing qubits also have some mutual connection. The p-bit is
sometimes referred to as a poor person’s qubit. The difference is that a p-bit is sometimes the bit 0 and
sometimes the bit 1 (with tailored probabilities) but never simultaneously both 0 and 1, while a qubit is
simultaneously both 0 and 1 all the time but collapses to either bit with different (tailored) probabilities
when a measurement is made. Both probabilistic and quantum computing have been shown to be capable of
solving combinatorial optimization problems such as the traveling salesman problem and maximum
satisfiability, although a thorough scalability analysis is needed. In the same vein, there is a similarity between
computing with skyrmions and spin waves, not just because they are both magnetic entities but because both
can be adapted to either analog or digital information processing. Skyrmions may also have a role to play in
quantum computing.

4



Nano Futures 8 (2024) 012001 G Finocchio et al

Figure 1. Illustrate the potential applications of nanotechnology. This roadmap explores hardware implementations across a
spectrum of computational paradigms and highlights computational models that are poised to take full advantage of
nanotechnology components. We will focus on cutting-edge computational models and hardware implementations, describing
their current status and challenges, as well as current nanotechnology efforts to address these challenges. Section 1 covers
hardware implementation using magnets and nanomagnets for neuromorphic computing. Section 2 covers memristive devices
and their potential use for unconventional computing. Section 3 covers the use of nanomaterials for unconventional computing.
Section 4 covers probabilistic and quantum computing. Section 5 considers the use physical systems and physics-inspired models,
such as Ising and Boltzmann machines as well as memcomputing, for unconventional computing. Section 6 covers in-memory
computing. Section 7 covers brain-inspired computing.

Furthermore, memristive systems promise the realization of ultrafast and ultradense memory elements
that can mimic a wide range of functions ranging from matrix multiplication to bio-realistic synapses for
hardware accelerators and neural networks, respectively. In particular, emerging memtransistors and
mixed-dimensional heterojunctions can realize bio-realistic neuronal functions such as input-adaptive
learning, continuous learning, heterogeneous plasticity, and complex spiking behavior that can simplify
circuit architectures. Nanomaterials enable printed neuromorphic devices to integrate with bio-compatible
sensors and flexible electronics applications. While these nascent ideas face different challenges than more
mature technologies, such as floating gate memories, they also promise alternative paradigms that can
circumvent technological hurdles due to inherently superior physical properties, form factors, and device
metrics. One of their primary advantages is the tunability of response functions that establish a fertile
ground to realize devices and circuits for the circuit realization of cortical architectures and processes.

This article not only addresses paradigms but also addresses technologies that are best suited to a given
approach. Most algorithms can be executed with different devices and hardware, whether nanomagnets,
nano-CMOS, memristors, or something else. In other words, they are generally hardware agnostic. However,
some algorithms run best on a particular class of devices, depending on their specific properties, such as
non-volatility, intrinsic stochasticity, time nonlocality, and memory. Artificial neural networks adapt well to
both memristors and magnetic devices, as well as to CMOS. Addressing and updating large memristor
crossbar arrays is a challenge where dual-gated memtransistors based on two-dimensional materials can
simplify the architecture and operation of these synaptic circuits. Probabilistic computing’s ideal hardware
will be low-barrier nanomagnets, perhaps also CMOS. Ising machines and others that rely on the relaxation
of an interacting assembly of devices to their many-body ground state can employ various technologies.
However, some may be better than others depending on the type of problem being solved. One technology
receiving widespread attention involves coupled oscillators involving spin Hall nano-oscillators or CMOS. In
this article, each paradigm is illustrated with a particular technological substrate, whether CMOS,
nanomagnets, memristive elements, or something else, because it is easy and convenient to implement the
paradigm with that technology. Additionally, the chosen technology may reduce SWaP, which is an
important consideration.

5
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The manuscript is organized as follows: Section 1 deals with using magnetism to implement
unconventional computing at the nanoscale. Sections 1.1 and 1.2 focus on spintronic technology based on
magnetic tunnel junctions, while sections 1.3 and 1.4 discuss spin-wave and skyrmion-based approaches.
Section 2 discusses the use of memresistors for unconventional computing. Section 3 discusses nanomaterial
systems for hardware implementation of unconventional computing, with section 3.2 focusing on
two-dimensional materials. Section 4 delves into the realm of using probabilities for complex computations,
which includes the discussion of probabilistic computing in section 4.1 and quantum computing in
section 4.2. Section 5 discusses the use of dynamical systems for complex computations. Section 5.1 discusses
how unconventional computation can exploit the intrinsic complex dynamics of physical systems.
Sections 5.2 and 5.3 consider models and hardware implementations for Boltzmann and Ising machines.
Section 5.4 deals with memcomputing. Sections 6.1 and 6.2 deals with in-memory computing. Finally,
section 7.1 considers brain-inspired computing, taking into account the complex interactions between the
hippocampus and the cortex.

Each technology, of course, comes with its challenges. The primary obstacles in spintronic and magnetic
technologies are device-to-device variations, sensitivity to defects, and the deleterious effects of thermal
noise. In the case of spin wave devices, the challenge is to find efficient interfaces for input and output. With
skyrmionic computing, the roadblocks involve inadequate control over skyrmions’ size, stability, creation,
annihilation, and electrical readout. Memristive technologies may face some material challenges and may
have to contend with device-to-device variability and the experienced difficulty of large-scale integration.
Scalability is also an issue. The advances on the nanomaterial level are indispensable for the transition to the
system level of application. Emerging tunable memristive systems such as memtransistors from
two-dimensional materials and mixed-dimensional heterojunctions possess additional challenges, including
wafer-scale growth, transfer, and possible integration as back-end-of-the-line (BEOL) circuits. For
probabilistic computing, the main challenges are device-to-device variation, which hinders large-scale
integration, and slow computational speed when implemented with low barrier nanomagnets made of
common ferromagnets owing to the small flips per second determining the p-computer rate. Control,
coherence, and readout are the looming obstacles for spin-based qubits. The need for efficient simulated
annealing techniques to avoid metastable states (sub-optimal solutions) and to speed up computation
challenges coupled oscillator technology for Ising machines. Compute-in-memory faces materials-related
challenges and the complexity of implementation. Finally, brain-inspired computing has to contend with
many daunting challenges, such as faithful reproduction of synaptogenesis and dendritogenesis, that are
difficult to implement with artificial devices and circuits.

By its nature, no roadmap article can claim to be completely comprehensive, and we make no such claim
either. New ideas and technologies germinate fast, and today’s state of the art becomes obsolete tomorrow.
Here, we have presented some of the dominant and most promising technologies for unconventional
computing that we believe will endure for some time.

Finally, a critical need is to create standardizing metrics to benchmark different approaches to
unconventional computing. Their performances should be evaluated at various levels, including hardware
(device and circuit) and algorithmic. Developing standardizing metrics is a complex task that requires
interdisciplinary collaboration and a deep understanding of the underlying principles and design goals.
However, by establishing rigorous metrics, researchers and practitioners can effectively compare and evaluate
the performance of different unconventional computing systems. Via the applied holistic approach, this
roadmap article could contribute to achieving that objective.
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1.1. Magnetic architectures for unconventional computing

Jean Anne C Incorvia1, Supriyo Bandyopadhyay2 and Joseph S Friedman3
1 Chandra Family Department of Electrical and Computer Engineering, University of Texas at Austin,
Austin, TX 78712, United States of America
2 Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA
23284, United States of America
3 Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080,
United States of America

Email: incorvia@austin.utexas.edu, sbandy@vcu.edu and Joseph.Friedman@utdallas.edu

Status
Next-generation unconventional computing will address key needs and problems for processing increasingly
large and unstructured data workloads, as well as the increase in edge computing devices and corresponding
energy constraints. Some problems that unconventional computing addresses include the bottleneck
between compute and memory; the large energy and delay penalty of analog-to-digital conversion;
computing with small energy budgets; and application-specific computing with balanced energy, time, and
precision needs, since precise computing is not always required.

Magnetic thin films, both continuous and patterned into nanomagnets, have a long history in
computing, starting with hard disk drives and including today’s spin transfer torque and spin orbit
torque-based magnetic random access memory (STT-MRAM, SOT-MRAM). Unconventional computing
hardware (neuromorphic, Bayesian, Boltzmann machines) implemented with magnetic devices,
e.g. magnetic tunnel junctions (MTJs), are attractive since the constituent elements are non-volatile and
could be extremely energy-efficient. The device characteristics and inter-device interactions, which depend
on the energy barrier within the free layer of the MTJ, can be tailored and controlled through multiple
simultaneous knobs, such as current, voltage, strain, magnetic fields, and by both DC and AC inputs. This
offers immense flexibility in designing hardware accelerators for machine learning such as binary stochastic
neurons (BSNs), neuromorphic components like synapses, Ising machines, etc.

The MTJ and corresponding devices also benefit from high endurance in switching the magnetic state,
and from the fact that, under normal operation, the resistance states can be set in a controllable way, without
drift over time or over cycles. This stability and robustness of the bit state control (not necessarily the states
themselves, which can be tuned between stable and stochastic) can compensate for some of the challenges
MTJs face.

Whereas MTJs with low energy barriers exhibit constant stochastic switching between resistance states,
useful for BSNs, MTJ memory devices with high energy barriers exhibit an alternative stochastic
phenomenon: the switching between the two stable states is intrinsically stochastic. This stochastic writing
process provides analog behavior to these binary memory devices, enabling their use in neuromorphic
systems of the type described in figure 2(a). Furthermore, the binary MTJ states are inherently robust against
the variations and stochastic behavior that plagues memristors and phase-change memory, thereby making
non-volatile MTJ synapses a promising technology for neuromorphic computing.

Neural network crossbar arrays can be implemented using the nanomagnet as both the artificial synapse
and the artificial neuron. By using a top-pinned MTJ stack and extending the bottom magnetic layer into a
longer track, the MTJ can be configured as a domain wall-magnetic tunnel junction (DW-MTJ), shown in
figure 2(b). Subsequent choice of patterning can then have the device show analog resistance states as a
synapse [1] or as a neuron [2]. While a domain wall, or similarly a magnetic skyrmion, can be harder to
control than a single-domain nanomagnet, it provides additional bio-mimetic functions for unconventional
computing such as time delays, stochastic pinning and depinning, and frequency-based switching. It can also
benefit from magnetic field interactions between the domain walls of the devices.

Belief networks (Bayesian inference engines) are another genre of unconventional computers for
computing in the presence of uncertainty. They are difficult to implement with most technologies since they
require non-reciprocal synapses. Simple 2-node networks consist of a parent and a child node where the child
node’s state is correlated with that of the parent, but not the other way around. Two dipole-coupled MTJs of
different shapes built on a piezoelectric substrate can implement this paradigm easily, show in figure 2(c).
The degree of correlation or anti-correlation between the nodes can be varied with global strain applied to
both MTJs via the piezoelectric [3] and this can enable Bayesian inference [4]. The synaptic connection
between the nodes is dipole coupling, which consumes no area on the chip and dissipates no energy since it
does not involve current flow.
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Figure 2. (a) Neuromorphic crossbar array with the stochastic writing of MTJ synapses. (b) Example domain wall-MTJ, here
patterned as a synapse, with patterned blue/white/red domain wall track and blue output tunnel junction, including notches to
control the domain wall position. (c) A two-node Bayesian network implemented with two MTJs. (d) Reservoir computer
comprised of frustrated nanomagnets.

While trained neuromorphic computing systems promise exceptional capabilities, the training process
incurs significant hardware costs in terms of energy, area, and speed. Reservoir computing therefore provides
an opportunity to avoid those costs by using a system that requires minimal training. In particular, the bulk
of the system is untrained, while only a single output layer must be trained. Nanomagnetism naturally
provides such reservoirs, as irregular arrays of closely-packed nanomagnets exhibit frustration that produces
complex physical dynamics and hysteresis, shown in figure 2(d). All these extra-ordinary capabilities make
magnetic architectures for unconventional computing unique and attractive.

Current and future challenges
The year 2021 heralded the first three experimental demonstrations of neural networks with synapse weights
encoded in binary MTJ states; all three performed some type of recognition task. In the simplest of these
experiments, a 4× 2 single-layer neuromorphic network was directly implemented with MTJ synapses [5] to
perform vector-matrix multiplication. More complex MTJ-based synapse structures were used in a two-layer
(13× 6+ 6× 3) network as well as a 64× 64 single-layer network [6]. The key future challenges for this
neuromorphic computing approach are scaling to large network dimensions and the experimental
demonstration of learning through stochastic switching.

DW-MTJs also have been demonstrated recently [1, 2, 7]. Clear needs are better understanding and
control of the domain wall behavior over many cycles, especially without needing to refresh the devices;
all-electrical control without the need of external magnetic fields to aid domain wall movement; scaling down
to modern feature sizes; and scaling up for larger circuit demonstrations, including better understanding of
device-to-device variations and their impact on the unconventional computing applications.

As a first step towards the development of reservoir computers based on frustrated nanomagnetism,
micromagnetic simulation studies have demonstrated their memory capacity and expressivity [8]. These
systems have been shown to successfully perform complex classification tasks, including waveform
identification, Boolean operations based on previous inputs, and observation and prediction of dynamical
discrete time series. Furthermore, comparative simulation studies indicate a 60x improvement in energy
efficiency relative to conventional CMOS systems [8]. However, experimental demonstration and proof of
concept remain a significant challenge.
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Neuromorphic computing is generally much more forgiving of switching errors than Boolean logic, but
it is not necessarily very tolerant of large device-to-device variations. The response time of BSNs, for
example, can change dramatically in the presence of fabrication defects or slight shape variations, which
results in significant device-to-device variations that is a challenge for large scale networks. One way to
counter this is to adopt hardware aware in-situ learning [9]. Another is to replace common ferromagnets
used in MTJs with dilute magnetic semiconductors which have several orders of magnitude lower saturation
magnetization. That makes the energy barriers in the nanomagnets much less sensitive to shape and size
variations and suppresses device-to-device variations [10].

A challenge with ferromagnetic devices is the relatively slow switching speed of∼1 ns which creates a
bottleneck in training and inference in both recurrent and deep neural networks. There has been some recent
interest in harnessing anti-ferromagnetic materials for synapses and they are capable of much higher speed.
This is a nascent field, but important discoveries may be around the corner. All these challenges make
magnetic architectures for unconventional computing a fertile field of research.

Advances in science and technology to meet challenges
One of the critical challenges for neural networks based on both conventional MTJs and DW-MTJs is
efficient network training. As conventional supervised learning algorithms (e.g. backpropagation) become
increasingly complex when scaled to large and deep networks, the hardware costs for implementing this
mathematical circuitry hinder the development of neural networks with online learning. Preliminary
explorations of unsupervised learning algorithms with MTJs and DW-MTJs [5] indicate that local Hebbian
learning rules can be used with feedback circuits to efficiently train neural networks with minimal energy,
speed, and area costs.

Realization of reservoir computing systems based on frustrated nanomagnets will require advances in
experimental techniques for providing the input signals while contemporaneously measuring the
magnetization of the various nanomagnets that make up the reservoir. The inputs can be provided via STT
switching, and the output magnetizations can be read through an MTJ (preliminary experimental efforts
may focus on imaging the output). These output signals must be fed to a single trained layer.

Domain wall creep and the stochasticity of domain wall motion at room temperature pose significant
obstacles to DW-MTJ technologies. Recent progress with notched structures [1, 2] have ameliorated some of
the difficulties, but further material research is needed to find possibly simpler solutions where the intrinsic
material properties may be able to suppress or control the stochastic behavior of domain wall and skrymion
motion.

A well-known challenge with magnetic devices such as MTJs is the low on/off ratio and low overall
resistance, which typically results in low training accuracies in neuromorphic architectures [6]. Research is
needed to find proper material combinations to increase the tunneling magneto-resistance or on/off ratios of
MTJs to alleviate this problem. This field has a long history and unfortunately has been slow in making
progress. However, its importance cannot be overstated since a high on/off ratio provides a wider range of
synaptic weights and improves error tolerance.

Challenges in patterning MTJ-based structures leads to device-to-device variation that can increase with
reducing feature size. This challenge compounds with the low on/off ratio to blur the difference between the
0 and 1 state, and is even more of an issue if more resistance levels are desired between the 0 and 1. While
good control of the device resistance states can help with this issue, better patterning methods are needed, as
well as more effort in circuit design to design around these challenges.

Concluding remarks
The human brain consumes 1–100 fJ of energy per synaptic event. Magnetic devices can rival (or even
eclipse) this energy efficiency. Their non-volatility offers additional architectural advantages, e.g. in reservoir
computing [8].

The low energy consumption has other benefits: it provides hardware security, which is very important
for artificial intelligence. Because of the low power requirement, these architectures can be embedded in edge
devices that have minimal contact with the cloud and are therefore somewhat insulated from cloud-borne
attacks. Additionally, they are inherently resilient against malign hardware. A hardware Trojan, no matter
how surreptitious, will consume some energy and that can become comparable to (or exceed) the energy
consumed by magnetic hardware. Therefore, Trojans can be easily detected with side channel monitoring.

Finally, neuromorphic computing with anti-ferromagnetic devices is a burgeoning area of research laden
with promise and it can spawn new devices and architectures that will speed up training and inference tasks
immensely. This is an exciting area of research that is about to bear fruit.
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Status
Neuromorphic spintronics aims to develop spintronic hardware devices and circuits with brain-inspired
principles [11]. The conventional complementary metal–oxide–semiconductor (CMOS) neuron and synapse
designs require numerous transistors and feedback mechanisms and would be unsuitable for developing
modern artificial intelligence systems. Spintronics is a promising approach to neuromorphic computing as it
potentially enables energy and area-efficient embedded applications by mimicking key features of biological
synapses and neurons with a single device instead of using multiple electronic components [11, 12].

As discussed in sections 1.1, the main building block for neuromorphic spintronics is the magnetic
tunnel junction (MTJ), which exhibits several unique characteristics over other technologies, including
CMOS compatibility, low power consumption, outstanding read/write endurance, non-volatility, and fast
speed [11]. Krysteczko et al carried out the first work on the spintronic implementation of memristive
functionalities by voltage-induced switching in MTJs [13]. Later on, different MTJ-based spintronic
structures have been proposed to potentially offer solutions to neuronal computations with bio-fidelity [14].
For example, MTJs have been used for the realization of memristors for storing synaptic weights, activation
functions of a neuron (such as ReLU-like and sigmoidal), reservoir computing and in-memory computing.

Figure 3(a) illustrates an example of MTJ-based integrate-and-fire spiking neuron [14]. In this case, the
current-induced spin orbit torque (SOT) integrates the domain wall motion (DWM). When the domain wall
reaches the critical position (threshold), the neuron device spikes a ‘fire’ signal. With similar principles, more
sophisticated spin-based neuron models have been further developed, and similar structures with magnetic
skyrmions (discussed in section 1.4) instead of DWM as information carrier have also been constructed, see
figures 3(b) and (c) [12, 15]. Figure 3(d) presents a spin-torque nano-oscillator (STNO)-based neuron that
emulates a Hodgkin-Huxley analogue model, surpassing the limitations of the integrate-and-fire model [16].
The proposed device harnesses the combined effects of magnetization dynamics and temperature
fluctuations within the STNO, enabling the generation of a sequence of spikes whose frequency depends on
the amplitude of the constant applied current. Moreover, various SOT neuromorphic solutions also have
been demonstrated experimentally for the realization of ultrafast neuromorphic spintronics, field-free
artificial neuron, auto-reset stochastic neuron, and stochastic artificial synapse.

Spintronics could be powerful in the development of neuromorphic computing because it enables the
data processing and storage at a very local level. To this end, there have been a rich variety of spintronic
materials and device designs for proof-of-concept neuromorphic computing implementations. Regarding
the neural networks, the paradigm is now shifting from frame-based to event-based exploiting the idea of
spiking neurons in spiking neural networks, an approach that is closer to the brain working principle. These
novel research progresses have further aroused a research enthusiasm towards developing large-scale
brain-inspired spintronic systems.

Current and future challenges
There are important challenges to be overcome for further development of neuromorphic spintronics. One
of the biggest challenges is that the read-out signal of spintronic approaches is quite small, making it difficult
to read quickly. As discussed in section 1.1, significant research endeavors have been dedicated to enhancing
the tunneling magnetoresistance (TMR) in MTJs. Nonetheless, the resistance changes of MTJs (typically one
to three on/off ratios) remain relatively modest compared to other memory technologies. To further address
this issue, researchers have explored the integration of MTJs with CMOS technology to achieve a higher
on/off ratio and lower leakage current [6].

Regarding spintronic neurons, typically a reset pulse with a sufficiently high magnitude (equal to or
several times larger than that required for writing) and of opposite polarity is necessary [12]. This not only
increases energy consumption and complexity of the chip, but also lowers the areal density for peripheral
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Figure 3. Different schemes for spintronics implementation of firing neurons. (a)–(c) Emulate the Leaky-Integrate, Fire and Reset
model while (d) emulate the biorealistic Huxley-Hodgkin model. Reprinted with permission from [12]. Copyright (2022)
American Chemical Society. Reprinted from [14], with the permission of AIP Publishing. Reprinted from [15], with the
permission of AIP Publishing. Reprinted (figure) with permission from [16], Copyright (2023) by the American Physical Society.

circuits required. Besides, an extra resetting step will decrease the operational speed of the neural circuit. The
neural device will not be usable till it has been reset by a reset-pulse. Therefore, a bio-realistic neural device
with the auto-reset functionality is desirable for energy-efficient and densely packed artificial neural
networks.

Moreover, implementing spintronic hardware in neural networks has challenges in coupling control of
each neuron. Synchronization of device properties instead of changing their individual response would be
one promising way to extend spintronic approaches to multilayer neural networks [17]. As detailed in
section 1.1, addressing device variability, response speed, and circuit design challenges is crucial when
connecting each neuron to potentially thousands of synapses in a neural network algorithm.

Advances in science and technology to meet challenges
Research efforts have been put to address the challenges encountered in spintronic neuromorphic
computing. The spintronic memristor has been developed to emulate synaptic behaviors (section 2.1). The
inherent stochasticity in stochastic MTJ (S-MTJ) enables highly energy-efficient probabilistic computing
tasks such as stochastic number generation and probabilistic spin logic operation (section 4.1). Besides, the
switching probability of S-MTJ is adjustable by an applied electric bias, and thus the junction can be utilized
for the emulation of the Poisson neuron which generates a spiking train with a tunable firing rate.

Moreover, the unique features of STNO have been utilized for neuromorphic computing. Based on time
multiplexing, the single oscillator can function as a reservoir computer, which is a special type of neural
network for time series analysis [18]. In addition, the high tunability of STNOs facilitates the coupling with
other oscillator devices and could emulate the synchronization of neurons. This is important for information
sharing and processing. The classification of vowels at microwave frequencies has been experimentally
demonstrated through the synchronization of STNOs [17]. The response of spin-diodes has also be used to
mimic neurons in the non-linear regime, and synapses in the linear regime. Frequency multiplexing appears
as a possible solution to build multilayer neural networks with STNO neurons and spin diodes synapses.

Future research efforts should focus on the integration of spintronic devices (e.g. SOT devices) in the
MTJ-based magnetic random-access memory (MRAM) architecture to increase the read-out signal via TMR.
For the circuit design, the shared write channel-based SOT architecture can be explored to reduce the
transistor count for large scaling [19]. Adding a gate to these devices to enable volatile or non-volatile
voltage-controlled anisotropy will certainly be critical to enhance the computational capabilities of
SOT-based architectures. To further enlarge the resistance change of MRAM and improve the scaling,
researchers have put the effort into investigating novel crossbar array architecture (illustrated in figure 4) [6],
as elaborated in section 6.2.

Concluding remarks
In conclusion, spintronics offers compelling opportunities for advancing neuromorphic computing by
offering a range of bio-plausible hardware solutions. Various spintronic artificial synapses and neurons,
driven by diverse physical mechanisms such as SOT, DWM, and magnetic skyrmions (as discussed in
section 1.4), have been effectively demonstrated. These advancements hold the potential for seamless
integration into comprehensive brain-inspired spintronic systems. Nevertheless, several challenges remain to
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Figure 4. Layout (a) and micrograph (b) and of the 64× 64 MRAM crossbar array. (c) MRAM crossbar array architecture and
(d) configuration of each bit-cell. Reproduced from [6], with permission from Springer Nature.

be addressed such as increasing the read-out signal, further investigation of bio-realistic neural devices,
coupling control of neurons, and large scaling of compact and energy-efficient artificial neural networks. The
state-of-the-art spintronic technologies have been discussed to meet these challenges including spintronic
memristors, S-MTJ, STNO, spin-diodes, and new design of MTJ-based MRAM architecture. Spintronic
neuromorphic computing is currently a technologically fast evolving field. The experimental demonstration
of spintronics-based network-level neuromorphic computing remains to be further explored and to be
implemented into large-scale hardware neural networks.
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Status
Magnonics [20] is an emerging solid-state physics field where Spin Waves (SW)—the collective excitations of
the magnetic orders—and their quanta magnons are utilized, instead of electrons, for information transport
and processing [21]. SW characteristics, e.g. GHz to THz frequency range, down to atomic scale wavelengths,
pronounced non-linear and non-reciprocal phenomena, tunability, low-energy data transport and
processing, offer many avenues towards building SW based nanoelectronics. The applied magnonics field is
intensively growing, while SW sensing and SW radio frequency applications, which are becoming
increasingly important, in view of the 5G technology requirements, are still in early stages of development.
Boolean and unconventional SW computing have reached many milestones in recent years, and are
experiencing constant growth [20, 21]. Moreover, quantum magnonics attracts increasing attention within
the community [21] and potentially offers an additional entanglement-related degree of freedom for
quantum computing. The most important Boolean computing relevant achievements are the experimental
realization of the inline majority gate [22], directional coupler, and magnetic half adder [23], as well as the
basic circuits demonstration by means of micromagnetic simulations [24] (see figures 5(a)–(c)).
Magnon-based unconventional computing [21] is primarily associated with neuromorphic computing
[25, 26] although versatile approaches of wave-based computing including spectrum analysis or pattern
recognition with magnonic holographic memory devices [27] can be placed in the same category
(see figure 5(d)).

The concept of inverse-design magnonics, which given a certain functionality utilizes a feedback-based
computational algorithm to obtain the corresponding device design [28], has been successfully utilized for
radio-frequency applications [28] and neural networks [26]. Such an approach produces a device with
rectangular ferromagnetic functional region patterned with square-shaped voids, as depicted in figure 5(e).
To demonstrate the universality of this approach, linear, nonlinear, and nonreciprocal magnonic
functionalities were explored and a magnonic (de-)multiplexer (see figure 5(e)), a nonlinear switch, and a
circulator have been designed. Machine learning-based inverse design has significant potential for any kind
of data processing, including the realization of complex multi-bit Boolean logic gates or neuromorphic
networks [26].

Current and future challenges
Various reported simulations and experiments have clearly demonstrated that SW could serve as information
carriers and their interaction for data processing. However, the design of a fully magnetic computing system
is far from being possible until effective solutions are found for: (i) constructing circuits out of magnonic
gates and (ii) the realization of magnonic memories. Typical circuit construction challenges include fanout
achievement and gate cascading, and they have been recently addressed in [24]. However, while the proposed
approaches [24] enable magnonic circuit realization by enabling up to a fanout of 4 and direct gate cascading
within the magnonic domain, they are expensive in terms of area and delay. Thus, to unleash magnonic
computing full potential more effective solutions are required. Unfortunately, except the Holographic
Memory concept introduced in [27], which is not a real magnonic memory as it does not store data in
magnons, very little progress has been made towards the conceptual realization of magnonic memories.

Moreover, building magnonic computing chips requires many more components apart of simple
magnetic waveguides used for SW propagation. Passing the input data from CMOS (the charge domain) to
the magnonic circuitry requires high energy efficient scaled transducers. Typical SW transducers,
e.g. inductive antennas, spin-transfer- or spin-orbit-torque based magnetic tunnel junctions, are scalable but
very inefficient in terms of energy consumption. Their energy-delay characteristics need to be improved by
few orders in magnitude to compete with the CMOS computing circuitry counterpart. Voltage driven
transducers, e.g. based on magnetoelectric effects, might reach the required energy efficiency, yet such
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Figure 5. (a) Scanning electron micrograph of a sub-micron scaled spin wave majority gate (top) and the polar plot of the
transmitted power for different input phases demonstrating strong and weak majority signals (bottom). Reproduced from [21].
CC BY 4.0. (b) 2D Brillouin light scattering spectroscopy maps of the spin-wave intensity recorded in a directional coupler for
two excitation frequencies ( f = 3.465 GHz and f = 3.58 GHz) (top). Operational principle of a magnonic half-adder
demonstrated by micromagnetic simulations. Adapted from [23], with permission from Springer Nature. (c) 2-bit Inputs Spin
Wave Multiplier. © [2021] IEEE. Reprinted, with permission, from [24]. (d) Schematic of a nanomagnet based spin-wave scatterer
(top), and a spin-wave intensity pattern (bottom) for neural network applications. Reproduced from [26]. CC BY 4.0.
(e) Magnonic demultiplexer device simulated by inverse design micromagnetic simulations. Reproduced from [28]. CC BY 4.0.

performances should be experimentally demonstrated at the nanoscale. Next to the transducers, the
magnetic conduits should transport the information with minimum losses and delay. Recent studies
demonstrated SW propagation lengths in scaled waveguides in a several micrometers range. However, not all
the studied materials (e.g. Y3Fe5O12) are CMOS compatible. Alloys based on CoFe(B) are widely utilized in
MRAM technology and are promising candidates for magnonic conduits. Nevertheless, further material
developments and optimizations, especially for the voltage driven transducers, will be required. In addition,
SW amplifiers might be needed to restore the amplitude loss during the propagation if the circuit length
exceeds the wave mean free path. These amplifiers also need to operate at very low energies (towards aJ),
which suggest that the amplification process should also rely on voltage driven mechanisms, e.g. using
Voltage Control of Magnetic Anisotropy (VCMA) or other magnetoelectric effects [29].

Magnonic circuit layout design is much more challenging than the one of a charge-based counterpart.
SW propagation and interaction are quite sensitive to waveguide dimensions and geometries, e.g. SW
behavior in straight waveguides and around corners are different due to reflections, and, as such, layout can
significantly influence circuit performance and even make it malfunctions. Moreover, due to SW amplitude
decay and dephasing phenomena the circuit size (chip real-estate) should be minimized by enabling 2D
signal crossing and/or 3D interconnect.

Advances in science and technology to meet challenges
Much progress has been done in material development, realization and characterization of nano-scaled SW
conduits below 100 nm, as well as in understanding the underlaying physical mechanism of SW generation
and propagation, both in linear and non-linear regimes [21]. Most of the studies focus on SW properties (2D
or 3D systems) and rely on optical characterization and/or micromagnetic simulations. However, the main
challenge for building efficient magnonic computing circuits is related to the physical realization of an
efficient energy coupling interface for the information transfer between electric and magnetic domains. The
research progress on heterogeneous integration of multiferroic materials, magnetoelectric composite [29]
and VCMA stacks for the generation and detection of SW could allow for the demonstration of nanoscale
cascaded logic gates in a full electric experiment. Furthermore, the coupling of phonons or photons to SW
could bring additional functionalities and enhance or control their characteristics, e.g. the group velocity or
amplitude.

State of the art SW-based computing assumes phase encoding of information and is performed via not
input-output format coherent majority gates. The direct cascading of such gates results in input data
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dependent circuit malfunctions. Despite of the fact that gate cascading solutions have been proposed they are
rather expensive and induce large gate delay overhead, e.g. the gate delay is increased from few ns to more
than 20 ns [24]. As such, to build competitive SW circuits more effective cascading schemes are required and
potential solutions might be found by means of inverse-design [26, 28] and/or by investigating alternative
information encodings that may result in directly cascadable gates, and potentially enable the realization of
more computation within one single gate. Given that information can be encoded in SW phase, amplitude,
frequency, and any combination of those, a plethora of alternative and more effective SW computation
paradigms could be potentially developed. Note that moving from charge-based circuits, e.g. CMOS, to SW
circuits requires changes into the computer aided design framework. The traditional Boolean algebra-based
logic synthesis should accommodate a new universal gate set composed of majority gate and inverter. Given
that magnonic circuits are expected to be hybrid (to be interfaced with the environment within which they
operate) and may include CMOS parts, a not yet existing mixed micomagnetic-SPICE simulation framework
should be developed. The SW circuit layout design is governed by completely different principles and has
fundamental implications on the circuit performance and behavior. Thus, a novel approach to produce
correct by construction SW circuit layouts is essential for the proliferation of the SW computing paradigm.

Concluding remarks
Spin waves demonstrated to possess a high potential for computing but also for other emerging sensing or
radio-frequency applications. The deep understanding of the associated physical phenomena and the
development of materials and device fabrication techniques will allow the transition from the fundamental
research to engineering devices in a near future. However, for computing applications, the SW devices should
be integrated in hybrid magonic—CMOS architectures, where the magnonic units are utilized to solve some
specific and energy consuming tasks. In this quest, several key components are still to be developed, as
explained in this roadmap. Independent on the computing paradigm, an efficient information transfer
interface between CMOS and magnonic circuits is the enabling factors towards real technologies.
Development of multi-physics and SPICE design tools for device simulation as well as for circuit layouts will
further pave the way for applications. Last, but not least, novel computing architectures as (spiking) neuronal
networks based on interference, non-linear effects or non-reciprocity of spin waves could be developed for
special applications.
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Status
Magnetic skyrmions are localized whirling spin-textures with topological properties and particle-like
characteristics [30]. Research has exploded in the last decade with proposals for new materials and device
concepts [30], offering intriguing functionalities ranging from memory to computing applications.
Originally observed at low temperatures in B20 compounds, today, skyrmions can be found in many thin
film materials (ferro-, ferri-, and synthetic antiferro-magnets (SAFs)) at room temperature [30]. Their small
size and the possibility to easily manipulate them electrically make these topologically protected chiral spin
configurations attractive as information carriers in compact, and energetically efficient devices.
Furthermore, the anticipated insensitivity to defects and potential for low energy consumption [31] have
accelerated efforts to understand their formation, stability, and dynamics sufficiently well, already extending
the interest towards unconventional applications. In particular, the topological properties of magnetic
skyrmions offer new paradigms in reservoir, stochastic, neuromorphic, and quantum operations [32, 33].

Single skyrmions or a skyrmion fabric [34] are promising for reservoir computing because the non-linear
dynamics of magnetic skyrmions can increase the systems nonlinearity and therefore the efficiency of the
reservoir. In stochastic computing, the essence for optimal operation is the decorrelation of the bitstreams
[35]. This feature can be achieved by a skyrmion-based reshuffle chamber (a missing element in current
implementations of stochastic computing) that has been demonstrated taking advantage of the diffusion
properties of skyrmions [35] (figure 6(a)).

Skyrmions have been also proposed for neuromorphic application. While skyrmion-based neurons are
still only theorized [32], a skyrmion-based synapsis has already been experimentally demonstrated [36]
(figure 6(b)), with the weight represented by the Hall resistivity.

Skyrmions could also serve as a source for non-Abelian statistics. Imprinting skyrmions on
superconductors may trigger the formation of special Majorana quasiparticles, granting unrivalled resilience
to the decoherence problem that plagues other quantum computing platforms [37]. Nano-skyrmions are
also of interest for their potential as a logical element of a quantum processor [37]. They develop quantized
eigenstates with distinct helicities and out-of-plane magnetizations. In a skyrmion qubit, information is
stored in the quantum degree of helicity, and the logical states can be adjusted by electric and magnetic fields,
offering an operation rich regime with high anharmonicity.

Current and future challenges
Fundamental challenges for utilizing magnetic skyrmions in technology include controlling their size,
sustaining positional stability, enhancing electrical readout, deterministic nucleation and annihilation,
reducing/suppressing the skyrmion Hall angle while maintaining high velocity, but also achieving an overall
integration with digital circuits and associated circuit overhead.

Skyrmion position can be controlled by engineering pinning sites with lithography or ion irradiation
[30]. Improvements in electrical readout calls for the use of optimized large-Tunneling Magnetoresistance
Magnetic Tunnel Junctions (TMR-MTJs) [38]. Nucleation/annihilation protocols enable deterministic
functionalities [30], but should be optimized to decrease energy consumption. The skyrmion Hall angle can
be suppressed in SAFs [31]. However, the skyrmion velocity [39] is still far from theoretical predictions,
calling for new and/or optimized materials and device architectures.

On the side of unconventional applications, Reservoir computing based on magnetic textures has not
been realized experimentally yet. In stochastic computing, the first proof of concept of an algebraic
computation based on skyrmions is still missing and hence a full skyrmion-based implementation.
Furthermore, energy efficiency, velocity and accuracy in computation should be evaluated and compared
with standard CMOS systems. In neuromorphic computing, some proposals rely on the use of a
skyrmion-based spin-transfer-torque (STT) oscillator which has yet to be demonstrated. Whereas proposals
involving memristive skyrmion behavior, such as skyrmion synapsis, should be based on large TMR-MTJs
for improved detection and compact solutions. Specifically for the results in [36], the accuracy of the
network could be improved, compared to the current estimate of 89%.
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Figure 6. (a) Example of a skyrmion reshuffler. Reproduced from [35], with permission from Springer Nature. (b) Memristive
behavior of skyrmions for synapsis applications. Reproduced from [36], with permission from Springer Nature.

Beyond non-interventional creation or observation studies, skyrmions promise to dramatically improve
quantum operations. Skyrmion-vortex interaction in device architectures of imprinted magnetic skyrmions
on conventional superconductors can assist topological quantum computing by operations carried out on
Anyons. A novel quantum hybrid architecture composed of Néel skyrmions and Niobium grants realistic
hope [40]. Moving forward, in a homogeneous chiral magnet and superconductor stack, a skyrmion-vortex
pair—and hence a Majorana zero mode—would be intrinsically mobile. This allows for non-perturbative,
non-contact braiding operations by moving skyrmion-vortex pairs around the surface.

Quantum skyrmions in frustrated magnets offer a new element for the construction of qubits based on
the energy-level quantization of the helicity degree of freedom. The skyrmion state, energy-level spectra,
transition frequency, and qubit lifetime are configurable and can be engineered by adjusting external electric
and magnetic fields, offering a rich operation regime with high anharmonicity.

Advances in science and technology to meet challenges
Over the next two decades, a concerted experimental effort will promote skyrmions to future devices, hence,
realizing their technological potential for information processing transcending existing limits. Challenges,
such as decreasing energy consumption of skyrmion devices, controlling the skyrmion size, suppressing the
skyrmion Hall angle, could be achieved by exploring new materials architectures. We can reduce
dimensionality with emphasis on 2D van der Waals materials. At the same time, we can explore 3D bulk
materials that, thanks to improved imaging techniques, demonstrate the presence of static 3D structures,
such as vortex rings and hopfions [41]. Whereas, on the dynamical side, so far the community has been
relying on theoretical predictions of the current-driven Hopfion motion.

Emphasis on frustrated magnetism, intrinsic to triangular or hexagonal lattices with antiferromagnetic
spin correlations, can utilize the induced non-collinear magnetic order, which itself breaks spatial inversion
symmetry for the formation and manipulation of skyrmions only a few nanometers wide. We can also focus
on the design of hybrid systems by combining ferro-, ferri-, and antiferro-magnets. Specifically for
unconventional skyrmion applications, experimental realization of reservoir computing needs efficient and
precise electrical measurements among multiple contacts for a reliable resistance evaluation linked to the
magnetic texture distribution. Stochastic computing demands an integration with CMOS technology via
stacks compatible with STT-MRAM technology already integrated and commercialized. Neuromorphic
computing calls for the enhancement of skyrmion detection (figure 7(a)) beyond the 30% TMR threshold
for MTJs. This could be achieved by combining state-of-the-art CoFeB-MgOMTJ with conventional
skyrmion-hosting magnetic multilayers. Another direction could be combinatorial, including topological
magnetism and acoustic waves, already promising for skyrmion-based synaptic behavior [42].
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Figure 7. (a) Sketch of the improvements of skyrmion detectivity through the use of a skyrmion-based MTJ. R is the electrical
resistance of the MTJ, Dsk is the skyrmion diameter, and Nsk is the number of skyrmions. (b) Skyrmion qubit concept. Reprinted
(figure) with permission from [37], Copyright (2021) by the American Physical Society.

For quantum computing operations in skyrmion-superconductor hybrids, major tasks need to be
performed for device capability. Firstly, ensuring that the magnetic interactions can spin-polarize the
superconductor and cause a topological phase transition. Secondly, for Majorana braiding, the magnetic
homogeneity of the architecture needs to be better than commonly achieved using magnetron-sputtering. In
qubit-technology hardware, the applicability of nano-skyrmions can be further improved with the
development of cleaner magnetic samples and interfaces in engineered architectures, without trading off
qubit anharmonicity and scalability. Notably, demonstrating tunable macroscopic quantum tunneling,
coherence, and oscillations for magnetic nano-skyrmions will also establish helicity in topologically
protected chiral spin configurations as a quantum variable; much like macroscopic quantum tunneling and
energy quantization in Josephson junctions, thus the fundamental physical step for developing a practical
skyrmion qubit.

Concluding remarks
Skyrmions are fascinating topological magnetization configurations with realistic potential for a beneficial
impact on computing paradigms. Their small size, particle-like behavior, topological properties,
manipulability by electrical current, as well as memristive features promise disruptive advances in reservoir,
stochastic, neuromorphic, and quantum computing. Stabilizing skyrmions in large TMR-MTJ will enhance
the skyrmion detectivity with unprecedented effects on unconventional operations. Extending the
investigation to 3D bulk magnetic systems and 2D materials will lead to major breakthroughs and new
functionalities associated with complex topology and multiple degrees of freedom. Remarkable
advancements in unconventional computing can be driven by the combination of different physical systems,
such as topological magnetism and acoustic waves which already promise to control skyrmion-based
synaptic behavior. Skyrmions interacting with superconductors can lead to chiral superconductivity and
Majorana braiding platforms. Whereas, nano-skyrmions stabilized in magnetic disks bounded by electrical
contacts will allow static fields to control the quantized energy spectra, enabling changes in the helicity
between energetically favored levels. It is expected that skyrmions will be a major building block for the next
generation of low power computing architectures, transcending from the classical to the quantum regime.
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2.1. Neuromorphic computing with memristive devices
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Status
Neuromorphic computing is a promising paradigm of artificial intelligence (AI) systems that aims at
developing an efficient computing architecture with great physical and functional resemblance to the
biological brains. Memristors, which represent a group of emerging memory devices, can reversibly change
their conductance under a variety of physical switching sources such as phase change, ionic motion,
ferroelectricity and ferromagnetic switching [43]. In particular, the ionic memristors shares some similarities
at the physics level with ion transport in nerve cells (e.g. Ca2+, Mg2+, Na+, K+), which equips them with
desirable ion dynamics, enabling a variety of more efficient emulations of neuronal and synaptic functions
for neuromorphic computing [44].

In recent years, memristors with decent array sizes have been used as static synapses for physical
implementations of artificial neural networks (ANNs), which are low hanging fruits for memristors because
neural network applications take advantages of the strengths and avoid the weaknesses of typical memristive
devices as revealed in [45]. This trend is reflected by a significant increase in application-oriented
publications since 2018 (figure 8). Each memristor is not only a weight storage unit, but can also directly
process weighting function to upstream voltage inputs in the form of voltage-conductance multiplications
[46], and thus co-locates the memory and processing functions within the same cell. A memristor array is
essentially a physical neural network in between two neuron layers with many possible array arrangements,
and can be extended to 3D layout to implement complex neural networks [47]. Owing to its low power,
highly parallel computing paradigm, memristor based systems have found numerous successes in ANN
related applications and demonstrated excellent computing efficiency exceeding 100 TOPS/W.

In the meantime, dynamical neuronal and synaptic properties of memristors are also under extensively
study to provide more capable and compact building blocks for neuromorphic computing. In ANN
applications, linear conductance modulation of memristors using a burst of identical pulses have been
reported [43], which shows promises to implement accurate weight updates for fast on-chip training of
ANNs. Meanwhile, functional memristive devices were developed to implement spiking neural network
(SNN)—a potentially more efficient neural network with a high bio-plausibility. Important neuron models
such as leaky-integrate-and-fire (LIF), Hodgkin-Huxley (HH) and plastic synaptic behaviors such as
paired-pulse-facilitation (PPF) and spike-timing-dependent-plasticity (STDP) have been achieved by
harvesting more dynamical behaviors of the memristors. These novel functions were achieved in a very
compact form normally with a couple of memristive devices instead of bulky circuits with many transistors
in pure CMOS implementations. However, the overall scales of these demonstrations were still limited to
small arrays, which is significantly hampering the overall capability of neuromorphic computing systems in
practical applications.

Current and future challenges
Even though building a neuromorphic system requires a synergistic effort from both hardware and software,
the device performance of memristors still plays a decisive role in determining the ultimate capability and
functionality of the neuromorphic system. Currently, there are a few prominent challenges for memristive
devices.

First, it is still challenging to build a large-scale memristor arrays without an access transistor. At present,
the majority of the memristor chips are based on the so-called one-transistor-one-memristor (1T1R) cell
design, for which a transistor is integrated with a memristor and served as a current regulator for the
memristor cell. The access transistor can (1) suppress the leakage current from the unselected cell, (2) use
current compliance to achieve accurate conductance tuning and mitigate switching variations. However, the
downside of having an access transistor is that it essentially limits the use of any array-wise parallel
programming strategies, and raises challenges in designing an asynchronized system, such as those based on
SNNs. The 2D scalability and 3D stack-ability of the memristor arrays are also limited by the addition of a
transistor in each cell.
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Figure 8. Number of publications related to memristor based neuromorphic computing system, retrieved fromWeb of Science
(WOS) database, data source: Clarivate. Inset: ANN demo in array [46]; Reproduced from [46], with permission from Springer
Nature. Diffusive memristor [44]; Reproduced from [44], with permission from Springer Nature. Fully hardware CNN [48];
Reproduced from [48], with permission from Springer Nature. SNN demo in array [49]; Reproduced from [49], with permission
from Springer Nature. 8-layer 3D computing array [47]; Reproduced from [47], with permission from Springer Nature.
Integrated chip with 11-bits memristors [50]. Reproduced from [50], with permission from Springer Nature.

Secondly, linear analog conductance modulation using identical pulses is a key requirement for on-chip
training of ANNs. Although it has been demonstrated in small prototype arrays, uniform linear conductance
modulation across large-scale arrays is still challenging to achieve because device-to-device variations of
switching voltages, conductance range, response time, etc can all affect the conductance modulation process.
In addition, it is also highly desirable to have symmetric programming for potentiation and depression,
which, however, is not well supported by most of the memristive switching mechanisms.

Lastly, the variability issue in memristors is also a key limiting factor for the implementation of SNNs
since dynamical functions such as STDP and LIF usually have lower tolerance for variations. For example, a
standard STDP response of synapses is nonlinearly related to the timing differences between the pre- and
post-synaptic spikes. As a result, variations in the time domain (such as inaccurate firing delay from the LIF
neuron) would be nonlinearly magnified in synaptic response, causing large errors during learning. Finding
a solution to improve the scalability of these SNN functions, whether through more precise control of ionic
motions, or through other compensation strategies, are highly desired for the development of SNN based
neuromorphic system.

Of course, challenges are also existed in other aspects of a neuromorphic systems. Developing a global
training algorithm for large scale SNNs is among the top of these challenges. Moreover, implementing
neuromorphic systems still requires more efficient peripheral circuit designs, more sophisticated system
architecture, and would require a better understanding of the working principles of SNNs.

Advances in science and technology to meet challenges
First, we would like to see continuous efforts in material and device engineering develop new device concepts
with breakthroughs in device performance and gain better understanding of the switching mechanisms. This
idea is supported by rich switching behaviors from different types of memristors, which are dictated by a
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combination of factors including material compositions, fabrication processes, device morphologies and
many others, therefore provide a high degree of design freedom to tailor a device under specific application
requirements. Alternative memristor design based on non-filamentary switching mechanisms may be
developed to achieve improved switching uniformity. For example, a new type of electrochemical memristor
was reported, and demonstrated better switching uniformity and excellent analog programmability, though
its application in large arrays needs further verification [51].

Meanwhile, we hope to see new fabrication technologies or material synthesis methods for memristors,
such as using sophisticated tools from commercial foundries. It is known that the use of ion implantation for
CMOS process provided dramatic improvement to the doping profile of MOSFET. We believe that a
disruptive improvement may also be achieved in a similar effort. For example, in a preliminary study,
epitaxial tool was used to grow single crystal SiGe film with nanometer wide dislocation channels, which
acted as predefined ion channel for switching. Owing to better control over the ion transport, improvement
in switching uniformity of memristors was achieved [52].

Finally, challenges at device and hardware level may also be overcome through complementary research
effort in computer science and neuroscience domains. For example, more robust, hardware-friendly
algorithms and computational models could be developed to mitigate the variability issues of memristors
and utilize some unexpected properties discovered in new device exploration. Meanwhile, co-optimizations
of the parameters for both memristive devices and neural networks could be achieved through
comprehensive modeling and simulations. Lastly, our understanding of the brain is still at its infant state, it is
also possible that new findings in neuroscience could help to establish new training methods and design new
network architectures.

Concluding remarks
Neuromorphic computing is a disruptive technological solution to future AI, and memristor is one of the
leading candidates to implement parallel, analog and in-memory computing as well as rich dynamics inside
neuromorphic computing systems. At the current stage, large-scale memristor based neuromorphic systems
are mainly based on ANN algorithms, while SNN based demonstrations are far behind, primarily due to lack
of appropriate training algorithms and the challenges to reliably obtain the desirable dynamical functions at
large scale.

As more technical challenges described in this roadmap being resolved, it is expected to see a much more
substantial progress made in neuromorphic computing. A large-scale memristor system based on a
comprehensive SNN design can lead to significant improvements in energy efficiency, performance, and
functionality over existing AI hardware. Meanwhile, the SNN hardware could, in return, inspire the
development of SNN algorithms or even the understanding of biological neural networks, which have been
inefficient to simulate using conventional computers.
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3.1. Nanomaterials for unconventional computing
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Status
With the emergence of nonconventional computing paradigms, one has the means to overcome the
fundamental limitations of von Neumann architecture and perform highly complex functions with
extremely low power. This prompts for materials and devices that can emulate the biological functions of
neurons and synapses. Combining memory and resistor, memristors have become the most important
electronic component for brain-inspired neuromorphic computing. The device has the ability to control
resistance with multiple states by memorizing the history of previous electrical inputs—allowing it to mimic
biological synapses and neurons of the biological neural networks. The switching in memristor devices is a
reversible and controllable change of resistance induced by different stimuli, such as current, voltage, or light,
with different physical processes such as ionic/electronic motion and redox reactions. Thus, the material
selection plays a key role in the conductive path formation and modulation of the resistive switching
behavior, and here we review them based on material properties. Owing to the dependence of their resistance
states in the history of the applied electrical bias, memristors can store information in the form of electrical
resistance and are typically driven by one of the four main mechanisms: electrochemical reactions (namely,
redox and ion migration), phase changes (such as thermally activated amorphous-crystalline transitions),
tunnel magneto-resistance (as such as spin-dependent tunnel resistance) or ferroelectricity (namely,
tunneling or domain-wall transport). In addition, memristors can allow to process information intrinsically
through the ‘let physics compute’ (namely, perform complex signal transformation with physical dynamics),
which are beneficial beyond neuromorphic computing, such as solving NP-hard optimization problems and
hardware security. To uncover their potentiality, we summarize here the nanomaterials used for
unconventional computing and their different types of switching mechanisms (figure 9).

0D Nanomaterials—a variety of 0D materials have been investigated for memristors, mainly metal
nanoparticles (NPs) and semiconductor quantum dots (QDs). Metal NPs are typically used to modify the
resistive layer or electrodes to lower the charge injection barrier and interfacial potential drop of the
electrode. Semiconductor QDs have also been investigated as promising candidates for developing electronic
synaptic devices due to their electrical and optical properties. For example, charge accumulation in QD
floating gate has obtained linearly programmable conductance states by controlling applied gate voltages.
The optical properties of QDs enable electro-photoactive synaptic devices, offering a promising candidate for
new electronic synaptic devices. In addition, pairs of QDs are explored to serve as a single basic element in a
quantum logic device such as quantum bit or qubit. At the same time, tunable small organic molecules (e.g.
azo-aromatics) and devices coupling ionic with electronic currents are investigated for emulating biological
synapses behavior such as plasticity for continual learning. Resistance switching in most of these devices
relies on either electrochemical doping, ion migration, or charge trapping mechanisms.

1D Nanomaterials—Carbon nanotubes (CNT) are among the most widely studied 1D nanomaterial with
metallic or semiconducting behavior depending on their chiral vector. CNT network-based transistors have
been demonstrated as a synaptic transistor with physical mechanisms, including charge trapping in oxide
dielectrics, ion migration, and electric double layer effects in polymer dielectrics. CNT networks have been
used to show simple realizations of plasticity learning for spiking neural networks. In addition, CNT-based
transistors have been pursued for post-silicon digital logic and memory implementation. Semiconductor
nanowires (NW) possess attractive attributes for neuromorphic devices. A wide range of inorganic 1D
nanomaterials (metal oxides, Ag, and Cu nanowires) have shown both volatile and non-volatile resistive
switching. In addition, organic polymer nanowires (e.g. P3HT) can emulate synapses’ morphology and
possess a learning mechanism similar to biological ion channels.

2D Nanomaterials—2D materials, including graphene, transition metal dichalcogenides (TMDs), and
hexagonal boron nitride (h-BN), have been widely investigated as emerging materials for low power
transistors, sensors, and memristive devices. 2D material-based memristors can be further categorized based
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Figure 9. Illustration of different classes of nanomaterials used for unconventional computing, based on their dimensionality.

on their device geometry as lateral, vertical, and heterojunction structures. Depending on their geometry and
materials, the switching mechanisms of these devices are based on phase transition, filament formation,
charge trapping, defect migration, vacancy migration, or direct tunneling. Such devices are promising
candidates for energy efficiency as artificial synapses while emulating plasticity for short-term and long-term
memory.

Bulk Materials—Metal oxides exhibit electrical, optical, and semiconducting properties suitable for
memristive devices. Interestingly, the crystal structure of some of these metal oxides undergoes changes
under external stimuli such as thermal field, strain energy, surface energy, external force, magnetic field, and
applied electric bias. This makes such materials suitable for memristor devices. For instance, resistive
switching behavior from the repeatable formation of conductive filaments (i.e. oxygen-deficient or oxygen
vacancy rich) with electric bias yields the low and high resistance states in oxide memristors such as hafnia
(HfO2). In addition, vanadium dioxide (VO2), which shows a reversible metal-insulator transition (MIT) at
near-room temperature, and a reversible large conductance change, has been used to emulate biological
neurons (i.e. oscillating behavior) and synapses. VO2 has also been used in field-effect transistors and gas
sensors.

Biomaterials—These materials have attracted attention due to their long time natural evolution and
well-defined ‘structure-function’ relation. Proteins, in particular egg albumen and ferritin, have been shown
suitable for developing memristors, with high plasticity in synaptic networks. In addition, the self-assembly
of nucleic acids (DNA and RNA) has provided a powerful and effective approach for constructing synthetic
molecular structures, tiles, 2D lattices, 3D crystals, finite 2D shapes, DNA origami, and more complex 3D
nanostructures. Such DNA structures enable the engineering of molecular structures with programmable
shapes and properties for applications such as drug delivery and biological computing.

Current and future challenges
In the table below, we provide the current advancements in nanomaterials and their switching mechanisms,
which lead to unique electrical, optical, magnetic, or quantum properties that are the basis for
nonconventional computing paradigms.

Advances in science and technology to meet challenges
Material and device variability and stability—these characteristics rely on the intrinsic quality of the active
materials and manufacturing process, which are yet to be mastered. This leads to some variability in the
material properties due to, for instance, defect density and grain size. A major challenge is to reduce
variability and enhance the reliability of material growth with high crystallinity and uniform thickness and
effective passivation techniques without deteriorating device performances. The device characteristics can be
precisely controlled to realize functional circuits based on the switching mechanism and material properties,
see table 1.
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Table 1. Nanomaterials and their switching mechanisms.

Material
Dimensionality

Material
Synthetic Route

Switching
Mechanism

Materials (a few
examples)

Switching
Energy (fJ) ION/IOFF References

0D Wet chemistry Charge-trapping Organic,mer-
[Ru(L)3](PF6)2

10 pJ [53, 54]

Molecular beam
epitaxy, ion
implantation, wet
chemistry,
vapor-phase

Hybrid
charge-trapping
filament
formation,
multi-band
emission

BPQD; QD — 101–107 [55, 56]

1D Wet chemistry Electrochemical
doping

P3HT/PEO 10 fJ — [53]

CVD,
hydro-thermal
growth

Ion migration ZnO NW — <6 [57]

CVD, arc
discharge

Charge trapping CNTFET with
DMC

— 5× 104 [58]

2D CVD, PVD,
exfoliation

Defect migration Au-Mos2-Au — <104 [59]
Phase transition Au-MoS2-Au/Ti-

TaS2-Ti
— 101–107 [59]

Vacancy
migration

Pd/WSe2/Pt;
Pd/WS2/Pt

>30 fJ 2–1010 [59]

Filament
formation

Cu/MoS2/Au;
Metal/h-
BN/Metal

— 2–104 [59]

Schottky/Direct
tunneling

Au/MoS2/Au — 108 [59]

3D Sputtering, CVD,
hydrothermal
growth

Electrochemical
Redox

Metal oxides
(TiO2, HfO2,
TaOx)

>10 fJ 2–40 [60]

Phase change Metal-insulator
transition (VO2)

>100 fJ <103 [60]

Magnetic
tunneling

Magnetoresistive
materials (MgO)

>10 fJ 2–3 [60]

Ferroelectric
polarization

Ferroelectric
materials
(BiFeO3, BaTiO3,
PbZrTiOx)

>100 fJ 45–300 [60]

Biomaterials Natural way and
Wet chemistry for
synthetic growth

Generation of
conductive
filament

Proteins (silk
fibroin, ferritin,
collagen, egg
albumen)

— 3–107 [61]

Biochemical
operations;
Self-assembly of
nucleic acids

2D and 3D DNA
nanostructures

— — [62, 63]

Plasticity—as in biological neural networks, communication between neurons is dynamic and occurs at
different time scales. Communication strength depends on the history of synapse activity, also known as
plasticity. Short-term plasticity facilities computation, while long-term plasticity is attributed to learning and
memory. To enable on-chip learning, it is important that artificial synaptic devices display long-term
memory and architectures to allow for local learning rules.

Large scale integration—to provide commercially available unconventional computing paradigms using
nanomaterials (2D, QD, organic, etc), it is important to achieve large-scale device array integrated with other
circuits to show entire system operation while being CMOS compatible process.

Energy consumption—reducing the energy consumption of devices and electronics is an important
endeavor for future low-power computing. It is not only important to develop low power devices but also the
architecture of the full system in which it is implemented to achieve an energy efficient computing system.
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Biofriendly materials—The use of biocompatible and biodegradable materials in electronic devices can be
an important trend in the development of green electronics. Compared to metal-oxide semiconductors,
biofriendly polymers and/or natural materials are attracting interest for their suitability on flexible
neuromorphic platforms.

Collaborations and training—a close cooperation between neuroscientists, device physicists, computer
scientists, computer architecture, and material scientists is of utmost importance to design and fabricate
integrated circuits based on these new devices and realize the full potential of novel computing paradigms.
The rapidly growing knowledge in each of these domains provides new insights and concepts to design energy
efficient computing, necessitating collaborative efforts to train the new generation of students and scientists.

Concluding remarks
Unconventional computing paradigms have propelled the research into novel devices that have led to a wide
variety of solutions in terms of device physics, materials, and information processing. Despite the recent
successes and advancements in novel devices and materials, more research is necessary to overcome the
current limitations of devices to lower their variabilities and increase long-term operations, state retention,
and modulation for enabling both short-term and long-term plasticity.
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Status
The emergence of two-dimensional (2D) and van der Waals (vdW) materials has invigorated fundamental
research at the device level for brain-inspired computing hardware [54, 64]. A critical component of
neuromorphic circuits is an analog non-volatile memory (NVM) that is not only fast, reliable, and
high-density but also possesses multiple states and internal temporal dynamics to mimic the spike-based
learning rules of biological synapses. Crossbars of NVM technologies based on conventional bulk materials,
such as memristors, phase change memories, and magnetic and ferroelectric tunnel junctions, can
outcompete CMOS counterparts for neural network performance metrics. All of these NVMs have also been
realized using 2D materials with unprecedented functionalities (e.g. gate tunability) that translate into
improved performance as a result of simplified circuit architectures. For example, 2D materials have been
integrated into atomically thin vertical memristors with femtojoule switching energies (figures 10(a) and
(b)) [65]. The most promising vertical memristors are based on 2D transition metal dichalcogenides
(TMDCs) or hexagonal boron nitride (hBN) where resistive switching has been achieved with intrinsic
defects or metal cations. Although the constituent 2D materials can be grown over a wafer scale, most of the
demonstrations thus far have been limited to 10× 10 crossbar arrays without a selector (figures 10(c) and
(d)) [65]. A particularly promising approach is a self-selective crossbar based on two hBN memristors with
volatile and non-volatile switching in an Au/hBN/graphene/hBN/Ag stack (figure 10(c)) [66]. Although
some applications have been proposed for 2D vertical memristors (e.g. RF switches, encryption circuits),
their characteristics and functions are similar to conventional two-terminal memristive systems [65].

To gain more unique functionality, semiconducting 2D materials (e.g. MoS2) can also be integrated into
lateral memtransistors where nonvolatile switching is tuned by a third gate electrode (figures 10(d) and (e))
[67]. In addition, 2D channels enable dual-gated control where one of the gates can achieve tunable learning
behavior, while the other gate can be used as a selector in a manner analogous to a
one-transistor-one-memristor (1T1M) crossbar (figures 10(f) and (g)) [68]. Lateral memtransistors are also
compatible with multiple electrodes to realize heterosynaptic learning behavior [67]. Memtransistors have
been generalized to a wider class of heterojunctions using charge trap, floating gate, ferroelectric, conducting
bridge, and phase change memories [64]. Crossbars consisting of 10× 10 memtransistors have been
experimentally demonstrated, achieving the same level of complexity as 2D vertical memristors
(figures 10(d) and (g)).

Solution-processed 2D and vdWmaterials are also promising for printed and flexible neuromorphic
circuits. For instance, femtojoule vertical memristors and memcapacitors have been demonstrated using
printed films on flexible substrates [69]. However, most of these devices use electrochemical filaments such
as Ag and Cu, and thus the role of the layered materials is unclear. Recently, a new thermally activated volatile
switching mechanism has been reported for a range of solution-processed 2D materials that can be exploited
for artificial spiking neurons (figures 10(i) and (j)) [70]. Here, the morphology of the 2D nanoflakes plays a
vital role in producing non-linear behavior that can be used for high-order oscillator circuits. However, the
lack of an effective selector has limited the integration of printed memristors in crossbar architectures
(figures 10(k) and (l)). Recently, neuromorphic applications have also been proposed for 2D magnets, 2D
charge density wave switches, and 2D moiré heterostructures [71], suggesting further opportunities in this
space.

Current and future challenges
The main challenge facing vertical 2D memristors is competition with conventional metal oxide memristors
that outperform their 2D counterparts in nearly all relevant metrics. Furthermore, wafer-scale 2D materials
are generally polycrystalline, and spatial variations in grain boundaries are likely to lead to device-to-device
variability, unlike the relatively high device-to-device homogeneity of amorphous metal oxide films [65].
This spatial inhomogeneity is further exacerbated by the inherent variability arising from stochastic
switching that is common to all filamentary switches. While 2D memristors provide atomically thin
channels, the lateral dimensions of metal lines are the more relevant scaling parameters for high-density
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Figure 10. (a) Device architecture of a vertical memristor using layered materials such as TMDCs, hBN, and other insulators.
Reproduced from [54], with permission from Springer Nature. (b) Typical current–voltage (I–V) characteristics of a vertical hBN
memristor for two current compliances (red and blue curves). Arrows show the voltage sweep direction. Reproduced from [65],
with permission from Springer Nature. (c) Crossbar architecture for vertical memristors where the desired node is selected by a
V/2 biasing scheme. Reproduced from [66]. CC BY 4.0. (d) Scanning electron microscopy (SEM) image of a 10× 10 crossbar
array of vertical memristors on a wafer-scale hBN film. Reproduced from [65], with permission from Springer Nature.
(e), (f) Device architecture and gate bias (VBG)-dependent I–V characteristics of a dual-gated lateral MoS2 memtransistor,
respectively. (g), (h) Architecture and SEM image (false color) of a dual-gated memtransistor crossbar array, respectively. [68]
John Wiley & Sons. © 2020 Wiley-VCH GmbH. (i), (j) Cross-sectional SEM image and current-controlled I–V characteristics of a
solution-processed MoS2 memristor, respectively. [70] John Wiley & Sons. © 2021 Wiley-VCH GmbH. (k) Schematic of a 3× 3
crossbar using memristors from solution-processed 2D materials. (l) Optical image of a 50× 1 crossbar array of MoS2
memristors on printed Ag electrodes. Reproduced from [69], with permission from Springer Nature.

crossbars, which also may be complicated by the finite grain sizes in 2D films. While single-crystal 2D flakes
have also shown stable memristive switching arising from partially oxidized layers, wafer-scale growth of
layered single crystals has not been shown. Thus, one immediate challenge in vertical memristors is to scale
N × N crossbar arrays from N = 10 to N = 1000. Another key challenge is to integrate vertical memristors
with a selector to avoid sneak current issues. A 2D transistor selector may be possible, although integration of
a functional 1T1M crossbar has not yet been demonstrated.

Lateral memtransistors are faced with similar scaling challenges where the device footprint and operating
power are not yet competitive with conventional vertical memristors. Since grain boundaries are believed to
be essential for resistive switching in memtransistors, polycrystalline grain size likely dictates the ultimate
scaling limits. Furthermore, since the operating mechanism of memtransistors relies upon the modulation of
Schottky injection at the contacts, the operating voltage is not expected to scale linearly with channel length.
Despite these challenges, the state-of-the-art complexity of lateral memtransistor crossbars
(channel< 1 µm) and operating voltages (<1 V) approach that of vertical memristors (figures 10(c) and (f))
[65, 66, 68]. Moreover, dual-gated lateral memtransistors achieve 1T1M functionality within the same device
without requiring integration with another selector technology [66, 68]. On the other hand, the switching
speed of lateral memtransistors is significantly slower than vertical memristors, and gradual soft switching is
likely to reduce the dynamic range of resistance under fast operating conditions [64]. Nevertheless,
dual-gated ferroelectric and floating gate memtransistors have the potential to reduce the switching power
and increase the switching speed [64]. Another challenge is integrating 2D NVM devices into circuits such as
spiking neurons, activation circuits, and analog-to-digital converters (ADCs) for complete neural network
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chips [54]. Solution-processed 2D material devices also need to be scaled to sub-micron length scales for
practical applications such as wearable electronics for off-grid classification and medical diagnostics [69, 70].
In addition, the integration of printed NVM circuits with flexible logic circuits for full data processing has
not been demonstrated. Overall, the grand challenges for 2D neuromorphic computing are centered on
materials control and device engineering to achieve comparable metrics to conventional NVMs but with
additional functionalities that yield improved efficiency in hardware computation.

Advances in science and technology to meet challenges
The last few years have seen significant advances in wafer-scale growth of 2D semiconductors and insulators
that are directly relevant to the unique challenges of neuromorphic circuits [65]. Current growth advances
are focused on achieving large grain sizes and minimizing lattice defects for wafer-scale uniformity of
conventional transistor technology. For memristive devices using intrinsic defects, growth also needs to be
optimized to yield small gain sizes (<10 nm) and well-controlled defect densities [54]. Although wafer-scale
2D transistors have been used to realize neural network chips consisting of> 800 devices, this technology
does not yet compete effectively with existing Si CMOS-based neural network chips. In this context,
self-aligned vdW anti-ambipolar Gaussian heterojunction transistors have been shown to significantly
simplify the circuit architecture of spiking neurons with a smaller number of elements than conventional
CMOS circuits. These dual-gated Gaussian heterojunction transistors using mixed-dimensional
nanomaterials can produce transfer functions resembling kernels such as Gaussian and sigmoidal kernels
that are used in support vector machine hardware. A circuit with two such devices enables independent
control of all parameters of mixed kernels that require close to 100 Si-based transistors in a conventional
CMOS circuit, thus enabling highly energy-efficient machine learning [72]. These Gaussian transistors could
also be integrated with a non-volatile memory (e.g. a floating gate or ferroelectric gate) to achieve Bayesian
neural networks for predictions with confidence bounds. In terms of advances in fabrication, the self-aligned
scheme also provides an opportunity for highly scaled lateral memtransistor crossbars. While efforts are
underway to improve the performance of individual devices, the existing neuromorphic paradigms also need
to be revisited to identify unique opportunities enabled by the unique characteristics of 2D devices. For
example, recent algorithmic innovations in deep neural network architectures require higher-order
processing where, along with inputs and model parameters (i.e. weights), the application context should also
be considered in making predictions. For these higher-order neural networks, the additional gate electrode
layer in dual-gated memtransistor crossbars presents a promising pathway to dynamic weight selection that
mimics biological synapses [73]. In this manner, 2D neuromorphic computing has the potential to not only
provide efficient hardware accelerators for machine learning algorithms but also realize emerging paradigms
for bio-realistic neuronal hardware [73].
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Status
The slowing down of Moore’s Law led to the emergence of an exciting new era of electronics. Following
decades of continuous improvements in transistor technology, the new era is marked by blurred layers of
abstraction in the computing stack, creative combinations of CMOS technology with emerging technologies
and the development of domain-specific hardware and architectures. In this short piece, we describe
probabilistic computing with p-bits, as a representative example of the many promising directions in the new
era. We describe recent developments of p-bits; starting from their energy-efficient realization in different
hardware substrates, their physics-inspired and parallel architectures, all the way up to their use in high-level
algorithms and applications. A recurring theme in this piece is that of co-design; where algorithms and
applications are modified to naturally conform to the underlying physics of hardware. Along with
domain-specificity, co-design will play an increasingly important role in the new era which will be marked by
various CMOS+ X type heterogeneous architectures.

Current and future challenges
In a celebrated talk delivered at a conference in May 1981, Richard Feynman introduced the first clear vision
of a quantum computer [74]. The main idea of Feynman’s talk, appropriately titled ‘Simulating Physics with
Computers’, can be summarized by the credo ‘Let physics do the computing.’ In other words, simulating
physical phenomena is efficient when the simulating ‘computer’ itself is made of the building blocks it is
trying to simulate. This profound connection between physics and computing Feynman emphasized has
since been used to develop quantum computers built out of quantum mechanical bits. This part of the story
is very well-known and often discussed, see, for example, ‘Quantum Computing: 40 Years Later’ by John
Preskill for more details [74]. What is less appreciated is that before getting on to quantum computing,
Feynman talked about a vision of a probabilistic computer with essentially the same idea: a probabilistic
Nature should be efficiently simulated by a machine that itself makes probabilistic decisions. In a few lines,
Feynman laid out the main idea that is used in many probabilistic models today: in an interacting system
with many degrees of freedom, if we need to compute correlations between small parts of the system, all we
have to do is observe those parts. What is otherwise an intractable summation over the exponentially large
‘rest of the system states’ then becomes approximately tractable39.

Driven by the nearing end of Moore’s Law, a few years ago, we took Feynman’s vision a step further.
Intrigued by the large degrees of inherent noise in magnetic nanodevices, we imagined a truly probabilistic
computer down to its most basic building block. Early work involved using the probabilistic switching
behavior of stable magnets [75], but gradually the temporal noise of low barrier nanomagnets (LBM)
became a more natural choice. LBMs offered the possibility of a compact realization of the basic building
block of a probabilistic computer, which we named the ‘p-bit’, and we experimentally demonstrated a
prototype ‘p-computer’ shortly after [76].

The ubiquitous nature of probabilistic methods and randomized algorithms allows p-bits to be applied to
a broad range of applications (figure 11). Examples include massively parallel true random number
generation, solving combinatorial optimization problems using powerful algorithms such as simulated
annealing and parallel tempering, probabilistic sampling for Bayesian inference and learning, training
energy-based and variational classical and quantum models, accelerating Monte Carlo (MC), Markov Chain
Monte Carlo (MCMC), QuantumMonte Carlo methods, computational biology and protein folding among
others. The wide-ranging application space for p-bits makes them potential candidates for domain-specific
computing, with overlapping applications envisioned for near-term quantum computers, particularly for
Machine Learning and AI applications.

39 A technical note for the expert: the observed correlation is still an approximation unless we observe the systemwith time T→∞which
amounts to computing the intractable sum exactly, for an ergodic system.
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Figure 11. Various applications of probabilistic computing with p-bits, in the space of applications between bits and qubits.

Advances in science and technology to meet challenges
Device-circuit co-design of p-bits. In essence, a p-bit is the abstraction of a tunable Bernoulli variable with
many different physical implementations. p-bits are closely related to the basic unit of Boltzmann Machines,
the binary stochastic neuron, pioneered by Hinton and Sejnowski [77]. The p-bit, when defined as a
mathematical abstraction [76], has a much wider range of applications than just Boltzmann Machines
(figure 11). Therefore, finding the most energy-efficient, technologically scalable, and robust p-bit is an
active area of research. In addition to magnetic p-bits with stochastic magnetic tunnel junctions, stochastic
resistors (e.g. diffusive memristors, perovskite nickelates), diodes (e.g. Zener, single photon avalanche) and
even analog or digital CMOS (e.g. RTN in silicon transistors, LFSRs) can make compact and energy-efficient
p-bits. Similarly, connecting p-bits to one another can be achieved in many ways: resistive (or capacitive)
crossbar arrays, and digital or mixed-signal CMOS-based interconnections are examples, to name a few. Key
metrics in designing good p-bits are the energy (E) and delay (τ ) to produce a random bit. Like novel
switches, minimizing the energy-delay product of a truly random bit with the minimum area footprint
guides the development of novel p-bits. Exciting new experimental developments with stochastic magnetic
tunnel junctions [78] have shown that τ can be a few nanoseconds or less. Combining various possible MTJ
designs (e.g. in-plane, circular disk, perpendicular, double-free-layer) with CMOS transistors by deliberate
co-design, energy-efficient circuits with E < 1 fJ/rng could be obtained in monolithically integrated
p-computers with tens of millions of p-bits. The key advantage of a nanodevice-based p-bit comes from the
large savings in energy, area, and the quality of randomness over digital CMOS. Even when compared to
low-quality pseudo-random number generators in CMOS, an MTJ-based p-bit is at least 1000X smaller in
area and 100X smaller in energy to produce a random bit. The compactness in the area and energy efficiency
opens up the potential for a high degree of scalability with MTJ-based p-bits, beyond what is accessible with
present-day technology.

Architecture-algorithm co-design of p-bits. A key step in mapping algorithms to hardware is to find an
efficient architecture co-designed with the algorithm. Designing probabilistic computers starting from single
devices to systems allows imagining completely new architectures with suitably modified algorithms. To
illustrate this point, consider a simple MC algorithm for calculating the number ‘π’: Imagine a square with a
circle in the center and divide each side of the square into 220 segments. Then, use a (20+ 20)-bit RNG to
generate a random coordinate (x, y). Calculate an output s ∈ {0, 1} indicating whether the random
coordinate (x, y) lies inside the circle or not (s= 1[x2 + y2 < 1]). Perform N trials and obtain an average to
estimate π. This is clearly a parallelizable algorithm but not trivially: avoiding significant delays while
calculating the sum of squares requires a carefully pipelined architecture such that a new sample is obtained
at every clock cycle [79]. Similarly, accelerating Markov Chain MC algorithms requires deliberate designs
since for directly connected p-bits, parallel updates are not allowed. One such design is exploiting the idea
that not directly connected (conditionally independent) p-bits can be updated in parallel. This allows for
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Figure 12. Published data on power consumption (W) vs. sampling throughput (flips/ns) on state-of-the-art probabilistic
samplers. © [2023] IEEE. Reprinted, with permission, from [87].

reaching high levels of parallelism if the connecting graphs are sparse and can be divided into large segments
that are updated in parallel [80]. More intriguingly, p-computers can have entirely asynchronous
architectures where each p-bit updates with its randomly ticking internal clock in physics-inspired, massively
parallel architectures. Preliminary results indicate the promise of such architectures; however, our main
point is to illustrate the wide range of possibilities that exist for architecture-algorithm co-design.

Benchmarking probabilistic computers. Virtually all applications shown in figure 11 benefit from one key
metric in probabilistic computers, namely the sampling throughput or flips per second [80–86]. Sampling
throughput is commonly reported in specially designed probabilistic samplers and figure 12 shows power
consumption vs. sampling throughput for highly optimized implementations. GPU and TPUs often use
highly regular graphs (typically 2D nearest neighbor grids) to achieve scalability in their architectures.
Others, such as Fujitsu’s digital annealer use all-to-all connected graphs, taking fewer samples per second but
compensating for this by means of powerful algorithms such as parallel tempering and population annealing
[86]. For example, the Google TPU can take more than 5000 flips/ns but at the expense of 50 000 W power
dissipation to achieve this feat! On the other hand, FPGA-based p-computers take 100 flips/ns using around
20 W. But more importantly, projections based on nanodevice-based p-bits indicate the possibility for
1000 000 flips/ns at only 20 W of power! This number can be reached in designs where each p-bit dissipates
20 µWwith a million of them flipping every nanosecond in an asynchronous setup. All of these pieces have
been individually demonstrated: the magnetic memory industry has scaled MTJs up to billion-bit densities
and stochastic magnets have been shown to fluctuate every nanosecond. The potential for growth and
acceleration by p-bits seems highly promising if challenges for integration and co-design can be surmounted
in the future.

Concluding remarks
Similar in spirit to many other promising domain-specific computing paradigms, there are several important
areas requiring further attention. From the physics end, identifying the best possible mixed-signal p-bit
design is still a work in progress. Controlling device-to-device variations or overcoming them through
algorithm hardware co-design is also critical. From the systems side, identifying and adopting powerful
algorithms and applications conforming to p-bits requires expert algorithmic understanding. Optimizing the
necessary bit precision, and design modes (synchronous vs. asynchronous) with the right architecture, while
being amenable to monolithic integration all require a concerted effort and the widest possible expertise in
the computing stack. Overall, this exciting, full-stack research program is simply one example of a powerfully
emerging trend in the new era of electronics where domain-specific hardware and architectures will play an
increasingly important role.
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Status
Universal Quantum Computers (QCs) can potentially solve open problems that are not only relevant to
science and technology but also likely to assist current social demands and expectations, e.g. regarding food
supplies and environment issues.

The formalism for quantum information processing is substantially simplified by the following result: A
universal set of gates, consisting of all one-qubit quantum gates and a single two-qubit gate, e.g. the
controlled-NOT (C-NOT) gate, may be combined to perform any logic operation on arbitrarily many qubits
(thus pointing a clear path towards universal QC). In addition, few requirements must be fulfilled: (1)
Proposals should eventually provide a prototype performing any operation compatible with universality; (2)
The fidelity of one- and two-qubit operations must be above 99%; and (3) The QC architecture is expected
to fit within a few centimeters chip.

Among a few existing quantum technologies compatible with these criteria are electron spins in
semiconductors, which we briefly review here. Semiconductor-based QC started as a promising candidate for
implementation of QC [88], by confining electrons within electrostatically defined quantum wells in a
GaAs/AlAs interface 2DEG. Changing the height of the barrier separating two electrons in neighboring wells,
2-qubit quantum operations can be performed (top figure 13(a)). These ideas were adapted to qubits defined
by spins of electrons bound to shallow donors in Si [89]. Even though the original proposal suggested
impurity nuclear spins-1/2 as qubits, such as P in Si, it was soon recognized that nuclear spins are much too
isolated from the environment for fast, efficient control by external fields. A more promising route
considered the spin of the extra electron in P in a Si host, which is loosely bound to the donor (lower
figure 13(a)). The long-lived P nuclear spins have been considered appropriate for quantum memories [90].

Two decades after the first proposals, silicon qubits still hold the status of a great promise. They have been
shown to exhibit long enough coherence times, high-fidelity gates, fast operation capabilities and a huge
potential for a scalable solution. Indeed, the search for a scalable and universal silicon-based quantum
computer has so far attracted full attention from active research groups in academic institutions, major
industrial labs and start-up companies. Moreover, spin-based QC uses the same technology adopted in
fabrication of transistor-based electronics, benefiting from the established know-how and huge investment
in the silicon technology. Notwithstanding all advantages, there are many challenges yet to be overcome, as
described in the next sessions.

Current and future challenges
Silicon qubits are currently undergoing a major transition, from lab prototypes featuring a few qubits to
massive scale production. Scalability is a key ingredient in demand for progress in any QC platform. Recent
progress reported by a joint Intel—QuTech partnership [91] demonstrated a fully optical lithography
technique—similar to those in use in current integrated circuit fabrication methods—in order to obtain
more than 10 000 arrays of quantum dot (QD) spin qubits on a single 300 mm wafer (figure 14). This leads
to a device yield above 98% and good QD uniformity, with a normalized standard deviation in the gate
threshold voltages around 7%. The spin relaxation and dephasing times T1 ∼ 1 s and T2

∗ ∼ 20 µs—which
can be improved to the 3 ms range, or even higher, by dynamical decoupling. Such indicators stress the huge
potential of QC using QDs in silicon.

There are many challenges, however, remaining to be addressed. Spin qubits require individual control,
involving a connection to a classical auxiliary electronic device. This creates serious difficulties to implement
the required individual wiring when the number of qubits is in the order of magnitude of millions. Qubit
readout is also a sensitive aspect, as not only the readout bandwidth must be much faster than the spin
decoherence time but the readout of a single qubit must not interfere with the neighboring qubits [93].
Concerning donor spins in Si, fabrication and control of multi-qubit arrays are among the most critical
limitations.

Remaining challenges concern adapting the large-scale manufacturing process for two-dimensional spin
arrays, which are important for two main reasons: being able to implement surface codes for robust quantum
error correction and optimizing the efficiency of cryogenic cooling of the circuit [94]. Moreover, two-qubit
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Figure 13. (a) Schematic representation of early (1998) QC architectures with spin qubits in semiconductors. Upper scheme
represents Loss-DiVincenzo’s proposal on GaAs (qubits bound to quantum wells [88]); bottom scheme represents Kane’s proposal
involving P substitutional donors in Si [89]. (b) Electron probability density around a P substitutional donor on the (001) plane
of bulk Si for the donor ground state. The white dots give the in-plane atomic sites. Reproduced from [92]. CC BY 4.0.

Figure 14. (a) Electron microscopy image of an industrially fabricated QD device by Intel and QuTech, showing two parallel
silicon fins, one hosting the qubits (left) and the other hosting the sensing QDs (right). Gate routing and dummification
(required for maintaining a constant metal density on the surface) are also clearly shown. (b) Image along a Si fin of a QD array
showing seven metallic silver gates (G1-G7) between two accumulation gates (ACL and ACR). Reproduced from [93]. CC BY 4.0.

gates still need to be fully implemented and characterized; fault-tolerant quantum computing requires
two-qubit fidelities of at least 99%, a threshold which has been overcome very recently for QDs in silicon
[95]. In fact, circuit characterization and benchmarking—including defining figures of merit for assessing
the quality of the QC along all the manufacturing steps, which are very different from the classical
counterpart—are among the main challenges that need to be tackled to keep any expectations of achieving a
QC with millions of qubits.
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Advances in science and technology to meet challenges
In order to scale up the spin system to reach a fully-fledged QC, we need to avoid the heat generated by every
qubit added. This is especially critical in the case of superconducting devices, limiting the number of qubits
per dilution-refrigerator. This is not the case for spin qubits, which can operate in an environment of up to
2 K [96]. Therefore, the cost on the refrigeration can be reduced significantly in spin QCs, and the scaling-up
is likely also be favored. The answer is unknown, as current simulation software employed by the electronics
industry is not designed to properly deal with low temperature behavior. Promising candidates for
overcoming this limitation include Contact Block Reduction-based Quantum Computer Aided Design
(QCAD) [97].

Problems with spin initialization and readout are usually mitigated by employing a conversion
spin-charge. This can be implemented by using a reservoir or by Pauli spin blockade (reservoir-independent).
Dispersive read-out has also been considered for single and few electrons as well as silicon nanowire
transistors. However, the spin blockade has been advantageous so far because it allows higher readout
fidelities and lower qubit operation frequency (∼1 GHz), opening the possibility of reading-out a qubit array
in a time smaller than the decoherence time of the single qubit (millisecond range) [98].

To overcome the engineering challenge of simultaneous addressing many qubits in a large-scale
spin-based QC, electron-spin-resonance techniques in conjunction with Kane’s proposal ideas may be
utilized. This technique could include a three-dimensional dielectric resonator that acts as a single global
source that can deliver multiple control signals to the qubits. Recent advances show that such resonators,
constructed from potassium tantalate (KTO), could be manufactured within a compact surface area of
0.7× 0.55 mm2, allowing its integration to nanoelectronic circuits and performing large-scale control over
millions of spin qubits [99].

Finally, high volume fabrication of spin qubits requires a proportional capacity for characterization and
tests. This is currently delaying the evolution of spin-based QC, due to lengthy tests in low-temperature
environments, which require cooling down the devices in dilution refrigerators. This limitation could be
avoided by a thorough characterization of the correlation between classical semiconductor device metrics
(such as mobility) and spin qubit performances, but no definitive results have been obtained so far.
Alternative characterization procedures, possibly performed at higher temperatures, are still missing, but
some effort concerning this huge challenge can already be found in the literature [100].

Concluding remarks
Scalability is one of the most important challenges that any architecture needs to achieve in order to obtain a
quantum computer that is able to solve relevant problems. Spin qubits are possibly the most suited
candidates for building a universal QC, especially because of its potential scalability which has already been
demonstrated experimentally. Other ongoing debates relevant for the future development of spin-based QC
include: finding the most effective way of encoding quantum information in silicon (e.g. electrons vs. holes,
quantum dots vs. donors, Loss-DiVincenzo vs. Singlet-Triplet qubits), which figures of merit need to be
measured for proper device characterization (and how they should be measured), the best way to perform
spin readout, which quantum error correction codes should be employed, and so on. In any case, QC is an
inherent multidisciplinary field, and as such, it is expected that physicists, electrical engineers and computer
scientists participate in discussions, working together towards a large-scale QC.
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Status
Dynamical systems include particles or ensembles whose behavior over time is accurately described by a set
of equations, such as electrical circuits, magnetic systems, chaotic systems, and spin glasses. Interestingly,
computational applications can exploit the intricate behavior of these ubiquitous systems. This is achieved by
deliberately engineering the system’s spatial and temporal dynamics to emulate a particular computational
task, as illustrated in figure 15. The use of dynamical systems for computing applications dates to analog
computers, which were replaced by digital computers in the mid-1990s. In recent decades, digital computers
have offered greater versatility, less susceptibility to failure, and better scalability, made possible by the rapid
development of transistors [101]. Dynamical systems are used in a plethora of computing applications,
including random-Boolean networks, Ising machines (see sections 5.2 and 5.3), memcomputing (see
section 5.4), and neuromorphic computing (see sections 1.1–1.4 for example). In the latter context, dynamic
systems offer several advantages over digitized circuits and are thus making a comeback. Dynamical systems
can be designed to have the required structural similarities of neural networks, such as hierarchy,
approximate symmetries, memory, redundancy, and nonlinearity [102]. Therefore, they provide a natural
hardware implementation of neural networks that overcomes the von Neumann bottleneck with much lower
power consumption and higher scalability than transistor-based digital technology, which only artificially
emulates the required properties. In addition, analog information processing in dynamical systems allows
sensor signals to be processed directly, providing energy-efficient and low-latency processing. The use of
dynamical systems for computing has been facilitated by recent advances in materials science, such as
breakthroughs in photonics and spintronics, which have enabled the development of low-power
proof-of-concept devices compatible with CMOS technology. Figure 16 shows examples of proposed
nanoscale dynamic systems for analog computing. These systems are designed to operate at extremely small
dimensions and exploit the unique properties of nanomaterials and nanoscale phenomena to perform analog
computations.

Recent proposals have shown that dynamical systems can be used to emulate neuron synapses and firing
for synaptic neural networks [103], as well as to perform weight computations or completely replace hidden
layers in a neural network [26, 34, 102, 104, 105]. Two promising applications that consolidate the use of
dynamical systems for spatio-temporal pattern recognition are reservoir computing [34, 105, 108] and
physical neural networks [26, 102–104, 106, 109]. While both computational paradigms allow for learning
and extracting patterns from data, they rely on different learning schemes. In reservoir computing, training is
performed only at the output level and thus requires a sufficiently complex response of the physical reservoir
to discriminate minor variations in the input. In contrast, physical neural networks train directly on the
physical system, often requiring complex learning algorithms. In general, a physical realization of a reservoir
computer benefits from a system with highly nonlinear dynamics and short-term memory. In contrast, a
physical neural network requires a well-modeled nonlinear system with controllable dynamical parameters.

Current and future challenges
Computing with dynamical systems typically implies the encoding of computational tasks into the functional
response of the device. Thus, current and future challenges in the field are related to designing devices with
tailored functionalities and ensuring reliable encoding of information in terms of inputs and outputs of the
dynamical system. While dynamical systems can be tailored to perform complex computations with higher
efficiency compared to digital computers, they are often single-purpose devices with analog outputs.
Designing dynamical systems as multi-purpose devices is a key challenge. In addition, training and learning
strategies must become more efficient when computing with dynamical systems. In the future, they must go
beyond simple supervised learning models.

Furthermore, a significant challenge for the commercial implementation and widespread use of
dynamical systems-based computers, for example, in the Internet of Things and Industry 4.0 applications, as
well as in real-time computing, is to produce devices that are scalable, inexpensive, and significantly more
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Figure 15. Computing with dynamical systems: A dynamical system computes based on the input signal and generates
information as output. The complex and nonlinear dynamics of the system generates a final state, corresponding to the output,
that depends on the initial state of the system, corresponding to the input, and tunable external perturbations. By properly
designing the dynamical system, it is possible to tune the final state to be a desired function of the initial state and external
perturbations. This allows fast and efficient computations.

Figure 16. Examples of computing with dynamical systems. (a) Optoelectronic delay system. Reprinted figure with permission
from [107], Copyright (2021) by the American Physical Society. (b) Nanomagnet-based spinwave scatterer. Reproduced from
[26]. CC BY 4.0. (c) Reservoir Computing based on Skyrmion fabrics. Reprinted figure with permission from [34], Copyright
(2020) by the American Physical Society.

efficient than CMOS technology. At least on intermediate time scales, it is also necessary to be able to
integrate them into the market-dominating CMOS technology. This integration requires significant efforts in
materials science and device engineering. Although the number of proof-of-concept devices is growing
rapidly, most still face significant obstacles in their large-scale realization and production.

A fundamental question concerns the general design of the device. It can be realized either with an
assembled network of individual simple components or directly with a large complex system. Both strategies
have advantages and disadvantages and are likely to be used for different types of applications. For example, a
large complex system is often less tunable. However, it can avoid the challenge of creating a highly dense
interconnected network of individual components, which only within the network structure allows for high
computational performance.

Another major challenge is that dynamical systems computers are not fully in-situ. For example, the
input data must be pre-processed by an external device to generate a significant nonlinear response of the
dynamical system, which typically responds only on specific time and length scales [18]. Similarly, dynamical
systems often provide a continuous set of outputs that must be interpreted or even learned (as in reservoir
computing) by an external computer. An autonomous device with a reliable map between the input, the
functional response of the device, and the correct output is still missing.
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Advances in science and technology to meet challenges
The field of computing with dynamic systems is steadily growing with many proposals to address the
challenges, ranging from the development of novel computational algorithms [102, 107, 110, 111] to efficient
manufacturing techniques. The main goal is to develop an efficient algorithm-and-hardware codesign to
fully exploit dynamical features assisted by state-of-the-art nanotechnologies. The interdisciplinary approach
is of crucial importance and ensures knowledge transfer in particular within computer science, mathematics,
biology and physics. A key example that connects all disciplines is the development of novel brain-inspired
algorithms that are then transferred to computing in materials and devices.

The development of techniques to quantify, tailor and exploit the nonlinear response and short-term
memory of dynamical systems provides means to reduce the complexity and energy cost of conventional
learning algorithms and to approximate the biologically inspired behavior of the brain, which is optimized
by evolution over millions of years. Structured material studies based on machine learning are used to
achieve advances in material properties. A particularly successful example in material science is the recent
progress in manufacturing heterostructures from 2d materials and metamaterials [112]. These multiphysics
systems with potentially different natural timescales offer a variety of physical properties that make them
attractive as highly scalable and tunable platforms for novel unconventional computing schemes.

In addition, there are many approaches in device development to implement neuromorphic
functionalities in dynamical systems including targeted studies to improve device topologies and device
designs. The development of scalable multifunctional systems is crucial for the various design concepts, such
as considering a network of coupled individual units or a single large complex system. Current proposals
target the use of scalable systems based on time-delay structures [105, 107], spatial parallelism [106] of
photonic systems, spin nano-oscillators [18], and patterned magnetic samples [26, 34]. Furthermore, there
are focused efforts to integrate as many functionalities as possible directly in-situ into the device. These
include the implementation of new learning algorithms based on physical properties [102, 107] and the
engineering of the functional response of the systems [104]. Fully autonomous devices, that can perform
both calculations and learning, however, will still demand great efforts.

Concluding remarks
Computing with dynamical systems is an exciting field of research, which is experiencing a revival primarily
driven by the significant advances in neuromorphic computing. The demand for efficient and scalable
hardware implementations of neuromorphic systems, which can naturally be emulated in dynamic systems,
brings the field from a niche to the forefront of research. Rapidly advancing significant developments in
material science promise low-cost, easy-to-manufacture, and highly efficient task-oriented devices in the
future. The ever-expanding capabilities to directly manipulate physics at the nanoscale and ultra-high
frequencies expand the possibility of employing physical principles for novel algorithms and computational
schemes that fully embody the brain’s functionalities.

In summary, computing with dynamical systems has the potential to overcome the high-power
consumption as well as the scalability limitations imposed by current CMOS technology and to actively
shape the development of Industry 4.0 and the Internet of Things.
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Status
Simulated bifurcation (SB) [113] is a quantum-inspired heuristic algorithm for finding the exact or
approximate ground states of Ising spin models and is expected to be useful for various practical
combinatorial optimization. Many combinatorial optimization problems are classified as non-deterministic
polynomial-time (NP)-hard, where the computational complexity scales exponentially with the problem
size, and can be converted to Ising problems [114]. Special-purpose hardware devices for solving Ising
problems are called Ising machines, including SB-based machines.

The SB algorithm was found as a classical counterpart of bifurcation-based adiabatic quantum
computation with a nonlinear oscillator network [113]. In SB, we numerically simulate the adiabatic
evolution of a classical Hamiltonian dynamical system (a nonlinear oscillator network) with bifurcations
(figure 17). Two branches of a bifurcation in each nonlinear oscillator represent two states of each Ising spin.
The operational mechanism of SB is based on an adiabatic and ergodic search (figure 17) [113]. Recently two
other variants of SB called the ballistic simulated bifurcation (bSB) and the discrete simulated bifurcation
(dSB) [115] have been proposed and demonstrated to outperform the original adiabatic SB (aSB) in terms of
both speed and solution accuracy. These algorithms exploit new effects, such as a quasi-quantum tunneling
effect [115].

The SB algorithms are highly parallelizable and thus can be accelerated with massively parallel processors
such as FPGAs (field-programmable gate arrays) and GPUs (graphics processing units) [113, 115–117]. SB
allows us to simultaneously update N coupled-oscillator variables for N-spin problems at each time step.
This is in contrast to simulated annealing (SA, a conventional heuristic algorithm), which involves sequential
updates of spins, with simultaneous updates allowed only for isolated spins. For N-spin Ising problems with
full connectivity, the maximum numbers of parallelizable operations in SB and SA are, respectively, N2 and
N [116, 117]. Custom-circuit implementations of SB [113, 116] have demonstrated a higher degree of
computational parallelism than the problem size N (8192 parallel processing elements for 2048-spin Ising
problems).

Various Ising machines based on different principles such as SA, quantum annealing, and
dynamical-system evolution have been implemented with a variety of technologies including
superconducting circuits, optics, emerging nanodevices, parallel digital processors, etc [114]. SB-based
machines have been evaluated for various benchmark problems and compared with other Ising machines
[114, 115], demonstrated to be highly competitive, especially showing the highest performance for Ising
problems with full connectivity [known as the Sherrington-Kirkpatrick (SK) model].

Current and future challenges
SB is theoretically new (published in 2019 [113]) and there are many challenges and opportunities for
further enhancement and wider applicability.

While quantum adiabatic optimization is based on the quantum adiabatic theorem [113], the operational
mechanism of SB (adiabatic and ergodic search), which implies the classical adiabatic theorem, has been only
empirically understood [113]. The mathematically rigorous proof of the operational principle of SB as well
as the convergence property have been left for future work [113]. Potential theoretical studies include
extending SB to polynomial unconstrained binary optimization (PUBO), relating SB with nonequilibrium
statistical mechanics, and combining SB with techniques for complex constraints. Since the comparison
between various Ising machines in terms of performance depends on problem instances, figure-of-merits
and physical implantations [114, 115], comprehensive and systematic comparisons should be continued.

Building larger Ising machines while avoiding speed degradation is challenging. In SB, the matrix-vector
multiplication (MM) of the coupling matrix J and the position vector x of nonlinear oscillators (many-body
interaction) is the most computationally intensive part [116]. To process the MM part in a massively parallel
fashion, we have to prepare many processing elements (multiply-accumulators) and supply the J and x data
to the processing elements at a sufficient transfer rate (the transfer rate needed increases with increasing the
processing elements). As an example, the FPGA implementations of SB [113, 115, 116] were equipped with
optimized memory subsystems to supply the J and x data by using on-chip memory (having larger
bandwidth than external memory) and thus were allowed to fully utilize the computation resources in the
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Figure 17. Dynamics in simulated bifurcation. (a) and (b) show trajectories indicating adiabatic and ergodic searches,
respectively, for a two-spin problem (N = 2) [113]. Reproduced from [113] CC BY 4.0. (c) Time evolution of oscillators
exhibiting bifurcations (N = 4000) [116].

time domain. However, the machine size (maximum problem size) of such a single-chip implementation is
limited by the on-chip memory resource. Hence enlarging the machine size while fully utilizing the
computation resources is of importance. The possible two approaches are scale-up (making a chip larger or
denser) and scale-out (increasing the number of networked chips). The SB-based machines would benefit
from emerging nanodevices for processing, memory, and communication in conjunction with in-memory
computing, stochastic computing, and cluster computing architectures.

By implementing not only SB processing circuits but also interface/control circuits on a single chip, we
can shorten the system-wide latency, enabling real-time systems based on combinatorial optimization that
make the optimal responses to ever-changing situations. SB-based systems are thus expected to realize
innovative applications.

Advances in science and technology to meet challenges
SB has been receiving increasing attention because of both the high performance and high practicability.
Several advances in theoretical extension [118], custom-circuit architecture [117], and applications
[119–122] are as follows.

Kanao et al introduced a heating process to the SB Hamiltonian dynamics to assist the system during the
search to escape from local minima, leading to improved performance [118]. This method was inspired by
the Nosé-Hoover method for simulating Hamiltonian dynamics at finite temperature. The heated SB does
not use random numbers, unlike SA, and thus is as deterministic and simple for parallel implementation as
the original SBs (aSB, bSB and dSB).

A larger Ising machine can, in principle, be built by partitioning a spin system into multiple subsystems.
In this case, the spin-spin couplings over the subsystems must be incorporated, and the partitioned
subsystems also have to evolve in a single time domain. Communication and synchronization between the
partitioned subsystems can easily degrade the speed performance. Tatsumura et al proposed and
demonstrated a scale-out architecture for SB-based Ising machines that enables continued scaling of both the
machine size and speed performance by connecting multiple FPGAs as shown in figure 18 [117]. To
maintain time consistency between multiple chips and a sufficiently small stall rate for every SB time step, the
architecture relies on an autonomous synchronization mechanism that is implemented in the information
exchange processes between neighboring chips.

As an example of the application of SB accelerators for real-time systems, Tatsumura et al presented an
ultrafast financial transaction machine with a total response time of about 30 microseconds, including not
only the detection of the most profitable cross-currency arbitrage opportunities by SB but also issuing order
packets [119]. The detection problem of currency arbitrage opportunity was reduced to an optimal path
search in a directed graph called a market graph, further formulated as an Ising problem, then solved with an
SB accelerator. Steinhauer et al used SB, in the financial field, for solving the integer portfolio and trading
trajectory problem [120]. Zhang et al applied bSB to traveling salesman problems and reported better
solution accuracy and higher speed than an SA implementation [121]. Matsumoto et al presented a hybrid
method that iteratively uses a general-purpose processor (CPU) and an SB-based Ising machine for solving a
discrete optimization problem (a distance-based clustering) with a complicated cost function
(fractional-type) [122]. The complicated discrete problem is reformulated to an iterative algorithm including
a step that solves an Ising problem. To minimize the communication overhead between the CPU and Ising
machine, a low-latency implementation of SB was realized.
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Figure 18. Scale-out architecture for SB [117]. Constant-efficiency scaling characteristic. (Inset) Connection of multiple chips in a
bidirectional ring topology.

Concluding remarks
Simulated bifurcation is a recently proposed, quantum-inspired, and highly parallelizable algorithm for
combinatorial optimization. The high parallelism with massively parallel implementation technologies leads
to high speed and scalability. The FPGA-based and GPU-based SB machines have been competitive against
other cutting-edge Ising machines and have shown the highest performance for Ising problems with full
connectivity. Massively parallel implementations of SB need many multiply-accumulators, large-capacity
on-chip memory, and low-latency communication interfaces, and would best benefit from emerging
nanodevices in conjunction with in-memory computing, stochastic computing, and cluster computing
architectures. Integrating SB accelerators with other system components on a processing chip enables
combinatorial optimization in real-time systems, and will offer new innovative applications.
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Status
The solution of Combinatorial Optimization Problems (COPs) is currently of great interest for industrial
applications, especially considering problems which are NP-hard, and their complexity scales exponentially
with the number of the variables defining the phase space.

Ising Machines (IMs) are hardware solutions for the minimization of the cost function defined by the
Ising model. This model describes the dynamics of N spins σ (σ ∈ ±1) through the following Hamiltonian:

IH=−
N∑

i,j=1

Ji,jσiσj −
N∑

i=1

hiσi , (1)

where J is the matrix of coupling among the spins and h is a local bias field. This research field is important
because the minimization of IH is NP-hard and several COPs with direct impact in logistics, manufacturing,
financial management and artificial intelligence can be mapped into Ising model [123].

Several physical approaches have been used for implementing IMs and can be broadly divided into two
categories: annealers and dynamical solvers. The former are physical systems that can reach the minimization
of their energy (corresponding to the minimization of IH) by means of a gradual decrease of the
temperature, through different thermal equilibrium states. They have been realized with optical systems,
magnetic devices, memristors, CMOS circuits, and FPGAs, to cite a few. Dynamical solvers are characterized
by a temperature-independent evolution towards the minimization state where a supplementary annealing
process can speed up the process. They are mostly based on the coupling of oscillators, giving rise to the
so-called Oscillator-based IMs (OIMs), and implementations include analog electronic [124], integrated
CMOS [125], VO2-based [126], spintronic [127, 128], spin waves [129] and optical coupled oscillators [130,
131] (see figure 19 for a few examples).

The most important aspect of OIMs is their scalability, which can guarantee the possibility to solve COPs
with large number of spins densely connected. The investigation of this aspect can be easily performed
through software solvers for the corresponding Ising models, which are of great support for a practical use of
hardware IMs on the market.

Here, we concentrate on the two more promising and unconventional solutions of OIMs, those based on
spintronic and optical oscillators. From a theoretical point of view, those machines can be simulated in
software by using the well-established Kuramoto model. Calculations show a great potential in creating
arrays as large as million nodes.

Current and future challenges
IMs have been studied and tested to challenge the most important limits of conventional computing, such as
computational time, scalability and high integration, and possibility to approach the optimal solution of a
large size COP, with a particular reference to the Max Cut Problem (MCP).

Spin-torque and spin Hall nano-oscillators (STNOs and SHNOs) have an attractive combination of
properties, such as easy tunability, GHz frequency operation, and nanoscale size. They have been proposed
for realizing OIMs in a theoretical approach making use of a universal model for a non-linear oscillator
where sub-harmonic injection locking (SHIL) is implemented [127]. More recently, an experimental
demonstration of a 2× 2 array of nano-constriction SHNOs was realized showing binarization of their
phases (figure 19(c)) [128]. In the former study, the probability to solve a MCP remains very close to 98% up
to about 180 nodes in Mobius graph, whereas in the latter, an estimation of 5000 SHNOs highlighted better
properties with respect to a reference quantum solution. Spintronic oscillators, therefore, are very promising,
but practical large-scale coupling between them requires additional development if complete and
programmable all-to-all connections are required.

The use of degenerate optical parametric oscillators is the key-point of coherent IMs (CIMs), where each
spin is encoded in the phase of light in an optical mode and oscillators are either in-phase or out-of-phase
with respect to pump light (figure 19(d)) [130, 131]. Spin connections can be realized through a network of
optical delay lines, but a solution for a fully programmable all-to-all connections has been realized through
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Figure 19. Sketches of different implementations for Ising Machines realized through coupled oscillators of different types:
(a) hexagonal ring-oscillators [125], © [2020] IEEE. Reprinted, with permission, from [125]. (b) Nanoconstriction-based
spin-Hall nano-oscillators [128], Reproduced from [128]. CC BY 4.0. (c) Optical parametric oscillators [131]. From [131].
Reprinted with permission from AAAS.

an architecture that uses measurement-feedback [130]. In this case, a Mobius graph of 100 nodes has been
used to test the MCP with a 21% of success probability, and fair solutions have been obtained for 2000-node
MCPs [130]. CIMs have been compared to D-wave quantum annealers showing a more efficient
performance in case of dense COPs. More recently, the MCP for a huge number of 100 000-node graph has
been solved with a CIM providing very good solution, comparable with those obtained by standard
algorithms and annealers, in a shorter time to solution [131].

Software approaches take advantage of analytical models for the oscillators used in OIMs to predict their
properties. The most famous model of mutually coupled oscillators was defined by Kuramoto [124]. It
predicts that stability occurs when the phase difference between the oscillators is 0 or π, which can be
obtained through an external signal at double frequency, introducing what was later called SHIL. The model
has been developed and tested for solving COPs as well as for image processing, and it has been used as a
reference for realizing physical implementations [124]. It has been tested for problem sizes ranging from 800
to 3000. Recently, an OIM based on a model for oscillators with frequency-phase coupling has been
simulated obtaining the solution of the largest-size MCP so far, in a 2 million-node cubic graph [132].
Challenges include the increase of the graph connectivity and additive annealing techniques to speed up the
time-to-solution.

Advances in science and technology to meet challenges
SHNOs have been demonstrated down to 20 nm, can operate at about 100 uA of current and 26 GHz, have
been mutually synchronized in two-dimensional arrays of up to 64 oscillators, and individual SHNOs and
their coupling to nearest neighbors can be controlled by voltage gates. While all these numbers need further
improvement, the most fundamental limitation is the planar topology of nearest-neighbor coupling, which
must be overcome. However, it can be shown that if next-nearest neighbor interactions are included, with or
without control, e.g. along the diagonal in square arrays, this results in a non-planar topology. Fundamental
research and experimental demonstrations in this direction are therefore needed.

CIMs seem to have a great potentiality to solve graphs of larger and larger number of nodes. Here, an
important future challenge is to clarify how quantum nature of degenerate optical parametric oscillators
contributes to the computational performance of CIMs.

The optimization of annealing techniques will be the advancement required not only for hardware IMs
but also for algorithms. The latter ones will take advantage also from parallelization methods, while the
inclusion of phase-power coupling in the model should be investigated to optimize the time to solution.

Concluding remarks
IMs are on the crest of the wave nowadays, and they will surf it for the next years. Many solutions are on the
table, and it is not trivial to compare them due to the several requested properties, such as a large number of
nodes and a short time to solution, to cite the most important ones. In this scenario, IMs based on coupled
oscillators guarantee advancements in technology and wide research activity in the upcoming future.
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Status
Any useful computing technology must satisfy one important goal: to aid in the computation of problems
that are particularly challenging for us, the users. It is with this goal in mind that MemComputing was first
suggested [133].

MemComputing is a new computing paradigm in which time non-locality (memory) and massive
parallelism play the main role in the processing of information [134]. Time non-locality is the ability of a
physical system to remember its past dynamics. The machine can then exploit it to solve the necessary tasks.
The concept is radically different from the way our traditional computers, based on the Turing paradigm of
computation, operate and even how quantum computers manipulate information. In addition, time
non-locality is a feature shared by both quantum and non-quantum dynamical systems. This is not a minor
point, since non-quantum dynamical systems offer substantial advantages for computing compared to
quantum systems, in terms of both fabrication and simulation.

MemComputing machines have been mathematically defined in [135], where it was formally shown that
they are Turing-complete, namely any problem solved by a Turing machine can be solved by a
MemComputing one. In addition, it was shown that a MemComputing machine with specific features can
solve NP-complete problems in polynomial time [136]. This result then begs the question: is this just a
theoretical, albeit interesting outcome of their mathematical definition, or such a machine can be actually
built in hardware? To answer the above question, a practical realization of digitalMemComputing machines
(DMMs) was proposed [136], which maps finite strings of symbols, such as 0 and 1, into a finite string of
symbols, and relies on a new type of ‘self-organizing gates’ (SOGs), namely gates which satisfy their logical
truth table or algebraic relation irrespective of whether the signal is fed to the traditional input or output
terminals (figure 20).

Up to now, DMMs have been only simulated. Some of the results include the efficient solution of several
optimization problems [134], acceleration of deep learning [137], and efficient solution of Boolean
satisfiability problems [138], see figure 21. These results were obtained by simply simulating the ordinary
differential equations of DMMs [134]. In fact, for certain types of industrial problems such an ‘off-line’
solution is sufficient [139]. These results then show that a physics-based approach to computation, like
MemComputing, offers advantages not easily achievable by traditional algorithms.

Current and future challenges
However, for certain types of problems that are prominent in, e.g. autonomous vehicles, robotics,
cryptography, and so on, a ‘real-time’ solution is desirable. In turn, this requires a hardware realization. It is
then the practical, hardware realization of these SOGs of MemComputing machines which is emerging as an
important research direction, and we believe, will be a major focus of future research as well.

For instance, in [136] resistive memories and active elements were suggested as a way to implement SOGs
and circuits built out of them. Since resistive memories can be emulated using complementary metal-oxide
semiconductor (CMOS) technology [140], a full CMOS implementation of these machines is doable. In fact,
since the size of problems that are relevant to industry and academia can easily reach millions of variables
and constraints, a CMOS-based implementation seems the most reasonable first step towards hardware.
Such realizations could be based either on field-programmable gate arrays (FPGAs) or application-specific
integrated circuits (ASICs). We expect that these technologies will deliver a real-time MemComputing
solution for some relevant industrial problems (providing at least 10x–100x speedup).

However, CMOS may not be ideal for low-power applications. In view of this, in [141], nanomagnetic
SOGs have been suggested. In particular, a NAND gate (which is functionally complete) has been proposed
that employs two main properties. First, by appropriately tailoring stray-field interactions between
magnetized nanomagnetic islands one can enforce the logic proposition of the gate with equal population of
all correct states. Second, a local dynamic error suppression scheme can be applied to limit the time spent in
excursions between logically correct states, as a result of thermal fluctuations.

Another interesting research direction is to use spintronic resistive memories to build SOGs and their
circuits [142]. For instance, magnetic tunnel junctions, controlled by an electric current or a magnetic field,
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Figure 20. Left: Schematic of a self-organizing gate: the gate attempts to satisfy its logical proposition irrespective of whether the
signal comes from the traditional input or output. This is possible thanks to the dynamics of the internal state variables employed
in DCMmodules (right). Reprinted from [136], with the permission of AIP Publishing.

Figure 21. Polynomial scalability of time to solution of 3-SAT instances at fixed clause-to-variable ratio found by simulating
DMMs. Insets: exponential scalability of classical algorithms (stochastic local-search algorithm, WalkSAT, and a survey-inspired
decimation procedure, SID) on the same instances. Reprinted from [142], Copyright (2020), with permission from Elsevier.

can be employed as a low-power realization of these gates. In addition, since antiferromagnets have been
shown to support resistive memory features, one can envision their use in MemComputing for very fast
(THz range) operations.

Advances in science and technology to meet challenges
The technological advances needed to realize the MemComputing paradigm in hardware are defined by
various factors such as the selected technological platform, type of applications these machines will be used
for, and the computing environment they will need to operate in. For instance, the CMOS and hybrid
realizations require advancements in circuit theory that would allow the efficient implementation of the
differential equations in terms of binary electronic circuits.

Moreover, the CMOS realizations of DMMs will require the development of a different theory: the theory
of MemComputing maps. As the changes of states in digital electronic circuits are discrete (at times defined,
e.g. by the clock cycle or cycles), the evolution of binary MemComputing circuits is a map. In this case,
particular care needs to be given to two important aspects of maps that may appear in the transition from
continuous dynamical systems [134]: (i) maps may introduce extra critical points in addition to the ones of
the original dynamical system. These are called ghost critical points. (ii) The basin of attraction of the
equilibrium points may shrink for maps. This direction of study is then very important.

Regarding the type of applications of these machines, we need to stress that typical problem instances of
interest in both academia and industry involve hundreds of thousands or even millions of variables and
constraints. Such problems then would require a level of integration that is not easily achievable outside of
CMOS technology. Therefore, emerging realizations of SOGs and circuits built out of them using
nanotechnology components must also satisfy the high bar of being scalable and possibly compatible with
CMOS.
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Spintronics seems to have many features that would allow such a hybrid CMOS-based realization of
MemComputing [142]. In fact, magnetic tunnel junctions, one of the basic ingredients of spintronics, can
now be integrated with CMOS.

Concluding remarks
We have started this article with an important point worth repeating. The usefulness of any technology
should be first addressed in terms of its end goal. In the case of computing, the goal is to solve problems that
are challenging for us, the users. If a computing machine does not accomplish such a goal, even if
academically interesting, it is not practically useful [134]. In this respect, MemComputing has already shown
several advantages compared to our conventional computing model and other paradigms of current interest,
such as quantum computing. These advantages reflect first in the possibility of emulating DMMs in software,
thus allowing a direct comparison with traditional algorithms. Second, these machines do not rely on
quantum phenomena, like entanglement, to work. Therefore, the path towards hardware is considerably less
challenging than for quantum computers. In fact, DMMs can even be realized using our standard CMOS
technology, providing an opportunity for very-large-scale integration. Finally, we expect MemComputing, or
any other ‘unconventional computing’ paradigm, to extend the reach, and enhance the functions of our
modern computational fabric, not to replace it. In other words, we expect MemComputing machines to play
the role of co-processors specialized to tackle particularly challenging problems.
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Status
Deep learning algorithms have shown that the growing volume and variety of data can be leveraged for
highly accurate predictions and decision-making in many complex problems. A deep neural network (DNN)
typically utilizes millions to billions of weights (i.e. model parameters). Operating over such a large
parametric space facilitates the network with robust inductive biases. Yet, it also presents critical inference
constraints for real-time or low power applications. Especially, DNN’s extensive model size induces excessive
memory accesses to read model weights from off-chip memories and to read/write operands to off-chip
memory and intermediate memory hierarchy. Thus, on a conventional digital hardware, the inference
performance of DNN succumbs to limited processor-memory bandwidth. A radical approach gaining
attention to address the performance challenge is to design alternate non-von Neumann computing modules
that can not only store model weights but also locally process most inference operations within the same
structure. Therefore, using such ‘compute-in-memory’ processing of DNN, high volume data traffic between
processor and memory units can be a verted. Compute-in-memory using conventional CMOS-based
memory structures is especially more promising. Prior works have shown that CMOS-based conventional
memory structures such as SRAM, DRAM, embedded-DRAM, SONOS, and NAND-Flash, etc, can be
adapted for compute-in-memory, thus enabling a rapid and cost-effective adoption of the scheme in
commercial substrates.

Matrix-Vector multiplications (MVM) constitute the dominant computations in a DNN. To leverage
CMOS memories for the storage of model weights and MVM computations, most compute-in-memory
schemes employ a mixed-signal processing. Digital inputs to a DNN layer are converted to analog
representation such as charge [143], current [144], or time [145]. The input vectors are loaded in parallel to
the memory array where the memory cells multiply them with the stored weights in an analog fashion. The
analog output of all memory cells within a column is summed to produce the output of MVM. Especially,
the accumulation of products in many schemes simply reduces to current/charge summation over a wire,
thus further minimizing the necessary workload. The analog MVM outputs are subsequently digitized for
storage and routing to the other processing units.

Among early works on CMOS-based compute-in-memory, Zhang et al presented the processing using an
array of standard six-transistor (6T) SRAM cells [144]. The resulting memory array, however, was vulnerable
to instability under process variability. The challenges were resolved in [143] using 10T SRAM cells which
separated ports for inference and write. While early adoptions of CMOS-based compute-in-memory focused
on binary weights, the schemes were later enhanced for multibit processing to improve the accuracy of DNN.
Detailed survey of compute-in-memory processors was compiled in [146].

Current and future challenges
Most compute-in-memory schemes employ mixed-signal processing which raises critical challenges to
integrate analog circuits such as analog-to-digital converter (ADC), digital-to-analog converter (DAC), and
comparator within the memory structures. For example, in CONV-SRAM [143], to compute the inner
product of l-element weight and input vectors w and x, l-DACs and one ADC are required. Since DACs are
concurrently active, they lead to both high area and power. Since most memory modules are designed using
advanced nanometer node CMOS technologies for energy and area efficiency, designing memory-integrated
analog circuits at the same technology node is challenging. At such advanced technology nodes, the analog
circuits are susceptible to failure under process variability and require complicated calibration processes. Due
to such processing challenges of mixed-signal operations in computing-in-memory, significant research in
the past many years has focused on exploring alternatives to alleviate the implementation complexity,
especially at advanced CMOS nodes.

In [147], time-domain DACs were used to replace analog circuits for DAC implementation. However,
with increasing input precision, either operating time increases exponentially, or complex analog-domain
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Figure 22. Compute-in-SRAM designs exploit analog computations to exploit ‘physics for computing,’ however suffer due to the
use of many digital-to-analog converters (DAC) and analog-to-digital converters (ADC) for each memory array which limits their
scalability and energy efficiency. Novel implementation methods have exploited co-design methods such as transform-domain
neural network operations to overcome these limitations [152]. The co-designed approach has achieved orders of magnitude more
energy efficiency and significant scalability over the traditional compute-in-memory implementation.

voltage scaling is necessitated. All digital compute-in-memory processing with SRAM was shown for binary
neural networks, e.g. in [148]. However, for more complex deep learning applications such as object detection
and autonomous navigation, networks with binary-weighted inputs and weights have very low accuracy. The
accuracy of SRAM-implemented binary networks was improved using supported-BinaryNet architecture
in [149] and by leveraging peripherals DACs to implement the support parameters. Implementation
of multiplication-free neural networks was discussed in [150] by adapting deep learning’s inference operator
such that the multiplications between multibit precision weight and input vectors were not necessary.
Novel adaptations of SRAM-based compute-in-memory were discussed where the memory structure
was employed for Monte Carlo Dropout (MC-Dropout) in [151]. Recently, neural network transformations
to frequency-domain were exploited to design ADC/DAC-free analog acceleration for multibit precision
input/output in-memory processing while enabling perfect parallelism along input vector and output
vector computations as shown in figure 22 [152]. Such end-to-end co-design methods bridging the design
of nanoscale compute-in-memory structures to mapped algorithm has shown a remarkable promise where
the co-designed structures have shown orders of magnitude improvement over the traditional designs.

Advances in science and technology to meet challenges
Integrating computations and storage invariably demands more area per cell in compute-in-memory.
Meanwhile, state-of-the-art DNNs continue to increase in model-size, thereby demanding higher energy and
area-efficiency of the memory structures. In the future, several complementary efforts must be pursued in
cohesion to improve the area efficiency of compute-in-memory. Compute-in-memory inference
architectures that can robustly operate in more advanced CMOS nodes, such as 7 nm or below, will be
imperative. Compute-in-memory in monolithic and vertically integrated memory structures need to be
pursued. Low and mixed precision DNNs, better suited for compute-in-memory processing, will be needed.
Pruning and compression methods of DNN will be critical. Almost or completely digital architectures will be
needed that maintaining multibit precision operations as well as the advantages of analog mode processing
such as minimizing workload by exploiting physics for computations. In parallel, DNN architectures
themselves are going through a dramatic evolution to improve their computational efficiency. In the last few
years, novel layers such as inception, residual layers, dynamic gating, polynomial layers, self-attention, and
Hypernetworks have been added to the repository of DNN building blocks. Therefore, a critical challenge for
the next generation compute-in-memory accelerators for DNN is to exhibit high versatility in their
processing flow for efficient mapping of these diverse DNN layers into hardware circuits. Especially, many
emerging layers, unlike classical layers, simultaneously correlate multiple variables to enhance computational
efficiency and representation capacity. Therefore, novel compute-in-memory schemes will be needed to map
higher-order processing of the emerging layers within simplified cells.
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Status
In-memory computing (IMC) using emerging non-volatile memories (NVMs) has successfully opened up
new opportunities for future computing paradigm. The NVMs, including resistive random access memory
(RRAM), ferroelectric RAM (FRAM), and magnetoresistive RAM (MRAM), resemble artificial synapses with
adjustable conductance as synaptic weight. In particular, NVM-based synaptic device is provided with
computing and storage functions simultaneously, which eliminates the inefficient data movement between
physically separated processor and memory units in conventional von Neumann computing architectures
(figure 23(a)) [153]. Besides, NVM-based IMC provides massively parallel computation in a crossbar
configuration to further boost the computing efficiency. Therefore, an enormous amount of research has
been devoted to developing NVM-based synaptic devices for building a high energy- and area-efficient
computing hardware

RRAM with inherently two-terminal structure ensures a compact and high-density synaptic array that
simply performs the multiplication of the input signal and synaptic weight state with high computing
parallelism in the neural network. Therefore, fruitful results from the device-, circuit-, and system-level
demonstrations have been extensively presented [154].

The revival of FRAM has rapidly attracted increasing attention since the unprecedented discovery of
ferroelectricity in hafnium oxide (HfO2) [155], where the ferroelectric HfO2 successfully solved the
limitations of complementary metal-oxide-semiconductor (CMOS) process incompatibility and scalability
in conventional perovskite oxides. In particular, the HfO2-based ferroelectric field-effect transistor (FeFET)
not only promises fast operating speed and low energy consumption due to the field-driven domain
switching, it also provides stable multi-state with partially switched domains in the ferroelectric. These
superior properties make HfO2-based FRAMs stand out from the currently developed synaptic devices.

MRAM utilizes the spin property of electrons and holds the promise of low power, high speed and high
endurance IMC. Very recently, implementation of IMC artificial neural networks (ANNs) based on MRAM
crossbar array has been demonstrated, offering a potential platform to mimic the brain [6]. After the
commercialization of spin-transfer torque MRAM, recently, the spin-orbit torque MRAM and the
voltage-controlled magnetic anisotropy MRAM as well as the combination of the two effects are under
intensive investigations, targeting further reduction of power and latency.

Current and future challenges
Figure 23(b) summarizes the behaviors commonly found in the NVM-based synaptic devices. Generally
speaking, an ideal synaptic device should have a bidirectional modulation (i.e. potentiation and depression)
in synaptic states that fulfils the requirements of computing and storage. First, the synaptic states should be
non-volatile and free from spatial variation among device-to-device. Second, the synaptic modulation
should be linear and symmetric and without temporal variation from cycle-to-cycle. Besides, high endurance
in synaptic modulation by identical input waveform is important not only to guarantee a sufficient training
epochs but also prevent a time-consuming read-before-write process. Moreover, an ideal synaptic device
should expand in an adequate dynamic range compatible with that of peripheral circuit because the higher
conductance results in additional energy consumption while the lower increases sensing latency. However,
even though a tremendous amount of work has been carried out for searching the holy grail, the truly ideal
synaptic device is still lacking, which has left ample room for improvement and compromise.

Although RRAM-based synaptic device is relatively matured for realizing hardware neural network, it
still inevitably suffers from non-ideal device properties, which significantly impact on accuracy degradation
[156]. Improvements and optimizations from material/device engineering are therefore important. However,
adopting novel materials such as two-dimensional transition metal dichalcogenides (2D TMDs) is still under
scrutiny and thus lacks of statistic data to support its practicability. Moreover, selecting elements must be

49



Nano Futures 8 (2024) 012001 G Finocchio et al

Figure 23. (a) Comparison between conventional computing architecture and NVM-based IMC architecture, where the former
suffers from the inefficient data transfer between physically separated processing and memory units while the latter realizes
computing and storage functions in the same location to boosts the computing efficiency. (b) General behaviors in the
NVM-based synaptic device with bidirectionally adjustable synaptic weight states through the given input waveform. The
non-ideal device properties such as nonlinear/asymmetric weight modulation and temporal/spatial variation are indicated
accordingly.

implemented to suppress the unwanted leakage current and interference from the unselected cells, but the
process complexity is increased. Developing a self-selecting and self-rectifying synaptic device without the
need of selecting element is still challenging.

As for the novel HfO2-based FeFET, integrating the ferroelectric gate stack at font-end-of-line process
compromises the write efficiency and performance. By adding an additional floating gate between
ferroelectric and gate insulator, them-MFMFET [157] not only solved the above-mentioned issues, but it
also provided back-end-of-line (BEOL) fabrication flexibility to ease the hardware design. However, scaling
down the ferroelectric in both vertical (thickness) and horizontal (cell dimension) directions under
BEOL-compatible process temperature while maintaining sufficient remanent polarization is still
challenging. Besides, although FeFET-based synaptic device may improve the variability issue due to the
relatively stable spontaneous polarization, achieving linear synaptic modulation using identical input
waveform is still challenging.

Regarding MRAM, despite its practical advantages in power, endurance and technology maturity, the
difficulty for high-performance IMC hardware stems from the low absolute resistance (∼several kOhm) and
the low on/off resistance ratio (∼300%) of MRAM devices, which bring challenges in implementing
large-scale multi-bit computing, e.g. analogue multiply–accumulate operations. Techniques from
devices/circuits co-engineering to design new computing paradigms or architectures are therefore important.

Advances in science and technology to meet challenges
Although IMC with NVMs is promising for future computing paradigm, it still remains rooms for
improvement. Several possible directions that we anticipate are described as follows:

First, continued optimization and innovation in material/device engineering are the keys, where the
inevitably intrinsic variation and non-ideal device properties could be greatly improved. For instance, 2D
TMDs with ferroelectricity are recently found and reported with promising scalability and reliability [158],
which may shed some light on the hardware neural network. Besides, the recent discovery of aluminum
scandium nitride (AlScN) with superior ferroelectric properties such as high remanent polarization and
tightly distributed coercive field may become another relevant candidate [159]. Moreover, alternative device
structures for different computing paradigms need to be explored. Skyrmionic MRAM devices for reservoir
computing and probabilistic/stochastic computing are good examples to further exploit the device features
[32].

Meanwhile, a neural network evaluating platform with holistic optimizations from device-, circuit-, and
system-level for ANN design guideline and performance prediction is especially crucial to continuously take
pre-emptive actions for constructing future computing hardware. A general standard for measuring the
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synaptic device is usually based on that for the NVMs [160]. However, their characteristics for
application-specific criteria are found to be much relaxed for ANN applications [161]. A more practical
evaluating methods suitable for the synaptic devices is thus required.

Finally, by leveraging the strengths in the NVMs and the matured CMOS components, developing novel
computing architecture with both IMC and digital hardware designs may further relive the device
requirements since the non-ideal properties in the NVM-based synaptic device unavoidably exist. By pulling
together different devices with their superiorities, the hybrid architecture promises the best trade-off that is
surely worth developing.

Concluding remarks
In-memory computing with the emerging NVMs is gaining great momentum in research as the data-centric
tasks no longer be affordable in conventional computing architectures. By taking advantage of the NVM
crossbar array, the NVM-based IMC is promising for massively parallel computation, which successfully
improves the computing efficiency. However, each NVM device has its own issues that are mostly attributed
to the intrinsic and non-ideal device properties, and it therefore remains rooms for improvement. It is worth
mentioning that to pursue a more practical IMC hardware, investigation involving with device, circuit, and
system co-optimization is more desirable compare to that of merely focusing on a single angle. Therefore,
with these driving forces for resolving current challenges in multiple aspects, we anticipate that NVM-based
IMC to be more energy- and area-efficient and continuously pave the way for leading-edge computing
paradigm.
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Status
In the world of exploding data, there is an urgent need for brain-inspired computing that goes beyond
conventional artificial neural networks. Today’s ChatGPT or DALL-E are enabled through large clusters of
GPU/TPU/FPGA architectures, requiring huge levels of energy for training these networks [162].
Conventional machine learning (ML) based on Deep Neural Nets (DNN) is ill-suited for the rapid growth in
edge intelligence due to the considerable cost of wiring and a limit on memory resources. Edge intelligent
machines must analyze rapidly varying situations with very limited energy and memory resources without
relying on a cloud that is either unavailable or unreliable in the face of security breaches, such as autonomous
robots exploring mines, battlefield vehicles navigating enemy terrain, or Mars rovers. For example, 3D
Autonomous Simultaneous Localization and Mapping (ASLAM) for mobile robotics requires offline
calculations for robot actions, traditionally done by deleting out-of-date data using a delayed nearest
neighbor data association strategy [163–165]. Going beyond such a local adaptive mapping and navigation,
one step at a time, becomes completely prohibitive over an expanded time horizon.

New ML sensory data are learned independent of past history. The resulting ‘catastrophic forgetfulness’
(sequential data over-write) requires added hardware and costly synaptic interconnects to deal with, with an
exploding area footprint and energy budget. The challenge with learning sequential data is the
stability-plasticity dilemma, the choice between integrating new knowledge vs remembering previous
knowledge. Reducing overlap among stored internal representations, such as sparse or interleaved learning
partially addresses the dilemma [166]. Connection networks absorb new inputs and adjust synaptic weights
incrementally, thereby preventing sequential learning. Intel’s recent robot [167] relies on a learning phase
where prototype data are moved around but not erased in feature space, punishing the wrong category or
boosting the right category, and only allocating new resources if the error persists and an unknown category
is thereby identified.

Human cognitive abilities provide a contrasting example where the brain encodescontinuous learning
very efficiently with a fixed memory bank, avoiding catastrophic forgetfulness with incremental (and
contextual) learning. The evolved trick is an over-riding hippocampus (HC) that acts as a memory support
structure for a severely resource-constrained (with dense local and otherwise sparse, connectivity [168])
neocortex (NC) that mediates perceptions and decisions. In contrast to brain development which proceeds
from sensory, up through the cortical hierarchy (i.e. bottom-up), later learning proceeds in a top-down
manner directed by the hippocampal system, a dense recurrently connected generative network with the
ability to process and correlate long term multi-dimensional sequences [169, 170] to build a sophisticated
‘World Model’ for the organism (figure 24). In addition to the hardware support structure of a dual memory,
the brain also uses algorithmic techniques to encode episodic memory by hierarchically implementing
depths of representation. Big ideas are built out of association between contexts, event histories and
multi-sensory microscopic details; for instance, reframing a ‘zebra’ as a ‘striped horse’. Holiday might be
contextualized with the sight of an apple pie and the smell of turkey in the oven; subsequently songs by Bing
Crosby would refine that knowledge down to Christmas (figure 25). The process of having a separate dense
hippocampal network directing a sparser neocortical network allows us to avoid catastrophic forgetfulness and
compose coherent long-term semantic memory (lifelong learning) from short, fragmented, conditionally
independent, episodic events and their intermediate representations.
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Figure 24. Neural computation requires spatio-temporal processing involving many modes of processing neuron output events
that includes event-timing between neurons (e.g. optimal path planning) as well as event-timing (e.g. coincidence detection)
within neuron dendrite (e.g. wordspotting). Timing is utilized throughout the neural infrastructure and sensory inputs, between
the bidirectional computation of cortical layers, as well as with hippocampus. The cortex–hippocampus architecture performs
multi-sensory data fusion by constructing meaningful semantics from episodic memories. Integrating this entire computing and
learning biological model into a synthetic system becomes the challenge for next-generation energy-efficient neuromorphic
systems.

Figure 25. (Left) The uncoordinated uploading of sensory data from neocortex to hippocampus during wakeful state, is followed
by a memory rehash through∼10 Hz theta cycles (compressed time stamps), each consisting of∼40 Hz gamma oscillations
(synchronous events), during NREM sleep, allowing the relevant cortical neurons time to connect afresh (synaptogenesis)
through Hebbian overlap.

Current and future challenges
The current and future challenge is to develop neural structures with these hippocampal—cortical inference
and learning systems. Learning and computation requires using neural architectures that might include
input sensors refining their input data (figure 24), processing through bidirectional layers of neurons, and a
hippocampus layer (and related layers) for encoding and training. During awake activity, sensory signals are
processed through subcortical layers in the cortex and the refined outputs reach the hippocampus. During
the sleep cycle, these memory events are replayed to the neocortex where sensory signals cannot disrupt the
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playback. During sleep, hippocampal interactions strengthen the memory representations in the neocortex
by strengthening some synapses and even establishing new synapses.

Building energy efficient brain-like neural systems requires rethinking models of neural computation
utilizing the timing of neural events rather than simply encoding values in number of spikes, not just in
single neurons, but in networks of thousands of neuron components (figure 24). Unlocking these
opportunities requires the efficient use of event-timing and temporal neural encoding as well as modeling
and computationally abstracting the fundamental computations of 100s to 10 000s of cortical neurons (e.g.
neural columns) [168]. These components organize into bidirectional interconnected cortical layers
interacting with other neural layers (e.g. hippocampus) for computation and learning, where the learning
process requires both parameter updates (e.g. synaptic weights) as well as new topologies and components
(e.g. neurogenesis, synaptogenesis, dendritogenesis).

At the architecture and algorithm level, adaptive synaptogenesis (figure 25) relies on minimizing
expensive distal synaptic connections by making them rare, driven by a flagging depth of neuronal activity
and directed by an overseeing hippocampus. Through a replay of time-compressed and context-driven
reconstruction of sensory experience, the hippocampus directs lower-level neocortical neurons into the
appropriate Hebbian adjustment of their synaptic weights through ‘wire-on-the-fly’ generation and
annihilation of distal connectivities, thereby allowing continual learning and eliminating catastrophic
forgetfulness. Replicating this process of synaptogenesis with efficient hardware is an important future
challenge.

Advances in science and technology to meet challenges
Building efficient event-timing networks becomes the primary challenge for synthetic neuromorphic
systems. Extending computation and learning to an energy constrained [162] edge environment, with
acceptable Size Weight and Power (SWaP) is the desired goal [171]. The original neural roadmap to develop a
human cortex and a human brain (2013) showed a potential solution using Si CMOS technology utilizing
the close connection between biological and Si devices [168]. Event-timing networks will require additional
techniques to handle the range of timescales and morphological changes. Neurobiological systems operate
over many orders of magnitude in timing and the learning on that timing and utilize structures like glial (and
other) cells for the timing modulation. To date, many of these neuromorphic techniques using efficient
temporal encoding of events have many untapped engineering application opportunities.

One example uses event-timing for predicting optimal paths through an array of neurons, where an
optimal path is found by the first arriving events in a polynomial resource algorithm (figure 24). Another
example uses coincidence detection of event timing in efficient dendritic processes between a cluster of
dendritic-enabled neurons (figure 24). These techniques require physical computation to efficiently model
the ordinary differential equations (ODEs) as well as the dendritic partial differential equations (PDEs) of
cortical neurons (e.g. pyramidal cells) that includes the large dendritic arborization and as well as networks
(e.g. cortical columns) of these pyramidal cells [168]. Both of these techniques result in significantly higher
energy efficient computations compared to analog operations.

Several emerging nanotechnologies may accelerate and reduce energy cost of brain-inspired
unconventional computation. Algorithmic advances and new device ideas incorporating perhaps
non-traditional devices that are extremely frugal in their use of energy and can communicate with each other
without wires (e.g. dipole coupled nanomagnets) can dramatically increase both SWaP and speed of
computation. For instance, an array of nanomagnets can act as neurons [172, 173], with inter-magnet dipole
coupling acting as synapses, reducing energy consumption in inter-neuron communication dramatically
since dipole coupling is ‘wireless’ and current free. There is no conduction current flow and displacement
current flows only when the weights are changed with electrically generated stress. There is accordingly no
RC delay or area penalty associated with charging wireless interconnects. This can result in dramatic
improvement of SWaP (size, weight and power). The synaptic weights can be modulated by varying the
effective strength of dipole coupling between two nanomagnets fabricated on a piezoelectric substrate with
gates that apply a local potential to the region of the piezoelectric pinched between the nanomagnets. The
potential generates local stress which modulates the energy barriers within the nanomagnets and thereby
modulates the effect of dipole coupling [3].

Concluding remarks
Brain-inspired computing greatly expands the reach of current computing approaches focused on deep
neural networks, recurrent networks, and others that do not utilize the rich and highly energy efficient
neural system computing capabilities. It provides a pathway to lifelong learning, avoidance of catastrophic
forgetfulness, and the ability to compute in extremely resource constrained environments. Building synthetic
physical brain-inspired computing to achieve these cortex-sized goals with drastically improved energy
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efficiency over current digital techniques [162] has a number of opportunities both using analog techniques
in standard CMOS (e.g. [168, 171]) as well as potentially through emerging nanotechnologies
(nanomagnets, memristors and even nano-CMOS).
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