
This is a working paper, and is currently undergoing peer review.

Pathways to national-scale adoption of enhanced geothermal

power through experience-driven cost reductions

Wilson Ricks1∗ Jesse D. Jenkins1

1Princeton University

Abstract

Enhanced geothermal systems (EGS) are one of a small number of emerging energy technologies
with the potential to deliver firm carbon-free electricity at large scale, but are often excluded from
macro-scale decarbonization studies due to uncertainties regarding their cost and resource potential.
Here we combine empirically-grounded near-term EGS cost estimates with an experience curves
framework, by which costs fall as a function of cumulative deployment, to model EGS deployment
pathways and impacts on the United States electricity sector from the present day through 2050. We
find that by initially exploiting limited high-quality geothermal resources in the western US, EGS can
achieve early commercialization and experience-based cost reductions that enable it to supply up to
a fifth of total US electricity generation by 2050 and substantially reduce the cost of decarbonization
nationwide. Higher-than-expected initial EGS costs could inhibit early growth and constrain the
technology’s long-run potential, though supportive policies can counteract these effects.

1 Introduction

There is broad consensus in the macro-energy systems literature that low-cost wind and solar power,
in combination with various forms of energy storage and demand flexibility, can play a central role
in the decarbonization of the electricity sector [1–3]. Nevertheless, studies have also shown that the
cost of complete decarbonization is highly sensitive to the cost and availability of ‘clean firm’ resources
- those that can be relied on to deliver carbon-free generation regardless of weather conditions [4–
6]. Incorporation of even relatively expensive clean firm resources can lower the total cost of a zero-
carbon electricity system by reducing the need to overbuild variable renewable energy (VRE) and storage
resources to meet demand during extended periods of low VRE output [4].

Enhanced geothermal systems (EGS), which employ advanced drilling and reservoir engineering tech-
niques to enable geothermal power generation in areas that lack natural hydrothermal features, are one
emerging energy technology with the potential to fill this clean firm role. With ongoing commercial-scale
demonstration programs and an estimated global resource base of hundreds of terawatts [7–9], EGS is
one of only a handful of technologies that could plausibly deliver new clean firm generation on the scale
and timeline necessary to contribute meaningfully toward mid-century decarbonization goals [10]. Other
potential candidates include nuclear fission and fossil technologies utilizing carbon capture and seques-
tration (CCS), both of which have relatively high technology readiness levels and terawatt-scale resource
potentials [11, 12]. Biomass combustion and reservoir hydropower are both proven technologies and
could also play a clean firm role, but sustainability concerns and resource limitations, including a lack of
undeveloped hydropower potential in many regions of the world and strong demand for biomass in other
economic sectors, mean these technologies will not likely be able to meet the full clean firm power needs
of future electricity systems in most geographies [13–15]. Nuclear fusion and space-based solar power
are both potential sources of nearly unlimited clean firm power, but both require major technological
breakthroughs and have yet to be demonstrated at any scale. Finally, while long-duration energy storage
(LDES) resources with very low energy capacity costs (e.g., geologic storage of electrolysis-derived hydro-
gen or emerging low-cost battery chemistries) can provide sustained generation during VRE droughts,
results from the literature suggest that storage and input energy constraints prevent them from acting
as 1:1 substitutes for firm resources [5, 16]. We therefore consider LDES to be a separate resource class
in this paper.
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Despite its status as one the few potential near-term scalable options in the critical clean firm technol-
ogy category, EGS has only rarely been included in macro-scale energy systems decarbonization studies
to date (see e.g., its omission in Larson et al. [1], Williams et al. [2], and Denholm et al. [3]). In many
cases EGS has been excluded due to data limitations, as comprehensive temperature-at-depth datasets
are unavailable for most regions outside of the contiguous United States. Even where such data is avail-
able, the lack of adequate real-world EGS cost and performance data has in the past forced modelers to
make highly speculative assumptions. Past studies that include EGS in the pool of available resources
have thus focused on scenarios where it is either an undemonstrated technology with prohibitive costs
[3, 17, 18], or a fully-commercialized one available to be deployed at multi-gigawatt scale and at low cost
[17–20].

In the present work we address these gaps in the literature by utilizing newly-available data from
recent EGS demonstration projects to develop an empirically-grounded near-term cost and performance
baseline for the technology. We use these baseline assumptions to develop high-resolution supply curves
for EGS in the contiguous United States, and incorporate these supply curves into an electricity system
capacity expansion model simulating the evolution of the US electricity sector from the present day
through 2050 across multiple sequential planning periods. For EGS and other emerging clean firm
technologies, the model incorporates endogenous experience curves - by which technology costs decline
with increasing deployment as a result of learning-by-doing - and deployment rate limits that constrain
the pace of growth in annual capacity additions. Thus, future scale-up and cost reductions for these
nascent technologies are dependent on their ability to achieve initial commercial uptake.

We find that despite prohibitively high near-term EGS costs in most regions of the contiguous US,
sufficient high-quality geothermal resources likely exist in the western half of the country to enable
commercially-competitive deployment under baseline assumptions in the early 2030s. This early de-
ployment can in turn drive cost reductions via learning-by-doing that enable economic exploitation of
lower-quality and deeper resources, leading to hundreds of gigawatts of EGS deployment nationally by
2050 across a wide range of technology cost and policy scenarios. Long-run EGS deployment in these
scenarios is geographically widespread, with more capacity installed in the eastern US than in the west in
many cases despite a significantly lower quality geothermal resource base. While higher-than-anticipated
EGS costs could delay or prevent early commercialization and constrain long-run deployment potential
to regions with the highest quality resources, targeted near-term policies can counteract these effects.
These results suggest that EGS could play a far larger role in decarbonization of the US electricity sector
than has been previously assumed, and that policies promoting early deployment of EGS and other clean
firm technologies could be of critical importance to the success of long-run decarbonization efforts.

2 Results

2.1 Near-Term Cost Estimates for Enhanced Geothermal Systems

Results from recent public and private MW-scale EGS demonstration projects in the United States have
helped to reduce uncertainties in key cost and performance metrics for the technology, including the cost
of drilling in hard high-temperature basement formations, fracture hydraulic conductivity in engineered
EGS reservoirs, uniformity of flow across wellbore production zones, and hydromechanical behavior of
reservoirs under flexible operating conditions [7, 8, 21]. Here we incorporate data reported from these
projects into an EGS cost model developed in prior work [20], such that assigned values for these
wellfield cost and performance parameters are representative of the current state of the art. We model
a near-term commercial reservoir design consisting of five parallel wells with 2.29 km (7500 ft) lateral
sections spaced at ∼0.24 km (800 ft) intervals horizontally (see Supplementary Figure 1). We assume this
reservoir configuration is achievable after development of approximately 500 MW of demonstration-stage
EGS projects, a figure based on currently contracted capacity [22, 23]. We use this model to estimate
near-term (circa 2030) commercial EGS project capital and operating costs as a function of reservoir
temperature, depth and surface ambient air temperature for over 80,000 candidate project areas (CPAs)
across the continental US, incorporating both deep temperature-at-depth data sourced from Blackwell
et al. [24] and calculated temperature-at-depth values for ‘near-field’ regions immediately surrounding
large hydrothermal reservoirs. Cost modeling and resource base assumptions are discussed in greater
detail in the Methods section and the Supplementary Information. Due to temperature limitations
for existing drilling and stimulation equipment, we consider only resources with reservoir temperatures
≤ 250◦C to be developable initially.

Results of this calculation are shown in Figure 1 in the form of near-term EGS supply curves for
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the three major synchronized electrical interconnections serving the continental US, for resources with
temperatures in the 150-250◦C range (a similar plot including resource with temperatures up to 350◦C
is shown in Supplementary Figure 2). The figure shows unsubsidized project CAPEX (in 2021 USD)
and approximate real levelized cost of electricity (LCOE) as functions of developable EGS potential in
each region for both baseline cost assumptions and low/high cost cases that modify all wellfield costs by
-33%/+50% to reflect remaining uncertainty. Surface plant costs remain unchanged across these cases,
reflecting lower uncertainty.

Total capital costs for the first 100 GW of supply are substantially lower in the Western Intercon-
nection than in the other grid regions, due in part to the availability of near-field resources proximate
to identified hydrothermal reservoirs. Baseline EGS costs start at just under $5000/kW at the best
near-field sites in the western US and increase rapidly thereafter as these limited resources are used up.
Baseline LCOE for near-field EGS resources (∼$55-80/MWh) is competitive with recent power purchase
agreement prices for conventional hydrothermal power [25, 26]. Initial baseline costs for deep EGS re-
sources outside of near-field regions are generally greater than $8000/kW in the Western Interconnection,
and greater than $10,000/kW in the Texas and Eastern Interconnections, with LCOE values much higher
than current wholesale electricity prices even in the low cost case [27]. Wellfield costs account for the
large majority of total CAPEX for all but the highest-quality resources (Supplementary Figure 3).

High-quality geothermal resources that enable low-cost EGS are not evenly spread across the large
grid regions shown in Figure 1. As illustrated in Supplementary Figures 4-9, near-field resources are
concentrated near nine large hydrothermal sites in the western US, with the vast majority surrounding
the Geysers and Salton Sea hydrothermal areas in California. While deep EGS resources are more
evenly distributed across the western US in the Blackwell et al. [24] dataset, high-quality deep resources
elsewhere are concentrated in the Gulf Coast and Appalachian regions.
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Figure 1: Near-term (circa 2030) supply curves for enhanced geothermal systems in US
grid regions. Near-term unsubsidized EGS CAPEX (total capital expenditure per unit of installed
AC electric generating capacity) and approximate real (inflation-adjusted) LCOE as functions of total
developable capacity for the three synchronous grids serving the contiguous US, for resources with reser-
voir temperatures in the 150-250◦C range, under three different wellfield cost scenarios. Contributions
from both near-field and deep resources are shown. Scaling of LCOE with CAPEX is approximate due
to variations in ratios of surface to subsurface capital and operating costs. Monetary values here and
elsewhere in this paper are given in 2021 USD.
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2.2 Experience Curve Analysis of Long-Run EGS Potential

We use multi-stage electricity system capacity expansion modeling with an endogenous representation
of learning-driven cost reductions for EGS and other emerging clean firm technologies - nuclear small
modular reactors (SMRs) and Allam cycle oxycombustion natural gas plants with 100% CCS1 - to assess
potential deployment pathways from 2030 through 2050 within a 15-zone model of the contiguous US
electricity system (Supplementary Figure 10). The analysis assumes that costs for these technologies
follow a single-factor experience curve, such that costs fall by a fixed percentage (the learning rate) for
every doubling of total installed capacity [28–30]. For nuclear SMRs and Allam cycle gas plants we
adopt learning rates of 5% and assumed starting capacities of 500 MW in 2030, based on literature
estimates and announced demonstration projects respectively [29–33]. For EGS we consider learning for
the wellfield and surface binary-cycle power plant separately, with an assumed 15% baseline learning rate
for the wellfield and a 10% baseline learning rate for surface facilities attributable to the more modular
nature of these technologies [30, 34]. We assume that 500 MW-electric of EGS wellfield capacity has been
installed by 2030 under demonstration programs and pilot commercial developments [22, 23], and that
this capacity represents the starting point for wellfield learning. We use the global installed capacity of
∼4 GW of binary-cycle power plants as the starting point for surface plant learning [35]. Only geothermal
resources up to 250◦C are considered developable initially due to off-the-shelf equipment temperature
limitations, and we assume that higher-temperature resources up to a maximum limit of 350◦C are
unlocked gradually as a result of successful development in these lower-temperature environments. We
also impose a 50% limit on annual growth in new capacity additions of EGS and competing clean firm
technologies, to reflect limits on the scale-up of the industry supply chain, workforce, etc. We assume
that EGS plants are able to operate flexibly, as described in Ricks et al. [36] and Ricks et al. [20],
using results from recent field tests to constrain flexible performance. See the Methods section and the
Supplementary Information for further details.

Figure 2 illustrates modeled nationwide deployment pathways for EGS under low, baseline, and high
initial wellfield cost assumptions under two policy scenarios: ‘current policy’ and ‘net-zero policy,’ where
the latter imposes a nationwide requirement for 80% carbon-free electricity in 2035 and ratchets up to
a net-zero economy by 2050, with either a requirement for zero electricity sector emissions by that date
or a $300/tCO2 carbon price for any residual emissions (illustrative of the potential cost of offsetting
carbon removals or societal willingess-to-pay for further mitigation). Results for installed EGS capacity
indicate robust growth in the 2030s at low and baseline costs in all policy scenarios, with deployments
being limited by build rate constraints in early periods. This early growth drives reductions in EGS
costs, primarily in the less-mature wellfield, enabling additional deployments that reduce costs further in
turn. Total installed EGS capacity in 2050 exceeds 250 GW in all of these scenarios, and reaches more
than 850 GW in the low EGS cost, zero-emissions policy scenario. Such extensive deployment is enabled
by substantial learning-driven cost reductions, with surface power plant costs reduced by roughly 50%
compared to the baseline and wellfield costs reduced by 75% or more by the beginning of the final period.

In the high EGS cost case (where the lowest cost near-field resources cost ¿$6,000/kW), deployment is
more sluggish, and the technology fails to achieve large-scale commercial uptake in the early 2030s. This
lack of initial deployments in turn causes costs to remain high, making EGS a less competitive option
even as the value of clean firm power increases in the later stages of decarbonization. In the current
policy scenario, commercial liftoff begins in the late 2030s, leading to only 45 GW of EGS deployed
nationwide by 2050. Greater deployment occurs in the net-zero policy scenarios, particularly when there
is a requirement for zero electricity sector emissions, but still lags behind the deployment levels observed
in the lower-cost cases.

The lower panes of Figure 2 show how deployment of EGS affects wholesale electricity prices in these
scenarios. Under current policy, prices fall continuously through 2050 even without EGS deployment,
but are reduced further by the availability of EGS at low or baseline costs. As shown in Supplementary
Figure 11, EGS deployment also leads to 6-64% lower electricity sector emissions in these scenarios.
Under a net-zero policy requirement, consumer electricity prices rise by 29-85% in the final stage of
decarbonization when EGS is unavailable, reaching $85/MWh in the zero-emissions case. Deployment
of EGS reduces wholesale electricity costs by 22-55% ($13-47/MWh) across the three cost cases. In
particular, the availability of EGS substantially reduces the cost premium associated with achieving a
zero-emissions electricity sector.

1In general we refer to Allam cycle plants as ‘carbon-free’ in this paper due to a lack of direct emissions. Policies or
classifications that categorize technologies based on lifecycle emissions (e.g. technology-neutral clean energy tax credits
modeled here) may not recognize this technology as carbon-free due to upstream methane leakage.
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Figure 2: Trajectories of enhanced geothermal systems deployment, capital costs, and
consumer electricity costs. Results are presented for current policy and net-zero policy scenarios and
for three different EGS cost cases. Capacities are plotted on a logarithmic scale for values below 100
GW and a linear scale thereafter. Consumer electricity costs are calculated as the consumption-weighted
average cost of wholesale power generation, including energy costs, capacity costs, and policy costs or
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emissions) is achieved in 2045 in the net-zero policies scenario.
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2.3 The Role of EGS in the Energy System

Figures 3 and 4 illustrate the modeled evolution of the US electricity sector capacity and energy mixes
over the 2030-2050 period under both current and net-zero policies, for scenarios with and without EGS
available. In all scenarios, wind and solar power account for the vast majority of both installed capacity
and generation. Under current policies and without EGS available (Figures 3 and 4, panel (a)), the system
trends toward use of unabated natural gas as the primary firm complement to wind and solar. Under
current policy, clean firm alternatives are unable to compete with unabated gas power and achieve initial
commercial liftoff in the absence of a national decarbonization mandate (assuming initial unsubsidized
CAPEX of $9,459/kW for nuclear SMRs and $2,777/kW for Allam cycle gas plants). Even under a net-
zero policy, non-EGS clean firm resources see no uptake until the latest stages of decarbonization due
to their high initial costs. Due to lack of early deployment, costs remain high and build rate constraints
limit the scale-up of these resources through 2050, forcing reliance on remaining unabated gas (in the
scenario with a carbon price) or extensive buildout of VREs, batteries, and hydrogen LDES (in the
zero-emission scenario) to meet system reliability needs.

Despite higher average initial costs than competing clean firm technologies in all regions of the country
(Supplementary Figure 12), the existence of limited high-quality near-field geothermal resources in the
western US enables economic deployment of EGS in earlier modeled periods in scenarios where it is
available at baseline costs (Figures 3 and 4, panel (b)). As discussed above, these early deployments
lead to sufficient learning-driven cost reductions and supply chain scale-up to enable substantial EGS
deployment by 2050. When deployed at scale, EGS acts as a clean firm complement to wind and solar
power, substantially reducing the need to retain gas-fired capacity or overbuild VREs and storage (Figures
3 and 4, panel (c)). In net-zero policy scenarios EGS meets nearly all of the country’s clean firm power
needs and supplies up to a fifth of total generation in 2050. As discussed in Ricks et al. [20], flexible
operation of wellfields allows EGS plants to ramp down during periods of abundant VRE generation
and shift output to periods of VRE drought, thereby supporting system reliability while maximizing
utilization of both the subsurface heat resource and low-cost wind and solar power. Supplementary
Figure 13 shows that EGS surface plants are optimally oversized by 25% or more relative to the capacity
at which the wellfield can deliver sustainable baseload power, enabling temporarily increased output
during periods when the system’s capacity needs are greatest and the value of electricity is highest. In
the zero-emissions policy case EGS peak generating capacity is nearly double its baseload generating
capacity, suggesting that it is able to serve as a low-utilization peaking resource in the absence of cost-
effective zero-emissions alternatives.

Although geothermal resources in the western US are much higher quality than those elsewhere in
the country, we find that optimal long-run EGS deployment is not necessarily constrained to this region.
Figure 5 shows optimal regional capacity mixes in 2050 across three selected scenarios with very low
(a), moderately high (b), and very high (c) EGS deployment, and illustrates that while deployment of
high-cost EGS is concentrated in regions with the highest resource quality, installations are much more
evenly distributed when EGS has lower costs or greater system value due to policy. Notably, more EGS
capacity is deployed in the Eastern Interconnection than in the Western Interconnection in both of the
scenarios shown in panels (b) and (c) of Figure 5, with capacity in the east reaching more than double
the capacity deployed in western states in (c). This outcome is primarily attributable to much greater
total electricity demand in the Eastern Interconnection, and EGS makes up a relatively smaller share
of total installed capacity in this region than it does in the west due to higher costs. In all cases, EGS
deployment is lowest in regions with the highest-quality wind power resources.

7



This is a working paper, and is currently undergoing peer review.

1

0

1

2

3

4

5

6

In
st

al
le

d 
Ca

pa
cit

y 
(T

W
)

Current Policy

(a
) E

GS
 U

na
va

ila
bl

e

Net-Zero Policy

1

0

1

2

3

4

5

6

In
st

al
le

d 
Ca

pa
cit

y 
(T

W
)

(b
) E

GS
 A

va
ila

bl
e

at
 B

as
el

in
e 

Co
st

2030 2032 2035 2040 2045 2050

3

2

1

0

1

Di
ffe

re
nc

e 
in

 In
st

al
le

d 
Ca

pa
cit

y 
(T

W
)

2030 2032 2035 2040 2045 2050
Carbon
Price

2050
Zero

Emissions

(c
) D

iff
er

en
ce

be
tw

ee
n 

(b
) a

nd
 (a

)

Hydrothermal
EGS
Biomass

Hydropower
Existing Nuclear
Nuclear SMR

Coal
Natural Gas
Natural Gas with 100% CCS

Solar PV
Wind
Pumped Hydro

LI Battery
Hydrogen Electrolysis
Hydrogen Turbine
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10



This is a working paper, and is currently undergoing peer review.

2.4 Sensitivity of Outcomes

The results presented in previous sections are sensitive to uncertainties in policy conditions, costs for
non-EGS energy technologies, as well as assumptions regarding EGS learning rates, performance, and
resource availability. As noted above and illustrated in Figure 2, high upfront costs can delay commercial
liftoff of EGS and limit the technology’s long-run deployment. Policy solutions specifically designed to
address the challenge of early deployments for EGS and other clean firm technologies can improve
long-run outcomes. While EGS sees only limited long-run deployment under high cost assumptions
and current policies (Figure 6, panel (a)), long-run deployment of EGS triples under policies that either
amend existing clean electricity investment tax credits (ITCs) to provide an addition 10% capital subsidy
for clean firm power2, mandate 4.5 GW of deployment for all clean firm resources by 2035, or create
technology-agnostic demand for ‘24/7 carbon-free electricity’ equivalent to a small percentage of total
electricity demand in all hours and grid regions [37] (Figure 6, panels (b), (c), and (d), respectively).
These policies all help high-cost EGS achieve earlier initial deployment than it otherwise would, leading
to greater compounding of learning effects and moderately reducing long-run consumer electricity prices
(Supplementary Figures 15 and 16). The effects of supportive near-term policies are less apparent for
EGS in the baseline- and low-cost cases where early deployment is already rate-limited, suggesting that
the value of these policies lies in ensuring achievement of commercial liftoff even under pessimistic initial
cost assumptions. While these policies do help support early deployment other clean firm technologies in
addition to EGS, we do not observe substantial changes in the long-run penetration of these technologies
in any scenario. This phenomenon discussed in greater detail below.

As shown in Figure 7, panel (a), EGS deployment pathways are relatively insensitive to variations in
the cost of VREs, batteries, and long-duration hydrogen energy storage. Variations in the price of natural
gas do lead to notable changes in long-run EGS deployment in the current policy scenario: low gas prices
reduce installed EGS capacity in 2050 by more than 50%, though EGS still reaches ∼100 GW by 2050
in this scenario, roughly comparable in scale to current US nuclear fission fleet. In a net-zero policy
scenario, EGS deployment is initially sluggish with low gas prices, but regains pace with the baseline
scenario as the financial penalty for CO2 emissions from gas dominates the base fuel price in later years.
Notably, we find no change in EGS deployment in a scenario with a 33% reduction in the fixed costs
of nuclear SMR ($6,243/kW initial CAPEX) and Allam cycle gas ($1,833/kW initial CAPEX). While
Allam cycle gas does achieve some initial deployment at this cost, lower learning rates and the expiration
of subsidies for carbon sequestration lead to EGS dominating the clean firm niche beyond the early 2030s.

We observe much greater variability in EGS deployment pathways resulting from changes in EGS-
specific assumptions. Figure 7, panel (b) illustrates that lower assumed EGS learning rates (7.5% vs.
15% for wellfields and 5% vs. 10% for surface facilities) lead to a slower acceleration of deployments
after 2035 and noticeably lower installed capacities in 2050 due to higher costs. Forcing EGS plants to
operate at a constant flow rate rather than flexibly leads to very similar long-run outcomes, though with
a more delayed scaleup. In this case the loss of value from flexibility both constrains the role of EGS in
VRE-dominated 2050 grids and inhibits early deployment, limiting learning opportunities.

Outcomes are also sensitive to variations in the assumed EGS resource base. As shown in Supple-
mentary Figures 4-9, a large share of the most cost-effective EGS resources outside of near-field areas
are located at the greatest modeled depths, in the 6-7 km range. We find that removing these deepest
resources from the available pool (reflecting potential challenges with ultra-deep drilling) does not affect
early EGS deployments but moderately reduces long-run potential. Removal of near-field resources from
the available pool is much more consequential, constraining EGS deployment to nearly nothing in the
current policy scenario and substantially limiting it in net-zero policy scenarios. This result reflects the
critical importance of the near-field resource base as a pathway to early EGS deployments and catalyst
for learning-based cost reductions.

2We assume that Allam cycle gas plants do not qualify for the Section 48E ITC due to upstream methane emissions,
and instead add 10% to the Section 45Q CCS tax credit in this case to reflect similar support to EGS and nuclear SMRs.
See also a case where these respective adders are increased to 20%, shown in Supplementary Figure 14
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Figure 6: Trajectories of enhanced geothermal systems deployments for different policy
support scenarios. Trajectories of EGS deployments under current policy and net-zero policy scenarios,
for cases with and without additional policy support for EGS and other emerging technologies. Capacities
are plotted on a logarithmic scale for values below 100 GW and a linear scale thereafter.
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Figure 7: Trajectories of enhanced geothermal systems deployments for technology cost and
performance sensitivity scenarios. Trajectories of EGS deployments at baseline costs under current
policy and net-zero policy scenarios, for (a) cases varying the costs of competing energy technologies
and (b) cases varying learning rate, performance, and resource base assumptions for EGS. Capacities are
plotted on a logarithmic scale for values below 100 GW and a linear scale thereafter.
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Figure 7 also shows a case where temperature-at-depth data for deep EGS resources from Blackwell
et al. [24] are replaced with similar data from a recent study by Aljubran and Horne [38]. As illustrated
in Supplementary Figures 17-21, the Aljubran and Horne [38] dataset predicts much greater subsurface
temperatures (and therefore lower EGS costs) across most of the contiguous US, though it lacks certain
hot spots in the eastern half of the country that are present in the Blackwell et al. [24] dataset. Despite
these differences in predicted temperature, national EGS deployment trajectories are nearly identical
between the two datasets.

Although the above result suggests that long-run EGS deployment is insensitive to variations in
the deep geothermal resource base, temperature-at-depth uncertainties may still create considerable
practical barriers that could constrain EGS deployment if left unaddressed. One important challenge
is optimal project siting, which can vary substantially with different temperature-at-depth predictions
even as optimal aggregate EGS deployment remains similar. This phenomenon is illustrated in Figure 8,
which shows a comparison of optimal EGS deployment locations over time for cases using the Blackwell
et al. [24] and Aljubran and Horne [38] temperature-at-depth maps in the net-zero, carbon price policy
scenario, downscaled to the level of individual EGS CPAs. While early deployments are concentrated
at near-field sites in both cases, there is little geographic overlap in the deep EGS deployments that
account for the bulk of capacity installed in later planning stages. Exploration efforts that minimize
deep resource uncertainty and identify promising basins for large-scale development will therefore be
critical to realizing the long-run potential of EGS on a national scale.
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Figure 8: Downscaled least-cost deployment of enhanced geothermal systems by location
and planning period using different deep temperature-at-depth datasets. Downscaled optimal
EGS deployments by location and planning period using different deep temperature-at-depth datasets,
assuming baseline EGS costs and a net-zero policy with a $300/tCO2 carbon price for residual emissions.
Colors indicate the first year EGS is deployed at a given CPA, and individual CPAs may host multiple
surface EGS facilities with reservoirs at different depths. Letters indicate near-field sites, with capacity
deployments by site and planning period shown in the lower left of each panel.
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3 Discussion

The analysis presented here identifies a much broader potential role for EGS in the long-run decar-
bonization of the US electricity sector than similar prior studies, which see wide-scale EGS deployment
restricted to high-potential regions even under low cost assumptions [17–19, 26]. This difference in ob-
served outcomes is largely explained by the present study’s handling of learning-driven cost reductions
for EGS and other emerging clean firm technologies: whereas prior analyses have assumed that these
technologies are available at exogenously-fixed costs and unlimited scale, we endogenously model the
dependence of costs and build rate limits on their deployment history. This direct consideration of ex-
perience curve effects benefits EGS in comparison to its clean firm competitors due to its more modular
nature and greater assumed learning potential. Even when EGS learning rate assumptions are lowered
to be more in line with assumed values for nuclear SMRs and Allam cycle gas plants (Figure 7), the
availability of a limited number of near-field sites with lower effective levelized costs enables earlier EGS
deployments that spur a virtuous cycle of growth and further cost reductions, eventually allowing the
technology to achieve lower cost and greater deployment than its competitors even in regions where EGS
is initially more expensive. These results highlight the nonlinear dynamics of technological competition
in an experience curves framework, whereby technologies that achieve earlier deployment can come to
dominate a market over the long run as learning and growth compound [39].

The learning-driven EGS cost reductions implied by our modeled results are substantial, with wellfield
costs eventually falling by nearly 80% compared to their assumed near-term values in some cases. While
experience curves are a well-studied phenomenon and similarly drastic reductions in cost have been
observed for other energy technologies [40], including unconventional oil and gas production that serves
as a technological analogue to EGS [41], the plausibility of our findings still depends on the existence
of material pathways by which EGS wellfield costs could fall to such a degree. Drilling and stimulation
account for the bulk of wellfield costs, but are relatively mature following their development and use in
oil and gas extraction and may not see substantial additional learning-driven unit cost reductions when
applied toward EGS. On the other hand, the present cost of drilling in the novel hard, deep, and hot
basement environments seen in EGS development remains notably higher than the cost of equivalent
drilling in the shallower sedimentary formations where oil and gas extraction typically occurs, suggesting
that there is ample room for further innovation and drilling cost reductions in the EGS context [26].
More importantly, as shown in Supplementary Figure 22, incremental advances in reservoir design that
increase the achievable flow rate per well or reduce the effective cost of achieving the same flow rate -
larger arrays of well laterals, longer lateral lengths, greater lateral spacing, and open-hole completion
of production laterals - have the potential to reduce wellfield per-kW CAPEX by two thirds or more
without any changes in the unit costs of drilling and stimulation. In combination, these observations
suggest a plausible pathway to the long-run wellfield cost reductions illustrated in Figure 2, though
empirical evidence from the first tranche of large-scale EGS demonstration projects will be needed to
more accurately assess learning potential.

Modeled EGS surface plant cost reductions are smaller than those for wellfields due to the relatively
greater maturity of binary-cycle power plant technology (∼4 GW of global installed capacity today).
While binary-cycle projects today are bespoke, with typical capacities less than 25 MW and systems
custom-built for specific resource temperatures and chemistries, EGS could enable much greater design
standardization due to more direct control over reservoir properties and larger project sizes. Akar et al.
[42] find that the cost of binary-cycle turbines can be reduced by 80% or more through mass standardized
manufacturing, suggesting that the overall surface plant cost reductions illustrated in Figure 2 are a
plausible result of multi-GW scale binary-cycle deployment in an EGS context.

If near-term EGS costs fall within the range depicted in Figure 4.1 and the learning-driven cost
reductions described above can be achieved, our results suggest that EGS could become a key third
source of clean generation in a decarbonized US electricity system alongside wind and solar power.
As demonstrated in prior work, EGS can provide both clean firm generation and long-duration energy
storage via flexible operation [20, 36]. As such, deploying EGS at scale can substantially reduce the
cost of delivering round-the-clock carbon-free electricity on a nationwide basis. Although there is not yet
sufficient temperature-at-depth data to assess EGS potential in most regions of the world, our US-specific
results suggest that EGS could be a major contributor to electricity decarbonization across a wide range of
geographies if the technology can be successfully demonstrated at large scale and its costs can be brought
down via learning-by-doing. Efforts to promote early EGS developments in high-potential regions and
spur learning-driven cost reductions could thus have a facilitating impact on long-term decarbonization
that far exceeds the direct impacts of the projects themselves.
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4 Experimental Procedures

4.1 EGS Cost and Performance Assumptions

In this work we update the EGS costing model described in Ricks et al. [20] to directly incorporate cost
and performance data from recent EGS demonstration projects. We utilize data published by private
developer Fervo Energy for projects in Nevada and Utah, and by the US Department of Energy’s FORGE
project in Utah. Both sets of projects report significantly improved drilling performance compared to
assumptions made in prior studies of EGS, attributable to both learning-by-doing and use of polycrys-
talline diamond drill bits better suited to drilling in hard formations [17, 21, 26]. We use reported drilling
costs of $4.8 million (in 2024 USD) for deviated wells with 2.5 km vertical depth, 1.5 km lateral sections,
and 22.2 cm (8.75 inch) production casing outer diameter reported by El-Sadi et al. [21] to recalibrate
baseline drilling cost curves developed for the US Department of Energy’s GeoVision report [17]. This
recalibration results in a roughly 30% reduction in real drilling costs compared to the GeoVision as-
sumptions, attributable to both the improvements in hard rock drilling performance discussed above and
reductions in the overall drilling producer price index compared to the values used by GeoVision [43].
For wells stimulated via hydraulic fracturing, we adopt a stimulation cost of $141 per lateral meter from
a recent report by the US Energy Information Administration on upstream oil and gas costs [44].

We use reported stimulation and reservoir performance data from a recent 3.5 MW EGS pilot project
in Nevada to inform performance and design assumptions for a near-term commercial-scale reservoir
design [7]. This project involved a single well pair drilled to a total vertical depth of ∼2.5 km, with ∼1
km lateral sections deviated at 90 degrees from the vertical and spaced approximately 0.11 km (365 ft)
apart. Both wells were cased and stimulated in multiple stages, creating an artificial fracture network
with fracture half-lengths of 0.24 km (800 ft) and half-heights of 0.12 km (400 ft) as measured via low-
frequency acoustic sensing. An initial 37-day circulation test at this site achieved a peak production
flow rate of 65 l/s and a sustained rate of roughly 40 l/s, and pressure differentials across the stimulated
reservoir indicated an effective fracture conductivity of 1.2 × 10−13 m3 averaged over an assumed 75
discreet fractures. At the Utah FORGE site, which uses a very similar doublet reservoir design, a
recent 9-hour circulation test demonstrated production flow rates up to 22 l/s - though the use of fewer
stimulated stages and different stimulation techniques in each stage (to assess their relative effectiveness)
makes this project less representative of a commercial design [8].

Given the demonstrated performance metrics from these and other projects, we assume that stan-
dardized reservoirs with the following design parameters can be consistently engineered following 500
MW of further EGS demonstration development:

• Lateral lengths of 2.29 km, more than double the demonstrated length reported in Norbeck and
Latimer [7] but less than half the maximum lateral length in unconventional oil and gas operations
today [45];

• Five lateral wells placed in series, with wells 1, 3, and 5 acting as producers and wells 2 and 4 as
injectors, to maximize utilization of the stimulated area in comparison to a single well pair;

• Lateral spacing of 0.24 km horizontally, equal to the fracture half-length reported in Norbeck and
Latimer [7];

• Stimulation of both injector and producer laterals;

• Effective fracture conductivity of 1.2 × 10−13 m3, as reported in Norbeck and Latimer [7], for an
assumed 150 discreet fractures over the stimulated lateral length; and

• A target steady-state flow rate of 123 l/s per injection well, designed to maintain the reservoir
thermal decline at 35◦C over 30 years, as discussed below.

A schematic of this assumed near-term commercial reservoir design is shown in Supplementary Figure 1.
Baseline drilling cost curves for wells with 2.29 km lateral lengths are shown in Supplementary Figure
23. Beyond the initial reservoir design itself, we assume a standard reservoir water loss rate equivalent
to 7.5% of injected fluid. This assumption is based on average water losses of 10-20% reported by
Norbeck and Latimer [7] after a 37-day circulation test, and the observation by Brown et al. [46] that
water losses at the Fenton Hill EGS test project in 1989 fell substantially over the course of extended
operation. We assume a cost for makeup water of $275/Ml based on default cost assumptions in Mines
[47], though this cost may vary by location. Additional cost and performance assumptions are discussed
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in Supplementary Note 2.1, and the cost model is available as a Python script (‘EGS Costs.py’) online at
Ricks and Jenkins [48]. As a point of reference, our baseline cost model predicts a near-term CAPEX of
$4,886/kW for an EGS plant exploiting a 250◦C resource at a depth of 3.5 km, compared with projected
average values of $4,513 and $6,889 during the 2031-2032 period for identical resources under ‘Advanced’
and ‘Moderate’ cost cases from the latest (2024) edition of the National Renewable Energy Laboratory’s
Annual Technology Baseline [49].

We note that while the assumptions described above are intended to represent a plausible evolution
of EGS reservoir design over the course of a large-scale demonstration program and are grounded in
performance metrics that have been demonstrated as of the time of writing, there are large remaining
uncertainties that could lead to a wide range of near-term cost outcomes. Substantially worse thermal
performance than anticipated could reduce effective reservoir lifetime and require makeup drilling, in-
creasing costs, while advancements in drilling and reservoir engineering could proceed more slowly or
quickly than anticipated. To assess the impact of these uncertainties, we include scenarios where all
subsurface costs are alternatively increased by 50% or reduced by 33%. We do not vary initial surface
plant costs from the baseline, as binary-cycle power plants are a relatively more established technology
and initial cost estimates are more reliably established [47].

4.2 EGS Supply Curves

We use the EGS cost model discussed above in combination with temperature-at-depth and ambient air
temperature datasets (which affect thermodynamic performance of air-cooled binary cycle plants [50]) to
create EGS supply curves and capacity factor time series for the contiguous US. For ‘deep’ EGS resources
in the 3-7 km depth range and outside of known hydrothermal systems, we use temperature-at-depth
maps from Blackwell et al. [24] to assess EGS cost and capacity across over 80,000 individual surface
candidate project areas (CPAs) at 9 km2 resolution. In sensitivity cases where we use deep temperature-
at-depth maps recently published by Aljubran and Horne [38], we match this data to the closest CPAs
in the Blackwell et al. [24] dataset. In all cases we exclude CPAs featuring significant land access
barriers following Young et al. [51], and furthermore remove CPAs immediately adjacent to large known
hydrothermal reservoirs. For ‘near-field’ resources in areas close to these large hydrothermal systems,
we calculate temperature-at-depth values for depths from 2-7 km based on extrapolation of trends from
a detailed study of near-field resources at the Roosevelt Hot Springs geothermal area [52, 53]. For all
near-field and deep CPAs we source hourly surface ambient air temperature data for the 2012 weather
year from NASA’s MERRA-2 dataset [54], matching each EGS CPA to the closest MERRA-2 grid point.
Hourly ambient air temperature is used to calculate hourly EGS capacity factor time series under the
assumption that surface plants are air-cooled binary-cycle, and annual average air temperature is used as
the surface plant’s design point in the EGS cost model. Using this ambient temperature input alongside
resource depth and temperature, the cost model calculates both EGS wellfield cost and developable
capacity and surface plant cost for each CPA. In total we find 90 GW of developable near-field EGS
capacity associated with known hydrothermal sites at depths of 2-7 km and resource temperatures of
150-350◦C in the contiguous US, 8619 GW of developable deep EGS at depths of 3-7 km using the
Blackwell et al. [24] dataset, and 18233 GW of developable deep EGS using the Aljubran and Horne [38]
dataset.

We calculate grid interconnection costs for all CPAs using a transmission routing algorithm described
in Patankar et al. [55] (see Supplementary Figure 24). Combination of these interconnection costs with
the site-specific costs calculated via the EGS costing model leads to the supply curves shown in Figure
1 and Supplementary Figures 2-9 and 17-21. See Supplementary Note 2.2 for more detailed discussion
of the procedure used to build EGS supply curves in this work.

4.3 Electricity System Capacity Expansion

We simulate the evolution of the electricity sector in the contiguous US from the present day through
2050 using a modified version of the v0.3 release of the open-source GenX electricity system capacity
expansion model [56], which optimizes technology investment and operational decisions to minimize
electricity system costs in a given future planning year subject to detailed physical, operational, and
policy constraints [57]. This methodology captures the declining marginal value of energy resources with
increasing penetration and identifies least-cost equilibrium system configurations that replicate outcomes
under both well functioning competitive electricity markets and central planning. It is therefore well
suited to capturing the conditions under which particular energy technologies can be expected to achieve

18



This is a working paper, and is currently undergoing peer review.

commercial uptake. We employ GenX in a zonal configuration that simulates and optimizes expansion
of transmission pathways between 15 large regions of the US grid, which are implicitly assumed to be
internally well-connected. The 15-zone model topology is illustrated in Supplementary Figure 10, and
represents the western interconnection as four zones, the Texas interconnection as a single zone, and the
eastern interconnection as ten zones, with the goal of minimizing intra-zonal transmission constraints. For
this study we modify the public release of GenX in several ways. First, we incorporate the flexible EGS
optimization module presented in Ricks et al. [36] and Ricks et al. [20] that allows for detailed optimization
of EGS plant component sizing and flexible wellfield operations (including in-reservoir energy storage)
while accurately capturing key hydromechanical behavior in the reservoir. The implementation of this
module in the present work is discussed in greater detail in Supplementary Note 2.3. Second, we introduce
a modified handling of electrolytic hydrogen production that directly incorporates firm exogenous clean
hydrogen demand from outside the power sector (e.g., industry, transportation, fuel production) and
optimizes deployment and operations of electrolyzers to meet this, in addition to allowing for deployment
of coupled geologic hydrogen storage and hydrogen combustion turbines for electricity generation. Finally,
we further modify GenX to run at 2-hourly time resolution, modeling 4380 individual timesteps in each
planning year. This choice was made to maintain computational feasibility given the large geographic
scope of the study and heavy computational burden associated with the flexible EGS optimization model.
Preliminary testing indicated that it leads to an error of less than 2% in both optimal system costs and
optimal installed EGS capacity. The full source code for the modified version of GenX used in this work
is available at Ricks and Jenkins [48].

We use GenX to model the evolution of the electricity sector over six planning periods: 2025-2030,
2031-2032, 2033-2035, 2036-2040, 2041-2045, and 2046-2050. The 2031-2035 period is split into two
planning periods to both capture changes in policy in 2032 (expiration of certain credits established
by the Inflation Reduction Act) and capture early learning curve dynamics for emerging technologies
with greater granularity (see below). For each period, we compile demand, technology cost, weather,
and policy input data for GenX using the PowerGenome tool [58], a process that is discussed further
in Supplementary Note 2.4. Unlike previous studies using GenX, we include exogenous demand for
electrolysis-derived hydrogen in each model zone in addition to electricity demand, with hydrogen demand
values adopted from Jenkins et al. [59]. In all periods, new deployment of onshore and offshore wind
power, solar photovoltaic power, lithium ion batteries, combined cycle gas power plants, and open-cycle
gas combustion turbines is permitted. Deployment of emerging clean firm technologies and hydrogen
electrolysis with geologic storage is permitted subject to build rate constraints, as discussed below.

Each modeled period is a myopic optimization, such that the model identifies a least-cost system for
the period’s target year without any foresight into the needs of the system in future periods. In addition
to minimizing computational burden, the choice of a myopic approach reflects the assumption that near-
term planners and investors do not have accurate foresight into electricity demand, technology costs, and
other factors years or decades into the future. Emerging technologies are therefore not deployed on the
basis of expected future learning-based cost reductions if the initial projects are not economically viable.
We run planning periods in sequential order, and existing resource inputs for each period are updated
based on capacity deployed and retired in previous periods. The multi-period optimization is run within
a wrapper script, published online at Ricks and Jenkins [48], that runs individual GenX instances for
each period and updates inputs between periods.

4.4 Cost and Learning Assumptions for Emerging Technologies

It is a widely recognized phenomenon that emerging technologies typically follow ‘experience curves’, (also
known as ‘learning curves’) with costs falling as a function of increasing deployment [28–30]. Although
this observation implies a bidirectional relationship between technology cost and deployment, the vast
majority of energy systems modeling studies treat all technology costs as exogenous assumptions. This
approach is most appropriate when technologies are well-established or globalized, such that changes in
deployment within the modeled region are unlikely to affect costs to a large degree. While this assumption
may hold for technologies like wind, solar, and natural gas power, it is much less appropriate for emerging
technologies that have yet to achieve commercialization at any significant scale. We therefore model
learning endogenously in this work for three emerging technologies: EGS, nuclear small modular reactors
(SMRs), and Allam cycle oxycombustion gas plants. For EGS we model learning for wellfields and
surface plants separately due to different driving factors and technological maturities. While hydrogen
electrolysis is also modeled and is significantly less mature than wind, solar, battery, and gas resources, we
represent its costs in the model exogenously due to the existence of strong policy support and multi-GW
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planned electrolyzer production capacity in both the US and abroad [60].
We assume that nuclear SMRs, Allam cycle gas plants, and EGS first become available for com-

mercial deployment in the 2031-2032 planning period after an exogenously fixed 500 MW of in-model
deployment in the 2025-2030 planning period representing an initial demonstration program and/or
loss-leading commercial deployments. While these 2030 commercialization date and 500 MW start-
ing capacity projections are necessarily approximate, they are generally in line with the capacity and
timeline of announced initial projects in each technology category [22, 23, 31–33]. We note that there
are multiple similarly-sized nuclear SMR demonstrations underway in North America utilizing different
reactor technologies, and that our study implicitly assumes that learning is not shared between these
technologies and that one of them becomes dominant. For EGS binary-cycle surface power plants, we
establish a conservative starting capacity by adding the 500 MW of EGS demonstration capacity to the
approximately 4 GW [35] of current global installed capacity of binary-cycle systems in all applications.

From the 2031-2032 planning stage onward, we assume that the fixed costs of each technology (both
CAPEX and fixed O&M) in planning period p are determined via the following equation:

Cp = C1 · (Yp−1/Y1)
log2(1−b) · rp (1)

where Cp is the fixed cost of the technology used as an input for the optimization in period p, C1 is the
initial fixed cost of the technology after approximately 500 MW of demonstration deployment, Yp−1 is
the cumulative capacity of the technology deployed through the planning period prior to period p, Y1

is the installed capacity of the technology upon initial commercialization (in this case 500 MW), and
b is the learning rate - the fraction by which the technology’s costs fall after each doubling of total
installed capacity. We also include a multiplier rp representing small incremental reductions in cost
of 0.5% per year due to ongoing research and development. Input fixed costs for each technology are
therefore 9.6% lower in 2050 than in 2030 if no commercial deployment occurs. The experience curve
calculation described here implicitly assumes that all learning for these technologies is localized in the
US. Simultaneous development in other geographies in combination with robust knowledge transfer could
potentially lead to more rapid learning than assumed here. We assume learning rates b of 5% for nuclear
SMR and Allam cycle gas technologies, 10% for EGS binary-cycle surface power plants, and 15% for EGS
wellfields, based on technological analogues and qualitative criteria from the literature [29, 30, 41, 42].
The basis for these assumptions, alongside assumed starting costs C1 for emerging technologies, are
discussed further in Supplementary Note 2.5.

To reflect logistical limitations on supply chain and workforce scale-up, we also adopt constraints that
limit the change in annual deployment rates for the three emerging technologies (EGS, nuclear SMRs,
and Allam cycle), as well as for less-mature hydrogen electrolyzers. Based on observed early growth rates
for other energy technologies [61–63], we adopt a limit of 50% year-over-year growth in the annual rate
of capacity additions for each of these technologies. We assume that deployment rate growth within each
modeled planning period follows this same exponential trajectory, such that total capacity additions in
the last year of a five-year planning period are assumed to be equal to 38% of total additions over the
entire period. For example, the maximum growth rate in a subsequent five-year period is equal to ∼7.6
times the realized growth rate in a prior five-year period. We assume starting capacities of 500 MW
for each emerging technology in 2030 and capacity additions in that year of 200 MW/yr. For hydrogen
electrolyzers we assume a maximum capacity in 2030 of 20 GW with capacity additions of 8 GW/yr that
year.

For EGS resources we also assume that initial commercial development in the 2031-2032 planning
period cannot occur in formations with temperatures greater than 250◦C due to a lack of off-the-shelf
commercial directional drilling and stimulation equipment rated for these temperatures. This initial
maximum temperature threshold is roughly 25◦C higher than the reservoir temperatures encountered at
the Utah FORGE EGS demonstration project, which recently undertook a successful stimulation program
[8]. In subsequent periods, we assume that hotter resources become available in 25◦C temperature bands
if at least 50 MW of development occurred in the immediately previous band in a prior period. Resources
up to 350◦C are therefore developable in the 2046-2050 planning period if commercial deployment begins
in the 2031-2032 period and continuously targets the highest-temperature resources available.

4.5 Limitations and Opportunities

We note several limitations of the present work. First, while we use data from EGS field demonstrations
to constrain uncertainties in several key wellfield cost and performance parameters in this work, there
are important remaining uncertainties that could affect the near-term EGS cost baseline presented here.
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Long-term reservoir thermal decline rates cannot be reliably determined through short-term circulation
tests, and rates that are more rapid than those simulated here could reduce the effective lifetime of EGS
wellfields or require lower flow rates to compensate. Long-term subsurface water loss trends are also
the subject of uncertainty, and will require years of operational data to fully characterize. Substantial
water losses could both incur large additional costs for makeup water and raise sustainability concerns
in drought-prone regions, though the ability of EGS plants to utilize non-potable water may alleviate
these concerns somewhat [17]. These and other EGS performance metrics are also likely to vary based
on geologic conditions (e.g. lithology and state of stress), though the magnitude of this variance is
currently unknown. In general, data from additional commercial-scale EGS demonstration projects
beyond the ones cited here will be necessary to more tightly bound the values and variance of key
reservoir performance parameters across a variety of geologic conditions.

Second, our analysis assumes that EGS developers have sufficient knowledge of subsurface conditions
to site projects optimally and exploit the highest-quality geothermal resources available. In reality there
is significant disagreement between existing temperature-at-depth datasets even in regions where such
projections are available, and direct exploration will likely be required to sufficiently characterize the
actual geothermal resources of any given area. We also assume uniform geologic conditions and seismic
risk profiles in building supply curves due to a lack of sufficiently granular data in either category,
though in reality these will have a nonuniform on the relative viability of EGS development across
various geographies.

Third, we impose a maximum temperature limit of 350◦C on developable EGS resources in this
work due to uncertainties in the viability of hydraulic stimulation in ductile crustal environments above
this temperature and the in-applicability of the reservoir simulations used here to supercritical reservoir
conditions (374◦C and above) [64]. If supercritical geothermal resources can be successfully developed,
this could be a pathway to substantially lower EGS costs than those considered in this work in regions
where such resources are accessible [65].

Finally, while the capacity expansion modeling approach used here evaluates only the economics of
technologies in a cost-optimal evolution of the electricity sector, there are other non-modeled objectives
and phenomena that could affect the deployment of EGS or its competitors to varying degrees. Non-
cost considerations such as land or material requirements, water consumption, climate impacts, real
or perceived project risks (including exploration risk and seismic risk) that affect financing and public
acceptance, air quality impacts, and employment can and do impact private investment and centralized
resource planning decisions in the electricity sector. Given the sensitivity of long-run outcomes to early-
stage deployments in a model considering experience curves, decisions by various actors to preferentially
support particular technologies in their early stages of development could lead to substantially different
long-term outcomes from those that would be observed in a cost-minimizing model. Additionally, value
streams from outside the electricity sector could affect technology deployment trajectories in ways not
modeled here. Heating demand could be particularly relevant to the long-run economics of EGS, which
can generate many times more low-to-medium grade heat than electricity from the same wellfield due to
the fairly low thermal-electric efficiency of binary-cycle surface power plants. The potential impact of
widespread EGS adoption for direct heating applications on both heat decarbonization and EGS learning
trajectories should be a subject of future research.

Data Availability

All GenX and EGS cost model input and results datasets relevant to this study are available online
at Ricks and Jenkins [48]. Additional data are available from the corresponding author on reasonable
request.

Code Availability

The EGS cost model is available as a Python script in the same online repository as the results dataset.
The GenX electricity system capacity expansion model is available open-source at https://github.

com/GenXProject/GenX. Source code for the modified version of GenX used in this work is available in
the same online repository as the results dataset [48].
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