"Nam scrupulo cuique stadia competunt 1200. [Imo 4200]", (Petavius, 1630, p. 266).
For each scruple is 1200 stades, more correctly 4200.
Arc length $L_a$ from scrupula $sc$ to stades $st$, with $st=sc⋅1200$, from stades to $km$, where $km=st⋅0.1575$ (itinerary stades, c.f. Engels, 1985, p. 304), circumference $C$, with $C=sum⋅2$ and radius $R$, with $R=\frac{C}{2\pi}$.
La
Zone sc st km cum km
Borealis Saturn 6,6 7920 1247,4 1247,4
Æstius Jupiter 5 6000 945,0 2192,4
Æquinoctialis Mars 8 9600 1512,0 3704,4
Hiemalis Venus 5 6000 945,0 4649,4
Australis Mercury 5 6000 945,0 5594,4
Colliguntur 30 36000 5670,0
sum 29,6 35520,0 5594,4
Circumference C 59,2 71040,0 11188,8
Radius R 9,4 11306,4 1780,8
Arc length $L_a$ from scrupula $sc$ to stades $st'$, with $st'=sc⋅4200$ (as noted by Petavius), from stades to $km$, where $km=st'⋅0.1575$ (itinerary stades, c.f. Engels, 1985, p. 304), circumference $C$, with $C=sum⋅2$ and radius $R$, with $R=\frac{C}{2\pi}$.
La
Zone sc st' km cum km
Borealis Saturn 6,6 27720 4365,9 4365,9
Æstivs Jupiter 5 21000 3307,5 7673,4
Æquinoctialis Mars 8 33600 5292,0 12965,4
Hiemalis Venus 5 21000 3307,5 16272,9
Australis Mercury 5 21000 3307,5 19580,4
Colliguntur 30 126000 19845,0
sum 29,6 124320,0 19580,4
Circumference C 59,2 248640,0 39160,8
Radius R 9,4 39572,3 6232,6
Arc length $L_a$ from stades $st$ to $km$, where $km=st⋅0.1575$ (itinerary stades, c.f. Engels, 1985, p. 304), circumference $C$, with $C=sum⋅2$ and radius $R$, with $R=\frac{C}{2\pi}$.
La
Zone st km cum km
Borealis Saturn 25200 3969,0 3969,0
Æstius Jupiter 21000 3307,5 7276,5
Æquinoctialis Mars 33600 5292,0 12568,5
Hiemalis Venus 21000 3307,5 15876,0
Australis Mercury 25200 3969,0 19845,0
Colliguntur 126000 19845,0
sum 126000 19845,0
Circumference C 252000 39690,0
Radius R 40107 6316,9
Angle $\alpha°$ and latitude $\phi$, with $\alpha°=\frac{L_a⋅360}{2⋅r⋅\pi}$.
angle phi
unit Zone a° a° cum from to
scrupula Saturn 40,14 40,14 90,00 N 49,86 N
Jupiter 30,41 70,54 49,86 N 19,46 N
Mars 48,65 119,19 19,46 N 29,19 S
Venus 30,41 149,59 29,19 S 59,59 S
Mercury 30,41 180,00 59,59 S 90,00 S
stadia Saturn 36,00 36,00 90,00 N 54,00 N
Jupiter 30,00 66,00 54,00 N 24,00 N
Mars 48,00 114,00 24,00 N 24,00 S
Venus 30,00 144,00 24,00 S 54,00 S
Mercury 36,00 180,00 54,00 S 90,00 S
Zone height $h$ in $km$, with $h_n=r⋅\sin \alpha - h_{[n-1]}$.
km
Zone sc sc' st
Saturn 419,3 1467,6 1206,4
Jupiter 768,2 2688,7 2541,2
Mars 1461,7 5116,0 5138,6
Venus 667,4 2335,8 2541,2
Mercury 244,9 857,2 1206,4
Interestingly, if you don't use the conversion factor suggested by Petavius, one gets (1) the proportions of the Earth, $R_E=6378km$ and the Moon, $R_L=1738 km$ (c.f. Williams, 2024) and also (2) a boundary correspondence of the northernmost circle, Saturno, with an arc length of c. $L_a=4000 km$ and latitude of $\phi=50-54° N$ with the boundaries of the glaciation at the end of the Holocene in Europe, around 11700 years ago or c. 9700 BC (c.f. Walker et al., 2009).
Engels, D. (1985). The Length of Eratosthenes’ Stade. The American Journal of Philology 106 (3): 298–311. http://www.jstor.org/stable/295030.
Petavius, D. (1630). VRANOLOGION sive systema variorvm authorvm. qvi de sphaera, ac sideribvs, eorvmove motibvs Graece commentati sunt. LVTETIAE PARISIORVM: Sumptibus Sebastiani Cramoisy, via Iacobaea, sub Ciconiis. M. DC. XXX. CVM PRIVILEGIO REGIS CHRISTIANISS. https://doi.org/10.3931/e-rara-2004.
Walker, M., Johnsen, S., Rasmussen, S. O., Popp, T., Steffensen, J. -P., Gibbard, P., Hoek, W., Lowe, J., Andrews, J., Björck, S., Cwynar, L. C., Hughen, K., Kershaw, P., Kromer, B., Litt, T., Lowe, D. J., Nakagawa, T., Newnham, R., & Schwander, J. (2009). Formal Definition and Dating of the GSSP (Global Stratotype Section and Point) for the Base of the Holocene Using the Greenland NGRIP Ice Core, and Selected Auxiliary Records. Journal of Quaternary Science 24 (1): 3–17. https://doi.org/10.1002/jqs.1227.
Williams, D. R. (2024). Planetary Fact Sheets. NASA Goddard Space Flight Center. https://nssdc.gsfc.nasa.gov/planetary/planetfact.html.