
Time-Sensitive Networking for Trajectory Tracking

of an Unmanned Ground Vehicle over Wi-Fi

Elena Ferrari

Department of Information Engineering

University of Padova

Padova, Italy

elena.ferrari.7@phd.unipd.it

Dave Cavalcanti

Intel Labs

Intel Corporation

Hillsboro, Oregon, USA

dave.cavalcanti@intel.com

Valerio Frascolla

Intel Deutschland GmbH

Intel Corporation

Munich, Germany

valerio.frascolla@intel.com

Susruth Sudhakaran

Intel Labs

Intel Corporation

Hillsboro, Oregon, USA

susruth.sudhakaran@intel.com

Alberto Morato

National Research Council of Italy

CNR-IEIIT

Padova, Italy

alberto.morato@cnr.it

Stefano Vitturi

National Research Council of Italy

CNR-IEIIT

Padova, Italy

stefano.vitturi@cnr.it

Angelo Cenedese

Department of Information Engineering &

Department of Industrial Engineering

University of Padova

Padova, Italy

angelo.cenedese@unipd.it

Abstract—The demand for precise time synchronization is of
great interest in contemporary networked systems, especially
in the context of converged networks where seamless commu-
nication among devices, actuators, and sensors is imperative.
This has led to the development and adoption of Time-Sensitive
Networking (TSN) and Wireless TSN (WTSN) technologies, with
a particular attention to the IEEE 802.1AS Generalized Precision
Time Protocol (gPTP) standard. In this work, we explore the
role of time synchronization in a wireless network scenario
involving an Unmanned Ground Vehicle (UGV) that has to
track a desired time dependent trajectory. The UGV receives
trajectory waypoints from a secondary station, emphasizing the
importance of precise timing in trajectory tracking. Utilizing
the IEEE 802.1AS standard for wireless time synchronization,
this study investigates the impact of clock synchronization errors
and latency on trajectory tracking. Hence, it demonstrates the
capability and benefits of IEEE 802.1AS in managing device
clocks and facilitating time correction to ensure precise trajectory
tracking despite synchronization errors and latency.

Index Terms—Time synchronization, Wireless communication,
IEEE 802.1AS, UGV, TSN, WTSN

I. INTRODUCTION

With the advent of Industrial Internet of Things (IIoT) there

is a growing interest in creating converged unified networks

since these offer the scalability and flexibility needed in IIoT

applications [1]. To address the still unsolved challenges of

such networks and to create more integrated, predictable, and

standards-based networks, Time-Sensitive Networking (TSN)

and Wireless TSN (WTSN) have been developed [2]–[4]. TSN

capabilities are defined as part of the family of IEEE 802.1

This study was carried out within the PNRR research activities of the
consortium iNEST (Interconnected North-Est Innovation Ecosystem) funded
by the European Union Next-GenerationEU (Piano Nazionale di Ripresa e
Resilienza (PNRR) – Missione 4 Componente 2, Investimento 1.5 – D.D. 1058
23/06/2022, ECS 00000043), and was also partially funded by the European
Commission Horizon Europe SNS JU PREDICT-6G (GA 101095890) Project.
This manuscript reflects only the Authors’ views and opinions, the EC can
not be considered responsible for them.

Standards, the goal of which is to enable converged networks

by ensuring time-synchronization, determinism, low latency,

low jitter, and reliability for time-critical communications,

also in conjunction with cellular networks [5]. The research

community has recently become rather active on the IEEE

802.1AS and the WTSN topics; for instance, authors in [6]

elaborate on how Ethernet TSN and WTSN can synergize

and provide promising results in an industrial control system.

Authors in [7] focus instead on a communication-control co-

design approach targeting use cases with stringent latency

requirements when steering robots in IIoT scenarios.

In this work, we give particular attention to IEEE 802.1AS,

which can operate over wired and wireless links and is a level-

2 profile of the IEEE 1588 Principal Time Protocol (PTP),

which ensures synchronized time transport, source selection,

and notification of impairments such as phase and frequency

discontinuities [8], [9]. Time synchronization allows all the

devices in a converged network to maintain consistent time for

recording transactions. Timestamps can be also used to coordi-

nate actions among distributed devices like sensors, actuators,

and controllers, ultimately enhancing process efficiency.

Time synchronization is a TSN core capability playing a

central role in many fields such as data centers, financial

systems, telecommunications, and especially in manufacturing

systems based on IIoT [10]. One of the most popular applica-

tions in the context of IIoT that could get significant advan-

tages from the introduction of time synchronization is mobile

robotics [11] and, in particular, applications that involve the

use of Unmanned Ground Vehicles (UGVs). As a matter of

fact, when dealing with mobile robots, the choice of employing

WTSN is necessary to enable the UGV to freely move in the

environment without limitations due to wired cabling. Clearly,

in this context, the opportunity to achieve time synchronization

among mobile devices is particularly appealing to improve

the performance figures of the addressed applications. Thus,

to delve into the time synchronization capabilities of WTSN,



we focus on an application in which a UGV has to follow

a trajectory that is dynamically transmitted by another device

via Wi-Fi. We focus on Wi-Fi among the different wireless

technologies specifically to employ the TSN feature, thanks

to the significant enhancements in the latest versions of the

standard [12]. The study is based on realistic simulations using

parameters obtained from practical experiments executed using

real testbeds. Specifically, we focus not only on the benefits

brought by time synchronization but also on the possible

drawbacks that could arise from synchronization errors. In

this direction, we examine different scenarios where various

synchronization errors are injected, including constant and

drifting offsets, i.e. asymmetry in the synchronization of the

clocks. Finally, we explore methods to mitigate the effects of

such errors on the performance of the UGV application.

The paper is structured as follows. Section 2 provides an

overview of the concept of time synchronization, highlight-

ing the relevance of the IEEE 802.1AS standard. Section 3

describes the experimental setup and Section 4 presents and

discusses the outcomes of the experimental sessions. Section

5 concludes the paper.

II. BACKGROUND AND MOTIVATION

In the last two decades, the significance of time synchro-

nization has surged, emerging as a key infrastructure for

distributed systems, such as environmental monitoring, data

fusion, autonomous driving, and power management [8], [13],

[14]. While existing literature extensively addresses the time

synchronization issue, the introduction of IEEE 802.1AS stan-

dard has revolutionized synchronization accuracy, achieving

in some cases nanosecond precision, a notable enhancement

compared to the previous methodologies as, for example,

Network Time Protocol (NTP) [15] and Simple Network Time

Protocol (SNTP) [14], which ensure a millisecond precision

[16]. The IEEE 802.1AS is a core capability within the TSN

domain for wired and wireless, which underscores its central

role in contemporary real-time networked systems.

Studies have showcased the applicability of time synchro-

nization in diverse scenarios as discussed in [17] and [18].

In [17], which highlights the capabilities of WTSN within a

collaborative robotic workcell comprising two robotic arms,

simulating a material handling scenario, the focus lies on

exploring various configurations and devising measurement

methodologies to correlate wireless network performance.

Instead, in [18], the performed analysis focuses again on

a collaborative task, detailing a methodology to align the

Quality of Service (QoS) requirements from the application

layer of the Robotic Operating System 2 (ROS2) and Data

Distribution Service (DDS) middleware with the link layer

transport utilizing WTSN. Differently from these works, we

emphasize the application of IEEE 802.1AS over a simulated

mobile robotic scenario. We delve into the intricacies of

managing time-related offsets and errors in time synchro-

nization, highlighting its critical role in ensuring precision

control of a UGV. In particular, our investigation extends

beyond mere implementation, delving into the nuanced effects

of synchronization error on time-dependent systems. Through

meticulous analysis, we elucidate how precise time synchro-

nization facilitates timely interventions, allowing to effectively

adjust to meet the demands of various tasks. Hence, our

study aims to contribute to the broader understanding of time

synchronization in contemporary distributed systems, such as

the ones involving mobile robotics.

III. EXPERIMENTS SETUP

A. Communication architecture

The system architecture consists of two Wi-Fi stations

(STAs), as shown in Fig. 1. The first STA generates the

desired trajectory to be tracked and simulates the transmission

process to the Slave via User Datagram Protocol (UDP).

Moreover, the second STA receives the packets and computes

the suited linear and angular velocities to reach the specified

waypoint sent in the just received UDP frame. From a time

synchronization point of view, the waypoint generator (WG)

also acts as a Grand Master (GM) while the UGV works as a

Slave, as defined in the IEEE 802.1AS standard.

Fig. 1: Scheme of the employed architecture.

Each transmitted UDP frame consists of 256 Bytes, includ-

ing the following fields.

• header, including sender and receiver device address,

UDP frame length, and checksum

• padding, consisting of four Bytes set to zero to prevent

protocol encoding errors

• timestamp

• packet number

• x desired position, defined in the World Frame FW

• y desired position, defined in the World Frame FW

• θ desired heading angle, defined in the World Frame FW

• actual time, corresponding to the sending time instant

• desired time for the UGV to reach (x, y, θ), calculated

by adding 100µs to the actual time.

The Slave receives UDP frames and computes the suited

linear and angular velocities to navigate toward the designated

waypoint provided by the GM. Subsequently, the velocities

values are published to the appropriate ROS topic.

B. Waypoints trajectory generation

The intended trajectory for the UGV is achieved through a

series of waypoints, ensuring that it reaches the desired pose

(x, y, θ) at a specific and predetermined target time, denoted

as tdes.



The WG generates the trajectory according to the shape

outlined in Eq. (1),

x = sin(ωt)

y = sin(2ωt) (1)

θ = tan−1

(

dx(t)

dy(t)

)

where ω = 2πf with f = 1s−1 and t = 10000 · pkgID ·

10−9, which is expressed in seconds and depends on the UDP

frame number, i.e., pkgID. The resulting desired trajectory

to be tracked is shown in Fig. 2. This has been segmented

into 10000 waypoints, with the WG sending a UDP frame

transmission every 10ms, so that tdes = tsend + 10000000
ns.

Fig. 2: Desired UGV trajectory to track and desired heading

angle.

C. Time synchronization offset addition

To underscore the importance of time synchronization, we

conduct tests involving various offsets between the GM and

Slave clocks to assess their impact on the accuracy of trajec-

tory tracking. In fact, by leveraging time synchronization, both

the sending and the receiving timestamps are known. Hence, to

introduce a synchronization error between the two clocks, we

introduce two types of offsets: offsets manually imposed by

us and offsets extracted from real acquired values. Firstly, we

augment with different constant offsets, specifically 1µs, 10µs,

100µs, and 1ms, the clock of the receiving device. Such clock

variations simulate a consistent synchronization error between

the involved devices, accounting for potential differences in

the internal mechanisms, such as variations in their crystal

oscillators or software offsets in the time synchronization.

Then, two divergent offsets are added, in agreement with

the fact that their values are directly proportional to the packet

number. In such a way, we proportionally increase the offset

by 1µs first and 10µs later with respect to the packet number.

This choice is motivated by the fact that clock synchronization

can drift due to various factors such as hardware imperfections,

temperature fluctuations, malicious attacks, or the absence

of time synchronization. These factors can affect the clock,

accumulating error over time and observing in the end a

significant discrepancy between the clocks of the involved

devices.

To model a real-world scenario, we utilize the acquired

data related to the error on time synchronization over Wi-

Fi 6 operating over 5GHz between two devices, in detail

two Next Unit of Computing (NUC) equipped with an Intel

processor (i5-1135G7) running Ubuntu 20.04. Observing the

density distribution of the acquired data, shown in Fig. 3, we

fit them as a Gaussian Probability Density Function (PDF)

indicated by the red line in Fig. 3.

To simulate this realistic time error, we add a random value

from this distribution to the receiver clock upon each receipt of

a new UDP frame. The randomly generated added time errors

are depicted in green in Fig. 3, where they are compared with

the previously acquired real data.

Fig. 3: In blue it is shown the density of the acquired data

related to the error on time synchronization in a real scenario,

while in red it is given the fitted Gaussian PDF based on

the real data. In green, instead, the random data generated

accordingly with the known Gaussian PDF is shown.

Furthermore, we take into account also the latency in the

communication that would occur in a real-world scenario. The

latency data utilized are related to 256 Bytes UDP packets and

are acquired by measuring the latency between the two NUCs

communicating over Wi-Fi 6 and operating over 5GHz without

TSN enhancements. Leveraging these measures, we construct

the suited distribution utilizing the netem and tc qdisc tools.

The histogram describing the distribution of these acquired

data is illustrated in Fig. 4.

D. UGV controller

With the implementation of time synchronization between

the two devices, the receiver can precisely determine both the



Fig. 4: Histogram illustrating the density of the latency mea-

sures acquired in a real scenario, which are fitted by a PDF

distribution described as the weighted sum of two gamma

distributions, shown with the red line.

sending and the receiving time instants relevant to the same

clock. In a first scenario, the controller given in Fig. 5 was

employed to compute the suited linear and angular velocities

on the receiver side.

Fig. 5: Input and output variables of the controller adopted to

correct the offsets between the involved clocks.

In this configuration, the controller knows the Euclidean

distance and the error between the heading angle of the

next and the last waypoints, (xi, yi, θi) and (xi−1, yi−1, θi−1),
respectively. Additionally, the time duration to reach the next

waypoint, i.e. τ , can be computed as in Eq. (2), thus underlying

the relevance of time synchronization:

τ = tdes − trec (2)

where tdes is the desired time computed by the sender/GM,

while trec indicates the time instant at which the UDP frame

containing the next waypoint is received by the Slave.

Hence, the linear and angular velocities, i.e., v and ω

respectively, can be computed as provided in Eq. (3):

v =

√

(xi − xi−1)2 + (yi − yi−1)2

τ
(3)

ω =
θi − θi−1

τ

To mimic a real system we add some latency in wire-

less communication between devices, since it introduces a

transmission delay, slowing down the transmission of packets.

Therefore, since this delay can be considerable, possibly

causing packets to be lost, time synchronization makes it

possible to know the timestamp at which the packet was sent

and, therefore, calculate the appropriate speed as in Eq. (4).

In this case, the velocities values can be computed taking

into account also tsend, differently from the previous situation

where just tdes and trec are considered, to compensate for the

latency effects. The inputs of the controller and outputs are

given in Fig. 6, according to

v =

√

(xi − xi−1)2 + (yi − yi−1)2

τ2
(4)

ω =
θi − θi−1

τ2

where τ2 = tdes+∆t− trec, with ∆t = trec− tsend describes

the time required to transmit the UDP frame.

Fig. 6: Input and output variables of the controller adopted to

correct the latency.

IV. RESULTS

This section delves into the results obtained in the trajectory

tracking scenario. Specifically, five distinct cases have been

investigated:

1) Neither offset on the receiver clock device nor latency

in the communication channel is added.

2) Constant offset on UGV clock is added. Various constant

offset values, including 1µs, 10µs, 100µs, and 1ms,

have been examined on the UGV clock.

3) Random offset from real experimental data is consid-

ered. A random offset value, drawn from a distribution

representing the typical offset between two clocks in

real-world tests under similar conditions, has been ap-

plied to the UGV clock, accordingly with the distribution

provided in Fig. 3.

4) An increasing offset value, proportional to the UDP

frame number, is added to the UGV clock. Two tests

have been performed. The first one adopting an offset

of 1µs and the second using an offset of 10µs. Both of

them are multiplied by the UDP frame number to create

a direct proportionality between offset and UDP frame

number.

5) Latency is included. Latency has been simulated based

on the real experimental data shown in Fig. 4.



In each of these scenarios, the UDP frames are transmitted

from the waypoint generator to the UGV with a period of

10ms, matching the duration added to the sending time instant

to represent the desired time tdes.

A. First Scenario

In the first scenario, where no offset is introduced in the

UGV clock relative to that of the waypoint generator, the

tracked trajectory is shown in Fig. 7

Fig. 7: Trajectory tracking in the scenario where neither offset

nor latency between the two clocks is added.

When comparing the tracked trajectories with the desired

trajectory, which evolves over time, several factors come into

play. Along with latency (tlat), defined as End-to-End (E2E)

latency, also the computational time on both the two STAs,

i.e. tcomp1
and tcomp2

, must be considered. In the waypoint

generator, the computational time has been computed as the

difference between the timestamp at which it sends the UDP

frame (tsend) and the timestamp at which it starts to generate

the waypoint (tstart), i.e. tcomp1
= tsend− tstart. Conversely,

the computational time required by the UGV is given by

the difference between the timestamp at which the velocities

are published to the ROS topic (tpub) and the timestamp at

which it receives the UDP frame (trec), i.e., tcomp2=tpub−trec .

These include the computational time needed by the waypoint

generator to compute the appropriate (x, y, θ) coordinates and

prepare the UDP frame for transmission (tcomp1
), the latency

(tlat), and the computational time required by the UGV to

receive the UDP frame data and compute the appropriate linear

and angular velocities (tcomp2
). All these factors influence

the trajectory tracking process, as evidenced by the errors

observed in x, y, and θ. The statistics of the errors are

provided in TABLE I, representing the minimum achievable

errors given that the computational times (tcomp1
and tcomp2

)

are inherent and the latency tlat is minimized, as this scenario

has been tested in a localHost environment. Additionally, the

time intervals values for each UDP frame tcomp1
, tlat, tcomp2

and the overall delay are shown in Fig. 8.

In this situation, no UDP frame is considered as lost as all

UDP frames are received prior to the scheduled time at which

the UGV should reach the next waypoint.

mean std

ex[m] 0.062 0.049

ey [m] 0.079 0.061

eθ[rad] 0.222 0.763

TABLE I: Trajectory errors if no offset or latency are added.

(a) Computational time on the
sender simulated device.

(b) Latency between the sender
and receiver simulated devices.

(c) Computational time on the re-
ceiver simulated device.

(d) Sum of tcomp1 , tlat and
tcomp2 .

Fig. 8: Time values for each UDP frame considering the case

with no added offset and latency.

B. Second Scenario

In the second scenario, the tracked trajectory is depicted in

Fig. 9.

Fig. 9: Trajectory tracking results with constant offsets applied

to the UGV clock.

Upon examination, it becomes evident that as the offset

between the two clocks increases, the trajectory tracking per-

formance deteriorates. This degradation is also reflected in the

errors observed in the x, y, and θ coordinates corresponding



to the varying time offsets, as detailed in TABLE II, III, IV,

and V.

mean std

ex[m] 0.058 0.044

ey [m] 0.071 0.057

eθ[rad] 0.200 0.717

TABLE II: Trajectory errors

when an offset of 1µs is

added.

mean std

ex[m] 0.061 0.046

ey [m] 0.078 0.051

eθ[rad] 0.207 0.720

TABLE III: Trajectory er-

rors when an offset of 10µs
is added.

mean std

ex[m] 0.074 0.047

ey [m] 0.107 0.063

eθ[rad] 0.250 0.806

TABLE IV: Trajectory er-

rors when an offset of

100µs is added.

mean std

ex[m] 0.337 0.310

ey [m] 0.391 0.347

eθ[rad] 0.530 0.872

TABLE V: Trajectory errors

when an offset of 1ms is

added.

In these scenarios, synchronization errors between the

clocks contribute to trajectory tracking inaccuracies, with the

magnitude of the error directly proportional to the synchro-

nization error value. Specifically, the comprehensive time en-

compassing the computation, creation, transmission, reception,

and analysis of each UDP frame is illustrated in Fig. 10.

Notably, the overall time is displayed since the computa-

tional times on both the sender and receiver devices remain

nearly constant across all four considered cases.

(a) Adding a constant offset equal
to 1µs.

(b) Adding a constant offset equal
to 10µs.

(c) Adding a constant offset equal
to 100µs.

(d) Adding a constant offset equal
to 1ms.

Fig. 10: Overall delay for each UDP frame considering the

scenarios with constant added offsets.

As in the previous instance, no UDP frame is lost because

the new UDP frame is received by the UGV within a maximum

of 10 ms.

C. Third Scenario

In the third scenario, we simulate the offset accordingly

with the real data acquired as explained in Section 3.C.

Looking at the results in Fig. 11, we can see that the tracked

trajectory almost coincides with the one given without taking

into account any offset (Fig. 7) in agreement with the fact that

the mean and standard deviation of the acquired data are of

−647 ns and 2776 ns, respectively.

Fig. 11: Trajectory tracking result given by adding to the UGV

clock the random values from the normal distribution.

Also the errors of the x, y, θ coordinates of the tracked

trajectory are acceptable, as they are comparable with the ones

given without any added offset or latency, as demonstrated by

the mean and standard deviation of such errors, as shown in

TABLE VI.

mean std

ex[m] 0.071 0.49

ey [m] 0.100 0.071

eθ[rad] 0.278 0.859

TABLE VI: Trajectory errors when an offset based on acquired

real data is added.

Such error values are derived by the offset synchronization

and the time required to compute, send, and analyze each UDP

frame. The total time to do so for each UDP frame and the

contribution of each component, i.e., tcomp1
, tlat and tcomp2

,

are given in Fig. 12.

Coherently with such results, no UDP frame is lost in the

transmission.

D. Fourth Scenario

In the fourth scenario, the tracked trajectories are shown in

Fig. 13.

Observing this, it becomes apparent that the tracked trajec-

tory does not align with the desired trajectory in either case.

This result is confirmed by the coordinate errors character-

ized by an increasing offset of 1µs and 10µs provided in

TABLE VII and VIII, respectively.

Taking into account the case where we added 1µs for every

received UDP frame, knowing that 10000 UDP frames are



(a) Computational time on the
sender simulated device.

(b) Latency between the sender
and receiver simulated devices.

(c) Computational time on the re-
ceiver simulated device.

(d) Sum of tcomp1 , tlat and
tcomp2 .

Fig. 12: Overall delay for each UDP frame considering the

scenario adding an experimental normal offset.

Fig. 13: Trajectory tracking results given by considering a

direct proportionality between the UDP frame number and the

offsets of 1µs and 10µs, respectively.

sent, the UGV can move in the environment since the time

instant at which the UDP frame is received is always before

the last desired time at which the UDP frame has to be in

the next waypoint. Instead, in the second scenario, verified

when we added 10µs to the received time instant times the

mean std

ex[m] 2.809 2.738

ey [m] 1.639 2.184

eθ[rad] 1.435 1.238

TABLE VII: Trajectory er-

rors when an offset of 1µs
times the UDP frame num-

ber is added.

mean std

ex[m] 3.546 1.363

ey [m] 1.618 0.830

eθ[rad] 1.448 1.475

TABLE VIII: Trajectory er-

rors when an offset of 10µs
times the UDP frame num-

ber is added.

number of the UDP frame itself, it is verified that at a certain

point the desired time instant received by the UGV results in

the past with respect to the actual time instant at which the

UDP frame is received. As a consequence, the UGV stops and

cannot move further.

E. Fifth Scenario

The last experiments focus on introducing latency into

the communication between the simulated devices to emulate

a more realistic scenario, closely resembling what would

be encountered under real-world conditions. The impact of

latency on the trajectory tracking problem was explored using

both the controllers to compute the suited linear and angular

velocities, with the results depicted in Fig. 14.

Fig. 14: Trajectory tracking results obtained adding latency

given by acquired experimental data using the first (in brown)

and the second controller (in lime).

As anticipated, incorporating latency into the system and

adopting the first controller, i.e., assuming an unknown send-

ing time instant tsend, leads to increased errors in the x, y, and

θ coordinates of the UGV with respect to the case in which

the sending timestamp is known as provided in TABLE IX.

mean std

ex[m] 0.295 0.285

ey [m] 0.359 0.318

eθ[rad] 0.492 0.784

TABLE IX: Trajectory errors if latency is added and

Controller1 is employed.

However, by leveraging time synchronization standards and

integrating knowledge of tsend while employing the second

controller described in Section 3.D, the UGV is capable of

tracking the desired trajectory, once again achieving perfor-

mance levels equivalent to those obtained without any added

offsets or latency in the system as shown in TABLE X.

Even if, in both the two situations, the overall delays are

the same and their values are given in Fig. 15, thanks to time

synchronization we are able to manage the time and adjust the

UGV clock fulfilling again the task requirements.



mean std

ex[m] 0.051 0.047

ey [m] 0.048 0.045

eθ[rad] 0.130 0.550

TABLE X: Trajectory errors if latency is added and

Controller2 is employed.

(a) Computational time on the
sender simulated device.

(b) Latency between the sender
and receiver simulated devices.

(c) Computational time on the re-
ceiver simulated device.

(d) Sum of tcomp1 , tlat and
tcomp2 .

Fig. 15: Overall delay for each UDP frame considering the

scenario adding experimental acquired latency values.

V. CONCLUSIONS

In conclusion, our study underlines the central role of time

synchronization in trajectory-tracking scenarios, particularly in

contexts where temporal precision is paramount. Through the

shown experiments, we highlight the impact of synchroniza-

tion errors on system performance, affirming the criticality of

precise clock alignment.

Moreover, we have enhanced the ability of the IEEE

802.1AS standard to mitigate synchronization impairments

induced by latency and other factors. By leveraging this stan-

dard, we can effectively correct timing discrepancies, reaching

again the required task requirements and reinstating system

performance to the desired level.

Ultimately, the research demonstrates the intrinsic value

of temporal awareness in navigating time-dependent variables

within the system. In fact, by understanding and effectively

managing time synchronization, we are able to demonstrate

how the knowledge of time can allow to fulfil the task scope,

despite the time-dependent factors that act on the system.

REFERENCES

[1] S. Mumtaz, A. Al-Dulaimi, V. Frascolla, S. A. Hassan, and O. A. Dobre,
“Guest Editorial Special Issue on 5G and Beyond—Mobile Technologies
and Applications for IoT,” IEEE Internet of Things Journal, vol. 6, no. 1,
pp. 203–206, 2019.

[2] S. Sudhakaran, C. Hall, D. Cavalcanti, A. Morato, C. Zunino, and
F. Tramarin, “Measurement method for end-to-end Time synchronization
of wired and wireless TSN,” in 2023 IEEE International Instrumentation

and Measurement Technology Conference (I2MTC), 2023, pp. 1–6.
[3] L. M. Camarinha-Matos, R. Fornasiero, and H. Afsarmanesh, “Collab-

orative networks as a core enabler of industry 4.0,” in Collaboration

in a Data-Rich World, L. M. Camarinha-Matos, H. Afsarmanesh, and
R. Fornasiero, Eds. Cham: Springer International Publishing, 2017, pp.
3–17.

[4] J. Hicking, M.-F. Stroh, and S. Kremer, “Collaboration through digital
integration – an overview of it-ot-integration use-cases and require-
ments,” in Smart and Sustainable Collaborative Networks 4.0, L. M.
Camarinha-Matos, X. Boucher, and H. Afsarmanesh, Eds. Cham:
Springer International Publishing, 2021, pp. 403–410.

[5] A. Larrañaga, M. C. Lucas-Estañ, I. Martinez, I. Val, and J. Gozalvez,
“Analysis of 5g-tsn integration to support industry 4.0,” in 2020 25th

IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA), vol. 1, 2020, pp. 1111–1114.
[6] I. Val, Seijo, R. Torrego, and A. Astarloa, “Ieee 802.1as clock

synchronization performance evaluation of an integrated wired–wireless
tsn architecture,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 5, pp. 2986–2999, 2022.

[7] A. Merwaday, R. Vannithamby, M. Eisen, S. Sudhakaran, D. A. Caval-
canti, and V. Frascolla, “Communication-Control Co-design for Robotic
Manipulation in 5G Industrial IoT,” in 2023 IEEE 21st International

Conference on Industrial Informatics (INDIN), 2023, pp. 1–6.
[8] T. Stüber, L. Osswald, S. Lindner, and M. Menth, “A survey of schedul-

ing algorithms for the time-aware shaper in time-sensitive networking
(tsn),” IEEE Access, vol. 11, pp. 61 192–61 233, 2023.

[9] Y. Kang, S. Lee, S. Gwak, T. Kim, and D. An, “Time-
sensitive networking technologies for industrial automation in wireless
communication systems,” Energies, vol. 14, no. 15, 2021. [Online].
Available: https://www.mdpi.com/1996-1073/14/15/4497

[10] C. J. Bernardos, A. Mourad, M. Groshev, L. M. Contreras, M. M.
Roselló, O. Bularca, V. Frascolla, P. Szilagyi, and S. Robitzsch,
“Using RAW as Control Plane for Wireless Deterministic Networks:
Challenges Ahead,” in Proceedings of the Twenty-Fourth International

Symposium on Theory, Algorithmic Foundations, and Protocol Design

for Mobile Networks and Mobile Computing, ser. MobiHoc ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
328–333. [Online]. Available: https://doi.org/10.1145/3565287.3617608

[11] S. Sudhakaran, I. Ali, M. Eisen, J. Perez-Ramirez, C. Cazan, V. Fras-
colla, and D. Cavalcanti, “Zero-delay roaming for mobile robots enabled
by wireless tsn redundancy,” in 2023 IEEE 19th International Confer-

ence on Factory Communication Systems (WFCS), 2023, pp. 1–8.
[12] V. Frascolla, D. Cavalcanti, and R. Shah, “Wi-Fi Evolution: The Path

Towards Wi-Fi 7 and Its Impact on IIoT,” Journal of Mobile Multimedia,
09 2022.

[13] H. Liao, Z. Zhou, Z. Yao, Z. Mumtaz, and V. Frascolla, “Information
timeliness guaranteed communication and energy control integration in
multi-mode power iot,” 12 2023, pp. 2614–2619.

[14] J. Lee and S. Park, “Time-sensitive network (tsn) experiment in
sensor-based integrated environment for autonomous driving,” Sensors,
vol. 19, no. 5, 2019. [Online]. Available: https://www.mdpi.com/1424-
8220/19/5/1111

[15] “Ntp: The network time protocol,” Apr. 2024, http://www.ntp.org/.
[16] I. W. Paper, “Implementing real-time system using intel time-

sensitive networking capable ethernet controller on linux
operating system,” https://www.intel.com/content/dam/www/central-
libraries/us/en/documents/2022-10/tsn-real-time-profinet-linux.pdf,
2022, accessed: 2024-04-10.

[17] S. Sudhakaran, K. Montgomery, M. Kashef, D. Cavalcanti, and R. Can-
dell, “Wireless time sensitive networking impact on an industrial collab-
orative robotic workcell,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 10, pp. 7351–7360, 2022.

[18] S. Sudhakaran, V. Mageshkumar, A. Baxi, and D. Cavalcanti, “Enabling
qos for collaborative robotics applications with wireless tsn,” in 2021

IEEE International Conference on Communications Workshops (ICC

Workshops), 2021, pp. 1–6.


