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Abstract

Filtering algorithms are fundamental for inference on partially observed stochastic dynamic systems,
since they provide access to the likelihood function and hence enable likelihood-based or Bayesian infer-
ence. A novel Poisson approximate likelihood (PAL) filter was introduced by Whitehouse et al. (2023).
PAL employs a Poisson approximation to conditional densities, offering a fast approximation to the like-
lihood function for a certain subset of partially observed Markov process models. A central piece of
evidence for PAL is the comparison in Table 1 of Whitehouse et al. (2023), which claims a large im-
provement for PAL over a standard particle filter algorithm. This evidence, based on a model and data
from a previous scientific study by Stocks et al. (2018), might suggest that researchers confronted with
similar models should use PAL rather than particle filter methods. Taken at face value, this evidence also
reduces the credibility of Stocks et al. (2018) by indicating a shortcoming with the numerical methods
that they used. However, we show that the comparison of log-likelihood values made by Whitehouse
et al. (2023) is flawed because their PAL calculations were carried out using a dataset scaled differently
from the previous study. If PAL and the particle filter are applied to the same data, the advantage
claimed for PAL disappears. On simulations where the model is correctly specified, the particle filter
outperforms PAL.

This article results from an investigation of the results presented by Whitehouse et al. (2023) (henceforth,
WWR) in their Table 1. WWR were given the opportunity to submit a correction, after we shared the
results of our investigation with them, but they declined. The theory developed by WWR, shows that their
Poisson Approximate Likelihood (PAL) method has some potentially useful scaling properties. This theory is
supported by numerical results, in their Table 1, which erroneously claim to show that PAL has substantially
stronger performance than a particle filter (PF) on an example of scientific interest. We present corrected
results so that researchers considering whether to implement PAL are appropriately informed about its
benefits.

Table 1 of WWR uses a model and data adapted from Stocks et al. (2018) (henceforth, SBH). SBH used
PF to calculate the likelihood for a stochastic dynamic model of rotavirus transmission. SBH found clear
evidence for the importance of including overdispersion in the model for their epidemiological data. This
is significant because most earlier research on population dynamics avoided consideration of overdispersion,
perhaps due to the lack of available statistical methodology for fitting overdispersed nonlinear stochastic
dynamic models. The conclusions of SBH hinge on a comparison of likelihoods, and so the results of
WWR discredit those conclusions by indicating that SBH based their reasoning on inaccurately computed
likelihoods. An important consequence of correcting Table 1 of WWR is that the results of SBH stand
undiminished.

SBH and WWR each fitted three different rotavirus models. The first has equidispersion (i.e., no overdis-
persion) in the measurement model and the dynamic model, and is called EqEq by WWR. The second, EqOv,
includes overdispersion in only the measurement model. The third, OvOv, includes overdispersion in both
these model components. We focus on OvOv, which WWR and SBH both found to be the best fitting model.

We show that the claimed advantage for PAL over PF, on the OvOv model, arose because WWR used
a different scaling of the data from SBH. Two models for the same data can properly be compared by their
likelihood, even if the models have entirely different structures. Allowance for the number of estimated
parameters can be made using a quantity such as Akaike’s information criterion (Akaike, 1974). However,



if data are rescaled, an adjustment is required to make likelihoods comparable. For example, if one model
describes a dataset in grams and another describes it in kilograms, then the latter model will earn an
increased log-likelihood of log(103) for each data point simply because of the change in scale. Presenting a
direct comparison of a likelihood for the data in grams with a likelihood for the data in kilograms would
evidently be inappropriate.

Table 1: AIC for the OvOv rotavirus model, computed using two filtering methods. PAL is the Poisson approximate
likelihood, implemented using the code of WWR. PF is the particle filter, implemented using the R package pomp
(King et al., 2016). Lines 1, 2 and 7 are taken from WWR, and the remainder are our own computations. Line 3
recomputes the previously published value in Line 2, and the small difference is presumably due to rounding in Table 2
of WWR. We used 5 x 10* particles for both PF and PAL. PF was repeated 36 times to reduce the Monte Carlo
variance, but this step was not necessary for PAL due to its lower Monte Carlo variance. PF results were mazimized
using iterated filtering, following the approach of SBH. PAL results were mazximized using coordinate gradient descent,
using the code of WWR.

Method Data Model Parameters AlIC
1. PF Rescaled counts SBH Table 2 of SBH 20134
2. PAL Counts WWR Table 2 of WWR 13778
3. PAL Counts WWR Table 2 of WWR 13799
4. PF Counts WWR Table 2 of WWR 14549
5. PF Counts WWR modified Maximum likelihood 13768
6. PAL Counts WWR modified Matching line 5 13937
7. Benchmark Rescaled counts log-ARMA(2,1) 23043
8. Benchmark Counts log-ARMA(2,1) 12751

SBH fitted their model to a dataset of rescaled counts derived by dividing the original reported count
data by an estimated reporting rate. Thus, SBH fitted to data on the scale of the disease incidence in the
population. By contrast, WWR fitted directly to the reported case count data. The reporting rate used by
SBH varied over time and location, but was generally around 7%. On 3 x 416 data points, this corresponds
to a discrepancy of —1248 log(0.07) ~ 3300 log-likelihood units, largely explaining the difference interpreted
by WWR as evidence supporting PAL (Table 1, comparing lines 1 and 2). The comparison between PAL and
PF can be corrected by applying the method of SBH to the model and data of WWR, or vice versa. Since
the method of SBH is applicable to a more general class of models, and supported by widely-used software,
it was convenient to apply the SBH method to the model and data of WWR. The large discrepancy in
log-likelihood disappears when recomputing the likelihood using PF for the model fitted via PAL (Table 1,
comparing lines 3 and 4). Some discrepancy remains, and we continued our investigation to establish the
cause of this.

Inspection of log-likelihood anomalies (Wheeler et al., 2024; Li et al., 2024) showed that the initial
conditions for the latent process in January 2001 were fixed at values which were incompatible with the
trajectory of the data early in the time series (Figure 3 of Hao, 2024). By contrast, SBH fixed their
initial conditions 6 years before the first measurement, giving time for the system to reach its equilibrium
distribution. Line 5 of Table 1 incorporates the SBH specification of initial values into the model of WWR.
The likelihood for this modified model was then maximized using an iterated filtering procedure similar to
SBH. Comparison of lines 3 and 5 shows that this improvement enables PF to reach the AIC values attained
by PAL, and show a small improvement. Further, at these maximum likelihood parameter values, we found
that PF beats PAL (comparing lines 5 and 6; for line 6 we initialized PAL at the average value of the
stochastic initialization used in line 5).

WWR compared their fitted models with a log-ARMA (2,1) benchmark AIC value of 23043 (line 7). From
this high AIC value, they inferred that all the mechanistic models possessing overdispersion have better
statistical fit than a simple log-linear time series model. However, this AIC value corresponds to SBH’s data,
not the data fitted by WWR. Thus, line 7 can be properly compared only to line 1 but not to any other line
of Table 1. We refitted a log-ARMA(2,1) model to the SBH data and obtained a similar AIC value (23085).
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Figure 1: Log-likelihood computed using PAL and PF for 100 randomly simulated datasets using the model and
parameter values of WWR. Stmulations with one or more zero counts were disqualified since they resulted in errors
for the PAL implementation of WWR. We used 5 x 10* particles for both PF and PAL. PF was repeated 36 times
to reduce the Monte Carlo variance, but this step was not necessary for PAL due to its lower Monte Carlo variance.
The red line corresponds to equality of the two estimates.

Carrying out the same computation for the data fitted by WWR gives a log-ARMA benchmark AIC value of
12751 (line 8). Thus, the statistical fit of the mechanistic model considered by WWR is inferior to a simple
log-ARMA model. This holds for all the variants in lines 2—6 of Table 1, regardless of whether PF or PAL
is used. The goal of mechanistic modeling is not necessarily to beat a simple statistical benchmark, but
falling far below a simple statistical benchmark is an indication that additional model development could
be worthwhile (Wheeler et al., 2024). A correct interpretation of Table 1 is therefore very different to the
conclusions drawn by WWR, who compared line 2 inappropriately to lines 1 and 7.

In the presence of model misspecification, it becomes difficult to compare likelihood evaluation methods.
A likelihood approximation, such as PAL, may potentially obtain a higher value than the exact likelihood if
it compensates for model misspecification. Log-likelihood is a proper scoring rule for forecasts (Gneiting and
Raftery, 2007), and both the particle filter and PAL construct their log-likelihood estimates via a sequence
of one-step forecasts. Therefore, if the model is correctly specified, the approximation error in PAL can only
decrease the expected log-likelihood. We tested this on simulated data for which the model of WWR is
correctly specified. For this simulation study, the particle filter out-performs PAL (Figure 1). On average,
the particle filter likelihood estimate is 25.1 log units higher than the PAL. We know from the benchmark
AIC value in Table 1 (comparing line 8 to lines 2-6) that there is substantial model misspecification.

It is currently unclear why the model of SBH beats the log-ARMA benchmark for their data, whereas the
model of WWR fits more poorly than the log-ARMA model for its corresponding data. Additional rounds of
model development are required to resolve this, for which it is desirable to employ statistical methods that
are broadly applicable both in theory and practice. Particle filter methods meet this criterion since they have
the plug-and-play property (Breté et al., 2009; He et al., 2010) which is not possessed by PAL. Although
WWR have shown that PAL is a potentially useful algorithm with some favorable theoretical properties,
the corrected evidence does not indicate an advantage for using PAL in situations where the particle filter
is effective.

The source code for this article is available at https://github.com/ionides/pal-vs-pf and archived


https://github.com/ionides/pal-vs-pf

at Zenodo. An extended description of our methods, together with additional numerical results, is provided
by Hao (2024).
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