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ABSTRACT 

With increasing wind energy capacity and installation of wind turbines, new inspection techniques are 

being explored to examine wind turbine rotor blades, especially during operation. A common result of 

surface damage phenomena (such as leading-edge erosion) is the premature transition of laminar to 

turbulent flow on the surface of rotor blades. In the KI-VISIR (Künstliche Intelligenz Visuell und Infrarot 

Thermografie – Artificial Intelligence-Visual and Infrared Thermography) project, infrared 

thermography is used as an inspection tool to capture so-called thermal turbulence patterns (TTP) that 

result from such surface contamination or damage. To compliment the thermographic inspections, 

high-resolution photography is performed to visualise, in detail, the sites where these turbulence 

patterns initiate. A convolutional neural network (CNN) was developed and used to detect and localise 

the turbulence patterns. A unique dataset combining the thermograms and visual images of 

operational wind turbine rotor blades has been provided, along with the simplified annotations for the 

turbulence patterns. Additional tools are available to allow users to use the data requiring only basic 

Python programming skills. 
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1 INTRODUCTION 

To achieve global carbon neutrality goals, the number of wind turbines in operation and construction 

is exponentially increasing, with capacity of 906 GW worldwide in 2022 [1]. The rotor blades of wind 

turbines are aerodynamic structures that convert the kinetic energy of the wind into torque, which is 

then used to generate electricity. For efficient conversion, the blades are designed for optimal laminar 

flow in the given wind conditions. Based on the aerofoil shape (which changes along the blade length) 

and angle of attack (the angle at which the incoming flow meets the leading edge of the blade), there 

is an optimal transition line after which laminar flow transitions to turbulent flow. This has been 

extensively studied and simulated in literature [2-4]. However, due to surface 

dirt/irregularity/roughness/damage, especially at the leading edge of the blade, the laminar flow may 

prematurely transition to turbulent flow, effectively reducing the aerodynamic performance of the 

blade at that location [5]. Numerous studies  investigate different phenomena that cause such damage, 

such as airborne particles and rain [6-9], and methods to protect blades against such damage [10]. 

Based on real damage profiles and simulation studies, it has been estimated that the loss of annual 

energy production (AEP) is approximately 2-3.7%, depending on the extent of damage [11]. To detect 

leading edge erosion remotely, multiple techniques are being investigated, with a recent study on 

detecting far-field aerodynamic noise (generated due to turbulent flow) [12]. Another non-contact 

technique that is frequently examined, and was employed in this study, is infrared thermography [6, 

7, 13-15]. The nature of turbulent flow is that it increases the interaction between the air flow and the 

surface of the rotating blade, which effectively increases the heat flux from the air into the blade and 

vice versa. If the temperature of the blade is different from the air (due to the radiation from the sun 

and diurnal temperature variations), the increased convection will cause a local temperature change 

of the blade. This change in temperature can be detected using a suitable infrared thermography 

camera, that is sensitive to minute changes in temperature. The sensitivity of the thermal camera, 

commonly referred to as Noise Equivalent Temperature Difference (NETD) should be low enough to 

detect the induced temperature contrast, commonly in the shape of a wedge. A study of the influence 

of defect characteristics and aerofoil geometry on the detectability of the resulting wedges was 

performed by Jensen et al [13]. Parrey et al. performed an investigation where a model was developed 

to automate the detection of the turbulence patterns in thermographic inspection data [16].  

In the KI-VISIR (Künstliche Intelligenz Visuell und Infrarot Thermografie – Artificial Intelligence-Visual 

and Infrared Thermography) project, infrared thermography is used as a non-contact inspection 

technique to capture thermograms of rotating wind turbine rotor blades from pressure and suction 

sides at different positions (dependent on wind speed, wind direction, and feasibility at the site). In 

order to corroborate the findings in the thermograms and identify potential sources of premature 
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laminar to turbulence transition, high-resolution visual photographs are captured of the same blades 

and perspective by ROMOTIONCAM. The document is structure as follows: section 2 describes the 

methodology adopted to perform the inspections; section 3 provides a description of the publicly 

available dataset comprising of the thermal and visual images, along with some additional tools to aid 

in understanding how the data is provided. The article concludes with Sections 4 and 5 that provide a 

discussion on the data and summarises the next steps, respectively. 

2 METHODOLOGY 

2.1 FIELD INSPECTION 

In total 30 onshore wind turbines were inspected both visually and with thermography from either 

suction or pressure side at various locations within Germany. The inspections were performed from 

the ground and while the turbines were in operation. For the thermal data acquisition, a long-

wavelength infrared camera (specifications provided in Table 1), mounted on a pan-tilt (positional 

head) unit (PTU) is used to sequentially scan the blades. The camera was panned from the hub to the 

root of a blade of a given turbine capturing one section of each blade at a time. 

Table 1 Specifications of the infrared camera used for inspections. 

Infrared 
camera 
model 

Detector Wavelength Detector 
resolution 

NETD Objective 
focal 

length 

Maximum 
frame rate 

(at Full-frame) 

Infratec® 
IR8800 

Cooled Hg1-

xCdxTe MCT 
Focal-

Plane-Array 

7.7-10.4 µm 512 x 640 
pixel; pitch: 

16 µm 

<30 mK 200 mm 200 Hz 

In conjunction with the thermographic inspection a visual inspection with a high-resolution RGB 

camera was performed by ROMOTIONCAM at the same relative positioning to the turbine. The 

technology (patented [17]) of ROMOTIONCAM uses a video camera, which is used for motion 

detection, and a high-resolution photo camera with a telephoto lens installed in a rotating pan-tilt 

head that follows the movement of the rotor blades. The movement of the rotor is constantly 

monitored by the video camera during the inspection, specially developed software evaluates the 

frames, recognises the blade tips, and creates a virtual model that is compared and synchronised with 

the movement of the rotor. This data is passed on to the rotating pan-tilt head in the form of 

movement data and guides the photo camera to selectable sections and angular positions in 

synchronisation with the movement of the rotor. With this technology, the rotor blade section is 

followed and captured visually, thus reducing motion blur and enables the auto-focussing of the visual 

camera. The parameters of the camera are provided in Table 2. A schematic of both systems set up in 
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the field is shown in Figure 1. Both systems are approximately 100-120 m away from the base of the 

wind turbine, with the distance depending on the length of the blade. 

Table 2 ROMOTIONCAM camera parameters 

Photo camera 
Sensor size 

Pixels  Pixel Pitch Objective focal 
length 

Ground Sample 
Distance (GSD) [*] 

35.9 mm x 
23.9mm 

45.7 MP (8256 x 
5504 Pixel) 

4.345 µm 500 mm 0.869 mm/px +/- 0.2 
mm/px 

* The GSD value varies due to the changes in distance during the movement of the rotor blades and recordings from different 
angular positions. 

 

Figure 1 Schematic of how the systems are set up on the field. 

2.2 AI-BASED DETECTION 

A state-of-the-art convolutional neural network (CNN) was developed for the automatic detection and 

localisation of thermographic turbulence patterns (TTP) in thermographic images. CNNs are a class of 

deep learning models specifically designed for processing data with a grid-like topology, such as 

images. CNNs are particularly well-suited for image detection tasks due to their ability to learn spatial 

hierarchies of features automatically and adaptively from input images. This characteristic enables 

CNNs to effectively identify and localize patterns within complex image data.  In the KI-VISIR project, a 

state-of-the-art YOLOv9 architecture was used, which is exemplarily depicted in Figure 2. 

Thermal 

camera PTU

Visual

Camera

(not used) ROMOTIONCAM

Setup

Suction Side (SS)

9 o’clock position

Blade captured in 

sections

Field of view moves 

from hub to tip.

Photo camera
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Figure 2 An example of a YOLOv9 architecture for image classification. Taken from [18] 

YOLOv9 is a single-stage object detection algorithm that analyses an image only once. It comprises a 

backbone for feature extraction, a neck that uses pyramid networks to combine features from multiple 

layers, and multiple heads to detect objects at different resolutions. YOLOv9 adds an auxiliary section 

to improve training reliability by linking input data to target output, which counters information loss 

through deep learning layers. The code for YOLOv9 can be freely downloaded from GitHub at [19] and 

for more information read the accompanying paper [20]. In the KI-VISIR project, the developed model 

was designed for box detection, a specific type of object detection where the model identifies and 

draws bounding boxes around regions of interest—in this case, the TTP areas. The CNN was trained 

and evaluated using a dataset comprising over 2000 thermographic images, each annotated by 

experienced annotators according to an internally determined and validated guideline. The training 

process involved feeding the CNN with these annotated images, allowing the model to learn the 

distinguishing features of TTP. Through iterative learning and optimization, the CNN was able to 

generalize from the training data, thereby enhancing its ability to detect TTP in previously unseen 

images. 

The annotations published within the dataset include detection boxes identifying the TTP areas as 

determined by the CNN model. These detection boxes serve as indicators, showcasing the locations of 

TTP within the thermographic images. The effectiveness of the CNN in detecting and localizing TTP was 

assessed with all relevant metrics (e.g., Recall, Precision, F1-Score, Intersection over Union), 
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demonstrating its potential as a reliable tool for automatic thermographic analysis in various scientific 

and industrial applications. The assessment results are however beyond the scope of this publication. 

3 DATASET 

3.1 OVERVIEW 

This dataset comprises visual images and thermograms acquired using an infrared thermographic 

camera (Bundesanstalt für Materialforschung und -prüfung, BAM) and a visual inspection camera 

(ROMOTIONCAM). Both visual and thermographic inspections were conducted simultaneously on the 

same wind turbines, during their operational phase in 2023 and 2024. This approach was employed to 

capture the influence of damage (possibly leading-edge erosion) on the transition of laminar to 

turbulent flow in the thermographic images. Consequently, the dataset offers a possibility for analysing 

the correlation between visual and thermographic data. The dataset consists of the following: 

• 30 unique wind turbines. The turbines are anonymised, i.e. they are numbered as turbines 1-30. 

All identification markings have been removed. Any identification of turbine type, location, etc. is 

purely coincidental. 

• 90 blades. The blades could have either been captured from the pressure side (PS) or the suction 

side (SS). This is mentioned in the filename and other metadata provided. An example of each is 

given in Figure 3 and Figure 4. 

• 2160 visual images, each in .jpg format and 5400 x 7920 pixels. All identification markings have 

been removed. 

• 1206 thermograms, each an array of 640 x 512 (64-bit floating-point number) temperature values 

in degree Celsius. Thus, the original thermal data is provided (used temperature calibration of the 

IRT camera: -10 - +40 °C). All identification markings have been removed. 

  

Figure 3 Thermogram of a turbine captured from the 
suction side (SS). Filename - Turbine-3_Blade-B_Side-

SS_Clock-9_No-1. 

Figure 4 Thermogram of a turbine captured from the 
pressure side (PS). Filename - Turbine-6_Blade-B_Side-

PS_Clock-9_No-1. 
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3.2 DATASET MANAGEMENT 

The distribution of the data is provided in this section, along with the strategies used for setting the 

filename. Based on the AI-based detection described in Section 2.2, the TTP detected in the 

thermograms have been annotated and provided in the dataset.  

3.2.1 Folders 

The main folder is titled “ki-visir_dataset_v1”. The remaining folders are described in Table 3. (an 

overview schematic of the different folders can be seen in Figure 5). 

Table 3 Folders in the dataset. 

Folder name Description 

images/ [^] Contains all visual images taken with ROMOTIONCAM. 

thermo_npy/ [*] Contains .npy files, which are thermograms with temperature 

values (64-bit floating point numbers) in an array format readable 

with the commonly used NumPy library in the Python 

programming language. These files provide thermal data that 

complement the visual images. 

thermo_images/ [*] Contains the thermograms (arrays) converted to .png file format 

with greyscale colours. A corresponding Python function is 

provided, described in Section 3.3.2, which provides the possibility 

to also produce images with heatmap colours, apart from 

greyscale. 

thermo_annotations/ Contains annotation files for the thermogram arrays (.npy format). 

The annotations are boxes in a .geojson format. The boxes indicate 

areas of thermographic turbulence patterns (TTP). 

thermo_images_annotated/ Contains the combination of thermo_images with the 

thermo_annotations. The corresponding function is provided, 

described in Section 3.3. 
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^Identification markings have been masked in the visual images. 

*Identification markings have been changed to “NaN” or “not a number” values in the NumPy array, and subsequently are 
also not visible in thermal images. 

 

Figure 5 Overview schematic of the different folders in the dataset. 

3.2.2 Filename strategies 

For naming the data files, the strategy is described in Table 4. The variables used are described in the 

following Table 5. Two schematics are provided in Figure 6 and Figure 7 that visually represent the 

variables for ease of interpreting. 

Table 4 Filename description. 

Folder name Description 

images/ “Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side 

of inspection>_<edge of the blade>_No-<blade section 

sequence>.jpg” 

Example: Turbine-1_Blade-A_Side-SS_LE_No-1.jpg 

thermo_npy/ Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side 

of inspection>_Clock-<position of blade>_No-<blade section 

sequence>.npy 

Example: Turbine-1_Blade-A_Side-SS_Clock-3_No-1.npy 

thermo_images/ [*] Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side 

of inspection>_Clock-<position of blade>_No-<blade section 

sequence>.png 

Example: Turbine-1_Blade-A_Side-SS_Clock-3_No-1.png 

D
at

as
et

images

thermo_npy

thermo_images

thermo_annotations

thermo_images_annotated
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thermo_annotations/ Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side 

of inspection>_Clock-<position of blade>_No-<blade section 

sequence>.geojson 

Example: Turbine-1_Blade-A_Side-SS_Clock-3_No-1.geojson 

thermo_images_annotated/ Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side 

of inspection>_Clock-<position of blade>_No-<blade section 

sequence>.png 

Example: Turbine-1_Blade-A_Side-SS_Clock-3_No-1.png 

* The heatmap colouring or grey scaling for the thermo_images is relative to each individual image and is provided as a 
colourbar with each image. The user is free to adjust this for their specific visualisation using the raw data in the NumPy array 
format. In this study, the coldest temperature shown in black and the hottest in white. To enhance the visibility of even small 
temperature differences, the background (primarily sky and clouds) and outliers are removed prior to normalisation. 

Table 5 Variables used in filenames. Schematics for explaining the variables are provided in Figure 6 and Figure 7. 

Variable Description 

turbine_number The turbine numbers from 1 to 30. 

blade_sequence Blade identification; either A, B, or C. 

side of inspection The side of the turbine from which the inspection was taken; 

pressure side (PS) or suction side (SS). 

edge of the blade For visual images, whether the primary perspective was on the 

leading edge (LE) or trailing edge (TE). 

blade section sequence [*] The sequence of blade sections captured from the nacelle to the 

tip. 

position of blade For the thermograms, whether the position of the blade was a 

certain position representative of a clock (3 or 9 o’clock). 

*The thermal images are taken in sections, as described in [21]. Due to difference in spatial resolution of the two camera 
systems and blade lengths across turbines, the total number of sections per blade may differ across turbines. 

 

Figure 6 Schematic to visualise variables linked to data management. 

From the ground From the ground

Suction side (SS) Pressure side (PS)

Blade A

Blade B
Blade C

Clock position 3Clock position 9
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Figure 7 Blade section sequencing example for visual and thermal images. 

3.3 PROVIDED TOOLS 

3.3.1 Metadata 

Metadata corresponding to the dataset have been provided in a comma separated file (.csv). Each 

thermogram and visual image has been referred to in this file to provide the user with additional 

information regarding the inspection. The columns in the metadata are described in, where an example 

is given for the filename “Turbine-6_Blade-A_Side-PS_Clock-9_No-1” which is shown in Figure 4. 

  

Blade section sequencing

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7
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Table 6 Columns in the metadata file. 

Column title Description Example (see Figure 4) 

turbine Identifier for the turbine. Turbine-6 

bladelength_m Length of the blade in metres. 38 

blade Identifier for the blade (A, B, C). B 

blade_side Side of the blade being inspected (Suction Side (SS) / Pressure Side (PS)). PS 

inspection_type Type of inspection performed (image / thermo). thermo 

blade_view Only for visual inspection: the view angle or perspective of the blade in 

the image (Leading Edge (LE) / Trailing Edge (TE)). 

- 

clock_position Only for thermograms: Position of the blade in terms of clock 

orientation (3 / 9 o'clock). 

9 

group Unique name for each set of visual and thermal blade inspection data. Turbine-6_A_PS 

file_sequence Sequence identifier for images/thermograms. A sequence is a set of 

images that belong together and illustrate a whole blade_side. 

85 

image_order Order of the image in the inspection sequence. Goes from left to right 

for visual inspections and 3 o'clock thermograms. Goes from right to left 

for 9 o'clock thermograms (always from hub to the tip of the blade). 

1 

file_name Name of the image or thermogram file. Turbine-6_Blade-B_Side-PS_Clock-9_No-1 

left_blade_m [*] Position of the blade for left image border in metres. 0.12 

center_blade_m [*] Position of the blade for the image center in metres. 4.02 

right_blade_m [*] Position of the blade for right image border in metres. 7.92 
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same_time_image_and_thermo Indicates if the image and thermogram were taken at the same time 

(True/False). 

TRUE 

wind_conditions_kmh Wind conditions in kilometres per hour during the inspection. 14 

weather_conditions General weather conditions during the inspection. Mostly Cloudy 

humidity_rhpercent Relative humidity percentage during the inspection. 50 

temperature_c Temperature in Celsius during the inspection. 19 

comment Additional comments or notes about the inspection. - 

*The variables [left_blade_m, center_blade_m, right_blade_m] may lack precision due to factors such as blade or nacelle movements. While these variables can be utilized to estimate overlap areas 
between images, the accuracy of the estimates may vary across different inspections. Generally, the values obtained from visual inspections tend to be more accurate than those from thermographic 
inspections. 
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3.3.2 Python programming functions 

In addition to metadata, a few Python programming functions have been provided in the 

“ki_visir_helper_functions_v2.py” file that provides users a “quick start” way of using the dataset. The 

functions provided are briefly explained in the Table 7. The script is also well-commented to leave as 

little as possible to interpretation. Basic knowledge of Python and basic Python installation on a 

computer are required. 

Table 7 Python functions provided with the dataset. 

Function Description 

npy_to_image Convert a NumPy array to a greyscale or heatmap image. Returns a 

3D NumPy array each representing the RGB colour channels. 

convert_npy_folder_to_png Convert all .npy files in a folder to .png images with either greyscale 

or heatmap color maps. 

combine_images Combines multiple images into a single large image (for ease of 

viewing) for a specified group. Used within the next function. 

combine_images_by_group Performs the combine_images function based on groups in the 

metadata. 

draw_geojson_on_images Draw polygons from GeoJSON files onto corresponding PNG images 

and save the results. 

4 DISCUSSION 

The dataset indicates the possibility of capturing thermal turbulence patterns (TTP) that may act as an 

indication to wind turbine operators that the rotor blades may have some additional aerodynamic 

losses due to the drag generated. The TTPs can also be identified using an AI-based algorithm. It should 

be noted that the measured temperatures on the rotor blade depend on the following parameters: 

1. internal structure of the rotor blades as well as thermal properties of the used materials; 

2. solar irradiation and reflections from the sun, sky, and ground; 

3. convection depending on the air flow on the rotor blade (laminar/turbulent); 

4. surface emissivity, which is influenced by the paintwork as well as dirt.  

It is thus evident that the laminar flow on the rotor blade is only one of many effects that influence the 

measured surface temperature and that the other effects should always be taken into account when 

interpreting the measured temperatures. This is because thermographic measurements are also used, 

in other cases, to visualise the internal structures of rotor blades at standstill or in idle mode. Figure 8 
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shows a thermographic image of a running rotor blade. The various influences on the measured surface 

temperature can be clearly recognised in this image. In addition to the thermal turbulence patterns 

(TTP), which runs as triangles from the leading edge (bottom) in dark (low temperature), inner 

structure (spar and repairs) and surface features (scratches) are recognisable in the thermographic 

image.  

 

Figure 8 Top: Thermogram of a rotor blade section in operation. Bottom: The same thermogram with annotated features. 

5 SUMMARY 

The presented dataset contains the thermographic and visual images of 30 wind turbines taken in the 

same conditions and the same viewing direction to the wind turbine. This allows a direct spatial 

comparison of the acquired images. The focus of the measurements is to thermally visualise the 

transition from laminar to turbulent flow due to possible leading-edge erosion, amongst other damage 

mechanisms. This document may act as an aid for the user to understand how the data has been 

managed and may guide the user to a “quick-start” with the data. More on the algorithm and analysis 

of the TTP will be available in a follow-up article. 
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