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Abstract 
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Executive Summary 
This deliverable explains how COREnext advances the state-of-the-art in trustworthiness for key 
components of a 6G network infrastructure. Specifically, we report on the prototype status of the 
following components: 

§ FPGA multi-tenancy, 
§ Digital signal processor virtualization, 
§ M³ microkernel-based system, 
§ IoT management, and 
§ Radio link authentication. 

For each component described, we include details on partner collaborations as well as performance 
indicators to be evaluated. 

While this deliverable reports on trustworthiness advances, the sibling deliverables D4.2 and D5.1 
cover acceleration to improve efficiency and the analogue part of radio link authentication 
respectively. Taken together, the components described in these three deliverables will be fitted 
into the overall COREnext architecture in D3.2. The combination delivers significant improvements 
to the trustworthiness and efficiency of future mobile networks.  
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1 Introduction 
Trustworthiness is a fundamental need for future mobile communication networks. Already today, 
these networks process data from diverse clients simultaneously and must withstand cyberattacks 
to offer high service availability. With upcoming use cases such as autonomous driving or 
networked critical infrastructure, this requirement becomes ever more relevant. At the same time, 
the growing data volumes require novel acceleration in the signal processing path, thus increasing 
the complexity of the network. In such an environment, increasing trustworthiness with strong 
hardware-based isolation measures is a key technique to reduce system complexity. Isolation helps 
to separate functional concerns in the network and to protect confidentiality and integrity of data 
flows through the network. We discuss our fundamental design principles in Section 2, before we 
discuss component advancements in Section 3. 

Input to this deliverable is provided by D3.1, which converged to four fundamental component 
advancements, structured along the dimensions of trustworthiness/efficiency as well as 
digital/analogue. In this deliverable, we present our component status for the digital 
trustworthiness quadrant (see Table 1). 

 Digital Analogue 

Efficiency 
Power-efficient signal 
processing 

Power-efficient high-
throughput interconnect 

Trustworthiness 
Heterogeneous compute 
platform with TEEs 

Radio link authentication and 
infrastructure attestation 

Table 1: COREnext component advancements 

The accompanying sibling deliverables D4.2 and D5.1 cover the digital efficiency and analogue 
trustworthiness parts respectively (see Figure 1). In Section 4, we summarize the component costs 
and benefits to distill performance indicators that can be measured for evaluation. Together with 
similar results from D4.2 and D5.1, the component advancements and their performance indicators 
become input to deliverable D3.2, where their fit for the overall COREnext architecture is discussed. 
Ultimately, validation of component systems will happen in work package 6. 

  

Figure 1: Overview of deliverables connected to D4.3 and flow between them 
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2 Trustworthy Orchestration of 
Heterogeneous Compute Resources 

When providing compute resources for 6G workloads, accelerators are key building blocks to 
improve the energy efficiency of the system. However, running computations on a mix of general-
purpose cores and accelerators requires data movement between these heterogeneous compute 
resources. While deliverable D4.2 explains the accelerator advancements themselves in more 
detail, here we discuss how to orchestrate these accelerators to form a trustworthy fabric of 
compute resources. 

A key technique for trustworthiness is isolation. When processing data from different clients or 
running applications from different tenants, the computations must be strictly isolated from each 
other. This means they should be prevented by fundamental mechanisms from reading or 
manipulating each other’s data and code, because read-access would constitute a breach of 
confidentiality and write-access would constitute a breach of integrity. As the isolation mechanism 
itself must be robust against attacks, it must be implemented at an architectural level below the 
user data and applications. Operating systems are one typical layer that provides isolation for 
software. But isolation against hardware-based attacks must itself be located in hardware. 

However, a system where everything is isolated from everything else cannot perform meaningful 
work. Therefore, controlled breakage of the isolation is necessary so that components can 
cooperate to process a workload together. However, such breakage must be governed by an 
access control mechanism. An example mechanism are capabilities, where a component 
owns access rights to other components by holding a capability: Comparable to an entry ticket in 
real life, a capability is an unforgeable token combining a reference to the target component with 
associated access permissions. 

With the question of access control comes the question of resource allocation. Systems 
require policy-making authorities that maintain an overview of the set of resources available and 
make decisions which workload to run on which hardware resources. Consequently, these policy 
components also disseminate corresponding access rights so that the cores and accelerators 
selected to run a given workload can cooperate. At the same time, the policy component can 
enforce high-level platform security properties, such as workloads sharing certain hardware or not. 

Resource allocation is not necessarily a binary decision. Depending on the type of compute 
hardware, it may be possible to partition the hardware and assign shares of it to different clients. 
Partitioning may be possible in space (like assigning a portion of a processing array to one workload) 
or in time (like running one workload for a given time slice and then reassigning the resource to 
another workload). Virtualisation is when the partitioning is implemented without requiring 
application cooperation. Instead, applications are oblivious to virtualisation and instead have the 
illusion of exclusive access to resources. 

With multiple applications sharing common resources, it is important to implement budgeting. 
Applications should be restricted from overstepping their allocated share and should thus be 
prevented from withholding resources from their co-running neighbours. 
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Given virtualized resources, applications become detached from the underlying hardware. This 
decoupling bears the danger of applications falling victim to manipulated infrastructure that does 
claims to provide properties such as secure data isolation but does not actually implement the 
necessary protections. Attestation is a cryptographic mechanism, by which applications can 
check hardware and software resources for their authenticity. Applications can decide, to use 
specific accelerators or remotely hosted compute resources only after a successful attestation 
check. 
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3 Orchestration Component Prototypes 
Within work package 4, the prior deliverable D4.1 has structured the development of digital 
components as illustrated in Figure 2. Here, we cover the lower half of this component progression. 

 

Figure 2: Overview of digital components. 

Table 2 shows, which component utilizes which techniques of the trustworthy orchestration 
toolbox outlined in the previous section. In the following, we explain for each component the 
development and prototype status, interactions between partners, and planned performance 
measurements. 
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FPGA multi-tenancy ✓ ✓ ✓    

Digital signal processor virtualization ✓ ✓ ✓ ✓   

M³ microkernel-based system ✓ ✓ ✓ ✓ ✓ ✓ 

IoT management  ✓ ✓    

Ratio link authentication  ✓    ✓ 

Table 2: Trustworthy orchestration techniques by component 
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3.1 FPGA Multi-Tenancy 
FPGAs in the cloud (Amazon, Microsoft, Alibaba etc.) are big systems available to accelerate specific 
processing. These systems are oversized to allow the implementation of almost any kind of 
algorithm. The cost of FPGA renting is slightly higher than other cloud resources, and most of the 
time, FPGA resources may be shared to increase their use efficiency. Unfortunately, this is 
nowadays not offered by cloud providers most probably for security reasons. In this work package, 
we aim to provide a secure way of sharing FPGA resources among multiple users, and this is called 
multi-tenancy. 

Cloud security is critical for a client when choosing a commercial Cloud Provider (CP). Commercial 
cloud users expect secure remote computation and access to FPGA accelerators with minimal 
impact on their design performance. Security mechanisms need to be adapted for appropriate 
cloud usage. First, the client needs to ensure that its data is kept private. The client does not want 
to disclose sensitive Intellectual Property (IP) and data to the cloud provider. To ensure that, the 
client needs an encrypted channel with the FPGA isolated from the CP. Authentication is another 
important security aspect to establish a secure remote connection between a client and the 
hardware acceleration material. The client needs to ensure that the correct FPGA is used and that 
no other users may access the allocated resources. Authentication is necessary to manage FPGAs 
and different cloud service accesses to mitigate client impersonations and data breaches. CP 
security methods are not transparent concerning data encryption methods, bitstream protection 
and IP theft. To remove this drawback, it is necessary to use methods and protocols which respect 
user privacy and intellectual property. To reinforce security, as presented in Figure 3, an 
intermediate authority between the client and the CP must be introduced. The entity, called 
Trusted Authority (TA) instance, enables isolation between end-users and CP. Often, the TA would 
implicitly be the chip manufacturer for practical and security reasons. It can safely implement 
security mechanisms (e.g. secret keys, Physical Unclonable Functions). From a client’s perspective, 
the TA achieves device authentication and isolation from the CP. From the CP’s perspective, the TA 
implements tasks like FPGA access management and authentication. 

Access control is an important security tool to enforce user authorization rules set by the access 
manager. The user must be authenticated and identified to obtain authorization from CP. 
Additionally, user identification is also necessary to enforce access control rules. To the best of our 
knowledge, any CP proposes multi-tenant FPGA usage. Regarding OpEx and CapEx, multi-tenant 
is highly attractive. Security limitations exist from literature proposals. Our objective is to enhance 
existing solutions and propose a new security scheme for multi-tenant FPGA cloud solutions. The 
security framework must support: FPGA and user authentication, multi-tenancy, scalability, user-
CP isolation, access control, and access sharing. 

We propose TokSek, a token-based multi-tenant FPGA cloud security framework. To the best of 
our knowledge, it is the first framework to introduce the concept of access tokens to the FPGA 
cloud architecture. TokSek is an adaptation of OAuth 2 to share access to FPGA devices instead of 
credentials or applications. TokSek enables a scenario, where an FPGA deployed in the cloud can 
be accessed by multiple tenants. As illustrated in Figure 3, the TA enables isolation between CP and 
end-user. TA is responsible for FPGA access creation and security enforcement. The CP manages 
FPGA resources and co-operates with TA. The TokSek principle is presented in Figure 4 and Figure 



 

D4.3 – Trustworthy Computation and Orchestration 
 

 

 

  

 
13 | 23 

 

5. The protocol is detailed in Figure 6. The implementation is in progress, targeting a Xilinx FPGA. 
Our objective is to evaluate the security framework performance. 

 

Figure 3: Multi-tenant FPGA cloud scenario 

 

Figure 4: TokSek adaptation from OAuth2.0-based protocol 

              

Figure 5: TokSek adaptation from OAuth2.0-based protocol 
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Figure 6: TokSek protocol scheme 

3.1.1 Prototype Status 

The prototype development is ongoing. First, we validate some concepts on an embedded 
platform with some functions done in software. TokSek implementation is in progress in Xilinx 
FPGA target. The objective is to evaluate the performances of the proposed security scheme. In 
parallel, we also started to implement some hardware functions of TokSek on the Carfield platform 
developed by ETH Zürich. 

3.1.2 Interactions with Partners 

Due to the interest of NNF and III-V Lab in RISC-V architecture, some collaborations were started 
in Q3/2023 with ETH Zürich. In this context, we have ported the Carfield platform from ETH to 
the Xilinx VCU118 board used at NNF. 

3.1.3 Planned Performance Measurements 

Following the TokSek prototype building, a validation phase will follow considering some use-cases 
scenarios. This step will be key to further develop cooperation with other project partners. 

3.2 Digital Signal Processor Virtualization 
Modern RAN implementations, including some mostly relying on software, rely on a variety of 
Digital Signal Processors (DSPs) within compute nodes. While the infrastructures are turning to the 
cloud and thus to virtualization, DSPs remain difficult to use for workload containers, sharing this 
resource. Since a DSP does not share the memory and tasks of its host device, a proper and efficient 
sharing and isolation cannot be ensured by the host system hypervisor using the usual resource 
model. An adapted way for the hypervisor to use a DSP and an abstraction for DSPs within 
containers have to be enabled. 

3.2.1 Prototype Status 

This contribution aims to embed in a container a mobile network software relying on a DSP for 
parity check coding. The software is currently being improved on bare metal to achieve the best 
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efficiency possible in the use of the DSP. The mobile network software is already able to be 
embedded in an application container – with Docker or OpenShift -. The next steps will be to figure 
out how to use the DSP within a container and how to share the DSP between multiple containers. 

3.2.2 Interactions with Partners 

This contribution is done by EUR. A collaboration with the FPGA Multi-Tenancy contribution will 
occur. This other contribution is also about sharing resources with different tasks and memory than 
the host system. This collaboration is necessary to solve the complex problem of sharing this kind 
of resources.  

3.2.3 Planned Performance Measurements 

This contribution will have a particular interest in the workload density criterion which is the number 
of workload instances that can be fitted on a single compute node with one DSP while warrantying 
a given quality of service. In practice, it is the number of software instances with a given 
configuration that can be fitted on the compute node which will be measured and optimised. 

3.3 M³ Microkernel-Based System 
The use cases considered in COREnext such as automotive infrastructure or smart city require 
trustworthy devices on both the terminal and base-station side. In particular, both devices need to 
be able to integrate third-party components, which are not necessarily trustworthy and therefore 
have to be properly isolated from the rest of the system. Furthermore, the support of 
heterogeneous compute units is required to deliver the expected performance while being as 
energy efficient as possible. To achieve these goals, we use the M³ hardware/software platform. 

M³ proposes a new system architecture based on a hardware/software co-design. On the hardware 
side, M³ builds upon a tiled architecture, as shown in Figure 7. M³ extends its tiles by adding a new 
hardware component called trusted communication unit (TCU) to them. Each tile contains a TCU 
and either a core, an accelerator, or memory (e.g., a memory interface to off-chip DRAM) and the 
tiles are connected via a network-on-chip. As the TCU is the only way to access tile-external 
resources, the TCU controls the tile’s access permissions. By default, all tiles are isolated from each 
other. To perform message-passing between tiles or access memory, a corresponding 
communication channel (thick black lines in the figure) needs to be established. These 
communication channels are represented as endpoints in the TCU (orange dots). 
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Figure 7: System architecture of M³ 

On the software side, M³ runs a microkernel (red) on a dedicated kernel tile, and applications and 
OS services on the remaining user tiles. Applications and OS services on user tiles are represented 
as activities, comparable to processes. An activity on a general-purpose tile executes code, whereas 
an activity on an accelerator tile uses the accelerator’s logic. Activities can use existing 
communication channels, but only the M³ kernel is allowed to establish such channels. Applications 
are placed on different tiles by default, but as shown by the M³v work, tiles with general-purpose 
cores can also be shared efficiently and securely among multiple applications. For that reason, 
every core-based user tile runs a multiplexer called TileMux (yellow), which is responsible for 
isolating and scheduling the applications on its own tile, like a traditional microkernel. However, in 
contrast to a kernel, each TileMux instance has no permissions beyond its own tile. Instead, only 
the M³ microkernel can make system-wide decisions, hence its name. 

In summary, M³ is specifically designed for heterogeneous systems and can integrate untrusted 
hardware components such as accelerators or complex processors without risking a compromise 
of the rest of the system. This is because processors and accelerators isolated by default via the 
TCU and need to receive permission to access other components of the system by the M³ kernel. 

3.3.1 Prototype Status 

The basic hardware/software platform is working and usable. However, we are working on multiple 
fronts to further improve its security properties and efficiency. 

At first, we are working on the improvement of real-time guarantees that the M³ platform can 
provide. Real-time guarantees are important for cyber-physical systems to, for example, ensure 
that no harm is done to the physical world. One key advantage of the M³ platform we identified is 
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the ability of tile-local reasoning. That is, the real-time analysis can concentrate on a single tile 
instead of the whole system. Furthermore, the TCU offers faster cross-tile communication than 
existing systems, which also benefits real-time workloads. This work has been finished and was 
published on the 30th IEEE Real-Time and Embedded Technology and Applications Symposium 
(RTAS). 

Second, we work on a general data-streaming framework that is suitable for base band 
computations on M³. The goal is to distribute the computation over multiple and potentially 
heterogeneous tiles and pipe the mobile communication traffic through this pipeline. The current 
state is that the general framework is working and in the next step we will use it to run baseband 
computations. 

Finally, we strive to provide trusted execution environments (TEEs) on M³. Although M³ already 
provides strong isolation between different hardware and software components, currently all TCUs 
and the software infrastructure to load applications needs to be trusted. Our goal is therefore to 
enable the execution of applications in a TEE where after the initial loading the applications state is 
frozen and validated. If the validation succeeds, no further changes are possible, so that we no 
longer have to trust the loading infrastructure. We are currently still in the design phase and will 
soon start with the implementation. 

3.3.2 Interactions with Partners 

The work on the M³ platform and the TEE extension is performed by BI. We are working together 
with TUD on the baseband computations and will use real workloads and data from EUR for the 
evaluation. Furthermore, we are collaborating with EAB to perform machine learning for the 
hardware fingerprinting on M³. 

3.3.3 Planned Performance Measurements 

We plan to perform latency measurements for both the TEE extension and the baseband 
computations. Additionally, we will measure the costs of the security advantages that the M³ 
platform provides in terms of silicon overhead or gate counts and measure the size of the trusted 
software in terms of lines of code. 

3.4 IoT Management 
As mentioned also in D4.1, the IoT has revolutionized the way we interact with technology, 
transforming everyday objects into smart devices interconnected through the internet. IoT 
management and devices are now pervasive in our homes, workplaces, and public spaces, 
providing us with convenience and efficiency. As the IoT landscape continues to expand, so does 
the importance of ensuring the trustworthiness of these devices (e.g., are they reliable; secure; 
ensure privacy of IoT devices and the data they collect and transmit). With these devices becoming 
increasingly integrated into critical systems and handling sensitive data, their trustworthiness has a 
direct impact on user safety, data security, and overall system integrity. 

As a result, a Trust Manager is proposed and implemented. Edge operational devices, such as 
drones and collaborative robots (cobots), communicate with the Trust Manager Orchestrator to 
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ensure efficient and secure operations. These devices generate a plethora of data related to 
network Key Performance Indicators (KPIs) and device-specific metrics. This data is essential for 
understanding the operational status and capabilities of each device within the network. Machine 
Learning techniques, particularly K-means clustering, are employed to analyze this data. By doing 
so, devices with similar characteristics are grouped into clusters, facilitating more streamlined and 
effective management. 

Once the devices are grouped into clusters, each cluster is subjected to a detailed evaluation using 
various trust metrics. These metrics are tailored to assess the trustworthiness of each device within 
the group. The Trust Evaluation Function plays a critical role in this process. It calculates a trust index 
for each device, providing a quantifiable measure of trustworthiness. This index is then 
communicated back to the Trust Manager Orchestrator, ensuring that the orchestrator has up-to-
date information on the trust levels of all devices in the network. 

The use of computational offloading is an important strategy in this system. Depending on the 
specifications of each cluster—such as their compute resources, memory, and network capabilities—
tasks can be offloaded to different devices to optimize performance. This approach not only 
enhances the efficiency of the network but also ensures that computational tasks are handled by 
the most capable devices. By leveraging the strengths of each cluster, the system can maintain high 
levels of performance and reliability. 

Finally, the Trust Manager Orchestrator uses the trust index and the specific prerequisites of each 
task to determine the optimal input node for the task at hand. This decision-making process is 
crucial for ensuring that tasks are assigned to the most trustworthy and capable devices, thereby 
enhancing the overall security and efficiency of the network. By continuously evaluating and 
leveraging trust metrics, the orchestrator can dynamically adapt to changing conditions and 
maintain optimal performance across the network. 

 

 

 

Figure 8: Trust Manager Flowchart 
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3.4.1 Prototype Status 

A preliminary version of the Trust Manager is currently under evaluation. It should be noted that 
the Trust Manager is composed of various components which are responsible for the clustering, the 
management and orchestration, classification in device classes, and trust evaluation function. All 
these components interact with each other to calculate the trust index. 

3.4.2 Interactions with Partners 

The key partner of this work is WINGS. This work can be combined with the platforms provided by 
other partners in the project to provide a trust index which can become part of these platforms and 
evaluate the connected devices or the connected hardware components to them. 

3.4.3 Planned Performance Measurements 

One of the planned performance metrics that will be taken into consideration is the time for 
execution for providing the trust index. Other performance metrics are also under investigation. 

3.5 Radio Link Authentication 
This section explores the use of machine learning (ML) technique for RF fingerprinting. The 
technique has recently emerged as a promising technique for Physical Layer Security for 5G and 
beyond. The basic premise of RF fingerprinting is that each transmitting device has minor 
manufacturing imperfections and operation impairments that result in unique, subtle 
characteristics or discrepancies in the radio signals it emits. These discrepancies, although often 
very limited, can be detected, measured, and processed allowing to create a ‘fingerprint’ of the 
device. The hardware impairments can manifest in imperfections such as quadrature imbalance, 
phase noise, frequency jitter, power amplifier (PA) in-band distortion, intermodulation distortion 
and reference spurs. 

The task 4.3 within WP4 aims to develop acceleration solution(s) based on the algorithm-hardware 
co-design for RF fingerprinting to establish the trustworthiness of a device identity before 
authorizing any data exchange over a radio link. 

3.5.1 Prototype Status 

Data description  

The data for RF fingerprinting is generated using MATLAB scripts. An Orthogonal Frequency-
Division Multiplexing (OFDM) input signal is created using MATLAB’s waveform generator 
application. This involves generating random input bits with amplitudes normalized between 0 and 
1. These bits are then modulated using Quadrature Amplitude Modulation (QAM) schemes ranging 
from 4-QAM to 256-QAM to evaluate the effect of modulation order on RF Fingerprint 
identification methods. 

For modeling non-linear behavior, four different polynomial power amplifier (PA) models are 
utilized. The model’s coefficients are extracted from real PA measurements and post-layout 
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simulations and are characterized by their non-linear responses which are independent of 
frequency. 

Data is generated at various output power back-off (PBO) levels: -9 dB, -3 dB, and 0 dB. These PBO 
values are chosen to evaluate their impact on the non-linearity of the output signal, which is crucial 
for enhancing the discriminating power of RF fingerprinting across conditions ranging from 
moderate to high saturation in the amplifiers. Data is also generated for different Oversampling 
Ratio (OSR). 

For ML purpose separated data for training and testing were produced, corresponding to the output 
generated by the waveform generator in which each amplitude of I and Q is random. 

The ML framework has been built to perform the classification between four PAs models.  To feed 
the IQ data to the ML algorithm, the In-phase (I) and Quadrature (Q) components are stacked to 
form a 1-dimensional (1D) dataset with 2 channels. Sliding window technique divides a continuous 
stream of IQ samples into smaller, fixed-size segments (windows) for processing.  

We explored different values of the windows, IQ trace length, as well as stride on structuring input 
data for model training and testing. A small stride, such as 1, leads to significant overlap between 
sliding windows, enhancing learning of data dependencies but increasing computational load and 
risk of overfitting. In contrast, a larger stride creates windows with little to no overlap, reducing 
redundancy and computational needs but possibly missing finer data details. To enhance the ML 
performance different values for the IQ trace length (L) and stride (s) were tested, including L=144, 
288, 576 and s=1, 4, 8, 16, 32, 64, 128, L as well as random values.  

The ML architecture includes 1D convolutional layers and a total of about 4.7K trainable parameters, 
making it a lightweight model. Accuracy is the performance metric used to evaluate the model 
ability to classify fingerprints. Accuracy is the proportion of sample correctly classified. An accuracy 
near 0.25 mean a random guess since the classification has 4 classes/PAs. On the other hand, when 
ML model recognize each fingerprint, the accuracy is close to 1. At the beginning of model training 
(small number of epoch), the accuracy is poor, and start to increase as the model learn (with respect 
to epoch). Figure 1 shows the ML accuracy vs epochs for L=576 and stride of 1 (left), 16(middle) and 
288 (right). With a stride of 1, the model overfits the training data, resulting in poor accuracy during 
testing. With a higher stride, the model generalizes better on the testing data, achieving an accuracy 
of about 0.78. 

  

Figure 9: ML accuracy vs epochs for L=576 and stride of 1 (left), 16 (middle) and 288 (right). 

We have also tested different algorithms, including ResNet, VGG, and attentional mechanisms. In 
general, we do not see a significant increase of an accuracy, suggesting that the current data has a 
discriminative power limit, with an achieved accuracy.  
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To understand the effect of signal modulation on ML performance, we trained and tested 
algorithms on various QAM orders. Figure 2 shows training with all QAM orders, from 4 to 256, and 
testing with 4-QAM (left), 32-QAM (middle), or 128-QAM (right). We also tested scenarios with 
higher-order QAM training and lower-order QAM testing. Results indicate modulation order 
impacts classification accuracy, highlighting the need for robust methods. We explored a mixture-
of-experts model, where each expert specializes in specific data, and a multi-tasking approach 
treating modulation as a separate task. Initial results show minimal improvement in generalization 
when training and testing QAM orders differ. Further studies will include PSK modulation data. 

 

Figure 10: ML accuracy vs. epochs for training with all QAM orders and testing with 4-QAM (left), 32-QAM 
(middle), and 128-QAM (right) . 

Additional studies have been also performed with the different power back-off (PBO) values. As 
expected, we observed high ML accuracy and better convergence at 0 dB, where the amplifier 
operates at full power, pushing it into the non-linear regime. In contrast, the -9 dB setting, which 
correlates with linear operation, shows lower accuracy that does not improve with additional 
training epochs. For the different oversampling ratio (OSR), we observed that OSR of 8 gives worse 
ML performance compared to OSR of 1. 

3.5.2 Interactions with Partners 

We are exploring how hardware can complement the ML-based RF Fingerprinting task through an 
algorithm-hardware co-design approach, involving our partners BI and IHP. BI employs the M3 
platform, a scalable and efficient operating system designed for hardware/software co-design with 
64-bit RISC-V cores. We need to address memory requirements for inference, including storage 
for model parameters, input data, and intermediate outputs. 

IHP is leveraging the NVDLA architecture as a reference for their work, which promises scalable and 
parametrizable hardware solutions. The collaboration focuses on integrating advanced hardware 
capabilities with our ML models to enhance performance and efficiency in RF fingerprinting tasks.   

3.5.3 Planned Performance Measurements 

ML performance can be quantified in terms of model classification accuracy, false positive rate, and 
inference latency. Classification accuracy indicates the correct prediction rate, meaning the ratio 
between correctly classified items and all encountered ones; higher accuracy signifies better model 
capability in identifying different RF fingerprints. Another relevant metric is the false positive rate, 
which measures the number of devices wrongly classified out of the total number of actual 
impairments. Lower false positive rates mean fewer incorrectly labelled fingerprints, indicating the 
model has effectively learned to identify fingerprints. 
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Moreover, running ML algorithms requires specific computational resources and hardware. To 
choose the best hardware that suits the computational requirements of the ML model, a memory 
usage analysis will be performed. This analysis considers the inference latency and CPU/GPU 
utilization to measure the relevance and efficiency of the solution. We need the fastest possible 
inference without sacrificing accuracy to ensure the model's performance and usability. 

KPIs emphasized in our collaborative efforts include peak performance (measured in operations 
per second, OPS) and energy efficiency (measured in J/OPS or OPS/W). Additionally, KPIs that 
combine hardware and application metrics, such as inferences per second for throughput or 
J/inference for energy efficiency, are important. These KPIs will be correlated with application 
specifics like accuracy and memory footprint, ensuring the hardware-accelerated ML models meet 
the required performance and efficiency standards in our collaborative research efforts. 
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4 Conclusion 
The components for trustworthy orchestration we presented provide foundational layers within an 
overall trustworthy system. As such, these components can host other components and 
orchestrate them in a trustworthy way. Therefore, in Table 3, we show the interactions between 
the components presented here as well as with accelerator components delivering on efficiency 
targets described in deliverable D4.2. Component interactions leading to concrete collaborations 
are shown by listing the respective partners. Checkmarks highlight potential component 
interactions that are not (or not yet) explored within COREnext. 

Orchestration Component 
RISC-V 

Acceleration 
Dedicated 

Acceleration 
DSP 

Virtualization 
Radio Link 

Authentication 

FPGA multi-tenancy 
NNF, IIIV, 

ETH 
 

NNF, IIIV, 
EUR 

 

DSP virtualization  ✓   

M³ microkernel-based system 
BI, TUD, 

EUR 
✓ ✓ EAB, BI 

IoT Management ✓   ✓ 

Radio link authentication ✓ EAB, IHP   

Table 3: Component interactions 

For each orchestration component, we have reported on these collaborations as well as the 
prototype status and targeted performance measurements. Together with sibling deliverables D4.2 
and D5.1, the component status is reported to work package 3, where deliverable D3.2 will finalize 
the COREnext architecture and fit these components into the bigger picture, deriving integrated 
validation measurements from the individual component performance measurements presented 
here (see Table 4). 

Orchestration Component Cost Measure Benefit Measure 

FPGA multi-tenancy 
FPGA area, latency added by 

authentication 
Increase in FPGA utilization 
with secure authentication 

DSP virtualization 
Quality of service: latency 

added by virtualization 
Number of workload 

instances sharing a DSP 

M³ microkernel-based system 
Latency and chip area added 
by TCU isolation component 

Small size of trusted 
components 

IoT Management 
Execution time to provide 

trust index 
Efficacy of trust classification 

for IoT devices 

Radio link authentication 
Latency and energy usage of 

classification model 
Model classification accuracy 

and false positive rate 

Table 4: Per-component cost and benefit measurements 


