

© COREnext 2023-2025

D4.3
Trustworthy Computation and Orchestration

D4.3 – Trustworthy Computation and Orchestration

2 | 23

Revision v1.0

Work package WP4

Task T4.3, T4.4

Dissemination level PU — Public, fully open. e.g., website

Deliverable type R — Document, report (excluding periodic and final reports)

Due date 30-09-2024

Submission date 30-08-2024

Deliverable lead Barkhausen Institut (BI)

Version v1.0

Authors
Mohand Achouche (III-V), Nils Asmussen (BI), Romain
Beurdouche (EUR), Andreas Georgakopoulos (WINGS), Anastasia
Grebenyuk (EAB), Julien Lallet (NNF), Michael Roitzsch (BI)

Contributors Task partners (see below)

Reviewers Andreas Georgakopoulos (WINGS), Markus Ulbricht (IHP)

Abstract

Upcoming 6G mobile communication networks will process sensitive data and will be a driver
for industrial automation, critical infrastructure, as well as personal robotics. Therefore, 6G
networks must offer fundamental trustworthiness from terminal to base station to edge cloud.
This trustworthiness must be an afterthought but must be built into fundamental components
by design. In this deliverable, we address such trustworthiness foundations for key compute
and orchestration building blocks. To create a heterogeneous compute architecture usable for
6G signal processing, the costs of added trustworthiness features must be balanced against
cost factors such as added latency or added hardware costs. We will survey these trade-offs to
prepare their evaluation in later deliverables by work package 6.

Keywords

FPGA, DSP, heterogeneity, virtualization, isolation, attestation

D4.3 – Trustworthy Computation and Orchestration

3 | 23

Document Revision History

Version Date Description of change Contributor(s)

v0.1 19-04-2024 initial table of contents and outline Michael Roitzsch (BI)

v0.2 24-06-2024 first complete version

Mohand Achouche (III-V),
Nils Asmussen (BI),

Romain Beurdouche (EUR),
Andreas Georgakopoulos

(WINGS),
Anastasia Grebenyuk (EAB),

Julien Lallet (NNF),
Michael Roitzsch (BI)

v1.0 10-07-2024 changes after internal review Michael Roitzsch (BI)

Contributing Partners

Abbreviation Company name

BI BARKHAUSEN INSTITUT

EAB ERICSSON

CYB CYBERUS TECHNOLOGY

EUR EURECOM

WINGS WINGS ICT SOLUTIONS

ETHZ EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH

IHP IHP MICROELECTRONICS
NNF NOKIA NETWORKS FRANCE

IIIV NNF/IIIV LABS

IFAT INFINEON TECHNOLOGIES

KAL KALRAY

EF ERICSSON FRANCE

Disclaimer

The information, documentation and figures available in this deliverable are provided by the
COREnext project’s consortium under EC grant agreement 101092598 and do not necessarily
reflect the views of the European Commission. The European Commission is not liable for any use
that may be made of the information contained herein.

Copyright Notice

©COREnext 2023-2025

D4.3 – Trustworthy Computation and Orchestration

4 | 23

Executive Summary
This deliverable explains how COREnext advances the state-of-the-art in trustworthiness for key
components of a 6G network infrastructure. Specifically, we report on the prototype status of the
following components:

§ FPGA multi-tenancy,
§ Digital signal processor virtualization,
§ M³ microkernel-based system,
§ IoT management, and
§ Radio link authentication.

For each component described, we include details on partner collaborations as well as performance
indicators to be evaluated.

While this deliverable reports on trustworthiness advances, the sibling deliverables D4.2 and D5.1
cover acceleration to improve efficiency and the analogue part of radio link authentication
respectively. Taken together, the components described in these three deliverables will be fitted
into the overall COREnext architecture in D3.2. The combination delivers significant improvements
to the trustworthiness and efficiency of future mobile networks.

D4.3 – Trustworthy Computation and Orchestration

5 | 23

Table of Contents
1 Introduction .. 8

2 Trustworthy Orchestration of Heterogeneous Compute Resources ... 9

3 Orchestration Component Prototypes ... 11

3.1 FPGA Multi-Tenancy ... 12

3.1.1 Prototype Status ... 14
3.1.2 Interactions with Partners ... 14
3.1.3 Planned Performance Measurements ... 14

3.2 Digital Signal Processor Virtualization ... 14

3.2.1 Prototype Status ... 14
3.2.2 Interactions with Partners ... 15
3.2.3 Planned Performance Measurements ... 15

3.3 M³ Microkernel-Based System ... 15

3.3.1 Prototype Status ... 16
3.3.2 Interactions with Partners ... 17
3.3.3 Planned Performance Measurements ... 17

3.4 IoT Management .. 17

3.4.1 Prototype Status ... 19
3.4.2 Interactions with Partners ... 19
3.4.3 Planned Performance Measurements ... 19

3.5 Radio Link Authentication ... 19

3.5.1 Prototype Status ... 19
3.5.2 Interactions with Partners ... 21
3.5.3 Planned Performance Measurements ... 21

4 Conclusion .. 23

D4.3 – Trustworthy Computation and Orchestration

6 | 23

List of Figures
Figure 1: Overview of deliverables connected to D4.3 and flow between them 8

Figure 2: Overview of digital components. .. 11

Figure 3: Multi-tenant FPGA cloud scenario ... 13

Figure 4: TokSek adaptation from OAuth2.0-based protocol .. 13

Figure 5: TokSek adaptation from OAuth2.0-based protocol .. 13

Figure 6: TokSek protocol scheme ... 14

Figure 7: System architecture of M³ ... 16

Figure 8: Trust Manager Flowchart ... 18

Figure 9: ML accuracy vs epochs for L=576 and stride of 1 (left), 16 (middle) and 288 (right). 20

Figure 10: ML accuracy vs. epochs for training with all QAM orders and testing with 4-QAM (left),
32-QAM (middle), and 128-QAM (right) 21

List of Tables
Table 1: COREnext component advancements ... 8

Table 2: Trustworthy orchestration techniques by component .. 11

Table 3: Component interactions .. 23

Table 4: Per-component cost and benefit measurements .. 23

D4.3 – Trustworthy Computation and Orchestration

7 | 23

Acronyms and Definitions
CP Cloud Provider

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

FEC Forward Error Correction

FPGA Field Programmable Gate Array

IoT Internet-of-Things

IP Intellectual Property

KPI Key Performance Indicator

MAC Media Access Control

ML Machine Learning

OAuth Open Authorization

OFDM Orthogonal Frequency-Division Multiplexing

OPS Operations per Second

OSR Oversampling Ratio

PA Power Amplifier

PBO Power Back-Off

PHY Physical Layer

QAM Quadrature Amplitude Modulation

RAN Radio Access Network

TA Trusted Authority

TCU Trusted Communication Unit

TEE Trusted Execution Environment

D4.3 – Trustworthy Computation and Orchestration

8 | 23

1 Introduction
Trustworthiness is a fundamental need for future mobile communication networks. Already today,
these networks process data from diverse clients simultaneously and must withstand cyberattacks
to offer high service availability. With upcoming use cases such as autonomous driving or
networked critical infrastructure, this requirement becomes ever more relevant. At the same time,
the growing data volumes require novel acceleration in the signal processing path, thus increasing
the complexity of the network. In such an environment, increasing trustworthiness with strong
hardware-based isolation measures is a key technique to reduce system complexity. Isolation helps
to separate functional concerns in the network and to protect confidentiality and integrity of data
flows through the network. We discuss our fundamental design principles in Section 2, before we
discuss component advancements in Section 3.

Input to this deliverable is provided by D3.1, which converged to four fundamental component
advancements, structured along the dimensions of trustworthiness/efficiency as well as
digital/analogue. In this deliverable, we present our component status for the digital
trustworthiness quadrant (see Table 1).

 Digital Analogue

Efficiency
Power-efficient signal
processing

Power-efficient high-
throughput interconnect

Trustworthiness
Heterogeneous compute
platform with TEEs

Radio link authentication and
infrastructure attestation

Table 1: COREnext component advancements

The accompanying sibling deliverables D4.2 and D5.1 cover the digital efficiency and analogue
trustworthiness parts respectively (see Figure 1). In Section 4, we summarize the component costs
and benefits to distill performance indicators that can be measured for evaluation. Together with
similar results from D4.2 and D5.1, the component advancements and their performance indicators
become input to deliverable D3.2, where their fit for the overall COREnext architecture is discussed.
Ultimately, validation of component systems will happen in work package 6.

Figure 1: Overview of deliverables connected to D4.3 and flow between them

D4.3 – Trustworthy Computation and Orchestration

9 | 23

2 Trustworthy Orchestration of
Heterogeneous Compute Resources

When providing compute resources for 6G workloads, accelerators are key building blocks to
improve the energy efficiency of the system. However, running computations on a mix of general-
purpose cores and accelerators requires data movement between these heterogeneous compute
resources. While deliverable D4.2 explains the accelerator advancements themselves in more
detail, here we discuss how to orchestrate these accelerators to form a trustworthy fabric of
compute resources.

A key technique for trustworthiness is isolation. When processing data from different clients or
running applications from different tenants, the computations must be strictly isolated from each
other. This means they should be prevented by fundamental mechanisms from reading or
manipulating each other’s data and code, because read-access would constitute a breach of
confidentiality and write-access would constitute a breach of integrity. As the isolation mechanism
itself must be robust against attacks, it must be implemented at an architectural level below the
user data and applications. Operating systems are one typical layer that provides isolation for
software. But isolation against hardware-based attacks must itself be located in hardware.

However, a system where everything is isolated from everything else cannot perform meaningful
work. Therefore, controlled breakage of the isolation is necessary so that components can
cooperate to process a workload together. However, such breakage must be governed by an
access control mechanism. An example mechanism are capabilities, where a component
owns access rights to other components by holding a capability: Comparable to an entry ticket in
real life, a capability is an unforgeable token combining a reference to the target component with
associated access permissions.

With the question of access control comes the question of resource allocation. Systems
require policy-making authorities that maintain an overview of the set of resources available and
make decisions which workload to run on which hardware resources. Consequently, these policy
components also disseminate corresponding access rights so that the cores and accelerators
selected to run a given workload can cooperate. At the same time, the policy component can
enforce high-level platform security properties, such as workloads sharing certain hardware or not.

Resource allocation is not necessarily a binary decision. Depending on the type of compute
hardware, it may be possible to partition the hardware and assign shares of it to different clients.
Partitioning may be possible in space (like assigning a portion of a processing array to one workload)
or in time (like running one workload for a given time slice and then reassigning the resource to
another workload). Virtualisation is when the partitioning is implemented without requiring
application cooperation. Instead, applications are oblivious to virtualisation and instead have the
illusion of exclusive access to resources.

With multiple applications sharing common resources, it is important to implement budgeting.
Applications should be restricted from overstepping their allocated share and should thus be
prevented from withholding resources from their co-running neighbours.

D4.3 – Trustworthy Computation and Orchestration

10 | 23

Given virtualized resources, applications become detached from the underlying hardware. This
decoupling bears the danger of applications falling victim to manipulated infrastructure that does
claims to provide properties such as secure data isolation but does not actually implement the
necessary protections. Attestation is a cryptographic mechanism, by which applications can
check hardware and software resources for their authenticity. Applications can decide, to use
specific accelerators or remotely hosted compute resources only after a successful attestation
check.

D4.3 – Trustworthy Computation and Orchestration

11 | 23

3 Orchestration Component Prototypes
Within work package 4, the prior deliverable D4.1 has structured the development of digital
components as illustrated in Figure 2. Here, we cover the lower half of this component progression.

Figure 2: Overview of digital components.

Table 2 shows, which component utilizes which techniques of the trustworthy orchestration
toolbox outlined in the previous section. In the following, we explain for each component the
development and prototype status, interactions between partners, and planned performance
measurements.

Component

Is
ol

at
io

n

A
cc

es
s

C
on

tr
ol

R
es

ou
rc

e
A

llo
ca

tio
n

V
irt

ua
lis

at
io

n

B
ud

ge
tin

g

A
tt

es
ta

tio
n

FPGA multi-tenancy ✓ ✓ ✓

Digital signal processor virtualization ✓ ✓ ✓ ✓

M³ microkernel-based system ✓ ✓ ✓ ✓ ✓ ✓

IoT management ✓ ✓

Ratio link authentication ✓ ✓

Table 2: Trustworthy orchestration techniques by component

D4.3 – Trustworthy Computation and Orchestration

12 | 23

3.1 FPGA Multi-Tenancy
FPGAs in the cloud (Amazon, Microsoft, Alibaba etc.) are big systems available to accelerate specific
processing. These systems are oversized to allow the implementation of almost any kind of
algorithm. The cost of FPGA renting is slightly higher than other cloud resources, and most of the
time, FPGA resources may be shared to increase their use efficiency. Unfortunately, this is
nowadays not offered by cloud providers most probably for security reasons. In this work package,
we aim to provide a secure way of sharing FPGA resources among multiple users, and this is called
multi-tenancy.

Cloud security is critical for a client when choosing a commercial Cloud Provider (CP). Commercial
cloud users expect secure remote computation and access to FPGA accelerators with minimal
impact on their design performance. Security mechanisms need to be adapted for appropriate
cloud usage. First, the client needs to ensure that its data is kept private. The client does not want
to disclose sensitive Intellectual Property (IP) and data to the cloud provider. To ensure that, the
client needs an encrypted channel with the FPGA isolated from the CP. Authentication is another
important security aspect to establish a secure remote connection between a client and the
hardware acceleration material. The client needs to ensure that the correct FPGA is used and that
no other users may access the allocated resources. Authentication is necessary to manage FPGAs
and different cloud service accesses to mitigate client impersonations and data breaches. CP
security methods are not transparent concerning data encryption methods, bitstream protection
and IP theft. To remove this drawback, it is necessary to use methods and protocols which respect
user privacy and intellectual property. To reinforce security, as presented in Figure 3, an
intermediate authority between the client and the CP must be introduced. The entity, called
Trusted Authority (TA) instance, enables isolation between end-users and CP. Often, the TA would
implicitly be the chip manufacturer for practical and security reasons. It can safely implement
security mechanisms (e.g. secret keys, Physical Unclonable Functions). From a client’s perspective,
the TA achieves device authentication and isolation from the CP. From the CP’s perspective, the TA
implements tasks like FPGA access management and authentication.

Access control is an important security tool to enforce user authorization rules set by the access
manager. The user must be authenticated and identified to obtain authorization from CP.
Additionally, user identification is also necessary to enforce access control rules. To the best of our
knowledge, any CP proposes multi-tenant FPGA usage. Regarding OpEx and CapEx, multi-tenant
is highly attractive. Security limitations exist from literature proposals. Our objective is to enhance
existing solutions and propose a new security scheme for multi-tenant FPGA cloud solutions. The
security framework must support: FPGA and user authentication, multi-tenancy, scalability, user-
CP isolation, access control, and access sharing.

We propose TokSek, a token-based multi-tenant FPGA cloud security framework. To the best of
our knowledge, it is the first framework to introduce the concept of access tokens to the FPGA
cloud architecture. TokSek is an adaptation of OAuth 2 to share access to FPGA devices instead of
credentials or applications. TokSek enables a scenario, where an FPGA deployed in the cloud can
be accessed by multiple tenants. As illustrated in Figure 3, the TA enables isolation between CP and
end-user. TA is responsible for FPGA access creation and security enforcement. The CP manages
FPGA resources and co-operates with TA. The TokSek principle is presented in Figure 4 and Figure

D4.3 – Trustworthy Computation and Orchestration

13 | 23

5. The protocol is detailed in Figure 6. The implementation is in progress, targeting a Xilinx FPGA.
Our objective is to evaluate the security framework performance.

Figure 3: Multi-tenant FPGA cloud scenario

Figure 4: TokSek adaptation from OAuth2.0-based protocol

Figure 5: TokSek adaptation from OAuth2.0-based protocol

D4.3 – Trustworthy Computation and Orchestration

14 | 23

Figure 6: TokSek protocol scheme

3.1.1 Prototype Status

The prototype development is ongoing. First, we validate some concepts on an embedded
platform with some functions done in software. TokSek implementation is in progress in Xilinx
FPGA target. The objective is to evaluate the performances of the proposed security scheme. In
parallel, we also started to implement some hardware functions of TokSek on the Carfield platform
developed by ETH Zürich.

3.1.2 Interactions with Partners

Due to the interest of NNF and III-V Lab in RISC-V architecture, some collaborations were started
in Q3/2023 with ETH Zürich. In this context, we have ported the Carfield platform from ETH to
the Xilinx VCU118 board used at NNF.

3.1.3 Planned Performance Measurements

Following the TokSek prototype building, a validation phase will follow considering some use-cases
scenarios. This step will be key to further develop cooperation with other project partners.

3.2 Digital Signal Processor Virtualization
Modern RAN implementations, including some mostly relying on software, rely on a variety of
Digital Signal Processors (DSPs) within compute nodes. While the infrastructures are turning to the
cloud and thus to virtualization, DSPs remain difficult to use for workload containers, sharing this
resource. Since a DSP does not share the memory and tasks of its host device, a proper and efficient
sharing and isolation cannot be ensured by the host system hypervisor using the usual resource
model. An adapted way for the hypervisor to use a DSP and an abstraction for DSPs within
containers have to be enabled.

3.2.1 Prototype Status

This contribution aims to embed in a container a mobile network software relying on a DSP for
parity check coding. The software is currently being improved on bare metal to achieve the best

D4.3 – Trustworthy Computation and Orchestration

15 | 23

efficiency possible in the use of the DSP. The mobile network software is already able to be
embedded in an application container – with Docker or OpenShift -. The next steps will be to figure
out how to use the DSP within a container and how to share the DSP between multiple containers.

3.2.2 Interactions with Partners

This contribution is done by EUR. A collaboration with the FPGA Multi-Tenancy contribution will
occur. This other contribution is also about sharing resources with different tasks and memory than
the host system. This collaboration is necessary to solve the complex problem of sharing this kind
of resources.

3.2.3 Planned Performance Measurements

This contribution will have a particular interest in the workload density criterion which is the number
of workload instances that can be fitted on a single compute node with one DSP while warrantying
a given quality of service. In practice, it is the number of software instances with a given
configuration that can be fitted on the compute node which will be measured and optimised.

3.3 M³ Microkernel-Based System
The use cases considered in COREnext such as automotive infrastructure or smart city require
trustworthy devices on both the terminal and base-station side. In particular, both devices need to
be able to integrate third-party components, which are not necessarily trustworthy and therefore
have to be properly isolated from the rest of the system. Furthermore, the support of
heterogeneous compute units is required to deliver the expected performance while being as
energy efficient as possible. To achieve these goals, we use the M³ hardware/software platform.

M³ proposes a new system architecture based on a hardware/software co-design. On the hardware
side, M³ builds upon a tiled architecture, as shown in Figure 7. M³ extends its tiles by adding a new
hardware component called trusted communication unit (TCU) to them. Each tile contains a TCU
and either a core, an accelerator, or memory (e.g., a memory interface to off-chip DRAM) and the
tiles are connected via a network-on-chip. As the TCU is the only way to access tile-external
resources, the TCU controls the tile’s access permissions. By default, all tiles are isolated from each
other. To perform message-passing between tiles or access memory, a corresponding
communication channel (thick black lines in the figure) needs to be established. These
communication channels are represented as endpoints in the TCU (orange dots).

D4.3 – Trustworthy Computation and Orchestration

16 | 23

Figure 7: System architecture of M³

On the software side, M³ runs a microkernel (red) on a dedicated kernel tile, and applications and
OS services on the remaining user tiles. Applications and OS services on user tiles are represented
as activities, comparable to processes. An activity on a general-purpose tile executes code, whereas
an activity on an accelerator tile uses the accelerator’s logic. Activities can use existing
communication channels, but only the M³ kernel is allowed to establish such channels. Applications
are placed on different tiles by default, but as shown by the M³v work, tiles with general-purpose
cores can also be shared efficiently and securely among multiple applications. For that reason,
every core-based user tile runs a multiplexer called TileMux (yellow), which is responsible for
isolating and scheduling the applications on its own tile, like a traditional microkernel. However, in
contrast to a kernel, each TileMux instance has no permissions beyond its own tile. Instead, only
the M³ microkernel can make system-wide decisions, hence its name.

In summary, M³ is specifically designed for heterogeneous systems and can integrate untrusted
hardware components such as accelerators or complex processors without risking a compromise
of the rest of the system. This is because processors and accelerators isolated by default via the
TCU and need to receive permission to access other components of the system by the M³ kernel.

3.3.1 Prototype Status

The basic hardware/software platform is working and usable. However, we are working on multiple
fronts to further improve its security properties and efficiency.

At first, we are working on the improvement of real-time guarantees that the M³ platform can
provide. Real-time guarantees are important for cyber-physical systems to, for example, ensure
that no harm is done to the physical world. One key advantage of the M³ platform we identified is

D4.3 – Trustworthy Computation and Orchestration

17 | 23

the ability of tile-local reasoning. That is, the real-time analysis can concentrate on a single tile
instead of the whole system. Furthermore, the TCU offers faster cross-tile communication than
existing systems, which also benefits real-time workloads. This work has been finished and was
published on the 30th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS).

Second, we work on a general data-streaming framework that is suitable for base band
computations on M³. The goal is to distribute the computation over multiple and potentially
heterogeneous tiles and pipe the mobile communication traffic through this pipeline. The current
state is that the general framework is working and in the next step we will use it to run baseband
computations.

Finally, we strive to provide trusted execution environments (TEEs) on M³. Although M³ already
provides strong isolation between different hardware and software components, currently all TCUs
and the software infrastructure to load applications needs to be trusted. Our goal is therefore to
enable the execution of applications in a TEE where after the initial loading the applications state is
frozen and validated. If the validation succeeds, no further changes are possible, so that we no
longer have to trust the loading infrastructure. We are currently still in the design phase and will
soon start with the implementation.

3.3.2 Interactions with Partners

The work on the M³ platform and the TEE extension is performed by BI. We are working together
with TUD on the baseband computations and will use real workloads and data from EUR for the
evaluation. Furthermore, we are collaborating with EAB to perform machine learning for the
hardware fingerprinting on M³.

3.3.3 Planned Performance Measurements

We plan to perform latency measurements for both the TEE extension and the baseband
computations. Additionally, we will measure the costs of the security advantages that the M³
platform provides in terms of silicon overhead or gate counts and measure the size of the trusted
software in terms of lines of code.

3.4 IoT Management
As mentioned also in D4.1, the IoT has revolutionized the way we interact with technology,
transforming everyday objects into smart devices interconnected through the internet. IoT
management and devices are now pervasive in our homes, workplaces, and public spaces,
providing us with convenience and efficiency. As the IoT landscape continues to expand, so does
the importance of ensuring the trustworthiness of these devices (e.g., are they reliable; secure;
ensure privacy of IoT devices and the data they collect and transmit). With these devices becoming
increasingly integrated into critical systems and handling sensitive data, their trustworthiness has a
direct impact on user safety, data security, and overall system integrity.

As a result, a Trust Manager is proposed and implemented. Edge operational devices, such as
drones and collaborative robots (cobots), communicate with the Trust Manager Orchestrator to

D4.3 – Trustworthy Computation and Orchestration

18 | 23

ensure efficient and secure operations. These devices generate a plethora of data related to
network Key Performance Indicators (KPIs) and device-specific metrics. This data is essential for
understanding the operational status and capabilities of each device within the network. Machine
Learning techniques, particularly K-means clustering, are employed to analyze this data. By doing
so, devices with similar characteristics are grouped into clusters, facilitating more streamlined and
effective management.

Once the devices are grouped into clusters, each cluster is subjected to a detailed evaluation using
various trust metrics. These metrics are tailored to assess the trustworthiness of each device within
the group. The Trust Evaluation Function plays a critical role in this process. It calculates a trust index
for each device, providing a quantifiable measure of trustworthiness. This index is then
communicated back to the Trust Manager Orchestrator, ensuring that the orchestrator has up-to-
date information on the trust levels of all devices in the network.

The use of computational offloading is an important strategy in this system. Depending on the
specifications of each cluster—such as their compute resources, memory, and network capabilities—
tasks can be offloaded to different devices to optimize performance. This approach not only
enhances the efficiency of the network but also ensures that computational tasks are handled by
the most capable devices. By leveraging the strengths of each cluster, the system can maintain high
levels of performance and reliability.

Finally, the Trust Manager Orchestrator uses the trust index and the specific prerequisites of each
task to determine the optimal input node for the task at hand. This decision-making process is
crucial for ensuring that tasks are assigned to the most trustworthy and capable devices, thereby
enhancing the overall security and efficiency of the network. By continuously evaluating and
leveraging trust metrics, the orchestrator can dynamically adapt to changing conditions and
maintain optimal performance across the network.

Figure 8: Trust Manager Flowchart

D4.3 – Trustworthy Computation and Orchestration

19 | 23

3.4.1 Prototype Status

A preliminary version of the Trust Manager is currently under evaluation. It should be noted that
the Trust Manager is composed of various components which are responsible for the clustering, the
management and orchestration, classification in device classes, and trust evaluation function. All
these components interact with each other to calculate the trust index.

3.4.2 Interactions with Partners

The key partner of this work is WINGS. This work can be combined with the platforms provided by
other partners in the project to provide a trust index which can become part of these platforms and
evaluate the connected devices or the connected hardware components to them.

3.4.3 Planned Performance Measurements

One of the planned performance metrics that will be taken into consideration is the time for
execution for providing the trust index. Other performance metrics are also under investigation.

3.5 Radio Link Authentication
This section explores the use of machine learning (ML) technique for RF fingerprinting. The
technique has recently emerged as a promising technique for Physical Layer Security for 5G and
beyond. The basic premise of RF fingerprinting is that each transmitting device has minor
manufacturing imperfections and operation impairments that result in unique, subtle
characteristics or discrepancies in the radio signals it emits. These discrepancies, although often
very limited, can be detected, measured, and processed allowing to create a ‘fingerprint’ of the
device. The hardware impairments can manifest in imperfections such as quadrature imbalance,
phase noise, frequency jitter, power amplifier (PA) in-band distortion, intermodulation distortion
and reference spurs.

The task 4.3 within WP4 aims to develop acceleration solution(s) based on the algorithm-hardware
co-design for RF fingerprinting to establish the trustworthiness of a device identity before
authorizing any data exchange over a radio link.

3.5.1 Prototype Status

Data description

The data for RF fingerprinting is generated using MATLAB scripts. An Orthogonal Frequency-
Division Multiplexing (OFDM) input signal is created using MATLAB’s waveform generator
application. This involves generating random input bits with amplitudes normalized between 0 and
1. These bits are then modulated using Quadrature Amplitude Modulation (QAM) schemes ranging
from 4-QAM to 256-QAM to evaluate the effect of modulation order on RF Fingerprint
identification methods.

For modeling non-linear behavior, four different polynomial power amplifier (PA) models are
utilized. The model’s coefficients are extracted from real PA measurements and post-layout

D4.3 – Trustworthy Computation and Orchestration

20 | 23

simulations and are characterized by their non-linear responses which are independent of
frequency.

Data is generated at various output power back-off (PBO) levels: -9 dB, -3 dB, and 0 dB. These PBO
values are chosen to evaluate their impact on the non-linearity of the output signal, which is crucial
for enhancing the discriminating power of RF fingerprinting across conditions ranging from
moderate to high saturation in the amplifiers. Data is also generated for different Oversampling
Ratio (OSR).

For ML purpose separated data for training and testing were produced, corresponding to the output
generated by the waveform generator in which each amplitude of I and Q is random.

The ML framework has been built to perform the classification between four PAs models. To feed
the IQ data to the ML algorithm, the In-phase (I) and Quadrature (Q) components are stacked to
form a 1-dimensional (1D) dataset with 2 channels. Sliding window technique divides a continuous
stream of IQ samples into smaller, fixed-size segments (windows) for processing.

We explored different values of the windows, IQ trace length, as well as stride on structuring input
data for model training and testing. A small stride, such as 1, leads to significant overlap between
sliding windows, enhancing learning of data dependencies but increasing computational load and
risk of overfitting. In contrast, a larger stride creates windows with little to no overlap, reducing
redundancy and computational needs but possibly missing finer data details. To enhance the ML
performance different values for the IQ trace length (L) and stride (s) were tested, including L=144,
288, 576 and s=1, 4, 8, 16, 32, 64, 128, L as well as random values.

The ML architecture includes 1D convolutional layers and a total of about 4.7K trainable parameters,
making it a lightweight model. Accuracy is the performance metric used to evaluate the model
ability to classify fingerprints. Accuracy is the proportion of sample correctly classified. An accuracy
near 0.25 mean a random guess since the classification has 4 classes/PAs. On the other hand, when
ML model recognize each fingerprint, the accuracy is close to 1. At the beginning of model training
(small number of epoch), the accuracy is poor, and start to increase as the model learn (with respect
to epoch). Figure 1 shows the ML accuracy vs epochs for L=576 and stride of 1 (left), 16(middle) and
288 (right). With a stride of 1, the model overfits the training data, resulting in poor accuracy during
testing. With a higher stride, the model generalizes better on the testing data, achieving an accuracy
of about 0.78.

Figure 9: ML accuracy vs epochs for L=576 and stride of 1 (left), 16 (middle) and 288 (right).

We have also tested different algorithms, including ResNet, VGG, and attentional mechanisms. In
general, we do not see a significant increase of an accuracy, suggesting that the current data has a
discriminative power limit, with an achieved accuracy.

D4.3 – Trustworthy Computation and Orchestration

21 | 23

To understand the effect of signal modulation on ML performance, we trained and tested
algorithms on various QAM orders. Figure 2 shows training with all QAM orders, from 4 to 256, and
testing with 4-QAM (left), 32-QAM (middle), or 128-QAM (right). We also tested scenarios with
higher-order QAM training and lower-order QAM testing. Results indicate modulation order
impacts classification accuracy, highlighting the need for robust methods. We explored a mixture-
of-experts model, where each expert specializes in specific data, and a multi-tasking approach
treating modulation as a separate task. Initial results show minimal improvement in generalization
when training and testing QAM orders differ. Further studies will include PSK modulation data.

Figure 10: ML accuracy vs. epochs for training with all QAM orders and testing with 4-QAM (left), 32-QAM
(middle), and 128-QAM (right) .

Additional studies have been also performed with the different power back-off (PBO) values. As
expected, we observed high ML accuracy and better convergence at 0 dB, where the amplifier
operates at full power, pushing it into the non-linear regime. In contrast, the -9 dB setting, which
correlates with linear operation, shows lower accuracy that does not improve with additional
training epochs. For the different oversampling ratio (OSR), we observed that OSR of 8 gives worse
ML performance compared to OSR of 1.

3.5.2 Interactions with Partners

We are exploring how hardware can complement the ML-based RF Fingerprinting task through an
algorithm-hardware co-design approach, involving our partners BI and IHP. BI employs the M3
platform, a scalable and efficient operating system designed for hardware/software co-design with
64-bit RISC-V cores. We need to address memory requirements for inference, including storage
for model parameters, input data, and intermediate outputs.

IHP is leveraging the NVDLA architecture as a reference for their work, which promises scalable and
parametrizable hardware solutions. The collaboration focuses on integrating advanced hardware
capabilities with our ML models to enhance performance and efficiency in RF fingerprinting tasks.

3.5.3 Planned Performance Measurements

ML performance can be quantified in terms of model classification accuracy, false positive rate, and
inference latency. Classification accuracy indicates the correct prediction rate, meaning the ratio
between correctly classified items and all encountered ones; higher accuracy signifies better model
capability in identifying different RF fingerprints. Another relevant metric is the false positive rate,
which measures the number of devices wrongly classified out of the total number of actual
impairments. Lower false positive rates mean fewer incorrectly labelled fingerprints, indicating the
model has effectively learned to identify fingerprints.

D4.3 – Trustworthy Computation and Orchestration

22 | 23

Moreover, running ML algorithms requires specific computational resources and hardware. To
choose the best hardware that suits the computational requirements of the ML model, a memory
usage analysis will be performed. This analysis considers the inference latency and CPU/GPU
utilization to measure the relevance and efficiency of the solution. We need the fastest possible
inference without sacrificing accuracy to ensure the model's performance and usability.

KPIs emphasized in our collaborative efforts include peak performance (measured in operations
per second, OPS) and energy efficiency (measured in J/OPS or OPS/W). Additionally, KPIs that
combine hardware and application metrics, such as inferences per second for throughput or
J/inference for energy efficiency, are important. These KPIs will be correlated with application
specifics like accuracy and memory footprint, ensuring the hardware-accelerated ML models meet
the required performance and efficiency standards in our collaborative research efforts.

D4.3 – Trustworthy Computation and Orchestration

23 | 23

4 Conclusion
The components for trustworthy orchestration we presented provide foundational layers within an
overall trustworthy system. As such, these components can host other components and
orchestrate them in a trustworthy way. Therefore, in Table 3, we show the interactions between
the components presented here as well as with accelerator components delivering on efficiency
targets described in deliverable D4.2. Component interactions leading to concrete collaborations
are shown by listing the respective partners. Checkmarks highlight potential component
interactions that are not (or not yet) explored within COREnext.

Orchestration Component
RISC-V

Acceleration
Dedicated

Acceleration
DSP

Virtualization
Radio Link

Authentication

FPGA multi-tenancy
NNF, IIIV,

ETH

NNF, IIIV,
EUR

DSP virtualization ✓

M³ microkernel-based system
BI, TUD,

EUR
✓ ✓ EAB, BI

IoT Management ✓ ✓

Radio link authentication ✓ EAB, IHP

Table 3: Component interactions

For each orchestration component, we have reported on these collaborations as well as the
prototype status and targeted performance measurements. Together with sibling deliverables D4.2
and D5.1, the component status is reported to work package 3, where deliverable D3.2 will finalize
the COREnext architecture and fit these components into the bigger picture, deriving integrated
validation measurements from the individual component performance measurements presented
here (see Table 4).

Orchestration Component Cost Measure Benefit Measure

FPGA multi-tenancy
FPGA area, latency added by

authentication
Increase in FPGA utilization
with secure authentication

DSP virtualization
Quality of service: latency

added by virtualization
Number of workload

instances sharing a DSP

M³ microkernel-based system
Latency and chip area added
by TCU isolation component

Small size of trusted
components

IoT Management
Execution time to provide

trust index
Efficacy of trust classification

for IoT devices

Radio link authentication
Latency and energy usage of

classification model
Model classification accuracy

and false positive rate

Table 4: Per-component cost and benefit measurements

