

Изучение химического состава этанольного экстракта сушеницы топяной (Gnaphalium uliginosum L.) и оценка его антимикробной активности.

Меньшова $A.H^1$, Давыдова $Л.M^1$, Никитин $E.H^1$, Шуматбаев $\Gamma.\Gamma^{-1}$, Бабаев $B.M^1$. 1 ИОФХ им. А.Е. Арбузова - обособленное структурное подразделение ФИЦ КазНЦ РАН, г. Казань.

Болезни растений, вызванные патогенными микроорганизмами, представляют собой серьезную угрозу для сельского хозяйства, снижая качество и количество урожая. Традиционно для борьбы с фитопатогенами используют пестициды, однако их широкое применение ведет к устойчивости патогенов, что в свою очередь требует разработки новых, менее токсичных и экологически чистых биопрепаратов на основе экстрактов растений. В последние годы активно внедряются методы использования биопестицидов для подавления бактериальных и грибковых заболеваний сельскохозяйственных культур, обладающие сопоставимой антимикробной активностью синтетическим промышленным препаратам. Целью данного исследования было изучение фитохимического состава этанольного экстракта сушеницы топяной с помощью метода газовой хромато-масс-спектроскопии (ГХ-МС), а также определение его антимикробной активности против нескольких фитопатогенных микроорганизмов.

Сушеница топяная (Gnaphalium uliginosum L., сушеница болотная) - однолетнее травянистое растение, представитель семейства сем. Asteraceae. Растет в лесной и лесостепной зонах европейской части России, Сибири, встречается как сорное растение. Период цветения - июнь-август.

Методы

Растимельный материал. Растения G- uliginosum был собран с опытных полей Татарского НИИ сельского хозяйства ФИЦ КазНЦ РАН Республики Татарстан в Лаишевском районе на стадии цветения в августе 2022 года в качестве сорного растения. Свежесобранные растения очищали от примесей и пыли, хранили в морозильной камере при температуре -35 °C для дальнейших исследований.

Получение экстракта с использованием ультразвукового генератора. Замороженное растительное сырье Gnaphalium uliginosum L. измельчали на лабораторной мельнице (LM 202, Россия) до размера частиц 0,3-2 мм. Измельченное сырье массой 3 г переносили в химический стакан, добавляли 70% этанол при соотношении биомассы к растворителю 1:30. Проводили экстракцию с использованием ультразвукового генератора (И10 – 0.63) с погружным зондом при мощности от 63Вт до 315Вт в течении 5 и 10 минут. Полученные экстракты фильтровали (Whatman № 1), затем разделили на 2 части: первую часть фильтрата концентрировали с использованием роторного испарителя (LabTex Re 100-Pro) при 40 °C до 1% и определяли антимикробную активность, вторую часть фильтрата лиофилизировали в течение 20 ч (ВК-FD12P, Biobase, Цзинань, Китай). Сухой экстракт перерастворяли в 96% этиловом спирте. Для очистки экстракт пропускали через фильтр CHROMAFIL Xtra с размером пор 0,45 микрон (Macherey-Nagel, Дюрен, Германия). ГХ-МС

6

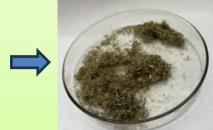
9

10 11

14

15

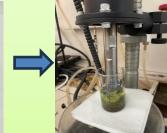
16


17

18

19

Химический состав этанольного


экстракта сушеницы топяной

5.965±0.010

5,624±0,010

4.620±0.009

Показатели антибактериальной и противогрибковой активности этанольного экстракта сушеницы топяной ультразвуковым методом.

Идентифицированные соединения	ω (%)	Мощность, время экстракции	Rhizoctonia solani		Alternaria solani		Clavibacter michiganensis		Erwinia carotovora spp.		
Octadecane	1,946±0,006							•			
2-Hexynoic acid	0,130±0,002		МИК, мкг/мл	МФК, мкг/мл	МИК, мкг/мл	МФК, мкг/мл	МИК, мкг/мл	МБК, мкг/мл	МИК, мкг/мл	МБК, мкг/мл	
Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, (1S-	0,185±0,002		МКІ / МЛ	МКІ / МЛ	MKI / MJI	MKI / MJI	МКІ / МЛ	МКІ / МЛ	МКІ / МЛ	MKI / MJI	
endo)		63 Вт, 5 минут	625±40	>2500±180	>2500±180	>2500±180	>2500±180	>2500±180	1250±80	2500	
Dodecanoic acid	0,935±0,003										
Eicosanoic acid, phenylmethyl ester	0,139±0,002	63 Вт, 10 минут	625±40	>2500±180	1250±70	>2500±180	>2500±180	>2500±190	1250±80	2500	
Folic Acid	0,171±0,002	40/ 5 5	040.00	040.00	0500:400	0500.400	0500:475	0500.400	(05.40	0500	
9-Octadecenoic acid, (2-phenyl-1,3-dioxolan-4-	0,296±0,003	126 Вт, 5 минут	312±30	312±30	>2500±180	>2500±180	>2500±175	>2500±180	625±40	2500	
yl)methyl ester, trans		126 Вт, 10 минут	312±25	312±25	1250±70	>2500±180	>2500±180	>2500±175	312±25	625±40	
6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-	0,740±0,003	120 В1, 10 мину і	312±23	312±23	1230±70	>2300±160	>2300±160	>2300±1/3	312±23	623±40	
tetrahydrobenzofuran-2(4H)-one		189 Вт, 5 минут	156±10	312±20	625±30	>2500±180	1250±80	1250±80	312±25	625±40	
3,7,11,15-Tetramethyl-2-hexadecen-1-ol	0,828±0,003	107 51, 5 141/11191	130=10	012=20	023±00	123002100	1230200	1230200	012=23	023210	
		189 Вт, 10 минут	78±10	78±10	156±10	312±30	156±10	312±30	156±10	312±25	
n-Hexadecanoic acid	1,646±0,004	•									
9,12-Octadecadienoic acid, methyl ester, (E,E)	1,060±0,004	252 Вт, 5 минут	78±10	78±10	156±10	312±30	156±10	312±30	156±10	312±25	
9,12-Octadecadienoic acid (Z,Z)-	8,949±0,012										
2-[4-methyl-6-(2,6,6-trimethylcyclohex-1-enyl)hexa-1,3,5-trienyl]cyclohex-1-en-1-	3,451±0,008	252 Вт, 10 минут	78±10	156±20	625±30	>2500±180	1250±80	1250±70	312±25	625±40	
carboxaldehyde		315 Вт, 5 минут	312±30	312±30	625±30	>2500±180	1250±80	1250±70	625±40	1250±80	
3-(1,1-Dimethylethenyl)-7-hydroxy-6-methoxy-	3,227±0,007	215 D= 10 \ uu = -	42E+20	(25)	1250.70	>2500+100	(2E 40	42E + 40	2500+140	>2500	
2H-1-benzopyran-2-one		315 Вт, 10 минут	625±30	625±30	1250±70	>2500±180	625±40	625±40	2500±160	>2500	
(07.107)	2.25(10.007	Тебуконазол*/	31,25±2,4	125±10,3	1,9±0,3	1,9±0,2	250±20,6	250±19,5	15,62±1,3	62,5±5,6	
(9Z,12Z)-octadeca-9,12-dienoic acid 2-[(2-	2,356±0,007	Хлорамфеникол**					230±20,0	230±17,3	13,02±1,3	02,3±3,0	
hydroxyethoxy)methyl] ester	4.070+0.007	* Препарат сравнения для грибов, ** Препарат сравнения для бактерий;									
Campesterol	1,979±0,006	Division									

Выводы

- Было установлено, что наивысшей противомикробной активностью обладает 70%-й этанольный экстракт, полученный в опыте с ультразвуком, при мощности 189 Вт в течение 10 минут и при мощности 252 Вт в течении 5 минут.
- Впервые проведена оценка антимикробной активности этанольного экстракта Gnaphalium uliginosum L. встречающейся на территории Республики Татарстан. Наиболее чувствительными к компонентам являлась грамположительная фитопатогенная бактерия - Clavibacter michiganensis и грамотрицательная фитопатогенная бактерия -Erwinia carotovora spp. (МИК 156 мкг/мл). Среди грибов наиболее чувствительными являлись Rhizoctonia solani и Alternaria solani (значения МИК находились в диапазоне 78-156 мкг/мл).
- По данным ГХ-МС фитохимический состав этанольного экстракта G. uliginosum L. состоит из 19 компонентов: фитостеролы (13,56%), карбоновые кислоты (11,79 %) и их эфиры (1,35%), ароматические альдегиды (3,45%), эфиры жирных кислот (2,49%), кумарины (3,23%), силоксаны (4,62%), углеводороды класса алканов (1,95%).
- Исследования показали, что экстракты сушеницы топяной обладают высоким противогрибковым и антибактериальным действием, что следует рассматривать их в качестве перспективного источника биологически активных веществ для возможного применения в качестве средства защиты растений.

23-28 сентября 2024, Барнаул

Stigmasterol

Sitosterol

Cyclodecasiloxane, eicosamethyl

Адрес: г. Казань, ул. Арбузова,8. **Телефон**: 8-937-001-11-07

Email: angelina_menshova11@mail.ru