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Abstract
Motivated by decentralized permissionless protocols that are ultimately backed by social
consensus, which can only perceive and act much slower than the service provisioning,
we study what we term a Slow Game; a type of principal-agent problem, in which the
agent acts as operator of a service and the principal as a regulator, which sets and attempts
to enforce policies on the service being provided. The regulator is slower acting and
measuring than the operator, which introduces uncertainty depending on the difference
in speed. In this publication we introduce a framework inspired by lossy compression
problems to model this type of game, as well as present results from simulations of a
minimal example.
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1. Introduction
Motivated by decentralized permissionless protocols that are ultimately backed
by social consensus, which can only perceive and act much slower than
the service provisioning, we study what we term a Slow Game; a type of
principal-agent problem, in which the agent acts as an operator of a service
and the principal as a regulator, which sets and attempts to enforce policies
on the service being provided. The regulator is slower acting and measuring
than the operator, which introduces uncertainty depending on the difference
in speed. In this publication, we introduce a framework inspired by lossy
compression problems to model this type of game, as well as present results
from simulations of a minimal example.

Even though this work was inspired by systems where loss is induced by
speed differences, it should apply to other setups in which a principal makes
lossy observations of a world state influenced by an agent.

1.1. Conceptual framework
An instance of the slow game consists of, at minimum:

1. A fast agent 𝑓 (which might be a coordinated group) taking actions.
The identity of the fast agent, their action space, and the costs/rewards
of taking particular actions are specific to each instance.

2. A slow agent 𝑠 (which might be a coordinated group) taking measure-
ments𝑚. The identity of the slow agent, the measurements which can
be taken, how frequently they can be taken, and how much they cost
to take are specific to each instance.

3. A world model𝑤 (which may or may not be fully known), which deter-
mines how the actions taken by the fast agent affect the measurements
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taken by the slow agent (often over time). The nature of the world
model (and how much of it is known) is specific to each instance.

4. A regulatory mechanism 𝑟 through which the slow agent can reward
or punish the fast agent, depending on the measurements which they
take over time. The nature of the possible rewards and punishments
is specific to each instance.

5. A target world profile 𝑡 chosen by the slow agent (often changing over
time). This target profile may include actions taken by the fast agents,
measurements taken by the slow agents, or in-between (inferable) vari-
ables of the world state. The type of the target world profile is specific
to each instance, and the value is typically an input to the system over
time.

The characteristic questions for a slow game instance are:
Given the action space and costs/rewards of the fast agent, the measure-

ment space, frequencies, and costs of the slow agent, the (possibly uncertain)
world model, and the available regulatory mechanism:

1. Can a policy 𝑝 be crafted which will achieve the target world profile
in incentive-compatible equilibrium?

2. What is that policy?

3. What is the deviation between the reward profile of the actions which
best maximize the target world profile and the reward profile of the
actions which best maximize the fast agent’s returns? This could be
called something like slack (or extractable value - this is a sort of gen-
eralized MEV).

act-on()

measure()
m

regulate(policy(m))

f:Fast Agent w:World Model s:Slow Agent

Figure 1. Slow Game Framework.
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1.2. Examples
Here are some slow game examples, and how they instantiate each of these
variables:

1.2.1. Controller selection in Anoma
• Fast agent: controller in question, who can choose what fees to charge,
and which transactions to possibly censor. The controller’s reward is
the fees paid, and possibly side rewards (bribes) for censorship.

• Slow agent: users submitting transactions to the controller in question,
who canmeasure the fees charged, and canmeasure over timewhether
particular transactions are being censored.

• World model: fees are directly measurable; censorship is probabilisti-
cally measurable over time (since we also assume unreliable network
conditions).

• Regulatory mechanism: users can decide whether to pay fees or not,
and they can switch controllers, which reduces future rewards for the
controller to zero.

• Target world profile: controller charges fees not more than a fixed
margin above its operating costs, and what would be needed to clear
the market, and controller does not censor transactions.

1.2.2. Solver selection in Anoma
• Fast agent: Solver in question, who can choose to accept or not ac-
cept particular intents and to exploit slack (price differences between
intents) or to return slack back to users.

• Slow agent: Users submitting intents to the solver, who can measure
(over time and by comparing with each other) whether the solver is
censoring intents and how much slack is being returned to users.

• World model: slack (MEV) return and censorship are probabilistically
measurable over time (since we also assume unreliable network condi-
tions).

• Regulatory mechanism: users can decide whether to keep sending in-
tents to this particular solver, which reduces future rewards for the
solver to zero.

• Target world profile: solver exploits slack notmore than a fixedmargin
above its operating costs and does not censor intents.
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1.2.3. Delegated governance systems
• Fast agent: governance delegates, who can make particular decisions
more for their own benefit or more for the benefit of a public (slow
agent).

• Slow agent: voters, who can measure which decisions are made, or at
least their impacts.

• World model: decisions made impact the state of the world (very gen-
eral).

• Regulatory mechanism: varies, often voting out particular delegates
on a periodic basis, sometimes also emergency referenda.

• Target world profile: general happiness and stability.

2. Relation to the literature
2.1. Foundations
Principal agent problems under uncertainty
The principal agent problem, introduced by [Ros73] describes the problem of
deriving a fee schedule, s.t. an agent acting on a world state is incentivised to
choose actions that lead to outcomes desired by a principal. The treatment
concerns the perfect information setting, but acknowledges that principal
agent relationships usually happen under information asymmetry.

Application of lossy compression approach
To derive methods on how to take into account measurement errors of the
world state into reward structures, we utilize an approach from the field lossy
compression, founded by [S+59]. The work we are building on is [BM19]
from which we take the concept of perceptual divergence. Perceptual diver-
gence enables us to derive how lenient the principal should be in enforce-
ment, given a known measurement error.

Regret Formulation
To determine incentive structures, we use an approach based on external re-
gret, in which the loss of a chosen action is compared to the loss of alternative
actions in hindsight, regarding a chosen policy. This notion was introduced
by [Han57] and [BM07] provide a generalized definition, the special case of
which we use.
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2.2. Related work
Principal agent problems with uncertainty
[GW11] analyse principal agent problems under different kinds of uncer-
tainty from a stochastic programming perspective. Section 3.3. drafts how
to treat imperfect knowledge of the principal about the agent, but perfect
knowledge about all other parameters, as well as a conjecture about the
agents decision problem. The solution approach assumes connectedness and
convexity of the solution set and solves problem formulations with stochas-
tic quasi gradient methods. Our simulation based approach does not require
a conjecture about the agents decision problem, only observations of out-
comes, does not require the solving of stochastic programming problems, but
the computation of wasserstein distances, and relies on knowledge assump-
tions specified in Section 3.1.1. We assume that observations of outcomes
can be represented as discrete nonparametric distributions over a common
metric space. The speed games described in our Section Section 3.3, imple-
ment a specific type of monitoring as described in Section 3.3.2. of the above
paper, and are intended to reveal speed information.

Prior free mechanisms
[CHJ20] started a line of work that does away with the assumption that prin-
cipal and agent have a common prior over the world state, with both parties
learning about the state over time.

The authors introduce a refinement of internal regret (where best-in-hindsight
actions are determined regarding actions under a specific policy) called coun-
terfactual internal regret (CIR), inwhich regret for a given action is computed
regarding best-in-hindsight actions across all counterfactual policies. This
is motivated by the behavioral assumption, that an agent who has access to
private information that can be utilized under one policy, should also utilize
it under all other policies, independent of the policy actually chosen by a
mechanism.

Using CIR, the authors describe non-responsive, variable policy mecha-
nisms for iterated games, where a policy is chosen in each iteration. They
obtain regret bounds for the principal in symmetric information settings
(Theorem 1), as well settings in which the agent possesses an informational
advantage(Theorem 3). The bounds correlate regret of the principal with
robustness of a policy against private information the agent possesses. A
derivation is provided to transform mechanisms from symmetric informa-
tion settings into the above.

We assume that the behavioral assumption applies to the settings of inter-
est for slow games. Since we describe a non-responsive, fixed policy mecha-
nism for non-iterated games with common priors and compute an example
policy in a setting in which the principal and agent are equally well informed,
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our setting should be a special case of this work1 and Theorem 1 should pro-
vide a compatible regret bound.

[CRS23] improves on this work, by improving learning efficiency and re-
laxing assumptions on agent behavior.

Solvers in intent-based markets
The first part of [CKPD24] describes a concrete model, leveraging auction
theoretical results to derive theorems about solver competition and user wel-
fare under specific existing mechanisms with varying environmental setups.
The authors provide results for awide range of settings, including congestion
cost and no-congestion cost, as well as for exponential, uniform and pareto
price distributions. The latter heavy tailed distribution can not be treated
reliably by our model (seeSection 3.4).

The second part treats an approach based on convex optimization, which
provides more flexibility. It is used to corroborate the theoretical results, by
solving instances of the formulated problem.

In contrast to the authors analyzing existing systems and giving strong
results, our work introduces an observation based approach to structure in-
centives for fast service providers using slow regulators, but is restricted to
a simple simulated model.

3. Lossy compression model
3.1. Model description
We assume that the difference in speed between operator and regulator leads
to only lossy observations of operator actions (or outcomes thereof) being
possible on the regulator side: We call this difference in speed the speed
factor, the loss induced by its dropout.

Example 1. If the operator acts ten times within an interval, but the regula-
tor can only measure two times, only 20% of the signal can be observed, the
other 80% being dropout. The speed factor of the regulator, in this case, is
0.2.

Since we are interested in a quantitative analysis of how feasible it is for
regulators to detect out-of-policy behaviours enacted by operators under un-
certainty as described above, we take inspiration from lossy compression
research, especially the concept of perceptual quality2:

1Full proof pending.
2[BM19]
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𝑋𝑛

Signal

actions of operators

𝑓𝑛

Encode

mapping to observables

𝑚𝑛

Measure

lossy observations

𝑖𝑛

Interpolate

up to choice

Decode (𝑔𝑛 = 𝑖𝑛 ◦𝑚𝑛)

𝑋𝑛

Estimated Signal

regulators estimate

of actions/observables

Figure 2. Lossy compression model for operator ⇔ regulator interactions.

For Figure 2, 𝑑 (𝑋𝑛, 𝑋𝑛) describes the perceptual divergence of a signal
and its estimate, with 𝑑 = 0meaning that signal and estimate are fully equal.
Using the Wasserstein metric3 as a divergence measure, we can quantify the
similarity between the distribution pairs of a signal and its estimate.

The perceptual quality of an estimate quantifies how likely it seems to cor-
respond to a valid signal, in our case, a set of in-policy actions, independent
of what the signal actually was.

3.1.1. Game formulation and knowledge requirements
To build the bridge from perceptual quality to the slow game problem, we
can rephrase the last statement as follows: Howmuch could an operator cheat,
while still producing a signal of which the estimate convinces the regulator of
in-policy behaviour, given the regulators’ lossy observations?

To answer this question, we need to know the following:

1) The speed factor at which observations happen. See Section 3.3.

2) A baseline distribution implementing in-policy behaviour. This is used
as a signal to compute estimates with simulated, slowness-induced loss and,
in turn, the slowness-induced measurement error (pure error). Requirements
for this are knowledge of the policy, as well as distributions the actions are
drawn from (e.g. preferences or constraints of participants). Given these,
we can, e.g. derive closed-form models or produce empirical distributions
via simulation.

3) Optionally, information about the cheating mechanism of the operator.
More specifically, information about the conflation of pure error and cheat-
ing mechanism for out-of-policy behaviours at known speed factors.

Remark 2. In many cases, the operator will have access to the regulators’
knowledge, but more rarely the reverse be the case: A service provider can

3We use the Wasserstein metric with square Euclidean distance, instead of, e.g. KL-Divergence, because it is a proper metric, i.e.
gives us interpretable values everywhere.

DOI: 10.5281/zenodo.13765214 Anoma Research Topics | September 15, 2024 | 8

https://dx.doi.org/10.5281/zenodo.13765214
http://art.anoma.net


be their own user easily, but a user not always the provider of a service they
are using.

We now introduce notation for these relevant types of signals4: Let𝐺𝑛 be a
baseline of ”good” in-policy behaviour, 𝐵𝑛 an example of ”bad” out-of-policy
behaviour, 𝑆𝑛 some observed sample behaviour, with S = {𝑠 ∈ Q | 0 ≤ 𝑠 ≤ 1}
being a family of speed factors 𝑠 and 𝑑𝑠 (·, ·) the divergence measure of signal
to estimate at a given speed factor 𝑠 .

For a given speed factor 𝑠 , we define the following metrics:

• 𝑒𝑠 (𝐺𝑛) = 𝑑𝑠 (𝐺𝑛,𝐺𝑛) the pure (slowness induced) error of observa-
tions by the regulator. It tells us how close the estimate of a known
good signal is to the signal itself.

• 𝑐𝑠 (𝐵𝑛) = 𝑑𝑠 (𝐵𝑛, �̂�𝑛) the cheating prior. It tells us how close the esti-
mate of a specific bad signal is to the signal itself, including interactions
of the cheating mechanism with the pure error (the above mentioned
conflation).

• 𝑜𝑠 (𝐺𝑛, 𝑆𝑛) = 𝑑𝑠 (𝐺𝑛, 𝑆𝑛) the observed divergence (from baseline). It
gives a distance between the estimate of some observation from the
estimate of a known good signal.

• 𝑥𝑠 (𝐺𝑛, 𝑆𝑛) = 𝑜𝑠 (𝐺𝑛, 𝑆𝑛) −𝑒𝑠 (𝐺𝑛) the excess divergence. It tells us how
much of the observed divergence is not explained by pure error.

Remark 3. For ease of exposition, we look at observables 𝑂𝑛 = 𝑓 (𝑋𝑛), in-
stead of the actions/signal 𝑋𝑛 . In general, actions might not be observable at
all, i.e., there is never access to signal samples. Thus, policies should be de-
fined over observables𝑂𝑛 = 𝑓 (𝑋𝑛), and estimates𝑂𝑛 should be computed ac-
cordingly, unless the mapping between an observable and the latent variable
modelling the signal is clear and policing the actions directly is desirable.

3.2. Crafting incentive structures
3.2.1. Reward mechanism
Since we want to incentivize in-policy behaviour, we need to define a re-
ward/punishment mechanism to achieve that.

For example, assuming some base reward 𝑅𝑏 and operating cost 𝐶𝑜 , we
could try to compute a weighting factor 𝑤 , which depends on how far we
deem the operators behaviour to be away from in-policy behaviour while
taking the uncertainty of our measurements at a given speed factor 𝑠 into
account.

4We assume that an estimate can be computed for any signal that is available, but not the other way around.
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To do that, we can use the measures for pure error, cheating prior and ex-
cess divergence from above to define payoff weights. In general, we subtract
the excess divergence from the respective prior:

• In case we only know a baseline 𝐺𝑛:

𝑤𝐺
𝑠 (𝐺𝑛, 𝑆𝑛) = 𝑒𝑠 (𝐺𝑛) − 𝑥𝑠 (𝐺𝑛, 𝑆𝑛) (1)

• In case we also know the cheating prior 𝐵𝑛:

𝑤𝐵
𝑠 (𝐺𝑛, 𝐵𝑛, 𝑆𝑛) = 𝑐𝑠 (𝐵𝑛) − 𝑥𝑠 (𝐺𝑛, 𝑆𝑛) (2)

Remark 4. The pure error can be seen as a prior with no information about
conflation with cheating distributions

This gives us reward weights𝑤𝑠 , which we can use directly in our payoff
function. Then payoff for 𝑆𝑛 at speed factor 𝑠 , derived from a good baseline
is: 𝑝𝐺𝑠 (𝑆𝑛) = (𝑅𝑏 −𝐶𝑜) ·𝑤𝐺

𝑠 (𝐺𝑛, 𝑆𝑛). If cheating priors are available: 𝑝𝐵𝑠 (𝑆𝑛) =
(𝑅𝑏 −𝐶𝑜) ·𝑤𝐵

𝑠 (𝐺𝑛, 𝐵𝑛, 𝑆𝑛). When not explicitly denoted, 𝑝𝑠 can be either 𝑝𝐺𝑠
or 𝑝𝐵𝑠 .

3.2.2. Regret formulation
To check how well we incentivize in-policy behaviour with the payoff func-
tion from above, we calculate external regret5. for all parameter sets of the
cheating mechanism, which are simulated per speed factor. E.g. if the cheat-
ing mechanism samples from a binomial distribution 𝐵(10, 𝑐) with
𝑐 ∈ {0.1, 0.2, ..., 1}, we receive for each 𝑐𝑖 a different corresponding 𝑆𝑖𝑛 . In
our simulation, lower values for 𝑐 mean less cheating, with 𝑐 = 0 being no
cheating at all.

Remark 5. Weassume the full information setting, inwhichwe knowpayoff
results for all choices of 𝑐 . This has nothing to do with our measurements, it
purely regards whether or not we know outcomes of alternative actions for
regret calculation.

Regret for a specific action choosing 𝑐 then is the maximum pairwise dif-
ference in payoffs, holding fixed the payoff of the estimate 𝑆 𝑗

𝑛 corresponding
to 𝑐 𝑗 :

𝑟𝑠 (𝑐 𝑗 ) = max
∀𝑐𝑖

{
𝑝𝑠 (𝑆𝑖𝑛) − 𝑝𝑠 (𝑆 𝑗

𝑛)
}
. (3)

So, if we want the dominant strategy to be in-policy behaviour, regret
should be minimized at 𝑟𝑠 (0) for any given 𝑠 .

5As defined in [BM07], Section 2.
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Remark 6. When using weights 𝑤𝑠 , we can observe empirically in the ex-
periment explained below, that in-policy behaviour minimizes regret for the
operator, with reward being positive. Further work will need to show if this
generalizes.

3.3. Speed Games
To determine the speed factor between regulator and operator, another game
can be played, which we sketch here: Since a lower ratio of regulator: opera-
tor speed leads to more leniency of the regulator in our setting, the incentive
of the operator is to convince the regulator of as high a speed as possible.

Assuming the regulator incurs some cost 𝑐 (𝑓 ) for measuring at frequency
𝑓 , the operator could offer (a part of) this cost to compensate the regulator
for the process of proving their capability to operate at 𝑓 .

Actual operation after the proof could take place at a lower frequency, but
depending on measurement protocols, the regulator might detect that and
adjust the speed factor in its models, plus some additional punishment, e.g.
in case some operating speed is agreed on.

To access awider range of trade-offs betweenmeasurement cost and strength
of deterrence, the regulator can, e.g. randomize the measurement frequency.

3.4. Interpolation and heavy tails
Since dropout leaves us with incomplete data, we have the choice of interpo-
lation scheme, e.g. replacing missing values with the mean of the interval,
or using linear, polynomial or spline interpolation.

This has implications for which types of policies are feasible to (approxi-
mately) enforce: If payoff for defection is distributed in subgaussian fashion,
i.e. ”small” amounts of value can be extracted in a lot of events, interpola-
tion will introduce tolerable error. If defection payoff is distributed in very
heavy-tailed ways, i.e. a lot of value can be extracted in very rare events,
interpolation error, is potentially very large.

Because of this, setups with subgaussian defection payoff are preferable.
E.g. is certain choices of constraints for the system can be chosen that smooth
out the distributions, that is preferable.

4. Example: Two-player thermostat
Let us now work out (and implement simulations for) 6 a minimal example
of a slow game using the above approach. For that, we pick a two-player
thermostat:

6The implementation can be found at https://github.com/anoma/slow-game-research.
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4.1. Game Model
We have the following roles and objects:

• Outside, which has a fluctuating temperature (drawn once per timestep
from a discrete uniform distributionU(10, 32)) and influences the tem-
perature of a room.

• A room, which is supposed to be kept within a certain range of tem-
perature.

• An operator which

– heats and cools the room to control its temperature.

– tries to maximize its reward for the service provided (i.e. is
a profit-maximizing actor), using a stochastic cheating mecha-
nism to cool or heat slightly less than necessary (drawing from
a binomial distribution 𝐷𝑐 = 𝐵(𝑛, 𝑝)).

• A regulator, which

– sets the policy for the temperature bounds of the room. Here,
the range is [18, 25].

– tries to verify policy adherence of the operator.

– rewards or punishes operator depending on the degree of adher-
ence to policy.

The reward is computed by setting a heating/cooling budget 𝑅𝑏 for a pe-
riod with 𝑇𝑆 timesteps, and giving all unspent budget to the operator as a
base reward. Heating or cooling by one degree costs one unit of the budget.
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outside-influence(𝑡𝑜 )

measure-temp()
𝑡𝑜

measure-temp()
𝑡𝑖

cheat-strategy(𝑡𝑖 , 𝑡𝑜 )
𝑡𝑐

change-temp(𝑡𝑐 )

measure-temp()
𝑡𝑖 + 𝑡𝑐

check-div-from-policy(𝑡𝑖 + 𝑡𝑐 )
d

reward-or-punish(d)

out:Outside o:Operator in:Room r:Regulator

Figure 3. Sequence diagram of two-player thermostat model.

Here, the operator (red) and regulator (yellow) actions happen at different
frequencies 𝑓𝑜 and 𝑓𝑟 with 𝑓𝑟 < 𝑓𝑜 and 𝑓𝑜 = once per time step. Outside
influence can be continuous in time, but no change faster than the maximal
operator measurement frequency is relevant for our model.

Remark 7. Assuming instantaneous temperature exchange between the out-
side and the room (e.g. the room has no insulation), the operator can omit
either one of the temperature measurements.

Given the above model, with 𝑇𝑐 =
∑
𝑡𝑐 over all timesteps, the payoff func-

tions for the operator are:

𝑝𝐺𝑠 (𝑆) = (40000 −𝑇𝑐) −𝑤𝐺
𝑠 (𝐺𝑛, 𝑆) (4)

𝑝𝐵𝑠 (𝑆) = (40000 −𝑇𝑐) −𝑤𝐵
𝑠 (𝐺𝑛, 𝐵𝑛, 𝑆) (5)

For plots of𝑤𝐺
𝑠 and𝑤𝐵

𝑠 , see subfigures 2.2 and 2.3 below.
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4.2. Empirical Analysis
4.2.1. Simulation Data
To get an intuition for how our example game plays out, given the above
model and basic incentives, we simulate experiments and perform empirical
analysis on it. We run experimentswith𝐷𝑐 = 𝐵(10, 𝑝𝑖), 𝑝𝑖 ∈ {0, 0.1, 0.2, ..., 0.9, 1},
with 𝑆 = 10000, 𝑅𝑏 = 40000, and interpolation replacing missing values with
the mean of available data.

Figure 4. Experiments with 𝐷𝑐 = 𝐵(10, 𝑝𝑖 ), 𝑝𝑖 ∈ {0, 0.1, 0.2, ..., 0.9, 1}.
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The numbered subfigures from Figure 4 show the following:
1.2 shows the pure error. (Error for 𝑝 = 0 repeated along 𝑝𝑖 .)
1.3 shows the cheating prior. Since we know the full signal, we can com-

pute 𝑑𝑠 for every signal/estimate pair.
2.1 shows excess divergence. We don’t assume to know any signal apart

from the baseline, only observed estimates.
2.2 payoff weights𝑤𝐺

𝑠 derived from pure error.
2.3 payoff weights𝑤𝐵

𝑠 derived from cheating priors.
3.1 base reward for operator w/o payoff weights.
3.2 reward weighted entrywise by 2.2. according to (1).
3.3 reward weighted entrywise by 2.3. according to (2).
4.1 regret w/o reward weighting.
4.2 regret corresponding to 3.2.: in-policy behaviour is the dominant strat-

egy up to roughly 0.65 speed factor.
4.3 regret corresponding to 3.3.: in-policy behaviour is dominant strategy

in all speed regimes.

4.2.2. Discussion
Looking at 1.2 and 1.3 in Figure 4, we can see that knowing how the confla-
tion of the cheating strategy with the pure error gives us tighter divergence
information compared to only the pure error, especially in the regimes with
both high speed difference and high cheating probability.

Subtracting excess divergence (2.1) from either of the above gives us dif-
ferent weighting surfaces for the reward, the result of which is shown in 3.2
and 3.3, respectively, with 4.2 and 4.3 being the corresponding regret formu-
lations.

We can see negative reward payments (i.e. punishment) in the low-speed
difference and high cheat regimes in both cases, causing high regret to the
operator. Theweights derived from the pure error result in rewards for cheat-
ing in the high speed difference regime, though, i.e. the policy is too lenient.

The policy derived from the conflation (1.3) is tight enough in all speed
regimes to incentivize in-policy behaviour, as regret reliably increases to-
gether with cheating everywhere.

Remark 8. The policy is encoded in the reward weighting surfaces. Assum-
ing the regulator knows their measurement error and the observed excess
divergence of the estimate from a good baseline signal, they can read off the
weight they should apply to the base reward.
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5. Future directions
We see this work as an initial step in exploring the problem space. Now,
that we have a better idea about the model and the subgames being played,
further research questions arise and opportunities for application are clearer.

Composition of slow games
On the Anoma network, operators and regulators will often be internally
coordinated in setups that can be modelled as a slow game. How do these
games compose?

Decomposition of a regulator
One example for the above mentioned internal coordination: Users of a spe-
cific service, each of which has a partial view of the outcomes produced by
that service. How can they coordinate amongst each other, what are the
incentive problems and how does that influence approximation bounds?

Operator collusion in slow games
One of the goals of this line of research is to build a frameworkwhich enables
regulators to create equilibria in which service providers compete on policy
adherence to maximize regulator welfare. What if the operators collude?
Can this be detected, or do conditions exist under which we can bound its
influence?

Applied modeling of Anoma
Two direct applications are mentioned in the examples section of the intro-
duction: controller selection 1.2.1 and solver selection 1.2.2 in Anoma.

Empirical pipeline
Once the Anoma network becomes operational, we hope to incorporate this
framework into an empirical pipeline that can help inform decision making
for users in practice.

Transformation into a prior-free mechanism
By moving from a setting in which we assume a common prior over the un-
derlying state, to the setting described in [CHJ20], where we use a learner
to forecast the underlying state, it might be possible to transform our ap-
proach into a prior-free online mechanism, making its application feasible
in practical settings.

For example, on the Anoma network: Users (which compose to the regula-
tor) want transactions (TXs) to be ordered and included in blocks published
by a controller7 (which act as service providers). Users and controller agree

7See [Isa24]
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on a specific mechanism, i.e. which metric is to be maximised by ordering
of TXs in the blocks.

The controller is the only party that has exact knowledge about the order
in which it receives the TXs, as well as the ability to potentially drop or
include TXs, from which it builds a block. This means the controller has
an informational advantage (knowing which blocks could be built) over the
users, which it can use to defect from the agreed upon mechanism without
it being detectable by the users, who can only (partially) observe outcomes.

Theorem 3 from [CHJ20], giving an upper bound for the principals (or
here the users) expected regret in their setting, should provide an ”upper”
upper bound for extractable value in this example as well, with some caveats:
Extractable value should only be a part of principal regret, the rest being
agent regret, friction in different places etc.

Regarding the component terms of the theorem, we can say the follow-
ing: The cost of 𝜖-informational robustness depends how well we can solve
for efficient, 𝜖-robust mechanisms for this specific use-case. Also, the state
is revealed to the agent before it chooses an action, resulting in a larger in-
formational advantage. Agent regret will depend on the complexity of the
utility functions depending on TX ordering and available computational re-
sources. For forecast miscalibration, we need to make a refinement: The state
is only partially revealed to the principal, depending on howmuch data they
can aggregate regarding the input TXs and how well the outcome can be es-
timated. The discretization error should be 0, since our problem is a discrete
knapsack problem.
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A. Variation of cheating prior
We show another experiment, with different parameters for the cheating dis-
tribution: 𝐷𝑐 = 𝐵(3, 𝑝𝑖), 𝑝𝑖 as above.
1.2 shows how the pure error stays the same.
1.3 shows how the conflation of pure error and cheating prior having a

different shape.
2.1 since in the excess divergence measurements, we only observe the

estimates, this shape also changes.
2.2-4.3 are analogous to Fig. 4, but derived from 1.3 and 2.1.

Figure 5. Experiments with 𝐷𝑐 = 𝐵(3, 𝑝𝑖 ), 𝑝𝑖 as above, to show cheating prior where pure
error is conflated with a different distribution.
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