Appendix: Artifact Description

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Abstract

Scientific research increasingly relies on distributed compu-
tational resources, storage systems, networks, and instruments,
ranging from HPC and cloud systems to edge devices. Event-
driven architecture (EDA) benefits applications targeting dis-
tributed research infrastructures by enabling the organization,
communication, processing, reliability, and security of events
generated from many sources. To support the development
of scientific EDA, we introduce Octopus, a hybrid, cloud-
to-edge event fabric designed to link many local event pro-
ducers and consumers with cloud-hosted brokers. Octopus
can be scaled to meet demand, permits the deployment of
highly available Triggers for automatic event processing, and
enforces fine-grained access control. We identify requirements
in self-driving laboratories, scientific data automation, online
task scheduling, epidemic modeling, and dynamic workflow
management use cases, and present results demonstrating
Octopus’ ability to meet those requirements. Octopus supports
producing and consuming events at a rate of over 4.2 M and
9.6 M events per second, respectively, from distributed clients.

B. Paper’s Main Contributions
The contributions of our work are:

C7 Investigation of using scientific EDA to design robust
distributed applications, a survey of use cases to deter-
mine requirements, and discussion of the benefits and
limitations of applying EDA to five science applications.

C> Design and implementation of a hybrid, cloud-hosted,
multi-user event fabric, Octopus, along with its open-
sourced software ecosystem.

C3 Evaluation of Octopus’ performance, scalability, and
suitability for scientific use cases.

C. Computational Artifacts

The computational artifacts developed as part of this re-
search include:

A;j Octopus SDK and a walk-through notebook:
github.com/globus-labs/diaspora-event-
sdk/releases/tag/v0.3.5

Ay Evaluation Methodology and Results:
doi.org/10.5281/zenodo.10975534

The relationship between the artifacts and contributions is
listed below.

Artifact ID Contributions Related

Supported Paper Elements
Ay Cs Figure 2
Listing 1
Aq Cs Tables 3

Figures 3-5, 7-8

Contributions C are not directly supported by the two
computational artifacts. These contributions are primarily con-
ceptual, synthesizing lessons learned from case studies and
preliminary development of Octopus, focusing on the strategic
insights necessary for applying EDA in scientific contexts.

II. ARTIFACT IDENTIFICATION

A. Computational Artifact Ay
Relation To Contributions

As a part of the Octopus software ecosystem, the Octopus
SDK provides a user interface to interact with Octopus Web
Service for credential, topic, and trigger management features.
Included in this package are the source code of the latest
SDK and a Python notebook for a guided walk-through of
these features, demonstrating the implementation of the cloud-
hosted event fabric and its triggers for reliable real-time event
processing.

Expected Results

The notebook is organized sequentially to introduce creden-
tials, topics, and trigger management features. Specifically, the
main goal of each section is to showcase:

o Credential Management: the SDK retrieves and stores
cluster authentication credentials from Octopus Web Ser-
vice, enabling users to connect and interact with the event
fabric.

« Topic Management: the SDK registers topics for exclu-
sive access, as well as enables users to view and modify
various configurations of registered topics.

o Trigger Management: the SDK facilitates users to cre-
ate, view, update, and delete Octopus triggers, enabling
real-time event processing without configuring traditional
consumers.

Expected Reproduction Time (in Minutes)

The notebook walk-through will take approximately fifteen
minutes, covering SDK installation, execution of notebook
cells to engage with the hosted Octopus Web Service, and
waiting times for operations such as trigger creation and
deletion.

Artifact Setup (incl. Inputs)

The notebook in the artifact does not require a particular
environment or specific hardware. The first code cell installs
the Octopus SDK and all required dependencies from PyPI.
This notebook has been tested with Python 3.9.6 and Python
3.10.14. It is recommended that the notebook be executed in
a Python 3.8 or higher virtual environment.

https://github.com/globus-labs/diaspora-event-sdk/releases/tag/v0.3.5
https://github.com/globus-labs/diaspora-event-sdk/releases/tag/v0.3.5
https://doi.org/10.5281/zenodo.10975534
https://github.com/globus-labs/diaspora-event-sdk/blob/55705f8a9251f389779737444c2850595218479a/DiasporaDemo.ipynb

Artifact Execution

Following the SDK installation, the second code cell per-
forms user authentication via Globus Auth. The platform
supports a wide range of identities from various organizations,
including academic institutions, GitHub, Google, and ORCID.

The first section of the notebook demonstrates explicitly
acquiring a connection credential for the event fabric clus-
ter. After acquiring the credential and storing it in local
token storage, the code produces a message to the event
fabric and consumes another from a public topic by calling
block_until_ready ().

The second section covers topic management APIs: acquir-
ing and releasing topic access, adjusting topic settings, and
using the SDK producer and consumer on a registered topic.

The third section introduces APIs for trigger creation, list-
ing, updating, and deletion. Following the code cells, the user
can create a basic trigger that records incoming events, create
and remove the filter described in Listing 1 of the paper, and
tear the trigger down with associated AWS resources. To verify
the trigger has been invoked, the code cells provide execution
logs and trigger prints fetched from AWS CloudWatch.

Artifact Analysis (incl. Outputs)

For all SDK methods, we list the formats of the expected
return in the comments before the code. For methods calling
Octopus Web Service, we expect the responses to show
"status": "success" with requested information. Some
special cases include: 1) In the first section, we expect the
assertion to return without raising an exception. 2) In the
second section, we expect the SDK consumer to consume
messages produced earlier, which may arrive out of order if
the topic has been configured with more than one partition by
the user.

B. Computational Artifact A
Relation To Contributions

This artifact details our benchmarking methodology, includ-
ing the code and setup for the benchmarking producer and
consumer, Octopus trigger, and Parsl. It also includes raw
benchmarking datasets and the scripts used for data analysis
and visualization. The documentation supports the findings in
the evaluation and application sections and illustrates how the
figures and tables were generated.

Expected Results

We expect the provided Python notebook to reproduce
Figures 3-5, 7, and 8, as well as Table 3, using the raw data in
the artifact. In the description below, we outline the complete
benchmarking process and the steps for data collection beyond
what has been discussed in the paper.

Expected Reproduction Time (in Minutes)

We estimate that the time to reproduce these tables and
figures using our provided notebook is fifteen minutes.

Artifact Setup (incl. Inputs)

Producer and Consumer Benchmarking: We modify Kafka
3.5.1’s benchmarking producer and consumer to support
duration-based benchmarking; That is, the producers and
consumer run until the specified time duration (e.g., two
minutes) is passed. At each client instance (i.e., on AWS and
Chameleon Cloud), we clone and check out Kafka 3.5.1 from
the official GitHub repository, replace the source code of the
benchmarking clients with our code, and recompile the Kafka
library.

On the benchmarking operator side, we clone the GitHub
repository that the benchmarking shell scripts belong to and
specify the IPs of the client machines as well as SSH keys
to connect in remote-configs.sh. We also specify the
number of repeats and other parameters (number of producers,
event sizes, etc.) in run—-remote.sh. When we execute
this script, it contacts all remote clients to spawn the de-
sired number of producers or consumers. When a round of
benchmarking is complete, the script automatically collects
logs from client instances. The collected logs are in groupl
to group? folders in bmk—-data, categorized by the cluster
specifications and whether clients are remote (on Chameleon
Cloud instances) or local (on AWS EC2 instances).

Octopus Trigger Benchmarking: For trigger-related bench-
marking, we invoke our trigger creation API to set triggers
with specified function code and invocation parameters. For
the scaling test, the function sleeps for 30 seconds upon receiv-
ing an event from a topic with 128 partitions. For the Scientific
Data Automation app, the function prints the received event
from a topic with 8 partitions and invokes the Globus Transfer
service to initiate the data transfer. The function waits until the
transfer task is complete. The invocation batch sizes of both
functions are capped to one, but the trigger for Scientific Data
Automation receives file creation events batched previously by
the local aggregator. We downloaded the execution log streams
from AWS CloudWatch; they are in trigger8topics and
triggerl28topics folders in bmk-data.

Parsl Benchmarking: We use Texas A&M’s FASTER clus-
ter, a cluster with Intel(R) Xeon(R) Platinum 8352Y CPUs @
2.20GHz. In this experiment, we used 4 computation nodes,
all using the Rocky Linux 8 Linux distribution.

The Parsl library we use here is a forked version, which can
be found in the parsl_resilient folder of the artifact.
Use the following command to install this library and the
dependencies.

e cd parsl_resilient
e Pip install -e
e pPip install ‘parsl[monitoring]’

The test script run_one.py in the artifact takes in argu-
ments such as the number of workers, the number of tasks,
and the monitor mode to generate Parsl configurations and
run those tasks. When all of the tasks finish and return, it will
record the task execution time and insert the corresponding
information into the database. strong.sh script invokes

run_one.py at different configurations and records the total
makespan of each Python program.

To plot Figure 8 on the paper, we need to calculate the num-
ber of events and the overhead for each trail. cal_entry.py
reads run_id from the Parsl database and uses them to cal-
culate the number of events. cal_overhead.py subtracts
the task execution time from makespan to get the overhead,
which is stored in FASTERdata.db in bmk-data.

Python Notebook: The Python notebook for plotting figures
and generating Table 3 requires no special hardware. The
first code cell installs necessary PyPI packages for plotting.
We have tested the notebook with Python versions 3.9.6 and
3.10.14. Additionally, a requirements.txt is provided
for Python 3.9.6; however, the first code cell should install all
required dependencies without a problem.

Artifact Execution

In this section, we explain how the provided notebook uses
the collected data for plotting and generating Table 3. The
notebook is structured into seven sections. The first section
installs dependencies and loads the benchmarking producer
and consumer logs to variables for plotting later, and executing
through each of the following sections produces a figure
or a table on the paper. Notebook sections are organized
in the order in which these elements appear on the papers.
Specifically, Sections 2 through 4 plot Figures 3 to 5. Section
5 generates Table 3, showing throughput and latency metrics.
Finally, Sections 6 and 7 produce Figures 7 and 8.

Artifact Analysis (incl. Outputs)

We expect the figures generated throughout the notebook
to match closely with those in our paper, specifically Table 3,
Figures 3-5, 7, and 8. The other figures included in the paper
do not show experiment results.

	Overview of Contributions and Artifacts
	Paper's Abstract
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1
	Computational Artifact A2

