Alternative fillers and active admixtures from by-products and quarry dusts in asphalt mixtures – and active ternative fillers and active
ternative fillers and active
weducts and
y dusts in asphalt mixtures –

JAN VALENTIN

Faculty of Civil Engineering, Czech Technical University in Prague

What are potentially usable materials? What are potentially usable materials?
 \rightarrow backhouse filler and quarry dust;
 \rightarrow fly-ashes (silicious or fluidized combustion bed)
 \rightarrow blast furnace slag, pan slags. BOF and similar steel production slags: What are potentially usable materials?
 \rightarrow backhouse filler and quarry dust;
 \rightarrow fly-ashes (silicious or fluidized combustion bed)
 \rightarrow blast furnace slag, pan slags, BOF and similar steel production slags;
 \rightarrow cem What are potentially usable materials?

blackhouse filler and quarry dust;

blast furnace slag, pan slags, BOF and similar steel production slags;

blast furnace slag, pan slags, BOF and similar steel production slags;
 What are potentially usable materia
 \rightarrow backhouse filler and quarry dust;
 \rightarrow fly-ashes (silicious or fluidized combustion bed)
 \rightarrow blast furnace slag, pan slags, BOF and similar steel produ
 \rightarrow cement kiln dust
 Mhat are potentially usable materials?

→ backhouse filler and quarry dust;

→ fly-ashes (silicious or fluidized combustion bed)

→ blast furnace slag, pan slags, BOF and similar steel production sla

→ cement kiln dust

-
-
-
-
-

Potential use cases of these materials in pavements Potential use cases of these maternal

In asphalt mixtures:

→ as an alternative to regular limestone filler Potential use cases of these materials in pavements

In asphalt mixtures:
 \rightarrow as an alternative to regular limestone filler
 \rightarrow as a hydrophobization agent Potential use cases of these materials in portion

In asphalt mixtures:

→ as an alternative to regular limestone filler

→ as a hydrophobization agent

→ as a stiffening mineral additive Potential use cases of these materials in p

In asphalt mixtures:

→ as an alternative to regular limestone filler

→ as a hydrophobization agent

→ as a stiffening mineral additive Potential use cases of these materials in

In asphalt mixtures:

→ as an alternative to regular limestone filler

→ as a hydrophobization agent

→ as a stiffening mineral additive

In granular bound layers:

→ active fil

-
-
-

-
- POTENTIAL USE CASES OF THESE MATEMALS IN PORTON IN A Analytical rest of the same alternative to regular limestone filler
 \Rightarrow as an alternative to regular limestone filler
 \Rightarrow as a stiffening mineral additive

In granu

Fillers in asphalt mixtures

What is commonly tested on fillers What is commonly tested on fillers
Regularly requested tests:
 \rightarrow delta ring and ball (EN 13179-1)
 \rightarrow particle size distribution specifically for 0/0.125 mm particles What is commonly tested on fillers

Regularly requested tests:
 \rightarrow delta ring and ball (EN 13179-1)
 \rightarrow particle size distribution specifically for 0/0,125 mm particles
 \rightarrow assessment of fines - Methylene blue test What is commonly tested on fil

Regularly requested tests:
 \rightarrow delta ring and ball (EN 13179-1)
 \rightarrow particle size distribution specifically for 0/0,125
 \rightarrow assessment of fines - Methylene blue test => pres

Useful t

-
- → particle size distribution specifically for 0/0,125 mm

→ assessment of fines Methylene blue test => presence

Useful tests:

→ determination of loose bulk density and voids (EN 10

→ determination of the voids of dr
-

-
-
-
- determination of the water content (EN 1097-5)
-

Chemical characterization Chemical characterization
 Possible to test according to EN 13043:
 \rightarrow water solubility (EN 1744-1, part 16)
 \rightarrow susceptibility to water (EN 1744-4) Chemical characterization

Possible to test according to EN 13043:

→ water solubility (EN 1744-1, part 16)

→ susceptibility to water (EN 1744-4)

→ content of carbonates in calcerous fillers Chemical characterization
 Possible to test according to EN 13043:
 \rightarrow water solubility (EN 1744-1, part 16)
 \rightarrow susceptibility to water (EN 1744-4)
 \rightarrow content of carbonates in calcerous fillers
 \rightarrow content of Chemical characterization

Possible to test according to EN 13043:
 \rightarrow water solubility (EN 1744-1, part 16)
 \rightarrow susceptibility to water (EN 1744-4)
 \rightarrow content of carbonates in calcerous fillers
 \rightarrow content of ca Chemical characterization

Possible to test according to EN 13043:
 \rightarrow water solubility (EN 1744-1, part 16)
 \rightarrow susceptibility to water (EN 1744-4)
 \rightarrow content of carbonates in calcerous fillers
 \rightarrow content of ca

-
-
-
-

Nice-to-have:

-
- → water solubility (EN 1744-1, part 16)

→ susceptibility to water (EN 1744-4)

→ content of carbonates in calcerous fillers

→ content of calcium hydroxide in blended fillers

Nice-to-have:

→ X-ray fluorescent spectrom
-

How XRF can be useful?

Primary radiation

Example of ground recycled concrete sample

How XRF can be useful?

This can help to provide some indication about hydrophobicity of the mineral material

How XRD can be useful?

The analysis provides information about chemical composition and crystalline constitution of materials.

Example of a quarry dust

hydrophobized fillers

 APR $0-8$

12

 APP $0-8$

 APR $0-8$

Possibilities how to think about the filler stiffening effect Layer – by absorption infulene binder

Layer – by absorption infu Layer – by absorption infulene binder

Layer – by absorption infu Stiffening gradient Reflective Apple of the filler stiffening

Possible tests (regular and alternative):

A delta ring and ball (EN 13179-1)

A ductility / force duktility (e.g. at 25°C) k about the filler stiffening

Possible tests (regular and alternative):

→ delta ring and ball (EN 13179-1)

→ ductility / force duktility (e.g. at 25°C)

→ MSCR test X about the filler stiffening

Possible tests (regular and alternative):

→ delta ring and ball (EN 13179-1)

→ ductility / force duktility (e.g. at 25°C)

→ MSCR test

→ frequency sweep test

-
-
-
-

Filler

Possibilities how to think about the filler stiffening effect

Possibilities how to think about the filler stiffening effect

Possibilities how to think about the filler stiffening effect

Adhesion and the relation to asphalt durability

Adhesion and the relation to asphalt durability
Adhesion definition (two of many): Bitumen performs the adhesive function that
binds mineral material particles to form an asphalt mix coating. Adhesion and the relation to asphalt durability
Adhesion definition (two of many): Bitumen performs the adhesive function that
binds mineral material particles to form an asphalt mix coating.
or
The tendency of staving tog Adhesion and the relation to asphalt durability
Adhesion definition (two of many): Bitumen performs the adhesive function that
binds mineral material particles to form an asphalt mix coating.
The tendency of staying togeth Adhesion and the relation to asphalt d
Adhesion definition (two of many): Bitumen performs the a
binds mineral material particles to form an asphalt mix co
or
The tendency of staying together for two dissimilar materi
mix Adhesion and the relation to asphalt durability
Adhesion definition (two of many): Bitumen performs the adhesive function that
binds mineral material particles to form an asphalt mix coating.
or
The tendency of staying tog Adhesion and the relation to asphalt durables
Adhesion definition (two of many): Bitumen performs the adhe
binds mineral material particles to form an asphalt mix coatin
or
The tendency of staying together for two dissimil Adhesion and the relation to asphalt durability

Adhesion definition (two of many): Bitumen performs the adhesive function that

binds mineral material particles to form an asphalt mix coating.

or

The tendency of staying ACTIC STOIT ATTU UTC I CTAUTOIT TO AS PITATU UTT ADDITE
Adhesion definition (two of many): Bitumen performs the adhesive fund
binds mineral material particles to form an asphalt mix coating.
or
The tendency of staying toge definition (two of many): Bitumen performs the adhesive function that

ds mineral material particles to form an asphalt mix coating.

tendency of staying together for two dissimilar material - in case of asphalt

bitumen

or

ds mineral material particles to form an asphalt mix coating.

tendency of staying together for two dissimilar material - in case of asphalt

bitumen and aggregate.

esion influences structural stability, service performa

-
-

Adhesion and the relation to asphalt durability

D asphalt durability

It affects the overall durability

It affects the overall durability of the

asphalt mix, particularly due to the

ingress of water or moisture at the

interface between the two material asphalt durability
asphalt durability
the asphalt mix, particularly due to the
ingress of water or moisture at the
interface between the two material
phases. o asphalt durability
as a sphalt durability
the asphalt mix, particularly due to the
ingress of water or moisture at the
interface between the two material
phases. **EXAMPLE SERVERT OR AN ARREST AND ASSESSMENT AND ARREST AT A SERVERT AN ARREST AND A SERVERT AND A SERVERT AND A SERVERT AND A SERVERT AND A SERVERT** phases. sphalt durability

ffects the overall durability

ffects the overall durability of the

nalt mix, particularly due to the

ess of water or moisture at the

rface between the two material

ses.
 \rightarrow bitumen (type, modific sphalt durability

ffects the overall durability of the

nalt mix, particularly due to the

ess of water or moisture at the

rface between the two material

ses.
 \rightarrow bitumen (type, modification,

origin)
 \rightarrow aggregate

- origin)
- alkali)

Adhesion and theories behind
Adhesion is mutual interaction between aggregate particle and the bitumen
leading to firm coating of the binder and adhering to the aggregate surface.
It is still of the most complicated phenom Adhesion and theories behind
Adhesion is mutual interaction between aggregate particle and the bitumen
leading to firm coating of the binder and adhering to the aggregate surface.
It is still of the most complicated phenom Adhesion and theories behind
Adhesion is mutual interaction between aggregate particle and the bitumen
leading to firm coating of the binder and adhering to the aggregate surface.
It is still of the most complicated phenom Adhesion and theories behind
Adhesion is mutual interaction between aggregate par
leading to firm coating of the binder and adhering to the a
It is still of the most complicated phenomena we have in asph.
Theories you can Mechanical theory – bitumen will penetrate into the irregular aggregate surface.

Mechanical theory – bitumen will penetrate into the irregular aggregate surface.

Theories you can find:

• Mechanical theory – bitumen will We strain and theories behind
thesion is mutual interaction between aggregate particle and the bitumen
ding to firm coating of the binder and adhering to the aggregate surface.
still of the most complicated phenomena we ha lhesion and theories behind
thesion is mutual interaction between aggregate particle and the bitum
ding to firm coating of the binder and adhering to the aggregate surface.
still of the most complicated phenomena we have i lhesion and theories behind
hesion is mutual interaction between aggregate particle and the biture
ding to firm coating of the binder and adhering to the aggregate surface.
still of the most complicated phenomena we have i

Adhesion is mutual interaction between aggregate particle and the bitumen

leading to firm coating of the binder and adhering to the aggregate surface.

It is still of the most complicated phenomena we have in asphalt mix hesion is mutual interaction between aggregate particle and the bitumen

ding to firm coating of the binder and adhering to the aggregate surface.

still of the most complicated phenomena we have in asphalt mixtures.

sori ding to firm coating of the binder and adhering to the aggregate surface.

Still of the most complicated phenomena we have in asphalt mixtures.

Still of the most complicated phenomena we have in asphalt mixtures.

State a still of the most complicated phenomena we have in asphalt mixtures.

Sories you can find:
 Mechanical theory – bitumen will penetrate into the irregular aggregate surface

with rough texture generating a mechanical inte Form of the most compinant of the matrematy
and of the most compilated phenomenal we have in applinate inflator.

We channical theory – bitumen will penetrate into the irregular aggregate surface

with rough texture genera

- Adhesion and theories behind
 \rightarrow Molecular orientation theory suggestion that the main reason of adhesion is

caused by the orientation alignment of polar bitumen molecules on aggregate

surface. When bitumen comes to **Cause of the oriential conducts**
 Cause of the orientation theory - suggestion that the main reason of adhesion is

caused by the orientation alignment of polar bitumen molecules on aggregate

surface. When bitumen come **Surface Surface Surface Surface Surface Surface Surface Surface Surface Surface Surface.**
 Surface. When bitumen comes to contact with aggregates surface, the polar bitumen molecules of bitumen comes to contact with aggr molecular orientation theory - suggestion that the main reason of adhesion is
caused by the orientation alignment of polar bitumen molecules on aggregate
surface. When bitumen comes to contact with aggregates surface, the **Example 19 and the ories behind**
 Altesion and theories behind
 Alternation theory – suggestion that the main reason of adhesion is

caused by the orientation alignment of polar bitumen molecules on aggregate

surface The sion and theories behind

Molecular orientation theory - suggestion that the main reason of adhesion is

caused by the orientation alignment of polar bitumen molecules on aggregate

surface. When bitumen comes to conta Fraction and theories behind

Adhesion and theories behind

→ Molecular orientation theory – suggestion that the main reason of adhesion is

caused by the orientation alignment of polar bitumen molecules on aggregate

sur **Strength to separate the charged surface** in the main reason of adhesion is
 Strength to separate the charged surface in the main reason of adhesion is

caused by the orientation alignment of polar butumen molecules on **Example 12**
 Example 2018
 Example 2019
 Example 2019

- **INERENT AND ANTERNT MONDERNT MONDERNT MONDERNT MONDERNT MONDERNT CRIMENT THEOREM INTO THE COULOMBET SURFACE.** When the main comes to contact with aggregates surface, the polar surface. When in the molecules of bitumen wil INESION TRESTON CONTES DENTIFICE MERIT AND MODECULAR ORIGINAL MODECULAR ORIGINAL MODECULAR ORIGINAL CHARGE SURFACE. When bitumen comes to contact with aggregates surface, the polar molecules of bitumen will orient themselv Molecular orientation theory – suggestion that the main reason of adhesion is
caused by the orientation alignment of polar bitumen molecules on aggregate
surface. When bitumen comes to contact with aggregates surface, the Franceman or encourant of polar bitumen molecules on aggregate
caused by the orientation alignment of polar bitumen molecules on aggregate
surface. When bitumen comes to contact with aggregates surface, the polar
molecules surface. When bitumen comes to contact with aggregates surface, the
molecules of bitumen will orient themselves in the direction of polarizatio
aggregate ions so as to satisfy the energy demands of aggregates (water m
are

Adhesion and theories behind

Weak boundary theory – indicates that adhesive damage may happen due to the

low cohesive strength in the interface region (impact of dust, dissolution of

compounds at the aggregate surface a lhesion and theories behind
Weak boundary theory – indicates that adhesive damage may happen due to the
low cohesive strength in the interface region (impact of dust, dissolution of
compounds at the aggregate surface after **Compounds and theories behind**
 Compounds and theories behind
 Example 2014
 Example 201 Communishing School School
The strength in the interface region (impact of dust, compounds at the aggregate surface after contacted with

Adhesion and theories behind

→ Weak boundary theory – indicates that adhesive damage may happen due to the

low cohesive strength in the interface region (impact of dust, dissolution of

compounds at the aggregate surfac **Structure is the aggregate of the aggregate with a rougher surface of dust, dissolution** of a rougher surface structure the aggregate surface after contacted with water) Difficult to quantify and control.
 Surface struct Contact angle and theories behind
 Contact angle and theories behind
 Experimental versus are also as the aggregate surface after contacted with water)

Difficult to quantify and control.
 Surface structure theory CONTERT INTERT INTERT IS CONTROVER SET ASSEM IN A THE WEAR BOUNDARY THEORY - indicates that adhesive damage may happen due to the low cohesive strength in the interface region (impact of dust, dissolution of compounds at

Adhesion and theories behind
 \rightarrow Surface free energy theory (thermodynamic theory) – been widely used to

interpret the adhesion property currently. It indicates that energy exchange will

happen when the aggregate surf **interpret the adhesion and theories behind**
 Surface free energy theory (thermodynamic theory) – been widely used to

interpret the adhesion property currently. It indicates that energy exchange will happen when the agg **happen when the aggregate surface is wetted by bitumen.** Surface free energy theory (thermodynamic theory) - been widely used to interpret the adhesion property currently. It indicates that energy exchange will happen whe **Example 19 Alternative School Server Alternative Conduct Surface free energy theory (thermodynamic theory)** – been widely used to interpret the adhesion property currently. It indicates that energy exchange will happen wh **CONTROLL SURFER INTERNATION CONTROLL SURFERED AND ALL SURFERED SURFERED SURFERED SURFERED IN SURFERED IN A VACUUM AND A VACUUM AND THE AREA CONTROLL AND A VACUUM AND A V** Lifshitz-van der Waals component cheory of the state in the adhesion property (thermodynamic theory) – been widely used to interpret the adhesion property currently. It indicates that energy exchange will a material is def **Example 19 Surface free energy theory (thermodynamic theory)** – been widely used to interpret the adhesion property currently. It indicates that energy exchange will happen when the aggregate surface is wetted by bitumen. **Concept to the energy theory** (thermodynamic theory) – been widely used to interpret the adhesion property currently. It indicates that energy exchange will a happen when the aggregate surface is wetted by bitumen. Surfac **CONTER SET ASSED INTER SET ASSED INTER SET ASSED IN SURFACE SET AND SURFACE FREE PRESSION SURFACE free energy exhappen when the aggregate surface is wetted by bitumen. Surface free a material is defined as the needed ener**

Cohesion and what is the difference

Cohesion and what is the difference
In order to achieve the desired bonding of the individual components of the asphalt
mix, a compact, cohesive system must be created. Adhesion, as already mentioned, is
therefore the int Cohesion and what is the difference
In order to achieve the desired bonding of the individual components of the asphalt
mix, a compact, cohesive system must be created. Adhesion, as already mentioned, is
therefore the int Therefore the interaction between the difference in order to achieve the desired bonding of the individual components of the asphalt mix, a compact, cohesive system must be created. Adhesion, as already mentioned, is there **Cohesion and what is the difference**

In order to achieve the desired bonding of the individual components of the asphalt

mix, a compact, cohesive system must be created. Adhesion, as already mentioned, is

therefore the Cohesion and what is the difference

In order to achieve the desired bonding of the individual components of the asphalt

mix, a compact, cohesive system must be created. Adhesion, as already mentioned, is

therefore the i The state of the difference and other that leads the difference in order to achieve the desired bonding of the individual components of the asphalt therefore the interaction between the aggregate and the binder that leads Therefore we have either adhesive or cohesive failure in asphalt composite.
Therefore we have either administration between the aggregate and the binder that leads to the limit, a compact, cohesive system must be created.

Testing adhesion and moisture susceptibility Testing adhesion and moisture suscept

- Testing adhesion and moisture susceptib

Still very very tricky topic.....

Still very very tricky topic.....
 $\begin{pmatrix}\n\sqrt{3} & \sqrt{3} \\
\sqrt{3} & \sqrt{3}\n\end{pmatrix}$

EN 12697-11 for the determination of the affinity between aggre

(a) Still very very tricky topic.....

Still very very tricky topic.....

Still very very tricky topic.....

(a) rolling bottle test, (b) static immersion test, (c) boiling water stripping method

ASTM Boiling water test

The
-
-

Testing adhesion and moisture susceptibility Pesting adhesion and moisture
→ Pull-off or direct-pull tests (BBS, PATTI)
→ Peel tests

-
-

 APP $0-8$

Testing adhesion and moisture susceptibility Testing adhesion and moisture susce
→ Contact angle methods
- Sessile drop method
- Column wicking method. Sessile drop methods

Sessile drop methods

Sessile drop method

Sessile drop method

Sessile drop method

Sessile method

Sessile method

Nilhelmy plate method Souting adhesion and moisture susceptib

Contact angle methods

- Sessile drop method

- Column wicking method.

- Wilhelmy plate method

- Calorimetric method Solution and moisture susceptical

Sontact angle methods

Sessile drop method

Molumn wicking method.

Wilhelmy plate method

Molumn wicking method. Testing adhesion and moisture susce

→ Contact angle methods

- Sessile drop method

- Column wicking method

- Wilhelmy plate method

- Calorimetric method

- -
	-
	-
-

Testing adhesion and moisture susceptibility Pesting adhesion and moisture susceptibility

Testing adhesion and moisture susceptibility laboratory semi-automatic methods and their limitations

and Sting adhesion and moisture susconsiderating adhesion and moisture susconsider the process of the interpretation of the local entropy - the determination of the local entropy - the determination of the local entropy - the

- -
	-
- Sting adhesion and moisture suscept

Iaboratory semi-automatic methods and their limitations

 gray level thresholding

 entropy-based segmentation

based on the determination of the local entropy the im

assessed mate **Exting adhesion and moisture susceptibility**

based on the determination of the local entropy - the image structure of the assessed material is based on the assumption that smooth surface belongs to the binder, while the assessed material is based on the assumption that smooth surface belongs to the assessed material is based on the assumption that smooth surface belongs to the binder, while the rough surface belongs to the aggregate key p **belonging adhesion and moisture susceptibility**
 b aboratory semi-automatic methods and their limitations
 e gray level thresholding
 e entropy-based segmentation

based on the determination of the local entropy - t Festing adhesion and moisture susceptibility

→ laboratory semi-automatic methods and their limitations

• gray level thresholding

• entropy-based segmentation

→ based on the determination of the local entropy - the ima **Sting adhesion and moisture susce**

laboratory semi-automatic methods and their limitations

• gray level thresholding

• entropy-based segmentation

based on the determination of the local entropy - the

assessed materia
-

Testing adhesion and moisture susceptibility

Testing adhesion and moisture susceptibility

Testing adhesion and moisture susceptibility **Eesting adhesion and moisture su**

→ Hveem stability

→ Marshall immersion

→ Lottman and modified Lottman test Testing adhesion and moisture sus
→ Hveem stability
→ Marshall immersion
→ Lottman and modified Lottman test
→ Indirect tensile strength ratio

-
-
-
-
-
-
- Testing adhesion and moisture suse

→ Hveem stability

→ Marshall immersion

→ Lottman and modified Lottman test

→ Indirect tensile strength ratio

→ Direct tensile strength ratio

→ Immersion compression

→ Double punch → Marshall immersion

→ Lottman and modified Lottman test

→ Indirect tensile strength ratio

→ Direct tensile strength ratio

→ Direct tensile strength ratio

→ Immersion compression

→ Double punch test (ratio between t
-

Example of assessment of alternative fillers Example of assessment of alternative fillers
Filler suitability test according to EN 1744-4:2006, Annex A
A asphalt mixture of AC 8 type with exactly given amount of filler Example of assessment of alternative
Filler suitability test according to EN 1744-4:2006, Anne:
 \rightarrow asphalt mixture of AC 8 type with exactly given amount of
 \rightarrow paving grade 160/220
 \rightarrow voids content 5,5±0,5%
 \rightarrow Example of assessment of alternative f

Filler suitability test according to EN 1744-4:2006, Annex A
 \rightarrow asphalt mixture of AC 8 type with exactly given amount of fill
 \rightarrow paving grade 160/220
 \rightarrow voids content 5,5±

-
-
-
-
-

Example of assessment of alternative fillers

- Example of assessment of alternative fillers
Filler suitability test according to EN 1744-4:2006, Annex A
A assessment by Marshall stability ratio and Marshall stiffness ratio (tested
typically at 60°C) Example of assessment of alternative fillers

Filler suitability test according to EN 1744-4:2006, Annex A
 \rightarrow assessment by Marshall stability ratio and Marshall stiffness ratio (tested
 \rightarrow you can run normal stiffne (ample of assessment of alternativer suitability test according to EN 1744-4:2006, Anne assessment by Marshall stability ratio and Marsha
typically at 60°C)
you can run normal stiffness prior as well Example of assessment of alternative fillers

Filler suitability test according to EN 1744-4:2006, Annex A
 \rightarrow assessment by Marshall stability ratio and Marshall stiffness ratio (tested

typically at 60°C)
 \rightarrow you ca
-

$$
S_{\rm M}^{\rm R} = \frac{S_{\rm M}^{\rm dry} - S_{\rm M}^{\rm wet}}{S_{\rm M}^{\rm dry}} \times 100 \, [\%] \qquad T_{\rm M}^{\rm R} = \frac{T_{\rm M}^{\rm dry} - T_{\rm M}^{\rm wet}}{T_{\rm M}^{\rm dry}} \times 100 \, [\%]
$$

野

ARP 0-8

with

and active mineral
Binders and active mineral
Admixtures in cold recycling admixtures in cold recycling

When is cold recycling usually used and considered as suitable? When is cold recycling usually used and considered

as suitable?

→ if serious structural pavement problems occur (in-depth corrosion, large cracking,

increased number of potholes) – for most pavement types;

→ if lost i Then is cold recycling usually used and considered

is suitable?

if serious structural pavement problems occur (in-depth corrosion, large cracking,

increased number of potholes) – for most pavement types;

if local renai if lost in bearing capacity is evident – mainly for regional or low volume roads; if local repairs are anymore economic and reasonable; When is cold recycling usually used and considered

as suitable?

if serious structural pavement problems occur (in-depth corrosion, large cracking

increased number of potholes) – for most pavement types;

if local r When is cold recycling usually used and considered

as suitable?

if serious structural pavement problems occur (in-depth corrosion, large cracking

increased number of potholes) - for most pavement types;

-
-
-
-
-

 APR $0-8$

What are the technological options for cold rec?

- Cold recycling binders typically used
 \bullet Bituminous emulsion: slow setting bitumen emulsions (C60B10 and similar) are

the most popular, but others can be used (e.g. Norway). Cold recycling – binders typically used
 \rightarrow Bituminous emulsion: slow setting bitumen emulsions (C60B10 and similar) are

the most popular, but others can be used (e.g. Norway).
 \rightarrow Foamed bitumen: a wide range of pav **Old recycling – binders typically used**
Bituminous emulsion: slow setting bitumen emulsions (C60B10 and similar) are
the most popular, but others can be used (e.g. Norway).
Foamed bitumen: a wide range of paving grade Cold recycling – binders typically used
 \rightarrow Bituminous emulsion: slow setting bitumen emulsions (C60B10 and similar) are

the most popular, but others can be used (e.g. Norway).
 \rightarrow Foamed bitumen: a wide range of pav Depends on conditionally used
Depends on conditions on the most popular, but others can be used (e.g. Norway).
For commediations, but others can be used (e.g. Norway).
For commediations.
Comment: majority of countries requ Cold recycling – binders typically used
 \bullet Bituminous emulsion: slow setting bitumen emulsions (C60B10 and similar) are

the most popular, but others can be used (e.g. Norway).
 \bullet Foamed bitumen: a wide range of pav
-
-
- (CEM I 42.5/CEM II 32.5) to be used in cold recycling.

Situminous emulsion: slow setting bitumen emulsions (C60B10 and similar) are

the most popular, but others can be used (e.g. Norway).

Foamed bitumen: a wide range of Special recycling – binders typically used

→ Bituminous emulsion: slow setting bitumen emulsions (C60B10 and similar) are

the most popular, but others can be used (e.g. Norway).

→ Foamed bitumen: a wide range of paving Bituminous emulsion: slow setting bitumen emulsions (C60B10 and similar) are
the most popular, but others can be used (e.g. Norway).
Foamed bitumen: a wide range of paving grade binders can usually be used.
Depends on clim Did recycling – binders typically used

Bituminous emulsion: slow setting bitumen emulsions (C60B10 and similar) are

the most popular, but others can be used (e.g. Norway).

Foamed bitumen: a wide range of paving grade bi construction).

Cold recycling – binders typically used

- Cold recycling binders typical

Binder contents

Collected information shows a geographical

countries:

Contral European countries: using hitum Cold recycling – binders typically used

Sinder contents

Sinder contents

Collected information shows a geographical distribution among European

Collected information shows a geographical distribution among European

Co countries:
	- d recycling binders typically used

	der contents

	Dilected information shows a geographical distribution among European

	"Central European countries: using bituminous binders combined with

	relatively high contents of hy
	- **recycling binders typically used**
 recycling binders typically used

	<u>contents</u>

	ceted information shows a geographical distribution among European

	tries:

	Central European countries: using bituminous binders comb **Source the countries:**
 Source the contents

	Sollected information shows a geographical distribution among European

	Ullected information shows a geographical distribution among European

	untries:

	• Central European c
- recycling binders typically used
 contents
 contents

tries:

tries:

Central European countries: using bituminous binders combined with

central European countries: using bituminous binders combined with

relatively Some Northern countries don't apply cement at all, since the flexible nature flexible have a seed at all, since the flexible nature of the Northern countries don't apply cement at all, since the flexible nature of the para **Fraction Contents**
 Contents

Contents

Contents

Central European countries: using bituminous binders combined with

Central European countries: using bituminous binders combined with

Frelatively high contents of hydr **recycling – binders typically used**
 contents

ceted information shows a geographical distribution among European

tries:

Central European countries: using bituminous binders combined with

relatively high contents o Cold recycling – binders typically used

Binder contents
 \rightarrow Collected information shows a geographical distribution among European

countries:

central European countries: using bituminous binders combined with

relati **EXECUTE:**
 EXEC

The use of **bituminous binders** together with **moderate/high cement contents is related to climatic** conditions of lower temperatures and relatively high humidity, which are favourable for the use of

51 moist regions, the t $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ The hydraulic binders are required to use the water in the mixture on their hydration process. In moist regions, the base layers otherwise don't have the possibility to dry and gain their strength.

Cold recycling – binders typically used Cold recycling – binders typical
Typical composition
→ different approaches to cold-recycling practices in
→ differences influenced by: Cold recycling – binders typically used

Typical composition

→ different approaches to cold-recycling practices in different EU countries

→ differences influenced by:

↓ important differences in climatic conditions: e.g

-
-
- $\begin{array}{l} \text{cold recycling} \text{binders typically used} \\ \text{Typical composition} \\ \end{array}$ $\begin{array}{l} \begin{array}{l} \text{differential composition} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{differential functions} \\ \end{array} \end{array} \begin{array}{l} \text{differential functions} \\ \end{array} \\ \begin{array}{l} \text{differential functions} \\ \end{array} \\ \begin{array}{l} \text{differential functions} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{differential functions} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{differential functions} \\ \end$ $\footnotesize{\text{old recycling -- binders typically used} \label{equ:1} \text{hidden composition} \begin{tabular}{|l|l|} \hline \text{of higher approaches to cold recycling practices in different EU countries} \end{tabular} \begin{tabular}{|l|l|} \hline \text{independent approaches to cold recycling practices in different EU countries} \end{tabular} \begin{tabular}{|l|l|} \hline \text{independent approaches to cold recycling practices in different EU countries} \end{tabular} \begin{tabular}{|l|l|} \hline \text{independent of higher amounts of cement} \end{tabular} \begin{tabular}{|l|l|} \hline \text{independent of the two cells} \end{tabular} \end{tabular} \begin{tabular}{|l|l|} \hline$
- d recycling binders typically used

real composition

ferent approaches to cold-recycling practices in different EU cour

ferences influenced by:

important differences in climatic conditions: e.g. moist regions re

of h geographical and historical reasons: e.g. recycling of tar enforced the use of this implies different mix design approaches, namely in terms of:
this implies different mix design approaches, namely in terms of the RA
this d recycling – binders typically used

ral composition

ferent approaches to cold-recycling practices in different EU countries

ferences influenced by:

important differences in climatic conditions: e.g. moist regions requ Cold recycling – binders typically used

Typical composition

→ different approaches to cold-recycling practices in different EU countries

→ differences influenced by:

• important differences in climatic conditions: e.g old recycling – binders typically use
pical composition
different approaches to cold-recycling practices in different
differences influenced by:
• important differences in climatic conditions: e.g. moist re
of higher amoun DECRIPTED STREAM (DECRIPTED STREAM)

The procedure of the differences in differences influenced by:

The differences influenced by:

The differences in climatic conditions: e.g. moves of higher amounts of cement

The geogr pical composition
different approaches to cold-recycling practices in different
differences influenced by:
important differences in climatic conditions: e.g. moist re
of higher amounts of cement
regographical and historica
- -

-
-

Common practice today in CZ Common practice today in CZ
Typically used binders:
→ cationic slow-breaking bituminous emulsion C 60 B10 or

- COMMON practice today in CZ

Typically used binders:
 \rightarrow cationic slow-breaking bituminous emulsion C 60 B10 or C 65 B10 (2-3.5% binder)
 \rightarrow foamed bitumen made from paving grade 70/100 or 50/70 (1.5-3% binder)
 \rightarrow
- → foamed bitumen made from paving grade 70/100 or 50/70 (1.5-3% binder)

→ Portland cement CEM 1/32.5, CEM II/32.5, CEM 142.5 (2.5-5 % binder)

→ Commercial road hydraulic binders (SM, GEOROAD, DROHART etc.)

Typical mix
-
-

-
-

Cold recycling – curing during mix design
Cold recycling – curing during mix design
Country – IBSM – Bitumen stabilized BCSM - Bitumen cement stabilized

Common practice today (I)

- ommon practice today (I)
 \rightarrow the whole family of cold recycling technologies since 2023 regulated by national

technical standard (CSN 74 6147)
 \rightarrow cold recycling for unbound and bound layers possible mmon practice today (I)
the whole family of cold recycling technologies since 2023 regulated t
technical standard (CSN 74 6147)
cold recycling for unbound and bound layers possible **COLUTE COLOGY**

Separation of cold recycling technologies since 2023 regulated by national

technical standard (CSN 74-6147)

Cold recycling for unbound and bound layers possible
 $\frac{1}{\sqrt{100\pi}} \begin{array}{|l|l|l|l|l|l} \hline \text{non$
-

ca 5thar

Common practice today (II)

nadsítného 15 %.

57 behoviší se podle Přílohy A. Platí pro směsi 0/32 a 0/45 s maximálním podílem nadsítného 15 %.

Indirect tensile strength test (destructive) @15°C

Are they comparable ????

Gyratory compaction

Alternative pozzolana or alkali-activated binders **Alternative pozzolana or alkali-activated**
What sources do we have?
→ cement kilm dust or lime production dust
→ traditional silica flv-ash Alternative pozzolana or alkali-activated binders

What sources do we have?
 \rightarrow cement kilm dust or lime production dust
 \rightarrow traditional silica fly-ash
 \rightarrow fly-ash from fluidized combustion Alternative pozzolana or alkali-activa

What sources do we have?

→ cement kilm dust or lime production dust

→ traditional silica fly-ash

→ fly-ash from fluidized combustion

→ bottom ahs from fluidized combustion Alternative pozzolana or alkali-activated

What sources do we have?
 \rightarrow cement kilm dust or lime production dust
 \rightarrow traditional silica fly-ash
 \rightarrow fly-ash from fluidized combustion
 \rightarrow bottom ahs from fluidized co Alternative pozzolana or alkali-activated b

what sources do we have?

→ cement kilm dust or lime production dust

→ traditional silica fly-ash

→ fly-ash from fluidized combustion

→ bottom ahs from fluidized combustion
 Alternative pozzolana or alkali-activated

What sources do we have?

→ cement kilm dust or lime production dust

→ traditional silica fly-ash

→ fly-ash from fluidized combustion

→ bottom ahs from fluidized combustion

→ pan slag and BOF slag (steel production slag)

-
-
-
-
-
-
- **→** geopolymers
-

Czech-based alternative binders

- Czech-based alternative binders
TFA ternary fly-ash-based binder
→ binder based on sulfate-calcium CFBC fly ash from a brown-
coal power plant.
- Czech-based alternative binders

The Same Czech-based alternative binders

The Same Coal power plant.

The Same Coal power plant.

The Same Coal combustion provided in the fluidized coal combustion provided with ground lim Czech-based alternative binders

Ma-ternary fly-ash-based binder

Ma-ternary fly-ash-based binder

binder based on sulfate-calcium CFBC fly ash from a brown-

coal power plant.

fly ash arising from the fluidized coal comb properties. binder based on sulfate-calcium CFBC fly ash from
coal power plant.
fly ash arising from the fluidized coal combusti
with ground limestone. mixed with water
plasticizing additives for improvement of the
properties.
subsequ fly ash arising from the fluidized coal combustion process
with ground limestone. mixed with water containing
plasticizing additives for improvement of the rheological
properties.
subsequently mechanically activated togeth
- refinement.
-
-

Czech-based alternative binders

Czech-based alternative binders
AFFA – mechanical-chemically activated fluidized bed
combustion fly ash
Produced by using high-speed grinding (HSG) in special Czech-based alternative binders
AFFA - mechanical-chemically activated fluidized b
combustion fly ash
> Produced by using high-speed grinding (HSG) in spec
disintegrators Czech-based alternative binders
AFFA - mechanical-chemically activated fluidized bed
combustion fly ash
→ Produced by using high-speed grinding (HSG) in special
→ HSG leads to finer pulverization, homogeneous particle

- disintegrators
- Czech-based alternative binders
AFFA mechanical-chemically activated fluidized bed
combustion fly ash

+ Produced by using high-speed grinding (HSG) in special

disintegrators

+ HSG leads to finer pulverization, homogen Czech-based alternative binders

The area and activated fluidized bed

mbustion fly ash

Produced by using high-speed grinding (HSG) in special

disintegrators

HSG leads to finer pulverization, homogeneous particle

distr Czech-based alternative binders

FA - mechanical-chemically activated fluidized bed

mbustion fly ash

Produced by using high-speed grinding (HSG) in special

disintegrators

HSG leads to finer pulverization, homogeneous p Czech-based alternative binders
FA - mechanical-chemically activated fluidized b
mbustion fly ash
Produced by using high-speed grinding (HSG) in spec
disintegrators
HSG leads to finer pulverization, homogeneous partii
dist Czech-based alternative binders

AFFA - mechanical-chemically activated fluidized bed

combustion fly ash
 \rightarrow Produced by using high-speed grinding (HSG) in special

disintegrators
 \rightarrow MSG leads to finer pulverization CZECN-DASEQ AITCPNATIVE DINQETS

FA - mechanical-chemically activated fluidized bed

mbustion fly ash

Produced by using high-speed grinding (HSG) in special

disintegrators

HSG leads to finer pulverization, homogeneous p AFFA – mechanical-chemically activated fluidized bed

combustion fly ash
 \rightarrow Produced by using high-speed grinding (HSG) in special

disintegrators
 \rightarrow HSG leads to finer pulverization, homogeneous particle

distributi mbustion fly ash

Produced by using high-speed grinding (HSG) in special

disintegrators

HSG leads to finer pulverization, homogeneous particle

distribution, higher surface area and increase amount of

internal energy in The distribution, higher surface area and increase amount of
internal energy in the material which chemically activates
internal energy in the material which chemically activates
with limited
occurance of unwished mineral HSG leads to finer pulverization, homogeneous particle
distribution, higher surface area and increase amount of
internal energy in the material which chemically activates
pulverized fly ash
Material is getting pozzolanic p
-
- gypsum
- 62 admixture for blended binders.

Czech-based alternative binders (case TFA) Czech-based alternative binders (case TFA)
 \rightarrow significantly lower ITS for the mix with only 0.5 % of bituminous

emulsion.surprisingly, reference mix (3 % emulsion, 1 % cement) did not come

close to the minimum value Eech-based alternative binders (case TFA) Example 10 and the minimum value (ITS 0.3 MPa)
significantly lower ITS for the mix with only 0.5 % of bitumine
emulsion.surprisingly, reference mix (3 % emulsion, 1 % cement) did not co
close to the minimum value (ITS 0.3 Czech-based alternative binders (case TFA)

Significantly lower ITS for the mix with only 0.5 % of bituminous

emulsion.surprisingly, reference mix (3 % emulsion, 1 % cement) did not come

close to the minimum value (ITS **d** alternative binders (case TFA)

ower ITS for the mix with only 0.5 % of bituminous

singly, reference mix (3 % emulsion, 1 % cement) did not come

imum value (ITS 0.3 MPa)

vith cement and TFA meet the moisture suscep

				Czech-based alternative binders (case TFA)					
				\rightarrow significantly lower ITS for the mix with only 0.5 % of bituminous emulsion.surprisingly, reference mix (3 % emulsion, 1 % cement) did not come close to the minimum value (ITS 0.3 MPa)					
							• only mixtures with cement and TFA meet the moisture susceptibility limit (75 %).		
Hydraulic binder	Content	Bituminous binder	Content	Indirect Tensile Strength (MPa)	Moisture susceptibility (%)	0,45			
Cement	1.0%		3.0%	0.21	88%	0,4	■ITS 7 days	107%	
TFA	2.0%		0.5%	0.18	75%		Π TS 7+7 days		
	2.0%	Bituminous	3.0%	0.38	107%	0,35			
TFA FGRC	3.0%	emulsion	3.0%	0.32	58%	0,3			
AFFA	2.0%		3.0%	0.34	62%	(MPa) 0,25			

-
- cracks
-

Trial section with 1st application of AFFA in Europe

-
-
- -
- 66

Trial section with 1st application of AFFA in Europe

Slags as by-products from iron and steel production

- **blast furnace slag (BFS) is 'waste' product of iron and steel production**
 blast furnace slag (BFS) is 'waste' product of iron production in blast furnace
 h one of the most voluminous waste from the entire manufactu ags as by-products from iron and steel production
blast furnace slag (BFS) is 'waste' product of iron production in blast furnace
in granulated form is widely used in cement industry
one of the most voluminous waste from t **Solven the most voluminous waste from iron and steel production**
 CONEX A
 one of the most voluminous waste from the entire manufacturing industry
 a
 one of the most voluminous waste from the entire manufacturing
-

Option for secondary stage of treatment Option for secondary stage of treatment

High-speed grinding using disintegrators – the principle

Free Mither Stroke Theory of Cutting

The Comprise Cutting Cutting

The Comprise Cutting

all kinds of recyclable composites (concrete, bricks, asphalt)
 all kinds of recyclable composites (concrete, bricks, asphalt)

→ slags, foundry sands, fly-ash

→ sludge from aggregate/stone processing **Dytion for secondary stage of treatment**
 High-speed grinding using disintegrators – suitable n

→ all kinds of recyclable composites (concrete, bricks, asphalt)

→ slags, foundry sands, fly-ash

→ sludge from aggregat Christian for secondary stage of treatment

Aigh-speed grinding using disintegrators – suitable materia

→ all kinds of recyclable composites (concrete, bricks, asphalt)

→ slags, foundry sands, fly-ash

→ sludge from agg Varion for secondary stage of treatment

Varion for secondary stage of treatment

valis of recyclable composites (concrete, bricks, asphalt)

various backhouse and flue (quarry) dusts or waste fillers

various backhouse a **Dytion for secondary stage of treatment**
 High-speed grinding using disintegrators – suitable mate

→ all kinds of recyclable composites (concrete, bricks, asphalt)

→ slags, foundry sands, fly-ash

→ sludge from aggre alternative upgrading of natural granular materials (volcanic tuff, zeolites, and alternative upgrading of natural granular materials (volcanic tuff, zeolites, and alternative upgrading of natural granular materials (volc otion for secondary stage of treatment

gh-speed grinding using disintegrators – suitable mate

all kinds of recyclable composites (concrete, bricks, asphalt)

slags, foundry sands, fly-ash

sludge from aggregate/stone pro <u>Option for secondary stage of treatment</u>

Hi**gh-speed grinding using disintegrators – suitable materials**

→ all kinds of recyclable composites (concrete, bricks, asphalt) Dption for secondary stage of treatment

High-speed grinding using disintegrators – suitable materials

→ all kinds of recyclable composites (concrete, bricks, asphalt)

→ slags, foundry sands, fly-ash

-
-
-
-
-
-

71 Recycled concrete

not always applicable without specific treatment
 hot always applicable without specific treatment if same or better quality and

→ for higher added value of reused material usually modifications, needed (use

→ for h oution for secondary stage of treat

gh-speed grinding using disintegrators – st

not always applicable without specific treatment if san

durability required;

for higher added value of reused material usually mo

of addi **Solution** for secondary stage of treatment
 High-speed grinding using disintegrators – **suitable materials**

★ not always applicable without specific treatment if same or better quality and

durability required;

→ for of the secondary stage of treatment
ph-speed grinding using disintegrators – suitable materials
not always applicable without specific treatment if same or better quality and
durability required;
for higher added value of 9 Dption for secondary stage of treatment

High-speed grinding using disintegrators – suitable materials

→ not always applicable without specific treatment if same or better quality and

durability required;

→ for highe **increasing specific surface of the materials**
gh-speed grinding using disintegrators – suitable materials
not always applicable without specific treatment if same or better quality an
durability required;
for higher add Dependent of the secondary stage of treatment
 $\begin{array}{r}\n\text{High-speed grinding using disintegrators -- suitable materials}\n\end{array}$ and always applicable without specific treatment if same or better quality and durability required;
 $\begin{array}{r}\n\bullet \text{ for higher added value of reused material usually modifications, needed (use of additions, processing like mechanical activation)}\n\end{$ Option for secondary stage of treatment
High-speed grinding using disintegrators – suitable materials Dption for secondary stage of treatment

High-speed grinding using disintegrators – suitable materials

→ not always applicable without specific treatment if same or better quality and

durability required:

-
-
-
-

Solution for secondary stags of treatment
 High-speed grinding using disintegrators – principle

★ mechanical-chemical activation by high-speed grinding (HSM) can be identified

as an alternative of modifying material by the formulation of the secondary stages of the set and the speed grinding using disintegrators – principle
mechanical-chemical activation by high-speed grinding (HSM) can be identified
as an alternative of modifying mat <u>Option for secondary stags of treatment</u> Option for secondary stags of treatment

High-speed grinding using disintegrators – principle

→ mechanical-chemical activation by high-speed grinding (HSM) can be identified

as an alternative of modifying material prope

-
- associated with high-energy presence. This energy results from the grinding reactiveness => energy transmitted to the particles of treated materials; provided in the area of producing alternative functional binders or active filed as an alternative of modifying material properties;
associated with high-energy presence. This energy results from the grinding
process and i and admixtures for other industries;

and admixtures for other industries and damixtures for other industry and admixtures for other industry and $\frac{1}{2}$

and a an alternative of modifying material properties;

associate **Portion for secondary stags of treatment**
 High-speed grinding using disintegrators – principle

→ mechanical-chemical activation by high-speed grinding (HSM) can be identified

as an alternative of modifying material by the secondary stags of treatment
gh-speed grinding using disintegrators – principle
mechanical-chemical activation by high-speed grinding (HSM) can b
as an alternative of modifying material properties;
associated with h Articulary Stags of treatment

High-speed grinding using disintegrators – principle

→ mechanical-chemical activation by high-speed grinding (HSM) can be identified

as an alternative of modifying material properties;

→ gh-speed grinding using disintegrators – princi
mechanical-chemical activation by high-speed grinding (HS
as an alternative of modifying material properties;
associated with high-energy presence. This energy result
process A spectral content of micron and submicron particles and iberation of free radicals
 \bullet high-spectral activation by high-speed grinding (HSM) can be identified

san alternative of modifying material properties;

ssociat Formation of electrically active centers and defect networks,

and this surface of modifying material properties;

spociated with high-energy presence. This energy results from the grinding

eactiveness and is not self-per ssociated with high-energy presence. This energy results from the grinding
process and is not self-perpetuating but plays an important role, which facilitates
eactiveness => energy transmitted to the particles of treated ociated with high-energy presence. This energy
cess and is not self-perpetuating but plays an impo
ctiveness => energy transmitted to the particles of t
ential in the area of producing alternative functior
l admixtures for
-
- -
	-
- 73

-
-

-
-

Some of the results from developments in CZ

KV1: fluid + BFS 75:25 (50%)

KV3: GBFS Třinec (50%)

KV4: fluid + BFS 50:50 (50%)

KV 11: fluid + BFS 50:50 (30%)
 $\frac{1}{2}$

E 40,00
 $\frac{3}{2}$
 $\frac{30,00}{2}$
 $\frac{30,00}{2}$
 $\frac{30,00}{2}$
 $\frac{30,00}{2}$
 $\frac{30,00}{2}$
 KV4: fluid + BFS 50:50 (50%) $\frac{2}{5}$ 40.00 KV 11: fluid + BFS 50:50 (30%)

KV₅ KV6 KV7 **KV10** KV11 KV12 KV13 KV8 KV9 KV14 KV15 KV16 Označení vzorků

28 days compressive strength

"reference mix"

Fine ground recycled concrete (FGRC) – case study

Grading curve of pulverized (mechanically

Grading curve of pulverized (mechanically activated)

Fine ground recycled concrete (FGRC) – case study

-
-
- 81 non-hydrated cement content was reduced nearly by 75 %, what supports the well).

and about the changed nearly by 75 %, what supports the well). assumptions about the changed hydration process (tested by calorimetry as
well).
The changed hydration process (the composite, sample with 50 % FGRC is in comparison to reference paste showing new phases
of grey color (rep well).

-
- \bullet the addition of micro-milled limestone showed any significant advantages.

Fine ground recycled concrete (FGRC) – case study
Cold recycling mixture – moisture susceptibility Fine ground recycled concrete (FGRC) – case study

cold recycling mixture – moisture susceptibility
 $\frac{1,0}{5000}$

Fine ground recycled concrete (FGRC) – case study
Cold recycling mixture – influence of FGRC content Fine ground recycled concrete (FGRC) – case study
Cold recycling mixture – influence of FGRC content
Cold recycling mixture – influence of FGRC content

Fine ground recycled concrete (FGRC) – case study
Cold recycling mixture – some concluding remarks Fine ground recycled concrete (FGRC) – case study
Cold recycling mixture – some concluding remarks
 \rightarrow FGRC when applied alone as substitute of cement, or in combination with cement

it does not result in any improvement Fine ground recycled concrete (FGRC) – case study

Cold recycling mixture – some concluding remarks

FGRC when applied alone as substitute of cement, or in combination with cement

it does not result in any improvement of The ground recycled concrete (FGRC) – case study

Id recycling mixture – some concluding remarks

FGRC when applied alone as substitute of cement, or in combination with cement

it does not result in any improvement of str Fine ground recycled concrete (FGRC) – case study

Cold recycling mixture – some concluding remarks

→ SGRC when applied alone as substitute of cement, or in combination with cement

it does not result in any improvement The ground recycled concrete (FGRC) – case

and recycling mixture – some concluding remarks

FGRC when applied alone as substitute of cement, or in combination wit

does not result in any improvement of strength characteri Fine ground recycled concrete (FGRC) – case study

Sold recycling mixture – some concluding remarks

FGRC when applied alone as substitute of cement, or in combination with cement

it does not result in any improvement of Fine ground recycled concrete (FGRC) – case study

Cold recycling mixture – some concluding remarks

TEGRC when applied alone as substitute of cement, or in combination with cement

it does not result in any improvement of

-
-
-
-
- Fine ground recycled concrete (FGRC) case study

Cold recycling mixture some concluding remarks
 \rightarrow FGRC when applied alone as substitute of cement, or in combination with cement

it does not result in any improveme The ground recyclied contribute in the provided recycle of the state in the state in the state in the state in the stability (some binding potential of FGRC in cold recyc Id recycling mixture – some concluding remarks

FGRC when applied alone as substitute of cement, or in combination with cement

it does not result in any improvement of strength characteristics.

Some binding potential of FGRC when applied alone as substitute of cement
it does not result in any improvement of streng
Some binding potential of FGRC in cold recyc
than bond granulare base layers
Significant benefit could be the reduced risk of

and the solutions of the solutions of the set anders in bond granular base

FGRC in bond granular base layers – case study 8,00 $7,20$ 7,00 6,00 4,62 5,00 4,03 $3,64$ 3,50 4,00 3,09 2,86 2,82 3,00 1,82 2,00 1,00 $0,00$ $V1$ $V₂$ $V₃$ $V₄$ $V₅$ Compressive Strength 28Rc (MPa) Resistance to Water and Frost Rc (MPa) M

M

Educative strength
 $\sum_{i=1}^{3} 3, 0$
 $\sum_{i=1}^{3} 3, 0$
 $\sum_{i=1}^{3} 3, 0$
 $\sum_{i=1}^{3} 3, 0$
 $\sum_{i=1}^{3} 3, 0$ EXEMPLE CONTROLLED S, 0

S, 0

S, 0

S, 0

S, 0

S, 0

C, 0
 \blacksquare Compressive strength after 28 days of curing (MPa) \blacksquare Compressive strength after 28 days of curing and 0.0 0.0 freezing

 $3C+6MC$

6C

 $3C+6MC$

Mix (CBGM)

 $1,5C+9MC$

6C

Mix (CSM)

 $APR^{0.8}$

cycles (MPa)

FGRC in bond granular base layers – case study

Masonry Block

low cement content recycled material up to 90 % compr. strength 12 MPa heat accumulation acoustic barrier

Bed-Joint Mortar stone dust up to 80 % cement 20 % compr. strength to 9 MPa good adhesion

Exterior Plasters

stone micro-filler to 70 % compr. strength > 6 MPa optimized for low shrinkage good adhesion

Interior Plasters stone micro-filler up to 90

compr. strength > 4 MPa optimized for low shrinkage good adhesion

Some conclusions

- Form alternative materials or by-products have plenty of use cases
 \rightarrow potentially very effective as substitutes to regular cement
 \rightarrow for asphalt mix adhesion properties more limited options some conclusions

Potentially very effective as substitutes to regular cement

The potentially very effective as substitutes to regular cement

The potentially very effective as substitutes to regular cement

The p Form and Conclusions

Form and Conclusion properties of by-products have plenty of use cases

For asphalt mix adhesion properties more limited options

General comment:
-
-

Some conclusions

→ fillers form alternative materials or by-products ha

→ potentially very effective as substitutes to regular or

→ for asphalt mix adhesion properties more limited concentration

Seneral comment:

If r FRANCE CONCILISIONS

→ fillers form alternative materials or by-products have plenty of use cases

→ potentially very effective as substitutes to regular cement

→ for asphalt mix adhesion properties more limited options
 approaches with various wastes which provide interesting results.

Allers form alternative materials or by-products have plenty of use cases
 \rightarrow potentially very effective as substitutes to regular cement
 \rightarrow for aspha **Provided the reason is the reason is limited volume of these materials)**
 • fillers form alternative materials or by-products have plenty of use cases
 • potentially very effective as substitutes to regular cement
 The Reconmation of the UK Guarantee program for UK Horizon Libion under Grant Agreement No 101058580 and by the UK Research and Divisor and particle and the Burnopean Union as part of the UK Guarantee programme for UK Hori ■ for asphalt mix adhesion properties more limited options
 General comment:

If researching these materials always be practical. There are many

approaches with various wastes which provide interesting results. The

pr

93 European Union nor the granting authority can be held responsible for them.Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the HORIZON-RIA. Neither the

There are always alternative ways...

There are always alternative way Kind attention.

949 - Jacob S. P. C. 24

Jan Valentin Ban Valentin

Department of Road Structures

Faculty of Civil Engineering, CTU

in Prague

Jan.valentin@fsv.cvut.cz Faculty of Civil Engineering, CTU

Faculty of Civil Engineering, CTU

Faculty of Civil Engineering, CTU

in Prague

Jan.valentin@fsv.cvut.cz in Prague jan.valentin@fsv.cvut.cz