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Abstract—Integrating renewable energy sources into power
grids introduces challenges due to the decentralization and
variability of power generation. Demand-side flexibility (DSF)
is one solution for optimizing power consumption. Buildings
in particular offer significant DSF potential due to their large
thermal mass and controllable HVAC (Heating, ventilation,
and air conditioning) systems. Maximizing DSF benefits
requires accurate energy consumption and heat demand
prediction. Therefore, the development of robust thermal
models for consumer/prosumer households that adhere to
international energy standards is needed. Thermal models
are based on Ordinary Differential Equations (ODE) and
explain the thermal behavior in view of the household’s
physical parameters, e.g. floor area or thermal capacity. Since
measuring these parameters is often impractical, this paper
introduces a novel approach for household’s parameters
identification. Our methodology involves adapting the model’s
ODE for air temperature observations and enhancing param-
eter estimation through a comprehensive synthetic dataset.
We then classify households into parameter ranges based
on collected data, facilitating Neural ODEs training to fit
measured temperatures to the ODE for parameter inference.
The major contribution of our work is in providing a scalable
solution that eliminates the need for individual parameter
measurements, enhancing the feasibility of implementing DSF
strategies in a broader context.
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I. INTRODUCTION

The integration of renewable energy sources into the
power grid presents unique challenges due to the varying
nature of power generation and the decentralization of
energy sources. As technology advances and more smart
devices integrate into the grid, ensuring grid stability and
efficient energy consumption become crucial. One promis-
ing approach is demand-side flexibility, which focuses on
controlling and optimizing electricity usage by consumers
and prosumers to improve efficiency.

To make progress in harnessing demand-side flexibility,
it is essential to understand the needs of consumers, espe-
cially in residential buildings where a significant portion
of electricity is used, particularly for heating. Our goal
is to create a model that predicts electricity consumption
based on the predictions of heat demand. This requires the
development of a robust thermal model.

In our work, we rely on a well-known and standard-
ized thermal model - the 5R1C model, defined within
the EN ISO 13790 Standard [1]. However, obtaining the

parameters for this model presents a practical challenge,
particularly in the context of large-scale implementation,
where measuring these parameters for every household
becomes infeasible. Our aim is to automate the identifi-
cation of the household’s parameters with minimal data
requirements, a task that has been tackled in various ways
in previous research. The identification of a simplified
thermal model was carried out through the observation
of external mean wall temperatures and the application
of optimization methods in the research conducted by [2].
Similarly, [3] proposed a two-step identification framework
based on the least square method and statistical analysis,
considering factors such as air exchange rates and other
thermal characteristics. Additionally, studies such as [4]
focus on identifying various models using likelihood esti-
mations and a likelihood-test based forward strategy that
selects the most suitable model. Another relevant study, [5],
utilized an optimization model that employs the Reflective
Newton algorithm, excluding consideration of heat transfer
through glaze surfaces. However, many of these studies
require substantial data inputs for accurate estimation of
model parameters.

To address some of the issues related to parameter esti-
mation, Neural Ordinary Differential Equations (NODEs)
have emerged as a class of neural network models that
extend traditional deep learning by using differential equa-
tions to define the behavior of the models. Important
paper by [6] introduced the groundbreaking concept of
the adjoint sensitivity method. This method significantly
improved the training efficiency of NODEs by efficiently
computing gradients, making them a powerful tool for
continuous-time modeling and dynamic system analysis in
machine learning.

Our approach exploits the advancements brought about
by the NODEs and takes a distinctive path to thermal
model identification. Firstly, in addition to estimating the
thermal parameters (like thermal capacity or heat transfer
coefficients), we also account for the physical parameters,
such as floor area or walls height. Secondly, rather than
relying on traditional optimization techniques, we leverage
the thermal behavior of the building itself to classify
measured data into parameter ranges. Moreover, we utilize
the NODEs algorithm, which enables us to learn the
system’s ODE (therefore its parameters) by constraining
the search space with the classified parameter ranges.



Notably, our approach requires relatively small amount of
easily measurable night-time data: indoor/outdoor temper-
ature observations and output heat power from the HVAC
system, effectively eliminating the need for modeling solar
gains.

This paper introduces a novel approach for physical
parameters estimation by extending and validating the
5R1C simple hourly method, with a particular focus on
night-time calculations. To do that, the paper is structured
as follows: first, we provide a general overview of the
5R1C simple hourly method in order to set the theoretical
background for the study; then, we define the general
methodological framework in terms of four major steps -
two at a conceptual and two at an empirical level; finally,
in order to demonstrate the practical feasibility of the
proposed methodology, we apply it to a real-world use
case of a Slovenian household. In the end, we conclude
and provide potential future directions to pursue in our
research.

II. THE 5R1C SIMPLE HOURLY METHOD

One of the key components of ISO 13790:2008 is
the 5R1C model. The 5R1C model is an Ordinary Dif-
ferential Equation (ODE)-based framework that captures
the thermal behavior of a building on hourly level. This
involves the calculation of heating (or cooling) demand
for each hour, based on the environmental conditions and
temperature setpoint. The model, as presented in Figure
1, is based on an equivalent resistance-capacitance (R-C)
circuit, where resistors (R or H in Figure 1) represent the
heat transfer characteristics of the building envelope and
the capacitor represents the thermal mass of the interior
(C).

Fig. 1. 5R1C Model

Denoting by Tm, temperature of the thermal mass in the
room, the ODE for the R-C circuit in Figure 1 is given by:

Tm · (Htr3 +Hem) + Cm · dTm

dt
= Φmtot (1)

with Φmtot representing an equivalent thermal heat flux
based on the solar heat gains, internal heat gains, external
air temperature and the thermal conductance of the building
elements.

To obtain the hourly calculations, the ODE 1 is dis-
cretized and can be solved numerically as:

Tmk+1
=

Φmtotk+1
+ Tmk

(
Cm

∆t − 0.5 · (Htr3 +Hem)
)

Cm

∆t + 0.5 · (Htr3 +Hem)
(2)

Based on thermal mass temperature Tm, for the k+1-th
hour we can calculate the temperature of the inside room
surface, Tsk+1

, and the air temperature, Tairk+1
:

Tairk+1
=

His · Tsk+1
+Hve · Tsupplyk+1

+Φiak+1
+ΦHCk+1

His +Hve
(3)

Ignoring the parameters that define the solar gains, Φsol,
such as the position and orientation of the household, solar
and light transmittance of the glazed surfaces, there are 9
different physical parameters that define 5 resistors and 1
capacitor of the 5R1C mode. These parameters are detailed
in Table I.

TABLE I
DESCRIPTION OF PHYSICAL PARAMETERS FOR THE 5R1C MODEL

Parameter name Description, Unit
Af floor area, [m2]
h wall height, [m]
walls_area total area of all outside walls,

[m2]
windows_area total area of all windows, [m2]
cf thermal capacitance of the room

per floor area, [105J/m2K]
uwalls U-value of opaque surfaces,

[W/m2K]
uwindows U-value of glazed surfaces,

[W/m2K]
achvent Air changes per hour through

ventilation, [1/m3]
achinfl Air changes per hour through in-

filtration, [1/m3]

III. METHODOLOGY

Our methodology encompasses 2 steps to parameter
estimation at a conceptual level and 2 steps at an empirical
level. This is shown in Figure 2:

1. Adjusting the 5R1C’s ODE for temperature observa-
tions to enable utilization of the NODEs.

2. Enhancing NODEs parameter estimation: Collecting a
rich synthetic dataset enabling the design of a classification
models for parameter ranges.

3. Data collection and classification: Real-world col-
lected data is comprised of the recorded temperatures
and the data obtained by applying the defined procedures
within step 2. The later undergoes classification, which
allows us to categorize households into specific parameter
ranges. This effectively allows setting the boundaries for
the parameters during NODEs training.

4. NODEs Training: Using classified parameter ranges
and measured temperatures, we proceed to the NODEs
fitting step. During this step, we fit the measured temper-
atures to the corresponding ODE, effectively inferring its
parameters.



Fig. 2. Methodology steps for household’s parameter estimation

A. Step 1: Adjusting 5RC1 ODE for NODEs

To utilize the NODEs algorithm we are required to
derive the ODE for Tair, as it is the only measurable
temperature calculated from the model. By applying the
derivative with respect to time to equation 3, we obtain:

dTair

dt
=

1

His +Hve
· (His ·

dTs

dt
+Hve ·

dTe

dt

+
d

dt
· (ΦHC +Φia)) (4)

where:

dTs

dt
=f(

dTm

dt
,
dΦst

dt
,
dΦia

dt
,
dΦHC

dt
)

In theory we could model equation 4 into NODEs, train
it and infer the parameters. However, this ODE presents
significant complexity due to the presence of Φia and
Φst and their rates. These energy fluxes are challenging
to directly measure, necessitating difficult approximations.
To address this issue we choose to restrict ourselves on
two nighttime cases: normal heating case and constrained
heating case. The first scenario involves heating with a
steady setpoint and heat output, while the latter involves
heating interruption (referred to as cooling, despite no
active cooling process taking place). For both specific
cases, we encounter the following simplified conditions:

• Internal gain, in general, can be approximated as zero,
and during the night, its rate of change over time is
also zero. This gives us:

Φint ≈ 0 → Φia ≈ 0 → dΦia

dt
≈ 0

• Solar gain is effectively reduced to zero with the rate
of change over time being zero as well. This gives us:

Φsol = 0 → Φst ≈ 0 → dΦst

dt
≈ 0

In case of the normal heating, we approximate ΦHC

to be the mean value over the observed nighttime period,
while dΦHC

dt is approximated as zero. This results in the
following ODE for Tair:

dTair

dt
=

His

(His +Hve) · (Hms +Htr2)

·
(
Hms ·

dTm

dt
+Htr2 ·

dTe

dt

)
+

Hve

His +Hve
· dTe

dt
(5)

where:

dTm

dt
=

1

Cm
· (Φmtot − (Hem +Htr3) · Tm)

Φmtot = (Hem +Htr3) · Te +
Htr3

Htr2
· Htr1

Hve
· ΦHC

Tm =
Hms +Htr2

Hms
· Ts −

Htr2

Hms
· Te +

Htr1 · ΦHC

Hve ·Hms

Ts =
His +Hve

His
· Tair −

Hve · Te +ΦHC

His

In the case of constrained heating, ΦHC and dΦHC

dt
converge to zero one hour after the constrained heating
process has commenced. The approximation that is taken
into account here is that emission systems stop emitting
heat one hour after the HVAC system is turned off.

Therefore for t ≥ tstart+1h, the ODE for Tair becomes:

dTair

dt
=

His

(His +Hve) · (Hms +Htr2)

·
(
Hms ·

dTm

dt
+Htr2 ·

dTe

dt

)
+

Hve

His +Hve
· dTe

dt
(6)

where:
dTm

dt
=

1

Cm
· (Φmtot

− (Hem +Htr3) · Tm)

Φmtot = (Hem +Htr3) · Te

Tm =
Hms +Htr2

Hms
· Ts −

Htr2

Hms
· Te

Ts =
His +Hve

His
· Tair −

Hve

His
· Te

B. Step 2: Enhancing NODEs Parameter Estimation

This section delves into a critical aspect of our approach
that precedes NODEs fitting. While NODEs algorithm of-
fers a potent tool for inferring physical parameters specific
to a household, it is imperative to address the challenge
of ensuring accurate parameter value estimations. NODEs,



if left unconstrained during training, can potentially con-
verge to incorrect parameter values that nonetheless fit the
temperature observations. This poses a significant issue as
our objective is to ascertain the precise parameter values
crucial for defining the household’s thermal model.

We propose two key strategies to mitigate the risk of
NODEs learning inaccurate parameters:

1. Imposing Physical Boundaries: One approach in-
volves setting explicit physical boundaries for each pa-
rameter. By restricting parameter values within their valid
physical domains during the training process, we ensure
that the NODEs cannot converge to values outside these
bounds. However, even with this constraint, as we con-
tend with seven distinct parameters, the model might still
identify various parameter combinations that fit the tem-
perature observations. To tackle this challenge effectively,
we introduce a novel solution:

2. Identification Measurement Procedure (IMP):
Leveraging the explicit 5R1C thermal model’s capability to
precisely simulate hourly thermal behavior based on phys-
ical parameters, environmental conditions and temperature
setpoint, we create a diverse set of virtual households, each
defined by distinct parameter set. These virtual households
undergo a testing process known as the Identification
Measurement Procedure (IMP), designed to gather data
that elucidates their thermal behavior. This data collection
serves as the foundation for building classification models
that classify households into parameter ranges. Such pa-
rameter ranges are used as an parameter constraint input
to NODEs training process.

The IMP encompasses the following steps:
a. Determining Operating Temperature Range: We

identify a comfort temperature range (∆T ) in which we
can operate. We test for different ranges but this is typically
within a 1°C variation around the temperature setpoint
(Tset).

b. Observing Constrained Heating Patterns: For mul-
tiple nights the household is cooled from the upper limit
(Tmax = Tset+∆T ) to the lower limit (Tmin = Tset−∆T )
or for a preferred, predefined period of time. The observed
data from this process includes:

• Tair - observations of the indoor temperature
• Tout - observations of the outside temperature
• Tout - average outside temperature
• tcooling - cooling time
• ∆Tair - indoor temperature drop

c. Observing Normal Heating Patterns: For multiple
nights the household is maintained on various temperature
setpoints, defined inside the temperature comfort range.
The observation period is from 22:00 to 5:00, as heating
power is only used for supplying the temperature (exclud-
ing sanitary water). The observed data from this process
includes:

• Tair - observations of the indoor temperature
• Tout - observations of the outside temperature

• Tset - temperature setpoint
• QHC - mean heat power

What IMP provides us is twofold:
1. Classification Data: The IMP collects data that enables

the classification of households into distinct parameter
ranges. These ranges serve as crucial input boundaries for
NODEs during training.

2. Temperature Observations: For every observed night,
whether it involves cooling or heating/maintaining the tem-
perature set point, we extract air temperature observations.
These observations serve as the key input for modeling by
the NODEs algorithm.

As the next two steps are devised at an empirical level,
we will demonstrate their application through the real-
world case study.

IV. CASE STUDY: DETERMINING THE PHYSICAL
PARAMETERS OF A SLOVENIAN HOUSEHOLD

This section provides the preliminary results of a case
study conducted on a household in Slovenj Gradec, Slove-
nia. The household is equipped with a Kronoterm heat
pump and smart metering capabilities. This smart meter
can measure indoor and outdoor temperatures, export heat
power, and import active power.

To justify the suitability of applying the 5R1C hourly
method to the particular use case, we first perform some
validation tests as pre-preparation for applying the method-
ology. It is worth noting that the first step of the method-
ology is a theoretical adjustment of the model, which is
why it is also integrated into this step.

Fig. 3. Multi-dimensional Validation of the 5R1C Model Across Different
Months: The figure presents a month-by-month validation of the 5R1C
simple hourly method for 3 subsequent months. The first subplot in each
set displays the outside temperature. The second subplot compares the
modeled indoor air temperature with the actual measurements, and the
third contrasts the modeled heat demand with the actual heat output.



Fig. 4. Validation of the 5R1C simple hourly method applicability:
Displayed here are the deviations between the 5R1C model’s predicted
heat demand and the actual heat output of the heat pump during the
nighttime period, from 22:00 to 5:00, when the demand is primarily for
space heating.

The validation of the 5R1C simple hourly method was
performed through a comparison of the calculated heat
demand against the actual heat output recorded with smart
metering. The household’s physical parameters were deter-
mined based on information provided by the household’s
owner and publicly available data from Javni vpogled
Republike Slovenije. The comparative analysis for both
hourly and total aggregated values was conducted for
months spanning from November 2023 to January 2024.
Figure 3 shows the close agreement between the model’s
hourly predictions and the real data, demonstrating that
the model can accurately reflect the household’s thermal
behavior on an hourly level.

TABLE II
VALIDATION OF THE 5R1C SIMPLE HOURLY METHOD APPLICABILITY

November December January
∆Qtotal (kWh) 4.24 6.08 6.39
∆Qpower (kW) 0.53 0.76 0.8

ϵ (%) 12.50 11.66 11.85

Figure 4 focuses on the comparison of the model’s
heat demand prediction with the actual heat output during
the nighttime, from 22:00 to 5:00. This interval was
strategically selected to exclude the heat pump’s output
for domestic hot water usage, thereby isolating its heating
function. The results, as also detailed in Table II, show
a small average difference between model’s and real heat
power (∆Qpower) and model’s and real total heat demand
(∆Qtotal) for nighttime period for multiple months. The
difference between the average total energy demand for the
span of 7 hours does not cross 7kWh and the difference for
the mean heat power does not cross 1 kW. In terms of rel-
ative error, the model’s estimation is off by approximately
12%, which confirms the model’s ability to estimate the
household’s heating demands accurately enough.

A. Building Classification Models

This section presents the results of training classification
models, which represents the second step of the method-

ology.
We generated 900 virtual households by varying physi-

cal parameters: Af , cf , h, uwalls and uwindows. The pa-
rameters for ventilation and infiltration were approximated
to be very small or zero, specifically achvent = 0 and
achinfl = 0.01. This resulted in 900 different houses. Each
household underwent the IMP procedure (as defined in
subsection III-B) for 15 different days, with different days
for constrained heating operation and normal operation.
On top of that the normal operation was tested for three
temperature setpoints: 22, 23 and 24 °C. This resulted in
a dataset of shape 35,100x8 (with 35,100 instances and 8
features). From the generated data, we were able to train
classification models for Af , cf , and uwalls. Different pa-
rameter ranges and different classification algorithm were
tested and for every parameter, Random Forest algorithm
was the most suitable. The results summarizing the selected
parameter ranges and the accuracy of the models are
presented in Table III.

TABLE III
CLASSIFICATION RESULTS USING RANDOM FOREST

Parameter Parameter
Range

Training
Accuracy

Test
Accuracy

Af

(60, 100)
(100, 200)
(200, 300)

93% 87%

cf
LIGHT (0.8− 1.65)
HEAVY (1.65− 3.7) 85% 78%

uwalls
(0.2− 1.0)
(1.0− 2.0) 86% 84%

B. Data collection and classification

Collecting the data through IMP procedure (as defined
in subsection III-B) was done with the following settings:

1. Preferred temperature range was ∆T = 1.5°C T .
2. Preferred constrained heating time was from 22:00

to 5:00. The household was cooled down twice, once in
December, 2023 and once in January, 2024.

3. The heating patterns of normal operations were ob-
served for multiple nights in January, 2024. The data obtain
from IMP was classified into the following parameter
ranges:

• Af : (200, 300)
• cf : HEAVY − (1.65− 3.7)
• uwalls : (0.2− 1.0)

With that, we complete step 3 from the methodology.

C. NODEs Training

Estimated ranges of the parameters were used as a
constraint input to NODEs training. The equations 6 and 5
were modeled in the form of a neural network and trained
with NODEs algorithm for the constrained heating night
and multiple nights of normal heating. Trained parameter
values were then averaged across all training nights. Table
IV shows the trained parameter values and the relative error
compared to the true parameter values. The best estimated

https://ipi.eprostor.gov.si/jv/
https://ipi.eprostor.gov.si/jv/


Fig. 5. Comparing the real Tair observations with the ones modeled
by NODEs defined with true/trained parameters. The reason why the
NODEs defined with true parameters (green) doesn’t perfectly fit the real
observations lies in taking various approximations.

parameter is the walls_area, with relative error of 2.70%
and the worse estimated parameter is the uwalls, with the
relative error of 20.00 %. Figure 5 compares the true Tair

observations with the one modeled by NODEs defined with
true and trained parameters. We can see that the trained
parameters, even not perfectly, do model the dynamics of
the original system.

TABLE IV
PARAMETER COMPARISON

Parameter True
Value

Trained
Value

Relative
Error (%)

Af 250.00 294.56 17.82
h 5.2 4.79 7.88

walls_area 263.10 256.01 2.70
windows_area 65.78 73.89 12.34

cf 3.70 3.23 12.70
uwalls 0.60 0.72 20.00

uwindows 3.50 3.31 5.43

TABLE V
EVALUATION OF THE TRAINED PARAMETER VALUES

November December January
∆Qtotal (kWh) 6.05 10.61 9.85
∆Qpower (kW) 0.756 1.33 1.23

ϵ (%) 18.65 20.17 19.22

Evaluation of the trained parameters was performed
through a comparison of the real data and the calculations
of the thermal model defined with the trained parameters.
Table V shows the average difference between model’s and
real average heat power (∆Qpower) and total heat demand
(∆Qtotal) for a nighttime period for multiple months.
The difference between the average total energy demand
for the span of 7 hours does not cross 11kWh and the

difference for the mean heat power does not cross 2 kW.
In terms of relative error, the model’s estimation is off by
approximately 20%.

V. CONCLUSION

This paper presents a novel approach for identification of
household’s physical parameters. The accurate estimation
of the physical parameters enabled us to define a more
robust thermal model for a household without the need
of using huge amounts of data. The viability and the
practical utility of the proposed approach were demon-
strated through a practical real-world use case, showing the
effectiveness of the methodology for parameter estimation.
Notably, the walls_area parameter emerged as the best-
estimated parameter, boasting a relative error of just 2.70%.
However, it is important to acknowledge the challenges
encountered in practical application, exemplified by the
20.00% relative error observed for the parameter uwalls.
This highlights not only the accuracy of our methodology
but also the opportunity for further refinement.

Future work will include obtaining insights and data
from more households, which will facilitate the refinement
of the methodology through testing for different NODEs
architectures and potentially integrating other time varying
variables. This will allow us to improve the precision of
parameter estimation, resulting in more accurate and robust
thermal models.
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