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Abstract

Cryptographic hash functions are a paramount building block in cryptography and are
used for numerous applications. The hash function Poseidon is widely favored for zero-
knowledge applications (e.g. FileCoin, Dusk Network, LoopRing), and has been tailor
designed for this purpose. The hash function Hydra is optimized to be computed in
MPC. Hydra was presented in Eurocrypt 2023 and has less total number of rounds and
transmitted data than its competitors. Zero knowledge and MPC applications that prove
or compute hash functions share many similarities in terms of the optimization criteria of
the function. For applications that require both proving a hash function in zero-knowledge
and computing a hash function in MPC we ask the natural question:

How do the hash functions Poseidon and Hydra, which are optimized for

zero-knowledge and MPC applications respectively, perform for the other

application?
In order to answer this question, we compare performances of Hydra and Poseidon for
zkSNARKs and MPCs.
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1. Introduction

Zero-knowledge proofs (ZKPs) and MPCs are both examples of advanced
cryptographic applications that are useful for privacy and integrity. In a zero-
knowledge proof, a single party demonstrates that the output of a computation
has been computed correctly without revealing any secret input values. In an
MPC, multiple parties compute the output of a computation without revealing
any secret input values to each other. The output of the MPC is correct when
a given threshold of parties is honest. There are many different notions of
security and liveness for MPC (see [EKR18]). When protocols use both ZKPs
and MPCs there can be tradeoffs between the choice of hash function.

1.1. Concrete Example: The Taiga Protocol

The Taiga protocol computes hash functions both inside a ZKP and an MPC.
Taiga is a framework designed for applications that manage shielded transac-
tions involving resources. Each application within the framework can define
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its own resource types, ranging from tangible assets like money to intangible
services. These resources are owned by users in specific quantities and can
be exchanged with others. Shielded transactions in Taiga allow exchanges to
occur without revealing sensitive details, such as the type of resource, the
amount exchanged, or the identities of the users involved.

To safeguard sensitive data within a resource, the data is encrypted using a
key known only to the user. Consequently, transferring a resource to another
user—essentially creating a shielded transaction—requires destroying the cur-
rent resource and generating a new equivalent resource for the receiving user.
The user proves ownership of the resource without revealing the encryption
key or the plaintext data using a ZKP.

In Taiga, the user generating the transaction does not necessarily know
the identity of the resource recipient. ZKPs do not address this challenge
of hiding the data from the party responsible for creating the transaction.
Instead, an MPC enables the creation of shielded transactions while ensuring
that neither the key nor the plaintext is exposed to any other party involved.

The components of hash functions can also be used as building blocks
for some symmetric encryption schemes and their computation causes a
bottleneck in both ZKPs and MPCs. Taiga currently implements encryption
with duplex sponge construction using the Poseidon permutation as the

building block.

1.2. Prior Hash Function Studies

[AABS*19] provide comparison of hash functions Vision, Rescue, Starkad, Po-
seidon and GMiMCg,s for both MPC and ZKP applications. They demonstrate
that Poseidon has the smallest number of R1CS constraints and the smallest
number of multiplications in MPC in almost all cases. However, they show
that Rescue has the smallest number of rounds in MPC. These results suggest
that Poseidon is performant both in ZKP applications and in MPC applica-
tions. After this study was completed, Hydra was introduced by [GOSW22]
for MPC applications. According to [GSW22], Hydra outperforms Rescue
for MPC applications in terms of number of multiplications, but no explicit
comparison with Poseidon or any concrete performance results for ZKPs are
given.

1.3. Measuring Hash Function Efficiency

In this work we measure the efficiency of an MPC by the number of communi-
cation rounds and the number of Beaver triples. Beaver triples are used within
MPC for multiplying secret values and each multiplication requires a new
triple, see [EKR18] for more details. Triples can be generated in batches in an
offline phase and the number of triples can be significantly higher than the
number of communication rounds. The number of communication rounds is
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an important measure of efficiency when the network has a high latency. The
number of triples determines the amount of data that needs to be transmitted
and stored, hence it is important from the bandwidth and available local
storage perspective. Furthermore, higher number of triples indicates longer
running times for more computations, although local computations which do
not require triples might dominate the running time.

We measure the efficiency of a computation for ZKP by the number of
rank-1-constraint-system (R1CS) constraints, which are a set of quadratic
equations the prover must satisfy. R1CS systems are used by the Groth16
and Marlin ZKPs. The constraint system is comparatively simple compared
to alternatives such as Plonkish or Algebraic Intermediate Representations
because there are no custom gates. There is good tooling available for writing
constraints such as the Circom library.

The number of Beaver triples and R1CS constraints are both determined
by the number of multiplications. Thus, in both MPC and ZKP the aim is to
minimize the number of multiplications but there is a subtle difference. For
ZKPs there can be alternative R1CS constraints that represent the same multi-
plication, e.g., one can show that y = x1/? or that y¢ = x depending on which
uses less constraints (see [GHR"22]). One cannot typically find alternative
representations for Beaver triples. For example, the Rescue hash function has
comparatively less R1CS constraints than the number of multiplications in
MPC ([AABS*19]).

2. Background on Hydra and Poseidon

2.1. Hydra ([GOSW22])

Hydra is a keyed hash function, mapping fixed length inputs to arbitrary
length outputs. Both the inputs and outputs are elements of a prime field
IFp. Hydra is constructed as an instantiation of the Megafono design strategy,
which was proposed in the same paper. The aim of Megafono is to reduce
the number of multiplications for efficiency in MPC. The Megafono design
was inspired by Farfalle ((BDH"16]) and Ciminion ([DGGK21]).

Hydra accepts inputs in IF'?, and generates the digest in blocks, with each
block in Pf, The next digest block is obtained by applying a relatively simple
function to the current block. A more detailed overview of how Hydra works
is given in Appendix A together with a visual illustration. Here we highlight
the parameters that impact our efficiency comparison.

Hydra is parameterized by four variables, Ry, Rg, Ry and d, that are deter-
mined by the choice of prime field and the desired security level. Formulas
to compute these numbers are provided in Hydra paper. We theoretically
estimate the MPC and ZKP efficiency measures for Hydra with respect to
these variables.
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We provide the following formulas by assuming the prime field requires
d = 5. Obtaining m field element digest using Hydra requires

2 Ry+4-3-Rg+[m/8]-(2+Ry) -2 (1)

multiplications of secret field elements. In our MPC protocol where the input
value to the hash function is secret shared, this formula gives the number of
required triples. This number also matches with our total number of R1CS
constraints (all of which are nonlinear) . We are unaware of optimizations to
reduce the number of triples or constraints but it is possible that some exist.

The number of communication rounds in an MPC is determined by the
depth of the circuit and independent of multiplications that can be run in
parallel. In Hydra some multiplications can be run in parallel, e.g., in the
external rounds each of 4 secret field elements is multiplied with itself. The
number of communication rounds in the Hydra code-base ([Hyd]) is equal to

2-Ri+3-Rg+[m/8] —1+Ry (2)

where m is the length of the digest. We have subtracted one compared to the
formula in the code because we ignore the opening round of the MPC. Here
a round consists of every party sending a message.

2.1.1. Encryption

As suggested by the original paper, Hydra can be used for symmetric en-
cryption as a stream cipher, where the key schedule is generated by running
Hydra hash function on a key added to nonce and IV. Visually, it is as in Fig. 1.

key stream
nonce Il IV >@—> ciphertext

plaintext

secret key

Figure 1. Diagram showing how to encrypt with Hydra.

The plaintext is added element-wise with the key schedule. The MPC
efficiency of Hydra as a hash function and Hydra as a stream cipher is the
same except for a small local computation overhead(even if the plaintext is
secret shared). There is also no increase in the number of constraints in R1CS
representation.

2.2. Poseidon ([GKR"19])

Poseidon is a hash function instantiated with a sponge function that uses
the Poseidon permutation as a building block. A sponge function is a crypto-
graphic primitive that processes input data by iteratively absorbing it into
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an internal state and then generating outputs through a squeezing phase.
Poseidon maps arbitrary length inputs to fixed length outputs. Similar to
Hydra, both the inputs and outputs are elements of a prime field F,,. Poseidon
permutation follows Hades design strategy of [GLR"19]. A more detailed view
of how Poseidon permutation and sponge function constructed is provided
in Appendix B.

Poseidon is parameterized by five variables, Rr, Rp, d, c and r that are deter-
mined by the choice of prime field and the desired security level. Formulas to
compute these numbers are provided in the Poseidon paper. We theoretically
estimate the MPC and ZKP efficiency measures for Poseidon with respect to
these variables.

We provide the following formulas by assuming the prime field requires
d = 5. To hash n field elements to m field elements using Poseidon, we
estimate the number of multiplications of secret field elements by:

3-(Rp-(c+r)+Rp)-([n/r]+To/r1 1) (3)

This number is equal to the total number of R1CS constraints and the number
of triples required for MPC.
We obtain

3-(Re+Rp) - ([n/r1+[o/r]-1) (4)

rounds of communication for computation of the shared digest, where a round
consists of every party sending a message, because c + r powering operations
of an external round are independent and can be batched.

2.2.1. Encryption

Poseidon can be used to build an authenticated encryption scheme by using
the Duplex Sponge authenticated encryption framework of [BDPA11]. In
this case, the initial state is the secret key of length rate r padded with nonce.
The plaintext is divided into chunks of size r. To encrypt each chunk, the
next state is computed by summing it with the Poseidon permutation of the
current state. A portion of the next state is appended to the ciphertext. When
all chunks are computed, state is evaluated one final time using Poseidon
permutation to compute a MAC. The MAC and nonce are also included in
the ciphertext. Fig. 2 shows how to encrypt using DuplexSponge.

Suppose we encrypt a plaintext of length n using this encryption function.
We compute the number of rounds in MPC to equal

3-(Rp+Rp) - ([n/r1+1) (5)

and the number of constraints in R1CS and multiplication triples for MPC to
equal
3-(Rp-(c+r)+Rp)-([n/r]+1) (6)
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Figure 2. Diagram showing how to encrypt with Poseidon using Duplex Sponge mode.

Table 1. Parameters we used for Poseidon. Capacity and rate is stated as the number of field
elements.

c (capacity) d ‘ r(rate) Rp Rp

2 8 56
4 8 57

L

3. Methodology

3.1. Parameters

Our comparisons are computed using the base field of the Pallas curve, which
is a 255-bit prime field. Pallas curve is proposed for Halo2, a zero-knowledge
proof system which is employed by Zcash and Taiga. Pallas is part of a pair
of elliptic curves cycles called Pallas and Vesta which are efficient choices for
incrementally verifiable computation ([Val08]). We used the scripts referred
by the papers to obtain the parameters and constants targeting 128 bits of se-
curity: ([Hyd] for Hydra and [Pos] for Poseidon). Concretely, the parameters
we used for benchmarking are given in Table 1 for Poseidon and in Table 2
for Hydra.

For theoretical estimations, we consider only one set of parameters for
Hydra because Hydra parameters only depend on the prime field and the
desired security level. For Poseidon, we measure efficiency with respect to
different rates r. Efficiency measures for Poseidon are decreasing functions of
rate; this can be confirmed by differentiating Formulas 3-6. Thus, the Poseidon
hash function is optimally efficient when the rate is set to the greater of the
input and output lengths. The Poseidon cipher is optimal when the rate is set
to the plaintext length. Therefore, in addition to the parameters in Table 1,
we also report theoretical estimations for Poseidon with optimal rate.

Table 2. Parameters we used for Hydra
d R Rr Ry
5 41 6 39
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3.2. Input and output domains

For hash functions, we set the input domain for both functions to Pf, because
Hydra specifically requires an input length of 4. For encryption, we by default
fix the plaintext and digest domains to Ff, because Hydra specifically outputs
8 field elements before extension.

3.3. R1CS multiplications

To verify our theoretical estimations in Formulas 1, 3 and 6 for computing
the number of R1CS constraints, we implemented the functions in Circom.
Our Poseidon implementation is a modification of [cira] implementation
where we updated the parameters with the ones generated using [cirb] for
the Pallas prime. The numbers from our Circom implementation are equal to
our theoretical estimates. The plots and tables in the results section use our
theoretical estimates to compute the number of R1CS constraints.

3.4. MP-SPDZ framework

For MPC benchmarks, we used MP-SPDZ framework ([Kel20]) with Mascot
protocol. MP-SPDZ is an extensive library for MPC benchmarking. High level
implementations are written in a Python style language. MP-SPDZ can be
used to run multiple different MPC protocols using the same implementation
of functionality. MP-SPDZ has been used by many works for benchmarking
purposes including Hydra by [G@SW22] and Rescue by [AABS™19].

3.5. Mascot protocol

Mascot ([KOS16]) is an MPC protocol designed for arithmetic operations in
prime fields. Mascot achieves malicious security with a dishonest majority.

3.6. Our benchmark setup

We used the MPC implementation of [GOSW22] updated with Pallas prime
for Hydra benchmarks. Our benchmarks simulate a LAN setting, where we
run each party separately in the same device. We report timing measurements
and amount of transmitted data averaged over 20 runs for each case. We
experimented for 2, 3, 5, 10, and 15 parties. The plaintext and encryption key
is secret shared in our MPC benchmarks. The output of the hash function or
the ciphertext is publicly revealed. We additionally run a benchmark to test
the maximum number of parties and output lengths that MPC protocols can
be implemented in practice. For this benchmark we consider a scenario that
the hash function needs to be computed until the next block of Ethereum is
computed and hence we set the upper bound on running time as 12 seconds,
the block time of Ethereum. For testing the maximum number of parties, we
fixed the output length of hash functions and plaintext length of encryption
functions as 8. We kept running with one more party until the average
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running time of 20 runs is more than 12 seconds. For testing the maximum
length of output, we fixed the number of parties as 2 and increased the length
by 8 each time for Poseidon. Since Hydra supports significantly longer lengths,
we doubled the length each time for Hydra.

Our codes are available in [our]. The benchmarks for timings are run on
the Apple M2 chip and 24 GB of LPDDR5 RAM.

3.7. MPC triples and rounds

Similar to the number of R1CS constraints, we verified consistency of our
formulas with our MPC implementations. We found that the numbers given
by Formulas 1, 3 and 6 are consistent with the number of triples and 2, 4 and
5 are consistent with the number of “virtual machine rounds” in MP-SPDZ.
MP-SPDZ also has a “verbose” option for the number of rounds which we do
not present in this work.

Remark: Poseidon and Hydra parameters depend on the exact choice
of prime., Therefore, the values we employ are slightly different from the
ones stated in the papers for the same length prime and the same security
level. For Hydra, the amount of transmitted data reported by Hydra paper is
significantly smaller than ours because they use a 128-bit prime. The amount
of data is linear in prime length for the Mascot protocol.

4. Results

4.1. Hashing in MPC

In this subsection, we compare Hydra and Poseidon hash functions with
inputs in F, and various lengths of outputs. Recall we estimated the number
of multiplication triples and communication rounds using Formulas 1, 2, 3
and 4. In Table 3 we report numbers computing the hash for output lengths
4, 8, 16, 32 and 64 field elements. In Fig. 3 we report numbers for output
lengths ranging between 2 to 128. Fig. 3 includes Poseidon instantiation with
rate equal to the output length. This is to provide evidence as to whether
optimizing the rate could make Poseidon competitive with Hydra in MPC.

In Fig. 3 and Fig. 5 we plot the average running time, CPU time per party,
and total transmitted data, each averaged over 20 runs. Fig. 3 considers
different output lengths with 2 parties. Fig. 5 considers varying numbers of
parties with an 8 field element output. *

Table 4 reports average running time and transmitted data for the edge
cases we benchmarked.

In Fig. 6, we report the maximum digest length for 2 parties and maximum
number of parties for hashing 4 field elements to 8 field elements feasible in

lThe exact timing measurements and amount of data for different output lengths and number of players can be reproduced by
running our code available in [our]> by following instructions in readme.
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Average time (seconds)

Table 3. Theoretical estimations of MPC and ZKP efficiencies for computations of hash
functions. This table reports the values for Formulas 1 and 3, which are the number of triples
in MPC and constraints in R1CS representation, and the values for Formulas 2 and 4, which
are the number of communication rounds in MPC as estimated in overview section (which
only includes the rounds to compute the hash function without including generation of
triples or opening of the digest).

Output length ~ Algorithm Number of triples ~ Number of communication
(= Number of constraints) rounds
4 Poseidon with rate 2 720 576
Poseidon with rate 4 288 192
Hydra 193 139
8 Poseidon with rate 2 1200 960
Poseidon with rate 4 576 384
Hydra 193 139
16 Poseidon with rate 2 2160 1728
Poseidon with rate 4 1152 768
Hydra 234 140
32 Poseidon with rate 2 4080 3264
Poseidon with rate 4 2304 1536
Hydra 316 142
64 Poseidon with rate 2 7920 6336
Poseidon with rate 4 4608 3072
Hydra 480 146
—e— Hydra - running time —e— Hydra
—8— Poseidon with rate 2 - running time —e— Poseidon with rate 2
10 1 —e— Poseidon with rate 4 - running time 1000 { —e— Poseidon with rate 4
—-@- Hydra - CPU time
—e- Poseidon with rate 2 - CPU time
81 -@- Poseidon with rate 4 - CPU time ,—’. —_ 8004
H
64 g 600 1
44 8 400
2 200 4
04 04
10 20 0 a0 s0 60 10 20 0 2 50 60
Output length Output length

Figure 3. 2-party MPC benchmarks for hashing 4 field elements in terms of average running
and CPU times of a single party in seconds (on the left) and total amount of data transmitted
throughout the protocol in MBs (on the right), averaged over 20 runs. (Plotted using data for
output lengths 4, 8, 16, 32, 64).
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Figure 4. Number of communication rounds (on the left, plotted using Formulas 2 and 4)
and triples (on the right, plotted using Formulas 1 and 3) for computation to hash 4 field
elements in MPC. The number of triples is estimated to be the same as the number of R1CS
constraints. Poseidon with rate equal to output length curve represents the value of formula
when the rate is set the same as output length.

—8— Hydra - running time

—8— Poseidon with rate 2 - running time
—e— Poseidon with rate 4 - running time
—-®- Hydra - CPU time

-@- Poseidon with rate 2 - CPU time
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—&— Hydra
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12500 A
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7500

Global data (MB)

5000

2500 4

2 4 6 8 10 12 14
Number of parties

Figure 5. MPC benchmarks for hashing 4 field elements to 8 field elements in terms of
average running and CPU times of a party (on the left) and total amount of data transmitted
(on the right), averaged over 20 runs. (Plotted using data for 2, 3, 5, 10 and 15 parties),

Table 4. The running times and transmitted data of MPC protocol for computing the hash
of minimum and maximum output lengths with minimum and maximum number of parties
that we benchmarked. The running times are rounded to the nearest ten and transmitted

data are rounded to the nearest one.

Output length 4 Output length 64
2 Parties 15 Parties 2 Parties
L Hydra 0.3 11.2 0.8
Running time (secs) ‘ Poseidon (rate 2) 1.0 50.8 113
Hydra 28 2900 69
Data (MB
ata (MBs) ‘ Poseidon (rate 2) 103 10806 1133

DOI: 10.5281/zenodo.13739511

Anoma Research Topics |  September 10,2024 | 11


https://dx.doi.org/10.5281/zenodo.13739511
http://art.anoma.net

Maximum digest length

for 2 parties
| |

Maximum number of
parties for hashing
4 field elements to 8

|

- 1000 1 1,0247 § 15 | 13
= g
50 2
5 512 “? 10r 6 ’ ol |
= 500 12 A
i 256 'é 51 3 D D .
A 72 D
A = .1—_6.D z /. E 0+ D

T T T T T T

3 6 12 3 6 12

Time (s) Time (s)
liPoseidon |1 Hydra lIPoseidon lDHydra

Figure 6. Plots indicating maximum length of digest achievable for 2 parties and maximum
number of parties achievable to hash 4 field elements to 8 within the given time. For Poseidon,
digest length is increased by 8 each time, while it is doubled for Hydra because Hydra is
feasible for significantly longer digests.

a quarter, half and one block time of Ethereum. The global amount of data
corresponding to the longest digest length for 3, 6 and 12 seconds are 309,
584, 1271 MBs for Poseidon and 209, 397, 773 MBs for Hydra. The global
amount of data corresponding to the maximum number of parties for 3, 6
and 12 seconds are 515, 1030, 2573 MBs for Poseidon and 414, 994, 2154 MBs
for Hydra.

4.2. Encrypting in MPC

In this subsection, we compare encryption based on Hydra and Poseidon for
various lengths of plaintexts. In Table 5 and Fig. 8 we report the number of
multiplication triples and communication rounds for computing the ciphertext
that we estimated using Formulas 1, 2, 5 and 6. Table 5 considers plaintext
lengths 4, 8, 16, 32 and 64. Fig. 8 considers plaintext lengths between 2 to 128.
Fig. 8 includes Poseidon instantiation with rate equal to the output length.
This is to provide evidence as to whether optimizing the rate could make
Poseidon competitive with Hydra in MPC.

In Figures 7 and 9 we report the average running and CPU times of a party
and total amount of transmitted data, each averaged over 20 runs, for different
numbers of parties and plaintext lengths. ? Fig. 7 considers different plaintext
lengths for 2 parties. Fig. 9 considers different numbers of parties and 8 field
element plaintexts. Figures 7 and 9 report the data for encryption based on
Poseidon with rate 2 only.

2Similar to hashing, the exact timing measurements and amount of data for different output lengths and number of players can be
reproduced by running our code available in [our] following instructions in readme.
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Table 5. Theoretical estimations of MPC and ZKP efficiencies for computations of encrypt
functions based on Hydra and Poseidon. This table reports the values for Formulas 1 and
6, which are the number of triples in MPC and constraints in R1CS representation, and the
values for Formulas 2 and 5, which are the number of communication rounds in MPC as
estimated in overview section (which only includes the rounds to compute the ciphertext
without including generation of triples or opening of the ciphertext).

Plaintext length  Algorithm Number of triples  Number of communication
(= Number of constraints) rounds

4 Poseidon with rate 2 720 576
Poseidon with rate 4 576 384

Hydra 193 139

8 Poseidon with rate 2 1200 960
Poseidon with rate 4 864 576

Hydra 193 139

16 Poseidon with rate 2 2160 1728
Poseidon with rate 4 1440 960

Hydra 234 140

32 Poseidon with rate 2 4080 3264
Poseidon with rate 4 2592 1728

Hydra 316 142

64 Poseidon with rate 2 7920 6336
Poseidon with rate 4 4896 3264

Hydra 480 146

Table 6 reports average running time and transmitted data for the edge
cases we benchmarked.

In Fig. 10, we report the maximum plaintext length for 2 parties and maxi-
mum number of parties for encrypting 8 field elements feasible in a quarter,
half and one block time of Ethereum. The global amount of data correspond-
ing to the longest plaintext length for 3, 6 and 12 seconds are 172, 584, 1271
MBs for Poseidon and 209, 397, 773 MBs for Hydra. The global amount of
data corresponding to the maximum number of parties for 3, 6 and 12 seconds
are 515, 1030, 1716 MBs for Poseidon and 414, 994, 1823 MBs for Hydra.

—e— Hydra - running time —e— Hydra
—e— Poseidon - running time —e— Poseidon
10 { @~ Hydra - CPU time 1000
-e- Poseidon - CPU time

Average time (seconds)
>
\
\
Global data (MB)
Py
2
3

—e——o————  °*

10 20 30 0 50 60 10 20 30 0 50 60
Plaintext length Plaintext length

Figure 7. 2-party MPC benchmarks for encrypting different length plaintexts in terms of
average running and CPU times of a party (on the left) and total amount of transmitted data
(on the right), averaged over 20 runs. (Plotted using data for plaintext lengths 4, 8, 16, 32, 64)
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Figure 8. Number of communication rounds (on the left, plotted using the Formulas 2 and
4) and triples (on the right, plotted using the 1 and 6) for computation to encrypt different
length plaintexts.
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Figure 9. MPC benchmarks for encrypting 8 field elements in terms of average running
and CPU times of a party (on the left) and total amount of transmitted data (on the right),
averaged over 20 runs. (Plotted using data data for 2, 3, 5, 10 and 15 parties).

Table 6. The running times and transmitted data of MPC protocol for computing the
encryption of minimum and maximum plaintext lengths with minimum and maximum
number of parties that we benchmarked. The running times are rounded to the nearest ten
and transmitted data are rounded to the nearest one.

Plaintext length 4 Plaintext length 64
2 Parties 15 Parties 2 Parties

. . Hydra 0.3 11.2 0.8
R t .

unning time (secs) ‘ Poseidon (rate 2) 1.1 50.2 11.5

Hydra 28 2900 69
Data (MB .

ata (MBs) ‘ Poseidon (rate 2) 103 10806 1133
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Figure 10. Plots indicating maximum length of plaintext achievable for 2 parties and
maximum number of parties achievable to encrypt 8 field elements within the given time.
For Poseidon, plaintext length is increased by 8 each time, while it is doubled for Hydra
because Hydra is feasible for significantly longer plaintexts.

4.3. Hashing in ZKP

In this subsection, we compare Hydra and Poseidon hash functions with
inputs in IF;‘) and various lengths of outputs. The number of R1CS constraints
that we estimated using Formulas 1 and 3 for output lengths 4, 8, 16, 32 and
64 are stated in Table 3. In Fig. 4, the plot on the right hand side illustrates
how the number of constraints changes with variable output lengths between
2 and 128.

4.4. Encryting in ZKP

In this subsection, we compare encryption based on Hydra and Poseidon with
various lengths of plaintexts. We report the number of R1CS constraints that
we estimated using Formulas 1 and 6, in ?? for plaintext lengths 4, 8, 16, 32
and 64 and in Fig. 8 for output lengths 2 to 128.

5. Concluding remarks

5.1. Discussions

The hash functions Hydra and Poseidon both demonstrate good performance
for both MPC and ZKP applications. While Hydra is currently only available
for inputs in F}, Poseidon has flexibility of input size with sponge construction.
Furthermore, the performance of Poseidon is open to be tailored for specific
input lengths by the choice of rate. Although Fig. 4 and Fig. 8 shows that this
type of tailoring alone is not enough for reaching the same efficiency as Hydra
in MPC. In situations that creating a longer digest is more important than
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digesting more words such as generating a pseudorandom sequence, Hydra
is advantageous because the digest is extended almost for free compared
to Poseidon as in Fig. 4 and Table 4. Although both of the hash functions
become less efficient to compute with longer outputs or more parties, lower
magnitudes of efficiency measures of Hydra suggests a wider applicability in
practice. In particular, Fig. 6 and 10 show that Hydra can be used to obtain
notably longer digests under the same time restriction.

Efficiency for longer digests makes Hydra a better choice as a building
block of a stream cipher. On the other hand, the results we provided in
this report have an important shortcoming. The encryption using Hydra
is only a stream cipher while the one using Poseidon is an authenticated
encryption scheme. [GOSW22] suggest that Hydra can be used to construct an
authenticated encryption scheme using techniques by [BDH*16]. We are not
aware of any work implementing this. We leave implementing authenticated
encryption using Hydra as a future work. Achieving authenticated encryption
by using Hydra would increase the performance overhead and without an
implementation we cannot evaluate whether the resulting scheme would be
competitive.

The number of multiplications impacts the efficiency of both ZKP and
MPC applications. Similar behaviors of Figures 3 and 7 with Figures 4 and
8, respectively, confirm that theoretical estimation of efficiency for MPC
using the number of triples for multiplications is consistent with the practical
efficiency in terms of the running times and the amount of transmitted data.
For Hydra and Poseidon, the number of multiplication triples in MPC and the
number of constraints in R1CS are similar. However, focusing solely on mini-
mizing multiplications does not capture the full picture for MPC-friendliness.
Poseidon does not capitalize on parallelization potential inside MPC. More
multiplications in a single round allows batching in MPC. Poseidon’s par-
tial rounds reduce the overall number of multiplications but this is at the
cost of more rounds (see Appendix B for more details on partial rounds).
Hash function designers for MPC applications should balance multiplication
minimization with parallelization potential. Additionally, there is an argu-
ment that including some costly multiplication blocks may be advantageous.
Indeed, lower-cost blocks often require more repetitions for security and
can lead to more communication rounds. To optimize the number of MPC
rounds Hydra includes both higher cost and lower cost blocks. Figures 4 and
8 together with Tables 3 and 5 confirm that Hydra is better at optimizing
the number of rounds in MPC, with the optimizations for both Hydra and
Poseidon that we are aware of.

Higher number of parties in an MPC protocol might be favorable in practice
because the data is already distributed to a lot of parties or the trust level for a
party requires more parties for desired level of privacy. On the contrary, less
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parties are favorable in practice for more efficient protocols. If more parties
are desired to compute the hash or encryption, we suggest employing Hydra
based on Figures 6 and 10. Indeed, Tables 4 and 6 suggest that computing
neither the hash or encryption of 4 field elements, equivalent to 1024-bits in
our case, shared among 15 parties seems to be practical in general because of
almost 1 minute of running time and 11 GB of data transmitted. However,
there might be applications affording these or optimizations of MPC protocol
that we are unaware of.

Optimizations: When the field order is compatible with the Sbox power
d = 3, the MPC subprotocol to compute cubes of [GOSW22] (Appendix D,
Algorithm 4) can be used to reduce number of communication rounds for both
Hydra and Poseidon. A similar technique (e.g. Algorithm 5 by [GOSW22])
might be used for power 5, required for Pallas prime, although the gain is
arguable in this case.

5.2. Future work

« In this work, we used the parameters suggested by the papers without
any further security analysis. A comparative security analysis of two
functions is left as a future work.

« In this work, we report the measurements for the whole execution of
MPC. While Hydra has options towards a potentially more efficient
online execution, we don’t employ that one and we haven’t focused on
optimizing Poseidon for this purpose either. Hence, we leave discussion
of whether Hydra or Poseidon is advantageous for specific cases like
a costly offline phase is favorable if online phase is significantly more
efficient, after optimizing Poseidon for this purpose too.

« Although Hydra currently supports input length 4 only, different in-
stantiations of Megafono design strategy following Hydra closely can
be investigated for applications requiring other fixed input lengths.
This investigation should include a repetition of security analysis for
the appropriate choice of parameters. We leave this investigation as a
future work.

« In this work, we compared Hydra and Poseidon for a single MPC proto-
col, namely Mascot. We leave the investigation of efficiency of Hydra
and Poseidon with other MPC protocols as a future work. More pre-
cisely, two functions could be compared for other malicious majority
protocols, in addition to investigating the improvement in efficiencies
with less strict security guarantees of MPC. Both of these can be eas-
ily conducted using the MP-SPDZ implementations we benchmarked,
provided that MP-SPDZ has support for the protocol in interest.
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A. Design of Hydra

Hydra mainly consists of a permutation B, rolling functions R; and a keyed
permutation function Hy. B takes the input consisting of 4 field elements
and outputs 4 field elements, which are summed with the key and then
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extended to 8 field elements with the summation of state ° after each round
inside B. These 8 elements are expanded to arbitrary length by applying
corresponding rolling functions and each 8 element block is applied the
permutation Hj and outputted after getting summed with itself. B follows the
Hades design strategy, with x? as Sbox applied to each element in the state
for external rounds for element x where d is the smallest odd integer such
that ged(d, p— 1) = 1. However, the internal rounds follow a slightly different
approach and are defined by a single quadratic function summed with each
element in the state. Rolling functions require two multiplications of some
linear combinations of the elements, which are outputs of recursive calls to
the rolling function, except the first rolling function. The keyed permutation
Hy, consists of one square per round. We denote the number of internal and
external rounds in B by R; and Rg, respectively, and the number of rounds in
Hy. by Ry. [GOSW22] provides all details of Hydra.

B. Design of Poseidon

Poseidon permutation takes t elements and repeatedly applies rounds con-
sisting of summation with round constants, nonlinear Sbox evaluation and
multiplication with a precomputed matrix to obtain ¢ elements output. The
Sbox is defined as x? for the field element x where d is the smallest odd integer
such that ged(d, p — 1) = 1. It is applied to each element in external rounds,
which are called full rounds, while it is only applied to the first element in the
state in internal rounds, which are called partial rounds, to reduce the number
of multiplications for more efficient zero-knowledge proofs. We denote the
number of partial rounds by Rp and full rounds by Rr. Fig. 11 shows how
Poseidon permutation is constructed.

Figure 11. Sponge construction for Poseidon hash

Sponge function is defined by capacity ¢ and rate r, where choice of capacity
affects security level. To obtain a o element digest of n elements input using
the sponge function, Poseidon permutation is instantiated with t = ¢ +r.
Initial state is set as all 0’s. Input is divided into chunks of r elements (with
padding if necessary) and the next state is repeatedly obtained by feeding
the permutation with the next chunk added to the previous state. When the
input is fully consumed, elements in the rate part of the state are outputted.

3Following usual terminology for hash functions, we use the term state to refer to input/output at any point during the execution of
the hash function.
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As long as it is needed, the next state is computed by applying permutation
to the current state. Therefore, hashing n chunks of r words to o chunks of r

words requires n + o — 1 executions of the permutation. Details of how each
of these functions work given by [GKR*19].
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