
Anoma Research Topics | TECHNICAL REPORT

Compiling Juvix to Cairo Assembly
Łukasz Czajka a

aHeliax AG

* E-Mail: lukasz@heliax.dev

Abstract
We describe a pipeline for compiling the functional programming language Juvix to the byte-
code of the Cairo VM, which enables zero-knowledge proofs of Juvix program execution. The
read-only memorymodel of Cairo fits well with the purely functional nature of Juvix, but also
presents some unique challenges.

Keywords: Cairo ; Starknet ; Anoma ; Juvix ; Compilers ; zero-knowledge proofs ; functional programming

(Received: August 19, 2024; Version: September 10, 2024)

Contents

1 Introduction 2

2 Juvix 3

3 Cairo 4
3.1 Function calls . 7
3.2 Memory model . 8
3.3 Builtins . 9

4 Juvix to Cairo compilation pipeline 10
4.1 JuvixCore . 12

4.1.1 Example programs . 13
4.1.2 Stripped representation 14

4.2 JuvixTree . 16
4.2.1 Translation from Stripped JuvixCore 19
4.2.2 Compiling dynamic closure calls 21

4.3 JuvixAsm . 22
4.3.1 Translation from JuvixTree 24

4.4 JuvixReg . 26
4.4.1 Translation from JuvixAsm 27
4.4.2 Transformation into Static Single-Assignment form . . . 30

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 1–58

https://art.anoma.net
https://dx.doi.org/10.5281/zenodo.13739344

4.4.3 Optimization . 31
4.4.4 Handling continuous memory 33

4.5 CASM . 35
4.6 Cairo bytecode . 41

5 Conclusion 41

Acknowledgements 42

References 43

A Juvix CLI 44

B Example program in different IRs 44
B.1 Juvix . 45
B.2 JuvixCore . 45
B.3 Stripped JuvixCore . 46
B.4 JuvixTree . 46
B.5 JuvixAsm . 47
B.6 JuvixReg . 48
B.7 JuvixReg in SSA . 49
B.8 Optimized JuvixReg . 50
B.9 JuvixReg basic blocks . 51
B.10 CASM . 53

C CASM runtime 55
C.1 Closure call . 55
C.2 Closure extension . 55

1. Introduction
Cairo [GPR21] is a practically-efficient Turing-complete STARK-friendly CPU
architecture that allows generating zero-knowledge proofs of integrity for pro-
gram execution. The Cairo Virtual Machine (Cairo VM) is used in Starknet – a
ZK-rollup Layer 2 network that operates on top of Ethereum, enabling dApps to
massively scale without compromising on security.

Juvix is an open-source functional programming language designed to write
intent-centric privacy-preserving decentralised applications [Hel24] for theAno-
ma blockchain [GYB23]. The Juvix compiler pipeline allows relatively seamless

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 2

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

incorporation of different compilation targets. Currently, Cairo is used for pri-
vate execution of Juvix programs.

This report describes the part of the Juvix compiler pipeline relevant to the
Cairo backend. First, in Section 2 we discuss the Juvix language, its features
and properties, as well as the basic architecture of the Juvix compiler. Sec-
tion 3 presents the Cairo architecture, including its unique non-deterministic
continuous read-only memory model. In Section 4 we detail the stages of the
Juvix-to-Cairo compilation pipeline, including descriptions of intermediate rep-
resentations (IRs) and translations between them. Finally, Section 5 summarizes
the Juvix-to-Cairo pipeline, the encountered technical challenges and their so-
lutions.

2. Juvix
Juvix is a purely functional programming language with eager (call-by-value)
evaluation. As such, Juvix programs are referentially transparent mathematical
functions without implicit state or any side effects. Juvix is a high-level lan-
guage in the ML family (similar to, e.g., Haskell or OCaml) with many advanced
features: algebraic data types, pattern matching, polymorphism, higher-order
functions, traits, termination and positivity checking.

The Juvix compiler targets several different backends, includingCairo, Nockma
(transparent VM for Anoma), RISC0 [BG23] and native code. After parsing, scop-
ing and type checking, Juvix programs are desugared to JuvixCore – a minimal-
istic intermediate functional language [Cza23]. The relationship between Juvix
and JuvixCore is similar to that between Haskell and Haskell Core. The compi-
lation pipelines for different backends diverge after translation to JuvixCore.
Table 1 presents a feature comparison between Juvix, JuvixCore, Haskell and

OCaml. In the case of JuvixCore, which does not specify a single type system,
the “Yes” entries in the rows for polymorphism and data types mean that pro-
grams using these features can be directly represented in JuvixCore, not that
type checking of such programs is performed by the current JuvixCore imple-
mentation. For more information on JuvixCore, see the report [Cza23].

Table 1. Comparison between language features supported by Juvix, JuvixCore, Haskell and
OCaml.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 3

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

Feature Juvix JuvixCore Haskell OCaml
Turing-complete Yes1 Yes Yes Yes
Algebraic data types Yes Yes Yes Yes
GADTs No Yes Yes Yes
Prenex polymorphism Yes Yes Yes Yes
Higher-rank polymorphism Some Yes Yes2 No
Hindley-Milner type inference No No Yes Yes
Type classes (traits) Yes No Yes No
Modules Yes No Yes Yes
Parameterised modules No No No Yes
Eager evaluation Yes Yes Yes3 Yes
Lazy evaluation No No Yes Yes4

Metaprogramming No No Yes5 Yes6

3. Cairo
The Cairo framework enables one to prove the integrity of an arbitrary computa-
tion. The Cairo VM executes Cairo bytecode creating an execution trace, which
is later converted into an Algebraic Intermediate Representation (AIR) used to
generate a zero-knowledge proof. The AIR encodes the steps of the computation
as polynomial constraints.

Cairo Assembly (CASM) is a textual representation of Cairo bytecode. The in-
struction set follows the Reduced Instruction Set Computer (RISC) architecture.
All instructions can be encoded using 15 flags and 3 integers. For a full descrip-
tion of CASM and the Cairo architecture, see [GPR21]. Here, we only give a
brief overview and highlight the issues most relevant for compilation from a
high-level purely functional language like Juvix.

The Cairo architecture was designed to allow a translation into an AIR with
efficient zero-knowledge proof generation and verification. The design choices
and performance considerations are therefore quite different from a conven-
tional CPU architecture.

Cairo has random-access continuous read-only non-deterministic memory
which stores elements of a certain finite field. The basic data type is thus a field:
integers modulo a fixed large prime 𝑃 . The memory is non-deterministically
given by the prover at the start of the computation and cannot be modified later.
Rather than as traditional loads and stores, Cairo memory access instructions

1via terminating and positive annotations
2with the RankNTypes extension.
3via strictness annotations.
4via the Lazy.t type.
5via Template Haskell
6via PPXs.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 4

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

are better understood as asserting equalities between different memory cells. In
case these assertions turn out inconsistent, execution in the Cairo VM fails. The
execution of a Cairo program succeeds if there exists a memory assignment such
that all assertions generated by the program instructions are satisfied.

Accessing memory in Cairo is not a performance bottleneck like in modern
physical computers. Consequently, Cairo eschews general-purpose registers in
favour of direct memory access. The notation [𝑛] is used to refer to the contents
of the memory cell at address 𝑛.

In CASM, there are only three registers:

• pc: program counter. This register stores the address of the current in-
struction. It cannot be directly accessed in CASM. The program counter
is increased after executing each non-branching instruction, and modified
appropriately by jumps (jmp), calls (call) and returns (ret).

• ap: allocation pointer. This register points to the first free (unallocated)
memory cell. It cannot be read directly. It can only be increased or used
as an index in memory accesses, e.g., [ap− 1] is a valid memory reference
in CASM.

• fp: frame pointer. This register stores the address of the current function
call frame. It cannot be read or written directly. It can only used as an
index in memory accesses. The addresses of function arguments and local
variables are relative to fp. When a function starts, fp is equal to ap. The
value of fp doesn’t change throughout the scope of a function, while ap

increases on memory allocation.

In contrast to memory, the registers are mutable – their values can change as a
result of executing an instruction.

An example CASM instruction is

[ap] = [ap − 1] ∗ [fp + 2]; ap++

which asserts that the memory cell at ap be equal to the memory cell at ap − 1
multiplied by the memory cell at fp + 2, and increases ap afterwards.

More precisely, the equality assertion instruction is

<left> = <right>

or
<left> = <right>; ap++

where <left> has the form [𝑟 + 𝑘] and <right> has the form

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 5

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

• 𝑛 – constant field element value, or
• [𝑟 + 𝑘], or
• [𝑟0 + 𝑘0] ◦ [𝑟1 + 𝑘1], or
• [𝑟 + 𝑘] ◦ 𝑛, or
• [[𝑟 + 𝑘0] + 𝑘1],

where 𝑘, 𝑘0, 𝑘1 are 16-bit integer offsets, 𝑟, 𝑟0, 𝑟1 ∈ {ap, fp}, and ◦ ∈ {+, ∗}.
Note that addition and field division can be “computed” thanks to non-determinism.

For example, the following instruction “stores” [ap − 1] − [ap − 2] in [ap] and
increases ap:

[ap − 1] = [ap] + [ap − 2]; ap++
Such reshuffling is not necessary for subtraction by an immediate constant,
which can simply be regarded as addition of a negative number, e.g., [ap−2] −1
is syntactic sugar for [ap − 2] + (−1).

In addition to equality assertions, CASM supports the following instructions.

• jmp 𝑙 : unconditional jump to label 𝑙 .
• jmp 𝑙 if [𝑟 + 𝑘]!= 0: conditional jump to label 𝑙 , where 𝑟 ∈ {ap, fp} and 𝑘
is a 16-bit integer offset.

• jmp rel <right>: unconditional relative jump by <right> offset, where the
form of <right> is the same as in equality assertions.

• call 𝑓 : call the function 𝑓 , where 𝑓 is a label.
• ret: return from function call.
• ap += n: advance ap by 𝑛.

Below is an example CASM program which computes the factorial of 10. At
the end of computation, the result is available in [ap − 1].

start:

[ap] = 10

[ap + 1] = 1

ap += 2

loop:

[ap] = [ap - 2] - 1

[ap + 1] = [ap - 1] * [ap - 2]

ap += 2

jmp loop if [ap - 2] != 0

Note that each memory cell is assigned only once, and the assignments occur
in order of increasing addresses. In each iteration of the loop, [ap − 2] is the

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 6

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

current loop counter (we count down from 10 to 0) and [ap − 1] is the product
computed so far. Instead of overwriting two local variables, we use fresh copies
of the variables in each iteration.

In the rest of this section, we discuss three aspects of Cairo relevant to com-
pilation from a high-level functional language. We elaborate a bit more on the
function call mechanism, the memory model, and Cairo builtins.

3.1. Function calls
Since Cairo memory is read-only, function calls cannot be implemented with a
conventional call stack where frames are pushed on function call and popped on
return. Instead, on each call a new frame is created (reserving the memory by
advancing ap) which is never freed. In general, memory in Cairo is never freed,
because it cannot be re-used due to the read-only nature of the memory model.

The call 𝑓 instruction performs the following operations.

• Assert [ap] = fp, i.e., save the frame pointer.
• Assert [ap+1] = pc′ where pc′ points to the next instruction after the call,
i.e., save the return address.

• ap += 2.
• Set fp = ap, i.e., make fp point to the new frame.
• Set pc = 𝑓 , i.e., jump to the label 𝑓 .

Hence, at function entry fp = ap and:

• [fp − 1] contains the return address,
• [fp − 2] contains the previous frame pointer,
• conventionally, [fp − 3] contains the first argument, [fp − 4] the second,
and so on,

A function is called, e.g., like this:

[ap] = arg3; ap++

[ap] = arg2; ap++

[ap] = arg1; ap++

call f

The local variables are normally stored in [fp], [fp + 1], [fp + 2], etc.
The ret instruction performs the following operations.

• Set pc = [fp − 1], i.e., jump to the return address saved by the call in-
struction.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 7

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

• Set fp = [fp − 2], i.e., restore the previous frame pointer.

Conventionally, a function leaves its result in [ap − 1]. A function return looks
like this:

[ap] = result; ap++

ret

To illustrate recursive function calls, below is a CASM program which com-
putes the sum of numbers from 1 to 1000 using a recursive sum function. At the
end of computation, the final result is in [ap − 1].
start:

[ap] = 1000; ap++

call sum

jmp end

sum:

jmp sum_label_1 if [fp - 3] != 0

[ap] = 0; ap++

ret

sum_label_1:

[ap] = [fp - 3] - 1; ap++

call sum

[ap] = [fp - 3] + [ap - 1]; ap++

ret

end:

The argument to sum (stored in [fp − 3]) is first compared against 0. In the
zero case, the result is 0. In the non-zero case, sum is called recursively with the
argument decreased by one, then the function returns the argument added to
the recursive call result.

3.2. Memory model
We already briefly discussed aspects of the Cairo memory model. In this section,
we elaborate on its crucial features and their relevance to compilation from a
high-level functional language.

Cairo adopts a nondeterministic read-only continuous memory model. We
explain each of these characteristics in turn.

• nondeterministic: memory is nondeterministically given by the prover at
the start of the computation. Cairo instructions do not modify memory,
but instead assert equalities between different memory cells.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 8

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

• read-only: memory is read-only – it cannot be modified.
• continuous: memory accesses must occur with increasing addresses, leav-
ing no “gaps” in between. For example, to access memory cell 100, one
must first access all memory cells from 0 to 99 in order.

The read-only nature of Cairo memory fits well with the functional program-
ming model where destructive updates are not permitted. The requirement of
continuous memory access, on the other hand, causes significant complications,
described in more detail in Section 4.4.4.
In [GPR21, Section 2.6], it is implied that memory accesses are checked for

continuity only at the end, after the execution has finished. However, in the
Rust implementation of Cairo VM [Lam24] the checks for memory continuity
are performed periodically during the execution of the program, not only at
the end. This complicates compilation. In particular, it is no longer possible to
“reserve” space for local variables by increasing ap at function entry, and “fill in”
the local variable values later.

For example, the following results in non-continuousmemory access, because
the access to [fp] in the third-last instruction occurs after accesses to higher
memory addresses.

f:

-- one local variable

ap += 1

-- now ap = fp + 1

jmp lab if [fp - 3] != 0

[fp] = 0

ret

lab:

[ap] = [fp - 3] - 1; ap++

call f

[fp] = [ap - 1] + 2

[ap] = [fp] * 2; ap++

ret

To avoid problems with memory access continuity checks, we require contin-
uous memory access at every execution step.

3.3. Builtins
Cairo builtins [GPR21, Section 7] are predefined optimized low-level execution
units in the Cairo VM. Communication with the builtins occurs via designated

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 9

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

memory addresses. For example, to use a hash builtin 𝐻 (𝑥,𝑦) which takes two
arguments 𝑥 and 𝑦, the user “writes” 𝑥 and 𝑦 at specified memory addresses𝑚
and𝑚 + 1 (i.e., asserts appropriate equalities), and then “reads” 𝐻 (𝑥,𝑦) from the
memory cell at address𝑚 + 2.

Currently, Juvix supports the following builtins.

• Output: specify program output.
• Range Check: verify that a value is in some bounded range [0, 𝑛).
• Elliptic Curve Operation: compute 𝑝 +𝑚𝑞 for points 𝑝, 𝑞 on the STARK
curve.

• PoseidonHash: cryptographic hash designed to be efficientwhen expressed
as an algebraic circuit.

4. Juvix to Cairo compilation pipeline
In this section, we describe the Juvix to Cairo compilation pipeline: the IRs and
the translations between them. After scoping, parsing and type-checking, Juvix
programs are desugared to JuvixCore where the pipelines for different back-
ends begin to diverge. We describe only the backend part of the pipeline from
JuvixCore to Cairo bytecode as it is most relevant to compilation to Cairo. Parts
of the Cairo pipeline (up to the JuvixReg representation) are shared with differ-
ent Juvix compiler targets.

The Juvix compiler backend pipeline architecture is presented schematically
in Figure 1. The diagram nodes represent the IRs. The double arrows represent
the transformations that are part of the Cairo pipeline. For completeness, we
also show other Juvix compilation targets.

JuvixCore +3 JuvixTree +3

��

JuvixAsm +3 JuvixReg +3

xxppp
ppp

ppp
ppp

��

CASM

��
Nockma C

��

Rust

��

Cairo bytecode

native RISC0

Figure 1. Juvix compiler backend pipeline.

First, we provide a brief overview of the IRs in the Cairo pipeline and the

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 10

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

translations between them. In the remaining subsections, we describe them in
more detail.

1. JuvixCore is a minimalistic functional IR based on the lambda-calculus.
The followingmajor transformations are performed on JuvixCore to trans-
late it to a Stripped JuvixCore representation.

• Eta-expansion adjusts function arities.

• Patternmatching compilation converts complex patternmatches into
one-level case expressions.

• Lambda-lifting removes anonymous and local functions.

• Optimization performs inlining, specialization, constant folding and
arithmetic simplification.

• Type erasure removes runtime type information.

2. JuvixTree is an applicative functional IR with explicit closure operations
and uncurried top-level functions. Translation from Stripped JuvixCore
to JuvixTree involves the following.

• Application translation selects the right JuvixTree operation for each
JuvixCore application (direct call, static or dynamic closure call, clo-
sure allocation or extension, constructor data allocation).

• Dynamic closure call compilation generates efficient code for call
sites with possible partial application or overapplication.

3. JuvixAsm is a stack-based imperative assembly language suitable as an IR
for eager purely functional languages. The translation to JuvixAsm lin-
earizes JuvixTree expressions into sequences of stack-based instructions.

4. JuvixReg is a three-address code representation of JuvixAsm using local
variables instead of the value stack. The following transformations are
performed on JuvixReg before translating it to CASM.

• Static Single-Assignment form (SSA) transformation ensures that each
local variable is assigned only once, which is necessary because
Cairo memory is read-only.

• Copy and constant propagation removes spurious assignments.

• Basic block computation with live variable analysis is a prerequisite
for handling the continuity requirement of Cairo memory access.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 11

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

4.1. JuvixCore
JuvixCore is aminimalistic intermediate functional language based on the lambda-
calculus. Juvix desugars to JuvixCore, analogously to how Haskell desugars to
Haskell Core. A detailed description of JuvixCore together with its precise eval-
uation semantics and optional type system is available in [Cza23]. Here, we
provide only a brief and informal description, using the syntax of JuvixCore
files (*.jvc) that can be parsed by JuvixCore-related CLI commands (see Ap-
pendix A).

A JuvixCore file consists of a semicolon-separated list of statements: type
declarations and function definitions.

• Inductive type declarations have the form, e.g.,

type list {

nil : list;

cons : Any -> list -> list;

};

This declares the type list with two constructors having the specified
types. The predefined type Any is a universal type – any expression has
this type.

• Function definitions have the form:

def f := expr;

or

def f : type := expr;

where type and expr are JuvixCore expressions. In JuvixCore, a function
can have zero arguments.

A JuvixCore expression is one of the following.

• A variable, function, type or constructor identifier.
• A constant integer (e.g. 42) or field element (e.g. 42F).
• An application: t s.
• A lambda-expression: \x t.
• A let-expression: let x := t in s.
• A letrec-expression letrec f := t in s, or with multiple functions:

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 12

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

letrec[f g]

f := t1;

g := t2;

in s

This defines mutually recursive functions, where f and g can occur in t1

and t2.
• A case-expression, e.g.:

case v of {

c1 x1 x2 := b1;

c2 x1 x2 x3 := b2

}

The case-expressions are one-level – nested patterns are not permitted.
Above, the x1, x2, etc., are required to be variables binding the construc-
tor arguments. In fact, JuvixCore also has match-expressions which allow
complex nested patterns directly corresponding to Juvix pattern matches,
but these are converted to case-expressions by the pattern matching com-
piler immediately after desugaring.
A case-expression matching on a boolean is presented in an if-then-else

syntax:

if v then b1 else b2

is syntactic sugar for

case v of {

true := b1;

false := b2

}

• A primitive type: Any, Int, Field.
• A function type former: T -> S or Pi A : Type, T.

All binders (in lambda, let, letrec and case patterns) can have optional type
annotations. Lack of type annotation is equivalent to the type being Any.

4.1.1. Example programs
As an example, we present a Juvix function computing the𝑛th Fibonacci number
in time 𝑂 (𝑛).

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 13

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

fib : Nat -> Nat :=

let

fib' (x y : Nat) : Nat -> Nat

| zero := x

| (suc n) := fib' y (x + y) n;

in fib' 0 1;

Below is the desugaring of this function to JuvixCore, with pattern matching
already compiled and Nat converted to primitive integers.

def fib : Int -> Int :=

letrec fib' : Int -> Int -> Int -> Int :=

\(x : Int) \(y : Int) \(_X : Int)

if = 0 _X then x else fib' y (+ x y) (- _X 1)

in fib' 0 1;

Appendix B contains a bit more comprehensive example of the partition

function in Juvix and all IRs discussed in this report.

4.1.2. Stripped representation
After desugaring Juvix to JuvixCore, the following transformations are performed
before converting to JuvixTree.

1. Eta-expansion: adds lambda-abstractions at the top to make the number
of function arguments match its type, e.g., expanding

def f : Int -> Int := + 1

to

def f : Int -> Int := \(x : Int) + 1 x

2. Patternmatching compilation: compiles complex patternmatches into sim-
ple one-level case-expressions. The pattern matching compilation algo-
rithm follows [Mar08].

3. Primitive type conversion: converts Juvix numeric types to JuvixCore prim-
itive integers, with pattern matches converted to appropriate primitive
arithmetic operations.

4. Lambda lifting: lifts out lambda-abstractions and local letrec-expressions
into top-level definitions. Formore information on lambda-lifting see [JL92,
Chapter 6], [Jon87, Chapters 13,14] and [DS04].

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 14

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

5. Optimization: performs the following optimizations on the JuvixCore rep-
resentation.

• Inlining of functions explicitly marked for inlining or deemed small
enough by a heuristic.

• Specialization of functions for arguments explicitly marked for spe-
cialization. E.g., for the call map id lst a specialized version map_id

of map is created with the id function substituted for the first argu-
ment of map.

• Constant folding: evaluates fully applied non-recursive functions
when all arguments are values, e.g., replacing 3 + 4 with 7 and id 3
with 3.

• Case folding: partially evaluates case expressions when the con-
structor matched on is known.

• Let folding: folds lets whose values are immediate (variables or con-
stants) or when the bound variable occurs at most once in the body.
E.g., let x := t in x + y is replaced with t + y.

• Arithmetic simplification: simplifies arithmetic operations, e.g., re-
placing 𝑥 + 0 with 𝑥 .

6. Application sinking: moves application arguments inside lets and cases,
e.g., converting

(let x := A in B) C

into

let x := A in B C

and

(case V of {P := A}) B

into

case V of {P := A B}

7. Type erasure: removes type arguments, type abstractions and type quan-
tification.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 15

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

After performing the above steps, we obtain a Stripped representation of JuvixCore.
In this representation:

• all functions are defined at the top level (no local function definitions or
lambda-abstractions except at the top),

• functions are simply-typed with the number of arguments (top lambda-
abstractions) matching the type,

• all application expressions have the form 𝑓 𝑡1 . . . 𝑡𝑛 where 𝑓 is a function
name, a variable or a constructor.

• polymorphic arguments have the Any type.

Stripped JuvixCore can be directly translated to JuvixTree.

Example. Below is the Fibonacci function converted to Stripped JuvixCore.

def fib : Int -> Int := \(_X : Int) fib' 0 1 _X;

def fib' : Int -> Int -> Int -> Int :=

\(x : Int) \(y : Int) \(_X : Int)

if = 0 _X then x else fib' y (+ x y) (- _X 1);

4.2. JuvixTree
JuvixTree is an intermediate applicative functional language with explicit clo-
sure operations and uncurried top-level functions. There are no local function
definitions or lambda-abstractions. JuvixTree supports type annotations with
non-dependent function types (𝐴 → 𝐵) and the universal type * (this type is
called Any in JuvixCore).

A JuvixTree program (in a *.jvt file) consists of a sequence of type and func-
tion definitions.

• Inductive type declarations have the form, e.g.,

type list {

nil : list;

cons : (*, list) -> list;

}

The expression (*, list) -> list is the type of a function which takes
two arguments, the first one of an arbitrary type, the second of type list,
and returns a list. In JuvixTree, functions are uncurried and have a fixed
total number of expected function arguments.

• Function definitions have the form, e.g.,

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 16

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

function f(arg1Type, arg2Type) : resultType {

expr

}

where expr is a JuvixTree expression serving as the function body. Only
the types of the arguments and the result need to be specified – argument
names are optional. The 𝑛th argument can be referred to in the function
body with arg[n] (where 𝑛 is an integer constant).

Functions do not have local variables, but instead each has a temporary stack
which can be extended with the save operation (explained below). The 𝑛th tem-
porary stack cell from the bottom can be accessed with tmp[n]. Each function
invocation creates a fresh temporary stack.

JuvixTree values are:

• constructor data 𝑐𝑣1 . . . 𝑣𝑛 where 𝑐 is a constructor name (or tag) and 𝑣1, . . . , 𝑣𝑛
are the values of the constructor arguments,

• closure C(𝑓 , 𝑣1, . . . , 𝑣𝑘) where 𝑓 is a function name, 𝑣1, . . . , 𝑣𝑘 are values
of the first 𝑘 function arguments, and 𝑘 < 𝑛 with 𝑛 the total number of
function arguments,

• integers, booleans and field elements.

The values are stored in the temporary stacks and function arguments.
A JuvixTree expression is one of the following.

• A reference arg[n] to the 𝑛th function argument.
• A reference tmp[n] to the 𝑛th cell from the bottom in the temporary stack.
• A reference to a constructor field: r.ctr[k] where r is arg[n] or tmp[n],
and ctr is a constructor. This returns the 𝑘th constructor argument, as-
suming that the value at r is constructor data with tag ctr.

• A primitive operation, e.g., arithmetic operations on fields or integers. An
important primitive operation is the unary argsnum which returns the
number of arguments expected by a given closure (i.e., how many argu-
ments still need to be supplied before a function call). In other words,
argsnum(t) evaluates to 𝑛−𝑘 if t evaluates to C(𝑓 , 𝑣1, . . . , 𝑣𝑘) and 𝑛 is the
total number of arguments of 𝑓 .

• An integer, field element or boolean constant.
• Constructor data allocation: alloc[ctr](t1, ..., tn) where ctr is a
constructor tag and t1,…,tn are JuvixTree expressions.

• Closure allocation: calloc[f](t1, ..., tn).

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 17

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

• Closure extension: cextend(cl, t1, ..., tn). If cl evaluates to

C(𝑓 , 𝑣1, . . . , 𝑣𝑘)

and ti evaluates to 𝑣′𝑖 , and 𝑘 +𝑛 is smaller than the number of arguments
of 𝑓 , then the closure extension operation evaluates to

C(𝑓 , 𝑣1, . . . , 𝑣𝑘 , 𝑣′1, . . . , 𝑣′𝑛).

• Function call: call[f](t1, ..., tn). The number 𝑛 of arguments sup-
plied must be equal to the total number of arguments expected by f.

• Closure call: call(cl, t1, ..., tn). The number 𝑛 of arguments sup-
plied must be equal to the remaining number of arguments expected by
the closure cl.

• Dynamic closure call: ccall(cl, t1, ..., tn). This operation imple-
ments the dynamic dispatch loop:

1. it either calls or extends the closure cl depending on the number
of supplied arguments versus the number of expected arguments
fetched at runtime from the closure, and

2. if the number of expected arguments is smaller than the number
of supplied arguments, then the result of the call must be another
closure and the process is repeated until we run out of supplied
arguments.

• Save value on the temporary stack:

save(t) { expr }

This operation evaluates t to 𝑣 , pushes 𝑣 on top of the temporary stack,
evaluates expr to 𝑣′, pops the temporary stack, and returns 𝑣′.

• Branch on a boolean:

br(t) {

true: expr1

false: expr2

}

• Branch on a constructor tag, e.g.:

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 18

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

case[list](lst) {

nil: expr1

cons: expr2

}

Each branch can be wrapped in save { .. } to indicate that the value
matched on (e.g. lst above) should be saved (pushed) onto the temporary
stack before evaluating the branch (and popped afterwards). E.g.:

case[list](lst) {

nil: expr1

cons: save {

expr2

}

}

4.2.1. Translation from Stripped JuvixCore
The special form of the Stripped representation of JuvixCore(see Section 4.1.2)
lends itself well to a translation into JuvixTree. The JuvixTree operations are
more detailed and low-level than the constructions available in Stripped JuvixCore.
The gist of the translation is to choose the right JuvixTree operation for a given
JuvixCore expression, depending on the context.

• Variables are translated into:

– argument references (arg[n]) for variables representing function
arguments, i.e., bound by the top lambda-abstractions,

– temporary stack references (tmp[n]) for variables bound by let ex-
pressions,

– constructor field references (tmp[n].ctr[k]) for variables bound by
case expressions.

• Constants are translated into corresponding JuvixTree constants.
• Applications are translated into function calls, closure allocation, closure
call, dynamic closure call, or constructor data allocation.

• Let-expressions are translated into save operations.
• Case-expressions are translated into branches on booleans or on construc-
tor tags.

A more detailed explanations of some aspects of the translation follow.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 19

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

Applications. A JuvixCore application 𝑓 𝑡1 . . . 𝑡𝑛 is translated to one of the fol-
lowing, where ti is the translation of 𝑡𝑖 .

• call[f](t1, ..., tn) if 𝑓 is a function name and 𝑛 is the total number
of arguments of 𝑓 .

• calloc[f](t1, ..., tn) if 𝑓 is a function name and 𝑛 is smaller than the
total number of arguments of 𝑓 ,

• ccall(call[f](t1, ..., tk), tk+1, ..., tn) if 𝑓 is a function name
and 𝑛 > 𝑘 with 𝑘 the total number of arguments of 𝑓 ,

• ccall(r, t1, ..., tn) if 𝑓 is a variable and r is the corresponding ref-
erence in JuvixTree,

• alloc(f, t1, ..., tn) if 𝑓 is a constructor name.

Case-expressions. A JuvixCore case-expression matching on an expression of
type I, e.g.,

case a of {

c1 x y := b1;

c2 := b2;

}

is translated into

case[I](A) {

c1: save {

B1

}

c2: B2

}

where A, B1, B2 are translations of a, b1, b2 respectively, and 𝑥,𝑦 are translated
inside B1 into tmp[k].c1[0] and tmp[k].c1[1] respectively, where 𝑘 is the index
of the top of the temporary stack after the save for the B1 branch.

Example. The Fibonacci function translated to JuvixTree is:

function fib(integer) : integer {

call[fib'](0, 1, arg[0])

}

function fib'(integer, integer, integer) : integer {

br(eq(0, arg[2])) {

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 20

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

true: arg[0]

false: call[fib'](arg[1], add(arg[0], arg[1]), sub(arg[2], 1))

}

}

4.2.2. Compiling dynamic closure calls
After translating Stripped JuvixCore to JuvixTree, the next step is to remove dy-
namic closure calls. The ccall operation has a more complex semantics than
other JuvixTree operations. For a fixed constant number 𝑛 of supplied argu-
ments, it can be implemented as a function apply_n in JuvixTree without ccall.
As an example, below is a JuvixTree implementation of apply_3.

function apply_3(*, *, *, *) : * {

save(argsnum(arg[0])) {

br(eq(3, tmp[0])) {

true: call(arg[0], arg[1], arg[2], arg[3])

false: br(eq(2, tmp[0])) {

true: call[apply_1](call(arg[0], arg[1], arg[2]), arg[3])

false: br(eq(1, tmp[0])) {

true: call[apply_2](call(arg[0], arg[1]), arg[2], arg[3])

false: cextend(arg[0], arg[1], arg[2], arg[3])

}

}

}

}

}

The first argument of apply_n is the closure to be called or extended. The remain-
ing arguments are the arguments supplied to the dynamic closure call. First, we
compute the number of arguments 𝑘 expected by the closure (argsnum(arg[0])),
which we then compare against the number 𝑛 of supplied arguments.

• If 𝑘 = 𝑛 then we call the closure.
• If 𝑘 < 𝑛 then we compute

call[apply_{n-k}]

(

call(arg[0], arg[1], ..., arg[k]),

arg[k+1], ..., arg[n]

)

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 21

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

i.e., we call the closure with 𝑘 arguments, and then pass the result to
apply_{n-k} with the remaining 𝑛 − 𝑘 arguments.

• If 𝑘 > 𝑛 we extend the closure with the 𝑛 supplied arguments.

One can generate apply_n functions for arbitrary 𝑛 > 0. Then

ccall(cl, t1, ..., tn)

is translated to

call[apply_n](cl, t1, ..., tn)

In this way, we solve the problem of compiling partial application and overap-
plication in a curried functional programming language, without introducting
a general dynamic dispatch loop in the runtime. Surprisingly, it is difficult to
find a clear and accessible description of this simple technique in the functional
language compiler literature. This method for curried function application is es-
sentially a variant of “eval/apply” where the caller is responsible for arity match-
ing. An analogous technique is used in the native-code OCaml compiler. The
presentation [Ler05] gives a good explanation of curried function application
compilation, why “eval/apply” is desirable for native compilation, and how the
native-code OCaml compilation grew out of different abstract machines. See
also [MJ06] for a comparison of “eval/apply” with “push/enter” and evidence
supporting the use of “eval/apply” in compiled implementations.

4.3. JuvixAsm
JuvixAsm is a stack-based imperative assembly language well-suited as an IR for
a strongly typed purely functional language with eager evaluation. In contrast
to most assembly languages, JuvixAsm abstracts aways memory management.
It has only allocation instructions (for closures and constructor data) but no deal-
location, garbage-collection control or other memory management instructions.
JuvixAsm can be seen as an assembly representation of JuvixTree, with JuvixAsm
instructions more detailed and low-level versions of JuvixTree operations.

A JuvixAsm program (in a *.jva file) is a sequence of type and function defi-
nitions. The type declarations and function definition headings have the same
syntax as in JuvixTree – only function bodies are now semicolon-seprated lists
of JuvixAsm instructions instead of JuvixTree expressions.
In JuvixAsm, there is a global call stack of call frames. Every function invoca-

tion has a separate call frame containing the following.

• Argument area: stores function arguments. The 𝑛th argument is referred
to with arg[n] like in JuvixTree.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 22

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

• Termorary stack: stores temporary values, analogous to JuvixTree tempo-
rary stack. The 𝑛th temporary stack cell from the bottom is referred to
with tmp[n].

• Value stack: stores intermediate computation results. JuvixAsm instruc-
tions typically pop their arguments from the value stack and push the
result on the top.

In what follows, when referring to the stack we mean the value stack for the
current function invocation (call frame), unless otherwise stated.

The values stored in memory are the same as in JuvixTree: constructor data,
closures, integers, booleans and field elements. A JuvixAsm value reference is
one of:

• an integer, boolean or field element constant,
• arg[n] or tmp[n],
• arg[n].ctr[k] or tmp[n].ctr[k].

A JuvixAsm instruction is one of the following.

• push r pushes onto the stack the value referred to by the JuvixAsm refer-
ence r.

• pop pops the stack.
• A primitive operation instruction corresponds to a primitive operation in

JuvixTree. It pops its arguments from the stack, performs the operation
and pushes the result.

• alloc c allocates constructor data with tag 𝑐 and arguments popped from
the stack. The result is pushed on the stack.

• calloc f n allocates a closure for the function 𝑓 with 𝑛 supplied argu-
ments popped from the stack. The resulting closure is pushed on the stack.

• cextend n pops a closure from the stack and extends it with 𝑛 arguments
popped from the stack in order. The result is then pushed on the stack.

• call f calls the function 𝑓 with𝑛 arguments popped from the stack, where
𝑛 is the total number of arguments expected by 𝑓 . A new call frame for 𝑓
is pushed onto the global call stack and the arguments are transferred into
its argument aread. After the call finishes, the result is pushed on top of
the value stack.

• tcall f tail-calls the function 𝑓 . This is the same as call f, except that
instead of pushing a new call frame onto the global call stack, the current
call frame ie reused. The called function 𝑓 then returns to the caller of the
current function.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 23

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

• call $ n pops a closure from the stack and calls it with 𝑛 arguments
popped from the stack in order. The number of supplied arguments 𝑛
must match the number of arguments expected by the closure.

• tcall $ n tail-calls a closure on top of the stack with 𝑛 supplied argu-
ments.

• ret returns from the current function: pops the global call stack and re-
turns to the caller. The result of the call is taken from the top of the value
stack of the callee and pushed on top of the value stack of the caller.

• Branch on a boolean value on top of the stack. Pops the stack.

br {

true: {..};

false: {..};

}

• Branch on the tag of the constructor data on top of the stack. Does not
pop the stack.

case I {

c1: {..};

..

cn: {..};

}

where I is the inductive type name.
• Save the top of the value stack on the temporary stack.

save {..}

This instruction pushes the top of the value stack onto the temporary
stack, pops the value stack, executes the nested code, and pops the tem-
porary stack afterwards.

• Tail save: tsave {..}. This is the same as save except that it does not pop
the temporary stack after executing the nested code. Typically, the nested
code returns from the current function.

4.3.1. Translation from JuvixTree
JuvixTree operations are translated to corresponding JuvixAsm instructions us-
ing the value stack to store intermediate results. For example, the JuvixTree
expression

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 24

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

add(2, call[f](tmp[1].ctr[1], mul(arg[0], 3)))

is translated to a sequence of JuvixAsm instructions

push 3;

push arg[0];

mul;

push tmp[1].ctr[1];

call f;

push 2;

add;

Executing a sequence of JuvixAsm instructions corresponding to a JuvixTree
expression results in pushing the value of the expression on top of the value
stack.

In general, let T (𝑡) be a sequence of JuvixAsm instructions for the JuvixTree
expression 𝑡 . Then for a JuvixTree operation 𝑜 applied to JuvixTree expressions
𝑡1, . . . , 𝑡𝑛 we define:

T (𝑜 (𝑡1, . . . , 𝑡𝑛)) = T (𝑡𝑛) . . . T (𝑡1)T (𝑜)

i.e., we concatenate the lists of instructions generated for the arguments and
append the instruction T (𝑜) corresponding to the operation 𝑜 . When executed,
each T (𝑡𝑖) pushes the value 𝑣𝑖 of 𝑡𝑖 on the stack. Then T (𝑜) pops the arguments
𝑣1, . . . , 𝑣𝑛 from the stack, executes the corresponding operation, and pushes the
result 𝑜 (𝑣1, . . . , 𝑣𝑛) on top of the stack. This is a standard method for compiling
expressions into a stack machine [CT23, Section 4.4.1].

For each JuvixTree expression 𝑒 , the translation keeps track of whether 𝑒 is a
tail expression, i.e., if 𝑒 is returned as the result of the function without further
processing. For example, in

function fib'(integer, integer, integer) : integer {

br(eq(0, arg[2])) {

true: arg[0]

false: call[fib'](arg[1], add(arg[0], arg[1]), sub(arg[2], 1))

}

}

the br(..) {..} and its branches (the arg[0] after true: and the call[fib'](..))
are the only tail expressions.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 25

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

Tail calls and saves are translated into tcall and tsave instructions. In order
to return the value of a tail expression as a result of the function, the ret instruc-
tion is appended after non-tail non-branching JuvixAsm instructions generated
for JuvixTree tail expressions (i.e., except after br, case, tcall and tsave).

Example. The Fibonacci function translated to JuvixAsm follows.

function fib(integer) : integer {

push arg[0];

push 1;

push 0;

tcall fib';
}

function fib'(integer, integer, integer) : integer {

push arg[2];

push 0;

eq;

br {

true: {

push arg[0];

ret;

};

false: {

push 1;

push arg[2];

sub;

push arg[1];

push arg[0];

add;

push arg[1];

tcall fib';
};

};

}

4.4. JuvixReg
JuvixReg is a register-based imperative assembly language designed as an IR
for eager purely functional programming languages. JuvixReg can be seen as
a three-address code [CT23, Section 4.4.2],[ALSU07, Section 6.2] rendering of

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 26

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

JuvixAsm. Like JuvixAsm, it has no explicit memorymanagement. The JuvixReg
instructions correspond to JuvixAsm instructions.

A JuvixReg program (in a *.jvr file) is a sequence of type and function def-
initions. The syntax of type declarations and function headings is the same as
in JuvixAsm and JuvixTree, only function bodies are sequences of semicolon-
separated JuvixReg instructions.
Instead of the JuvixAsm value and temporary stacks, each JuvixReg func-

tion has a finite number of temporary variables (“registers”) which can be as-
signed multiple times. The 𝑛th temporary variable is referred to with tmp[n]. A
JuvixReg value reference r has the same syntax as a JuvixAsm value reference,
only now tmp[n] denotes a JuvixReg temporary variable instead of a JuvixAsm
temporary stack cell.

A JuvixReg instruction is one of the following.

• Assignment: tmp[n] = r.
• Primitive operation: tmp[n] = op r or tmp[n] = op r1 r2.
• Constructor data allocation: tmp[n] = alloc c (r1, .., rn).
• Closure allocation: tmp[n] = calloc f (r1, .., rn).
• Closure extension: tmp[n] = cextend r (r1, .., rn).
• Call: tmp[n] = call f (r1, .., rn) where f is a function name or a
closure value reference.

• Tail call: tcall f (r1, .., rn) where f is a function name or a closure
value reference.

• Return: ret r.
• Boolean branch: br r { true: {..}; false: {..}; }.
• Case: case r { c1: {..}; ..; cn: {..}; }.

The branching instructions br and case can optionally specify the output variable:

• br r, out: tmp[n] { true: {..}; false: {..}; },
• case r, out: tmp[n] { c1: {..}; ..; cn: {..}; }.

The output variable is a temporary variable which stores the result of the com-
putation in each branch. In case the output variable is specified, it is the only
variable assigned in the branches that can be read in subsequent instructions
after the branching instruction.

4.4.1. Translation from JuvixAsm
Since a single JuvixAsm function contains no loops, the height of the value stack
can be determined at compilation time for each instruction in the function body.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 27

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

We assume that different branches of br and case instructions are consistent in
their stack manipulations, i.e., they all decrease or increase the stack height by
the same amount. This assumption, however, is satisfied for any code generated
from JuvixTree expressions. In fact, for non-tail branching instructions the stack
height is increased by exactly one – the result of branch evaluation is pushed on
the stack.

The translation from JuvixAsm to JuvixReg simply assigns consecutive tem-
porary variables to JuvixAsm value stack cells. Since we know the current value
stack height at each instruction, we know which temporary variable to assign
when pushing the stack, and which ones to read when popping it. For example,
the JuvixAsm fib' function (see the end of the previous section) is translated
into:

function fib'(integer, integer, integer) : integer {

tmp[0] = arg[2];

tmp[1] = 0;

tmp[0] = eq tmp[1] tmp[0];

br tmp[0] {

true: {

tmp[0] = arg[0];

ret tmp[0];

};

false: {

tmp[0] = 1;

tmp[1] = arg[2];

tmp[0] = sub tmp[1] tmp[0];

tmp[1] = arg[1];

tmp[2] = arg[0];

tmp[1] = add tmp[2] tmp[1];

tmp[2] = arg[1];

tcall fib' (tmp[2], tmp[1], tmp[0]);

};

};

}

The variable tmp[n] corresponds to the 𝑛th value stack cell from the bottom.
Similarly, the height of the temporary stack in a JuvixAsm function can be

determined at compilation time. If the maximum temporary stack height is ℎ,
then JuvixReg temporary variables tmp[0] to tmp[h-1] are reserved for tempo-

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 28

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

rary stack cells. The variable tmp[h + n] is reserved for the 𝑛th value stack
cell.

Recall that each branch in a non-tail JuvixAsm br or case pushes the branch
computation result onto the value stack, increasing its height by exactly one.
Hence, the corresponding JuvixReg non-tail branching instruction can be unam-
biguously associated an output variable – the temporary variable corresponding
to the top of the stack at the end of each branch. For example, the following
JuvixAsm function

function foo(integer, integer) : integer {

push arg[0];

push arg[1];

eq;

br {

true: {

push 1;

push arg[1];

add;

};

false: { push 2; };

};

push arg[0];

add;

ret;

}

is translated to

function foo(integer, integer) : integer {

tmp[0] = arg[0];

tmp[1] = arg[1];

tmp[0] = eq tmp[1] tmp[0];

br tmp[0], out: tmp[0] {

true: {

tmp[0] = 1;

tmp[1] = arg[1];

tmp[0] = add tmp[1] tmp[0];

};

false: {

tmp[0] = 2;

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 29

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

};

};

tmp[1] = arg[0];

tmp[0] = add tmp[1] tmp[0];

ret tmp[0];

}

4.4.2. Transformation into Static Single-Assignment form
The idea of compiling JuvixReg to CASM is to use a fixed memory location rela-
tive to the Cairo frame pointer ([fp + 𝑘]) for each JuvixReg temporary variable.
Since CASM memory is read-only, we cannot have more than one “assignment”
to the same memory location. To ensure that, we first transform JuvixReg into
Static Single-Assignment form (SSA) [CT23, Section 9.3],[App98] where each
variable is assigned only once. For example, the result of translating the fib'
function into SSA is:

function fib'(integer, integer, integer) : integer {

tmp[0] = arg[2];

tmp[1] = 0;

tmp[2] = eq tmp[1] tmp[0];

br tmp[2] {

true: {

tmp[3] = arg[0];

ret tmp[3];

};

false: {

tmp[3] = 1;

tmp[4] = arg[2];

tmp[5] = sub tmp[4] tmp[3];

tmp[6] = arg[1];

tmp[7] = arg[0];

tmp[8] = add tmp[7] tmp[6];

tmp[9] = arg[1];

tcall fib' (tmp[9], tmp[8], tmp[5]);

};

};

}

In contrast to standard SSA, we allow the same variable to be assigned in differ-
ent branches of a branching instruction. The assigned variables are required to

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 30

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

be unique only within a single execution path.
Since we compute SSA for each function separately and JuvixReg functions

do not contain loops, a naive SSA computation algorithm is sufficient. Instead
of using the 𝜙-functions [CT23, Section 9.3], when necessary we insert extra
assignments to ensure that each branch in a branching instruction has the same
output variable. For example, here is the foo function from above in SSA:

function foo(integer, integer) : integer {

tmp[0] = arg[0];

tmp[1] = arg[1];

tmp[2] = eq tmp[1] tmp[0];

br tmp[2], out: tmp[6] {

true: {

tmp[3] = 1;

tmp[4] = arg[1];

tmp[5] = add tmp[4] tmp[3];

tmp[6] = tmp[5];

};

false: {

tmp[3] = 2;

tmp[6] = tmp[3];

};

};

tmp[7] = arg[0];

tmp[8] = add tmp[7] tmp[6];

ret tmp[8];

}

The assignments to tmp[6]were inserted to “unify” the output variables for both
branches.

4.4.3. Optimization
The translation from JuvixAsm to JuvixReg generates many unnecessary assign-
ments. An assignment is generated for any stack push, including for constants
and references to function arguments or temporary stack cells. The spurious
assignments are removed by the following two optimizations.

1. Constant and copy propagation. Assignments of constants (tmp[n] = c)
and variable references (tmp[n] = tmp[k] and tmp[n] = arg[k]) are prop-
agated to subsequent instructions, i.e., all succeeding occurrences of tmp[n]

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 31

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

are replaced with the right-hand side of the assignment. Arithmetic op-
erations with known constant arguments are evaluated and propagated
further. Branching on known constant values is simplified.

2. Dead assignment elimination. Assignments to dead variables are removed.
A variable is dead if it is not read in any subsequent instructions.

Below is the result of running copy and constant propagation on the fib'
function, followed by dead assignment elimination. We renumber the tempo-
rary variables left after removing dead assignments.

function fib'(integer, integer, integer) : integer {

tmp[0] = eq 0 arg[2];

br tmp[0] {

true: {

ret arg[0];

};

false: {

tmp[1] = sub arg[2] 1;

tmp[2] = add arg[0] arg[1];

tcall fib' (arg[1], tmp[2], tmp[1]);

};

};

}

The optimized version of the foo function is:

function foo(integer, integer) : integer {

tmp[0] = eq arg[1] arg[0];

br tmp[0], out: tmp[1] {

true: {

tmp[1] = add arg[1] 1;

};

false: {

tmp[1] = 2;

};

};

tmp[2] = add arg[0] tmp[1];

ret tmp[2];

}

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 32

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

4.4.4. Handling continuous memory
A major issue in the translation of JuvixReg to CASM is the requirement that
Cairomemory accesses have to be continuous. Recall from Section 3.2 that mem-
ory accesses are continuous if they occur in order of increasing addresses with
no gaps. The continuity requirement makes it impossible to use a simple stan-
dard method for compiling local variables: reserve space for 𝑘 variables at func-
tion entry by increasing ap by 𝑘 and translate tmp[n] to [fp + 𝑛]. There is no
guarantee that the variables are accessed in an increasing order.

In general, it may be impossible to reorder the variables in such a way that
memory accesses become continuous. The problem is that in, e.g., a call instruc-
tion an undetermined amount of memory can be accessed, with the next access
address increasing by an offset that cannot be determined at compilation time.
However, it is not difficult to assign continuous memory addresses to variables
within a single basic block [ALSU07, Section 8.4] – a maximal sequence of con-
secutive instructions with no jumps or unbounded dynamic allocation.

This suggests the following approach to translating local temporary variables.
We divide the JuvixReg instruction sequence for a function body into basic blocks.
In this context, a basic block is a sequence of instructions ending with one of:
cextend, call, tcall, ret, br, case. A basic block contains only one of these
instructions at the end – the final instruction. The branches of br and case con-
stitute separate basic blocks.

The basic blocks form the nodes of the control-flow graph (CFG) with edges
denoting transitions to other basic blocks. The edges are labeled to indicate
whether the transition occurs after executing the final instruction or in a branch
of the final instruction. Below we present the CFG for the foo function. The
basic blocks are denoted by block B {..}. The transition edges are denoted by
goto.

block B1 {

tmp[0] = eq arg[1] arg[0];

br tmp[0], out: tmp[1] {

true: {

goto B2;

};

false: {

goto B3;

};

};

}

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 33

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

block B2 {

tmp[1] = add arg[1] 1;

goto B4;

}

block B3 {

tmp[1] = 2;

goto B4;

}

block B4 {

tmp[2] = add arg[0] tmp[1];

ret tmp[2];

}

The next step is to compute the set of variables live [ALSU07, Section 8.4.2]
at the beginning of each basic block, i.e., variables that are used subsequently in
the function (including other basic blocks) without being reassigned first. The
variables live at the start of the blocks of foo are as follows:

• B1: arg[0], arg[1],
• B2: arg[0], arg[1],
• B3: arg[0],
• B4: arg[0], tmp[1].

As another example, the basic blocks for the fib' function are presented below,
with the live variables indicated.

block B1, live: (arg[0], arg[1], arg[2]) {

tmp[0] = eq 0 arg[2];

br tmp[0] {

true: { goto B2; };

false: { goto B3; };

};

}

block B2, live: (arg[0]) {

ret arg[0];

}

block B3, live: (arg[0], arg[1], arg[2]) {

tmp[1] = sub arg[2] 1;

tmp[2] = add arg[0] arg[1];

tcall fib' (arg[1], tmp[2], tmp[1]);

}

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 34

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

Within a single basic block, we know at each instruction how many variables
have been assigned before and can thus uniquely associate an offset 𝑘 to the
𝑘th assigned variable. References to the variable are then translated to [fp + 𝑘].
Transitions to other basic blocks are compiled to calls transferring live variables
as arguments. The translation of JuvixReg into CASM is described inmore detail
in the next section.

4.5. CASM
We translate each JuvixReg basic block to CASM separately. Within a single
basic block, at each instruction we know howmany variables have already been
assigned. More generally, we know the ap-offset – by how much ap increased
since the beginning of the basic block. If the instruction assigns its result to
tmp[n] and the current ap-offset is 𝑘 , we generate an appropriate CASM equality
assertion [ap] = 𝑅; ap++ and associate tmp[n] with [fp + 𝑘], i.e., we set the fp-
offset of tmp[n] to 𝑘 . Recall that at function entry fp = ap, so [fp + 𝑘] refers
to the memory cell “assigned” in the generated equality assertion. Because the
JuvixReg code is in SSA, we will associate an fp-offset to a given variable only
once. A transition into another basic block 𝐵 at the final instruction is translated
into a call of the block 𝐵, with the variables live at the start of 𝐵 transferred as
arguments. The call instruction sets fp = ap, which essentially “resets” the
ap- and fp-offsets back to 0, enabling their static calculation in the next basic
block 𝐵.

Hence, each basic block is effectively treated as a separate function. The basic
blocks for the branches of branching instructions are an exception. For these
blocks a simple jump suffices because when entering the branch we still know
the ap-offset. In general, we do not know the ap-offset after executing a branch,
because ap might change differently in different branches.

We use the calling convention from Section 3.1 with one modification. Re-
call that at function entry the 𝑛 function arguments are available in [fp − 3],
…, [fp − 2 − 𝑛]. One extra 𝑛 + 1-th argument is automatically passed to each
function: the builtins pointer. This argument is then available in [fp − 3 − 𝑛].
Recall from Section 3.3 that each Cairo builtin has a designated memory address
used for communication with the builtin. The builtins pointer points to a struc-
ture consisting of the memory addresses associated with the supported builtins.
These addresses change when using the builtins. The new builtins pointer is
returned by each function in [ap− 2]. Recall that the function result is returned
in [ap − 1].
In our internal representation of CASM, we use extra arithmetic and field op-

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 35

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

erations which are later translated to appropriate equality assertion instructions
in the Cairo bytecode. The idea is to indicate which side of an equality assertion
is the destination that is “assigned” by the instruction, which allows for con-
ventional execution of generated CASM code. For example, we have an extra
integer subtraction instruction isub. Then, e.g.,

[ap] = [ap - 1] isub [ap - 2]; ap++

is compiled as

[ap - 1] = [ap] + [ap - 2]; ap++

By using isub we indicate that [ap] is the destination of the “assignment”. Cur-
rently, no bound checks are generated for integer arithmetic, but thismay change
in the future.

Below is annotated CASM code generated for the foo function.

foo:

-- block B1

-- tmp[0] = eq arg[1] arg[0]

-- true is zero, false is non-zero

[ap] = [fp - 4] - [fp - 3]; ap++

-- [fp] is tmp[0]

jmp label_11 if [fp] != 0

-- block B2

-- tmp[1] = add arg[1] 1

[ap] = [fp - 4] iadd 1; ap++

-- [fp + 1] is tmp[1]

-- goto B4

-- [fp - 5] is builtins pointer, passed as the last argument

[ap] = [fp - 5]; ap++

[ap] = [fp - 3]; ap++

[ap] = [fp + 1]; ap++

call rel 3

ret

jmp label_12

-- block B3

label_11:

-- tmp[1] = 2

[ap] = 2; ap++

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 36

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

-- [fp + 1] is tmp[1]

-- goto B4

[ap] = [fp - 5]; ap++

[ap] = [fp - 3]; ap++

[ap] = [fp + 1]; ap++

call rel 3

ret

-- block B4

label_12:

-- tmp[2] = add arg[0] tmp[1]

[ap] = [fp - 4] iadd [fp - 3]; ap++

-- [fp] is tmp[2]

-- return the builtins pointer

[ap] = [fp - 5]; ap++

-- return the result: tmp[2]

[ap] = [fp]; ap++

ret

Notice that program control transitions to blocks B2 and B3 directly or via simple
jumps, because these blocks correspond to the branches in br. The transitions
to block B4 are via a relative call. The instructions

call rel 3

ret

first call the code beginning after the ret. When that code returns, the current
function executes the ret and returns with the same result. The relative offset 3
indicates the number of memory cells (not instructions) to jump forward for the
call. The call 3 instruction occupies two memory cells in the Cairo bytecode,
ret occupies one.

As another example, here is the fib' function in CASM.

fib':
-- block B1

-- [fp - 5] is arg[2]

jmp label_12 if [fp - 5] != 0

-- block B2

-- [fp - 6] is the builtins pointer

[ap] = [fp - 6]; ap++

[ap] = [fp - 3]; ap++

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 37

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

ret

label_12:

-- block B3

-- tmp[1] = sub arg[2] 1

[ap] = [fp - 5] isub 1; ap++

-- [fp] is tmp[1]

-- tmp[2] = add arg[0] arg[1]

[ap] = [fp - 3] iadd [fp - 4]; ap++

-- [fp + 1] is tmp[2]

-- [fp - 6] is the builtins pointer

[ap] = [fp - 6]; ap++

[ap] = [fp]; ap++

[ap] = [fp + 1]; ap++

[ap] = [fp - 4]; ap++

call fib'
ret

Note that both basic blocks B2 and B3 are transitioned to without a call. Both
blocks correspond to branches. The tail call to fib' in the second branch is
compiled to call followed by ret. In CASM, there is no way to replace the
current frame, so tail calls must create new frames.

Below we discuss several more detailed issues related to the translation from
JuvixReg to CASM.

Constructors. Memory layout for non-record constructor data is one memory
cell for the constructor id (CID) followed by constructor argument representa-
tions (each a pointer or a field element taking up one memory cell). The CID is
equal to 2𝑖+1where 𝑖 is the 0-based index of the constructor within its inductive
type. Such an encoding enables simpler compilation of case switches (see next
paragraph). For record constructors, the CID is omitted.

The memory for constructor data is allocated at [ap] with ap increased after-
wards appropriately. Since the size of the constructor (its number of arguments
and if it’s a record constructor) is a constant known at compilation time, the
new ap-offset can be computed and no transition to a new basic block is neces-
sary. Unfortunately, in CASM it is not possible to access the value of ap directly,
which we need in order to store a pointer to allocated data. The following func-
tion juvix_get_regs, recommended in [GPR21, Section 8.4], allows to obtain
the value of ap.

juvix_get_regs:

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 38

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

call juvix_get_ap_reg

ret

juvix_get_ap_reg:

ret

After calling juvix_get_regswe have [ap−2] = ap−2. The JuvixReg allocation
instruction

r = alloc c (r1, .., rn)

is compiled to

call juvix_get_regs

-- set the CID

[ap] = CID; ap++

-- set the arguments

[ap] = R1; ap++

...

[ap] = Rn; ap++

-- store the pointer to allocated constructor data

[ap] = [ap - n - 3] + 2; ap++

Another possiblitywould be to use Cairo allocation hints, but this would actually
result in more extra memory being used up for constructor data with more than
3 arguments.

Case switches. The JuvixReg case instruction is compiled to a relative jump
into a jump table for case branches. In this way, any case switch can be executed
in two jumps, regardless of the number of branches. More concretely,

case r {

c1: goto B1

...

cn: goto Bn

}

is compiled to

jmp rel [R]

jmp B1

...

jmp Bn

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 39

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

B1: ...

...

Bn: ...

The reference [𝑅] fetches the CID of the constructor data. We use the CID as
the relative offset to jump into the jump table for case branches. The form of
the CID discussed in the previous paragraph (2𝑖 + 1 for constructor number 𝑖)
guarantees that we jump to the 𝑖th jump instruction.

Closures. Memory layout for closures is:

• function id (FUID),
• 9 − 𝑠 where 𝑠 is the number of arguments stored in the closure,
• 9 − 𝑘 where 𝑘 is the number of arguments still expected by the function,
• 𝑠 memory cells for the stored arguments.

The total number of arguments for the function is equal to 𝑠 +𝑘 . The maximum
number of arguments a function can have is 8. We store 9−𝑠 and 9−𝑘 instead of
𝑠 and 𝑘 to make it easier to implement closure calls and extensions. The FUID
is an offset into a global call table used by the function juvix_call_closure

implementing closure calls. Closure extension is implemented by the function
juvix_extend_closure. The CASM code for these functions can be found in
Appendix C.

Peephole optimization. Basic peephole optimization [ALSU07, Section 8.7] is
run on the generated CASM code, which replaces certain instruction sequences
with equivalent more efficient ones. For example, the sequence

call rel 3

ret

jmp L

is replaced with

call L

ret

The sequence

jmp L

L:

is replaced with

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 40

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

L:

The sequence

call rel 3

ret

[ap] = [fp - 4]; ap++

[ap] = [fp - 3]; ap++

ret

is replaced with

ret

And so on.

4.6. Cairo bytecode
Cairo bytecode [GPR21, Section 4.4] is a binary representation of Cairo assem-
bly. Each CASM instruction takes up one or two Cairo memory words (field
elements). Generally, the second word is needed when the instruction uses a
non-offset immediate constant, e.g., in [ap] = [ap − 1] + 3; ap++ (the constant 3)
or in call L (the label constant L).
Our internal representation of CASM is translated directly to Cairo bytecode.

The extra instructions not present in actual CASM are first compiled to appro-
priate CASM instructions. Suitable initialization and finalization Cairo bytecode
is added. The result is saved in a *.json file that can be read and executed by
a special Juvix wrapper for the Rust Cairo VM [Lam24] (see Appendix A). The
format of the generated file is compatible with the standard Cairo VM, but some
of the hints used are implemented only in the Juvix Cairo VM wrapper.

5. Conclusion
This report describes the backbone of the Juvix backend compilation pipeline
and the specific issues related to the generation of Cairo assembly. The read-
only memory model of Cairo fits well with the purely functional nature of Juvix.
The allocated constructor data is never modified. Neither are the closures –
closure extension allocates a new closure. The only destructive assigments are
made to local temporary variables in JuvixReg. By converting the code to SSA,
we can make each variable be assigned only once, which then translates more
easily to Cairo memory manipulation.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 41

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

A major difficulty is caused by the requirement for continuous memory ac-
cess in Cairo. To accommodate it, we divide JuvixReg code into basic blocks
and associate a fixed fp-offset to each temporary variable assigned in the block.
A transition to the next block, when the next fp-offset can no longer be stat-
ically determined, is done via a relative call with live variables transferred as
arguments. The call “resets” the next fp-offset back to 0.

The earlier parts of the pipeline progressively compile down the high-level
functional features of Juvix:

• pattern matching compilation in JuvixCore breaks down complex pattern
matches into one-level case-expressions,

• lambda-lifting on JuvixCore removes anonymous and local functions,
• type erasure in JuvixCore removes runtime type information overhead
from polymorphic functions,

• application translation selects the right JuvixTree operation for each JuvixCore
application (direct call, static or dynamic closure call, closure allocation
or extension, constructor data allocation),

• dynamic closure call compilation in JuvixTree generates efficient code for
call sites with possible partial application or overapplication,

• translation to JuvixAsm linearizes JuvixTree expressions into sequences of
stack-based instructions and introduces the distinction between tail and
non-tail instructions,

• translation to JuvixReg generates three-address code amenable to further
transformation and analysis with classical compiler theory techniques.

All these transformations are inspired by or directly implement establishedmeth-
ods from the (functional) compiler construction literature.

Acknowledgements
The author thanks the entire Juvix team, including Jonathan Prieto-Cubides, Jan
Mas Rovira and Paul Cadman. The overall design and most of the implementa-
tion of the parts of the Juvix backend pipeline detailed in this report were done
by the author. However, the input from the rest of the Juvix team helped to
refine and debug the Cairo backend pipeline, especially the components related
to JuvixCore. Jan Mas Rovira implemented eta-expansion and lambda-lifting,
which turned out to be more tricky than anticipated.

The author also thanks Xuyang Song and Carlo Modica for feedback on the
Cairo VM from a cryptographer’s perspective and for clarifications on Cairo
features needed for shielded Anoma applications.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 42

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

References
ALSU07. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 2nd edition, 2007. (cit. on pp. 26, 33, 34,
and 40.)

App98. AndrewW. Appel. SSA is functional programming. ACM SIGPLAN Notices, 33(4):17–
20, 1998. (cit. on p. 30.)

BG23. Jeremy Bruestle and Paul Gafni. RISC Zero zkVM: scalable, transparent arguments
of RISC-V integrity. Draft, 2023. (cit. on p. 3.)

CT23. Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan Kaufmann, 3rd
edition, 2023. (cit. on pp. 25, 26, 30, and 31.)

Cza23. Lukasz Czajka. The Core language of Juvix. Anoma Research Topics, Aug 2023. URL:
https://doi.org/10.5281/zenodo.8268849, doi:10.5281/zenodo.8268850. (cit. on pp. 3
and 12.)

DS04. Olivier Danvy and Ulrik Schultz. Lambda-lifting in quadratic time. J. Funct. Log.
Program., 2004. (cit. on p. 14.)

GPR21. Lior Goldberg, Shahar Papini, andMichael Riabzev. Cairo - a Turing-complete STARK-
friendly CPU architecture. IACR Cryptol. ePrint Arch., 2021. URL: https://eprint.iacr.
org/2021/1063. (cit. on pp. 2, 4, 9, 38, and 41.)

GYB23. Christopher Goes, Awa Sun Yin, and Adrian Brink. Anoma: a unified architecture
for full-stack decentralised applications. Anoma Research Topics, Aug 2023. URL:
https://doi.org/10.5281/zenodo.8279841, doi:10.5281/zenodo.8279842. (cit. on p. 2.)

Hel24. Heliax AG. Juvix Compiler, 2024. URL: https://github.com/anoma/juvix/. (cit. on
p. 2.)

JL92. Simon Peyton Jones and David Lester. Implementing functional languages: a tutorial.
Prentice Hall, 1992. (cit. on p. 14.)

Jon87. Simon Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987. (cit. on p. 14.)

Lam24. LambdaClass. Cairo VM in Rust, 2024. URL: https://github.com/lambdaclass/
cairo-vm. (cit. on pp. 9 and 41.)

Ler05. Xavier Leroy. From Krivine’s machine to the Caml implementations. Invited talk
at the KAZAMworkshop, 2005. URL: https://xavierleroy.org/talks/zam-kazam05.pdf.
(cit. on p. 22.)

Mar08. Luc Maranget. Compiling pattern matching to good decision trees. In Proceedings of
the ACM Workshop on ML, pages 35–46, 2008. (cit. on p. 14.)

MJ06. Simon Marlow and Simon L. Peyton Jones. Making a fast curry: push/enter vs.
eval/apply for higher-order languages. J. Funct. Program., 16(4-5):415–449, 2006. (cit.
on p. 22.)

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 43

https://doi.org/10.5281/zenodo.8268849
https://doi.org/10.5281/zenodo.8268850
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2021/1063
https://doi.org/10.5281/zenodo.8279841
https://doi.org/10.5281/zenodo.8279842
https://github.com/anoma/juvix/
https://github.com/lambdaclass/cairo-vm
https://github.com/lambdaclass/cairo-vm
https://xavierleroy.org/talks/zam-kazam05.pdf
https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

A. Juvix CLI
In Juvix version 0.6.*, to compile a Juvix program to Cairo bytecode type

juvix compile cairo Program.juvix

This produces a Program.json file. To execute it, you need the Juvix wrapper
for the Cairo VM available at https://github.com/anoma/juvix-cairo-vm.

It is also possible to compile Juvix to Cairo Assembly (CASM), or in fact to
any of the IRs mentioned in Section 4. Type:

juvix dev compile casm Program.juvix

This creates a file Program.casm. You can edit this file, and execute it in the Juvix
CASM interpreter with:

juvix dev casm run Program.casm

CASM program examples appearing in this document can all be run in the Juvix
CASM interpreter.

To see all commands related to CASM, type:

juvix dev casm --help

To see all available IR targets for the dev compile command, type:

juvix dev compile --help

Similarly to CASM, there is an interpreter or evaluator for each IR. To see com-
mands related to an IR xxx (core, tree, asm, reg) type:

juvix dev xxx --help

B. Example program in different IRs
This appendix presents the respresentations of the partition function in all of
the IRs described in the report. The partition function partitions a list into
two lists: one containing the elements satisfying a given predicate f, the other
containing the elements not satisfying f.

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 44

https://github.com/anoma/juvix-cairo-vm
https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

B.1. Juvix
type Pair A B := pair : A -> B -> Pair A B;

type List A :=

| nil : List A

| cons : A -> List A -> List A;

partition {A} (f : A → Bool) : List A → Pair (List A) (List A)

| nil := pair nil nil

| (cons x xs) :=

case partition f xs of

pair l1 l2 :=

if

| f x := pair (cons x l1) l2

| else := pair l1 (cons x l2);

B.2. JuvixCore
type Pair {

pair : Pi A : Type, Pi B : Type, A -> B -> Pair A B;

};

type List {

nil : Pi A : Type, List A;

cons : Pi A : Type, A -> List A -> List A;

};

def partition

: Pi A : Type, (A -> Bool) -> List A -> Pair (List A) (List A) :=

\(A : Type) \(f : A -> Bool) \(_X : List A)

case _X of {

cons (_X' : Type) (x : A) (xs : List A) :=

case partition A f xs of {

pair _ _ (l1 : List A) (l2 : List A) :=

if f x then

pair (List A) (List A) (cons A x l1) l2

else

pair (List A) (List A) l1 (cons A x l2)

};

nil _ := pair (List A) (List A) (nil A) (nil A)

};

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 45

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

B.3. Stripped JuvixCore
type Pair {

pair : Any -> Any -> Pair Any Any;

};

type List {

nil : List Any;

cons : Any -> List Any -> List Any;

};

def partition

: (Any -> Bool) -> List Any -> Pair (List Any) (List Any) :=

\(f : Any → Bool) \(_X : List Any)

case _X of {

cons x (xs : List Any) :=

case partition f xs of {

pair (l1 : List Any) (l2 : List Any) :=

if f x then

pair (cons x l1) l2

else

pair l1 (cons x l2)

};

nil := pair nil nil

};

B.4. JuvixTree
type Pair {

pair : (*, *) -> Pair;

}

type List {

nil : List;

cons : (*, List) -> List;

}

function partition(* -> bool, List) : Pair {

case[List](arg[1]) {

cons: save {

case[Pair](call[partition](arg[0], tmp[0].cons[1])) {

pair: save {

br(ccall(arg[0], tmp[0].cons[0])) {

true:

alloc[pair](

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 46

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

alloc[cons](tmp[0].cons[0], tmp[1].pair[0]),

tmp[1].pair[1]

)

false:

alloc[pair](

tmp[1].pair[0],

alloc[cons](tmp[0].cons[0], tmp[1].pair[1])

)

}

}

}

}

nil: alloc[pair](alloc[nil](), alloc[nil]())

}

}

B.5. JuvixAsm
function partition(* -> bool, List) : Pair {

push arg[1];

case List {

cons: {

tsave {

push tmp[0].cons[1];

push arg[0];

call partition;

case Pair {

pair: {

tsave {

push tmp[0].cons[0];

push arg[0];

call apply_1;

br {

true: {

push tmp[1].pair[1];

push tmp[1].pair[0];

push tmp[0].cons[0];

alloc cons;

alloc pair;

ret;

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 47

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

};

false: {

push tmp[1].pair[1];

push tmp[0].cons[0];

alloc cons;

push tmp[1].pair[0];

alloc pair;

ret;

};

};

};

};

};

};

};

nil: {

pop;

alloc nil;

alloc nil;

alloc pair;

ret;

};

};

}

B.6. JuvixReg
function partition(* -> bool, List) : Pair {

tmp[2] = arg[1];

case[List] tmp[2] {

cons: {

tmp[0] = tmp[2];

tmp[2] = tmp[0].cons[1];

tmp[3] = arg[0];

tmp[2] = call partition (tmp[3], tmp[2]);

tmp[1] = tmp[2];

tmp[2] = tmp[0].cons[0];

tmp[3] = arg[0];

tmp[2] = call apply_1 (tmp[3], tmp[2]);

br tmp[2] {

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 48

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

true: {

tmp[2] = tmp[1].pair[1];

tmp[3] = tmp[1].pair[0];

tmp[4] = tmp[0].cons[0];

tmp[3] = alloc cons (tmp[4], tmp[3]);

tmp[2] = alloc pair (tmp[3], tmp[2]);

ret tmp[2];

};

false: {

tmp[2] = tmp[1].pair[1];

tmp[3] = tmp[0].cons[0];

tmp[2] = alloc cons (tmp[3], tmp[2]);

tmp[3] = tmp[1].pair[0];

tmp[2] = alloc pair (tmp[3], tmp[2]);

ret tmp[2];

};

};

};

nil: {

tmp[2] = alloc nil ();

tmp[3] = alloc nil ();

tmp[2] = alloc pair (tmp[3], tmp[2]);

ret tmp[2];

};

};

}

B.7. JuvixReg in SSA
function partition(* → bool, List) : Pair {

tmp[0] = arg[1];

case[List] tmp[0] {

cons: {

tmp[1] = tmp[0];

tmp[2] = tmp[1].cons[1];

tmp[3] = arg[0];

tmp[4] = call partition (tmp[3], tmp[2]);

tmp[5] = tmp[4];

tmp[6] = tmp[1].cons[0];

tmp[7] = arg[0];

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 49

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

tmp[8] = call apply_1 (tmp[7], tmp[6]);

br tmp[8] {

true: {

tmp[9] = tmp[5].pair[1];

tmp[10] = tmp[5].pair[0];

tmp[11] = tmp[1].cons[0];

tmp[12] = alloc cons (tmp[11], tmp[10]);

tmp[13] = alloc pair (tmp[12], tmp[9]);

ret tmp[13];

};

false: {

tmp[9] = tmp[5].pair[1];

tmp[10] = tmp[1].cons[0];

tmp[11] = alloc cons (tmp[10], tmp[9]);

tmp[12] = tmp[5].pair[0];

tmp[13] = alloc pair (tmp[12], tmp[11]);

ret tmp[13];

};

};

};

nil: {

tmp[1] = alloc nil ();

tmp[2] = alloc nil ();

tmp[3] = alloc pair (tmp[2], tmp[1]);

ret tmp[3];

};

};

}

B.8. Optimized JuvixReg
function partition(* → bool, List) : Pair {

case[List] arg[1] {

cons: {

tmp[0] = arg[1].cons[1];

tmp[1] = call partition (arg[0], tmp[0]);

tmp[2] = arg[1].cons[0];

tmp[3] = call apply_1 (arg[0], tmp[2]);

br tmp[3] {

true: {

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 50

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

tmp[4] = tmp[1].pair[1];

tmp[5] = tmp[1].pair[0];

tmp[6] = arg[1].cons[0];

tmp[7] = alloc cons (tmp[6], tmp[5]);

tmp[8] = alloc pair (tmp[7], tmp[4]);

ret tmp[8];

};

false: {

tmp[4] = tmp[1].pair[1];

tmp[5] = arg[1].cons[0];

tmp[6] = alloc cons (tmp[5], tmp[4]);

tmp[7] = tmp[1].pair[0];

tmp[8] = alloc pair (tmp[7], tmp[6]);

ret tmp[8];

};

};

};

nil: {

tmp[0] = alloc nil ();

tmp[1] = alloc nil ();

tmp[2] = alloc pair (tmp[1], tmp[0]);

ret tmp[2];

};

};

}

B.9. JuvixReg basic blocks
block A, live: (arg[0], arg[1]) {

case[List] arg[1] {

cons: { goto B; };

nil: { goto C; };

};

}

block B, live: (arg[0], arg[1]) {

tmp[0] = arg[1].cons[1];

tmp[1] = call partition (arg[0], tmp[0]);

goto B1;

}

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 51

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

block B1, live: (arg[0], arg[1], tmp[1]) {

tmp[2] = arg[1].cons[0];

tmp[3] = call apply_1 (arg[0], tmp[2]);

goto B2;

}

block B2, live: (tmp[3], tmp[1], arg[1]) {

br tmp[3] {

true: { goto B3; };

false: { goto B4; };

};

}

block B3, live: (tmp[1], arg[1]) {

tmp[4] = tmp[1].pair[1];

tmp[5] = tmp[1].pair[0];

tmp[6] = arg[1].cons[0];

tmp[7] = alloc cons (tmp[6], tmp[5]);

tmp[8] = alloc pair (tmp[7], tmp[4]);

ret tmp[8];

}

block B4, live: (tmp[1], arg[1]) {

tmp[4] = tmp[1].pair[1];

tmp[5] = arg[1].cons[0];

tmp[6] = alloc cons (tmp[5], tmp[4]);

tmp[7] = tmp[1].pair[0];

tmp[8] = alloc pair (tmp[7], tmp[6]);

ret tmp[8];

}

block C, live: () {

tmp[0] = alloc nil ();

tmp[1] = alloc nil ();

tmp[2] = alloc pair (tmp[1], tmp[0]);

ret tmp[2];

}

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 52

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

B.10. CASM
partition:

jmp rel [[fp - 4]]

jmp label_17

jmp label_18

label_17:

-- block C

call juvix_get_regs

[ap] = [ap - 2] + 3; ap++

[ap] = 1; ap++

call juvix_get_regs

[ap] = [ap - 2] + 3; ap++

[ap] = 1; ap++

call juvix_get_regs

[ap] = [ap - 2] + 3; ap++

[ap] = [fp + 10]; ap++

[ap] = [fp + 4]; ap++

[ap] = [fp - 5]; ap++

[ap] = [fp + 16]; ap++

ret

label_18:

-- block B

[ap] = [[fp - 4] + 2]; ap++

[ap] = [fp - 5]; ap++

[ap] = [fp]; ap++

[ap] = [fp - 3]; ap++

call partition

[ap] = [fp - 3]; ap++

[ap] = [fp - 4]; ap++

call rel 3

ret

-- block B1

[ap] = [[fp - 3] + 1]; ap++

[ap] = [fp - 6]; ap++

[ap] = [fp]; ap++

[ap] = [fp - 4]; ap++

call apply_1

[ap] = [fp - 3]; ap++

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 53

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

[ap] = [fp - 5]; ap++

call rel 3

ret

-- block B2

jmp label_20 if [fp - 5] != 0

-- block B3

[ap] = [[fp - 3] + 1]; ap++

[ap] = [[fp - 3]]; ap++

[ap] = [[fp - 4] + 1]; ap++

call juvix_get_regs

[ap] = [ap - 2] + 3; ap++

[ap] = 3; ap++

[ap] = [fp + 2]; ap++

[ap] = [fp + 1]; ap++

call juvix_get_regs

[ap] = [ap - 2] + 3; ap++

[ap] = [fp + 7]; ap++

[ap] = [fp]; ap++

[ap] = [fp - 6]; ap++

[ap] = [fp + 15]; ap++

ret

label_20:

-- block B4

[ap] = [[fp - 3] + 1]; ap++

[ap] = [[fp - 4] + 1]; ap++

call juvix_get_regs

[ap] = [ap - 2] + 3; ap++

[ap] = 3; ap++

[ap] = [fp + 1]; ap++

[ap] = [fp]; ap++

[ap] = [[fp - 3]]; ap++

call juvix_get_regs

[ap] = [ap - 2] + 3; ap++

[ap] = [fp + 10]; ap++

[ap] = [fp + 6]; ap++

[ap] = [fp - 6]; ap++

[ap] = [fp + 15]; ap++

ret

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 54

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

C. CASM runtime
In this section, we list the CASM code of the Juvix runtime functions dealing
with closure calls and closure extensions.

C.1. Closure call
-- [fp - 3]: closure;

-- [fp - 4 - k]: argument k to closure call (0-based)

-- [fp - 4 - n]: builtin pointer, where n = number of supplied args

juvix_call_closure:

-- jmp rel (9 - argsnum)

jmp rel [[fp - 3] + 2]

-- copy extra args: builtin ptr + args

[ap] = [fp - 12]; ap++

[ap] = [fp - 11]; ap++

[ap] = [fp - 10]; ap++

[ap] = [fp - 9]; ap++

[ap] = [fp - 8]; ap++

[ap] = [fp - 7]; ap++

[ap] = [fp - 6]; ap++

[ap] = [fp - 5]; ap++

[ap] = [fp - 4]; ap++

-- copy stored args: jmp rel (9 - sargs)

jmp rel [[fp - 3] + 1]

[ap] = [[fp - 3] + 10]; ap++

[ap] = [[fp - 3] + 9]; ap++

[ap] = [[fp - 3] + 8]; ap++

[ap] = [[fp - 3] + 7]; ap++

[ap] = [[fp - 3] + 6]; ap++

[ap] = [[fp - 3] + 5]; ap++

[ap] = [[fp - 3] + 4]; ap++

[ap] = [[fp - 3] + 3]; ap++

-- call the closure function

jmp rel [[fp - 3]]

-- Here there is a global function call table specific

-- to a given program.

C.2. Closure extension
-- [fp - 3]: closure

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 55

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

-- [fp - 4]: n = the number of arguments to extend with

-- [fp - 4 - k]: argument n - k - 1 (reverse order!) (k is 0-based)

-- On return:

-- [ap - 1]: new closure

-- This procedure doesn't accept or return the builtins pointer.

juvix_extend_closure:

-- copy stored args reversing them;

-- to copy the stored args to the new closure

-- we need to jump forward, so the stored args

-- need to be available at consecutive memory

-- addresses backwards

jmp rel [[fp - 3] + 1]

[ap] = [[fp - 3] + 10]; ap++

[ap] = [[fp - 3] + 9]; ap++

[ap] = [[fp - 3] + 8]; ap++

[ap] = [[fp - 3] + 7]; ap++

[ap] = [[fp - 3] + 6]; ap++

[ap] = [[fp - 3] + 5]; ap++

[ap] = [[fp - 3] + 4]; ap++

[ap] = [[fp - 3] + 3]; ap++

-- the following ensures continuous memory use

-- with a compile-time constant offset for local

-- variables

[ap] = 10; ap++

[ap] = [[fp - 3] + 1]; ap++

[ap] = [ap - 2] - [ap - 1]; ap++

jmp rel [ap - 1]

[ap] = [ap - 1]; ap++

[ap] = [ap - 1]; ap++

[ap] = [ap - 1]; ap++

[ap] = [ap - 1]; ap++

[ap] = [ap - 1]; ap++

[ap] = [ap - 1]; ap++

[ap] = [ap - 1]; ap++

[ap] = [ap - 1]; ap++

-- now ap = fp + 11

-- alloc

call juvix_get_regs

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 56

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

-- now ap = fp + 15

-- [fp + 15] = pointer to new closure

[ap] = [ap - 2] + 8; ap++

-- [fp + 16] = 9 - sargs

[ap] = [[fp - 3] + 1]; ap++

-- [fp + 17] = 9 - argsnum (expected)

[ap] = [[fp - 3] + 2]; ap++

-- [fp + 18] = 9

[ap] = 9; ap++

-- [fp + 19] = sargs

[ap] = [fp + 18] - [fp + 16]; ap++

-- [fp + 20] = 9 - n

[ap] = [fp + 18] - [fp - 4]; ap++

-- closure header

[ap] = [[fp - 3]]; ap++

[ap] = [fp + 16] - [fp - 4]; ap++

[ap] = [fp + 17] + [fp - 4]; ap++

-- copy stored args: jmp rel (9 - sargs)

jmp rel [fp + 16]

[ap] = [fp + 7]; ap++

[ap] = [fp + 6]; ap++

[ap] = [fp + 5]; ap++

[ap] = [fp + 4]; ap++

[ap] = [fp + 3]; ap++

[ap] = [fp + 2]; ap++

[ap] = [fp + 1]; ap++

[ap] = [fp]; ap++

-- copy extra args: jmp rel (9 - extra args num)

jmp rel [fp + 20]

[ap] = [fp - 12]; ap++

[ap] = [fp - 11]; ap++

[ap] = [fp - 10]; ap++

[ap] = [fp - 9]; ap++

[ap] = [fp - 8]; ap++

[ap] = [fp - 7]; ap++

[ap] = [fp - 6]; ap++

[ap] = [fp - 5]; ap++

-- return value

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 57

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

[ap] = [fp + 15]; ap++

ret

DOI: 10.5281/zenodo.13739344 Anoma Research Topics | September 10, 2024 | 58

https://dx.doi.org/10.5281/zenodo.13739344
http://art.anoma.net

	Introduction
	Juvix
	Cairo
	Function calls
	Memory model
	Builtins

	Juvix to Cairo compilation pipeline
	JuvixCore
	Example programs
	Stripped representation

	JuvixTree
	Translation from Stripped JuvixCore
	Compiling dynamic closure calls

	JuvixAsm
	Translation from JuvixTree

	JuvixReg
	Translation from JuvixAsm
	Transformation into Static Single-Assignment form
	Optimization
	Handling continuous memory

	CASM
	Cairo bytecode

	Conclusion
	Acknowledgements
	References
	Juvix CLI
	Example program in different IRs
	Juvix
	JuvixCore
	Stripped JuvixCore
	JuvixTree
	JuvixAsm
	JuvixReg
	JuvixReg in SSA
	Optimized JuvixReg
	JuvixReg basic blocks
	CASM

	CASM runtime
	Closure call
	Closure extension

