
UNCLASSIFIED

Evaluating AI-generated code for C++, Fortran, Go, Java,
Julia, Matlab, Python, R, and Rust
Patrick Diehl, Noujoud Nader, Steve Brandt, and Hartmut Kaiser
AMTE @ EuroPar 24
August, 2024

LA-UR-24-29141

Managed by Triad National Security, LLC,for the U.S. Department of Energy’s NNSA.UNCLASSIFIED 8/2024



UNCLASSIFIED

Motivation

Large language models are emerging for certain tasks
• Recognize and generate text
• Chat bots
However, most of these tasks are related to language processing and producing text
to be read by humans. We neglect the fact here that these models can do
hallucination and produce wrong facts or incorrect answers.

Our idea here was to see how good are these models to produce language understood
by computers (programming languages)?

UNCLASSIFIED 8/2024 | 2



UNCLASSIFIED

Outline

Choice of Programming languages

Test problems

Quality of the generated software

Code metrics

Conclusion and Outlook

UNCLASSIFIED 8/2024 | 3



UNCLASSIFIED

Choice of Programming languages

UNCLASSIFIED 8/2024 | 4



UNCLASSIFIED

UNCLASSIFIED 8/2024 | 5



UNCLASSIFIED

Test problems

UNCLASSIFIED 8/2024 | 6



UNCLASSIFIED

Gathering the code from ChatGPT

• We use three numerical examples: numerical integration (NI), a conjugate
gradient solver (CGS), and a parallel one-dimensional heat equation solver (PHS)
using finite differences.

• The code complexity increases with each example. We used the free version of
ChatGPT 3.5 and the paid version ChatGPT 4.0 for our study.

• We used ChatGPT to generate the codes on 02/27/2024 for the last example and
06/05/2024 for the others.

UNCLASSIFIED 8/2024 | 7



UNCLASSIFIED

Example I: Numerical integration (NI)

The following queries were used to obtain the source code;
1. Write a language code to compute the area between −π and 2/3π for sin(x) and

validate it.
Here, we want to validate if ChatGPT can write a code to evaluate

2/3π∫
−π

sin(x)dx. (1)

UNCLASSIFIED 8/2024 | 8



UNCLASSIFIED

Example 2: Conjugate gradient solver (CGS)

2. Write a conjugate gradient solver in language to solve A times x equals b and
validate it.
Here, we want to evaluate whether ChatGPT can write a conjugate gradient solver
and apply it to a linear system of equations, i.e.

An×n · xn = bn with n ∈ Z+,A = AT, and xTAx > 0, for all X ∈ Rn. (2)

For more details about the conjugate gradient solver, we refer to Jonathan
Richard Shewchuk et al. “An introduction to the conjugate gradient method
without the agonizing pain” (1994).

UNCLASSIFIED 8/2024 | 9



UNCLASSIFIED

Example 3: Parallel one-dimensional heat equation solver (PHS)
using finite difference

3. Write a parallel 1D heat equation solver using finite difference in language.
Here, we want to evaluate whether ChatGPT can write the code to solve

∂u
∂t

= α
∂2u
∂x2 , 0 ≤ x < L, t > 0 (3)

where α is the material’s diffusivity. For the discretization in space a finite
difference scheme

u(xi, t + 1) = u(xi, t) + dt α
u(t, xi−1)− 2u(t, xi) + u(t, xi+1)

2h
(4)

We did not specify the how to generate the grid, i.e. equidistant nodal spacing
with n grid points x = {xi = i · h ∈ R|i = 0, . . . , n − 1}, nor what time integration
method to use, e.g. the Euler method.

UNCLASSIFIED 8/2024 | 10



UNCLASSIFIED

Quality of the generated software

UNCLASSIFIED 8/2024 | 11



UNCLASSIFIED

Metric

In this section, we assess the quality of the AI-generated software:

• First, we checked whether the code compiles with a recent compiler.
• Second, we checked whether the code executed without segmentation faults or

other runtime errors.
• Third, we checked whether the code produced a correct result. The results for our

test cases were the following:
2/3π∫
−π

sin(x)dx = − cos(2/3π) + cos(−π) = −0.5

We solve M × x = b with the following values A =

(
4 1
1 3

)
and b =

(
1
2

)
. The solution

x is
(
0.09090909 0.63636364

)T.

UNCLASSIFIED 8/2024 | 12



UNCLASSIFIED

Numerical integration (NI) and Conjugate gradient solver (CGS)

UNCLASSIFIED 8/2024 | 13



UNCLASSIFIED

Parallel one-dimensional heat equation solver (PHS) using finite
differences

UNCLASSIFIED 8/2024 | 14



UNCLASSIFIED

Common issues

Here we present the list of common issues which we observed while debugging:
• Compilation:

For NI and CGS, most compilation errors were minor and could be easily fixed.
For PHS, most of the errors were related to parallelism, and sometimes knowledge
about the parallel programming language or library was needed to fix the problem.
In total, we had five compilation errors for all examples.

• Runtime:
Most of the runtime errors were minor and could be easily fixed. Most were type
errors, undefined variables, and undefined functions for interpreted languages.
Other errors were index out-of-bound exceptions for the heat equation solver for
the first and last element with the stencil. Some errors were related to the
parallelism and knowledge about the parallel programming language or library was
required to address them.

UNCLASSIFIED 8/2024 | 15



UNCLASSIFIED

Common issues

Here we present the list of common issues which we observed while debugging:
• Correctness:

For NI, the ChatGPT 3.5 versions produced all the correct results. The ChatGPT
4.0 version computed the integral as 3.5 because it used absolute values for the
function evaluation. After removing the absolute values all codes computed the
correct result. For the conjugate gradient solver, all except two codes produced
the correct result. For the single-threaded codes, overall most results were correct.
For the parallel codes, 11 codes produced correct results, and 10 codes did not.

UNCLASSIFIED 8/2024 | 15



UNCLASSIFIED

Code metrics

UNCLASSIFIED 8/2024 | 16



UNCLASSIFIED

Lines of code

The lines of code were determined with the Linux tool cloc and the larger amount of
code lines between the ChaptGPT 3.5 and ChatGPT 4.0 were chosen. The difference
was between one and five lines of code.

UNCLASSIFIED 8/2024 | 17



UNCLASSIFIED

More comprehensive metrix

• The lines of code metric, however, does not measure quality well. For this, we use
the Constructive Cost Model (COCOMO). COCOMO is a general model with no
specialization for parallel programming. However, the HPC community never
provided a similar model taking parallel and distributed computing in mind. We
use this to classify if it was easy or difficult to write the code. We use the average
of the COCOMO metric for version 3.5 and version 4.0 for the classification of
easy and difficult.

• We use the three quantities of interest in Table 1-2 for the code quality. We use
the following metric

q(language) := 1
2

(
comp + run + correct

3
+

comp + run + correct
3

)
(5)

to classify the code quality from poor to good.

UNCLASSIFIED 8/2024 | 18



UNCLASSIFIED

Numerical integration (NI)

UNCLASSIFIED 8/2024 | 19



UNCLASSIFIED

Conjugate gradient solver (CGS)

UNCLASSIFIED 8/2024 | 20



UNCLASSIFIED

Parallel one-dimensional heat equation solver (PHS) using finite
differences

UNCLASSIFIED 8/2024 | 21



UNCLASSIFIED

Conclusion and Outlook

UNCLASSIFIED 8/2024 | 22



UNCLASSIFIED

Conclusion and Outlook

Conclusion
• Compilation: Most codes could be compiled
• Runtime: Some codes had run time errors
• Correctness: Not many codes produced correct results
Some languages worked better than others, maybe due to more training data?
Overall ChatGPT is not yet ready to produce source code even it was trained on
source code!

Outlook
• Check if ChatGPT can fix the bug encountered in the previous generated code.
• Check if ChatGPT can write GPU kernels
• use more complex examples

UNCLASSIFIED 8/2024 | 23


	Choice of Programming languages
	Test problems
	Quality of the generated software
	Code metrics
	Conclusion and Outlook

