
Package ‘DendroLikeness’
September 6, 2024

Type Package

Title Compare the topology of two dendrograms

Version 1.0

Date 2024-09-05

Author Octavio Martinez

Maintainer <octavio.martinez@cinvestav.mx>

Description Given two dendrograms, you can see which groups are shared between them, obtain-
ing a measure of likeness that is between 0 and 1. Additionally, func-
tions to study one or two lists of sets are provided.

License GPL-3

R topics documented:

DendroLikeness-package . 1
analyze.set . 3
analyze2sets . 4
comp.dend . 6
dend.topo . 8
test.set . 9

Index 11

DendroLikeness-package

Compare the topology of two dendrograms

Description

Given two dendrograms, you can see which groups are shared between them, obtaining a measure
of likeness that is between 0 and 1. Additionally, functions to study one or two lists of sets are
provided.

1

2 DendroLikeness-package

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.
In R you can obtain a matrix of distances between a set of rows using the function dist(). Then, a
bifurcating dendrogram can be obtained from that distance matrix by using the function hclust().
Distinct alternatives exist to estimate the distance matrix, and then different clustering methods
can be employed to obtain a bifurcating dendrogram with hclust(). This can result in different
dendrograms for the same set of rows. To visually detect the differences between any pair of those
dendrograms can be complex when the number of rows in the original data is moderately large.

This package gives a two steps solution to the problem of comparing the topology of two dendro-
grams obtained from the same set of rows. First, function dend.topo() gives a description of the
topology of a dendrogram and, second, the function comp.dend() performs the comparison of the
topologies of two dendrograms, summarizing their likeness and giving an explicit list of the clusters
that are shared by the two graphs.

Author(s)

Octavio Martinez

Maintainer: <octavio.martinez@cinvestav.mx>

References

Everitt, B. (1974). Cluster Analysis. London: Heinemann Educ. Books.

See Also

analyze.set, analyze2sets, dend.topo, comp.dend, test.set

Examples

Obtain a dendrogram for 10 objects using a dummy distance matrix
and the "complete" method:
temp.den1 <- hclust(dist(matrix(c(1:50)/10, nrow = 10, ncol = 5,
dimnames = list(LETTERS[1:10], c(1:5)))), method="complete")
Optionally you could plot the dendrogram using "plot(temp.den1)"

Obtain another dendrogram for the same 10 objects but with a different
distance matrix and method ="average":
temp.den2 <- hclust(dist(matrix(c(c(1:25), c(25:1))/10, nrow = 10,
ncol = 5, dimnames = list(LETTERS[1:10], c(1:5)))), method="average")
Optionally you could plot the dendrogram using "plot(temp.den2)"

Obtain the topology of the first dendrogram
temp.to1 <- dend.topo(temp.den1)
You could examine the original values of the groups in
temp.to1$original
And also the clusters (groups) formed in
temp.to1$clusters

Obtain the topology of the second dendrogram
temp.to2 <- dend.topo(temp.den2)
You could examine the original values of the groups in
temp.to2$original

analyze.set 3

And also the clusters (groups) formed in
temp.to2$clusters

Now you can compare the two dendrograms with
temp.com1vs2 <- comp.dend(temp.to1, temp.to2)
This result is a list with components:
names(temp.com1vs2)

And see some of the components:
temp.com1vs2$basic # The basic results
temp.com1vs2$topo.summary # A summary of topology
temp.com1vs2$identical # Main results

(see help of the functions for a comprehensive understanding)
Finally you could remove the temp objects created
rm(temp.den1, temp.den2, temp.to1, temp.to2, temp.com1vs2)

analyze.set Analyzes all pairs of components of a list of sets

Description

If the length of a list of sets is L, the number of different pairs sets to be compared will be L*(L-1)/2.
For each one those comparisons, results are obtained about the number of elements in each set, the
number of elements in the union the number of elements in the intersection as well as a description
of the comparison.

Usage

analyze.set(x = test.set)

Arguments

x A list of sets that you want to compare by pairs

Value

A data.frame in which each row contain a different comparison between two of the sets included
in the input list of sets x. The output is a data.frame with variables: id.1 - Numerical identifier
of the first set to be compared; id.2 - Numerical identifier of the second set to be compared; n.1
- Number of elements in set id.1; n.2 - Number of elements in set id.2; n.int - Number of
elements in the intersection of set id.1 with set id.2; n.uni - Number of elements in the union of
set id.1 with set id.2; comparison - A description of the relation between the set id.1 with set
id.2. That comparison can take values: disjoint - when set id.1 and set id.2 intersection is
empty, or, identical - when set id.1 and set id.2 are identical, i.e., have the same elements, or,
s1.includes.s2 - when set id.1 includes all elements in set id.2, i.e., set id.2 is a proper subset
of set id.1, or, s2.includes.s1 - when set id.2 includes all elements in set id.1, i.e., set id.1
is a proper subset of set id.2, or, finally, intersected - when set id.1 and set id.2 have a non
empty intersection and do not fulfill any of the above classifications. s.1 - The explicit set id.1
and s.2 - The explicit set id.2.

Author(s)

Octavio Martinez

4 analyze2sets

See Also

test.set, analyze2sets

Examples

Make available the default input: a list of 5 sets:
data(test.set)

length(test.set) # How many sets are in the list?
Define a temporal object from the output of the function
temp.as <- analyze.set(x=test.set)

Note that the output has 5*(5-1)/2 rows, one for each comparison
nrow(temp.as)

Let's see the first row which compares the first and second
elements of test.set,
temp.as[1,]
Note that even when the two sets, s.1 and s.2 are in different
order they are the same set.

Now, let's tabulate the comparisons:
table(temp.as$comparison)

And see, in turn, each one of the rows with each comparison:
temp.as[temp.as$comparison=="identical",]
temp.as[temp.as$comparison=="disjoint",]
temp.as[temp.as$comparison=="s1.includes.s2",]
temp.as[temp.as$comparison=="s2.includes.s1",]
temp.as[temp.as$comparison=="intersected",]

Remove the temporal object
rm(temp.as)

analyze2sets Analyzes all pairs of components of two lists of sets

Description

If the length of the first list of sets is L1, and the length of the second list of sets is L2, then the
number of pairs of sets to be compared will be L1*L2. For each one those comparisons, results are
obtained about the number of elements in each set, the number of elements in the union, the number
of elements in the intersection as well as a description of the comparison.

Usage

analyze2sets(x = test.set[1:3], y = test.set[2:5], only.identical = FALSE)

Arguments

x The first list of sets that you want to compare by pairs
y The second list of sets that you want to compare by pairs
only.identical A logical variable. If TRUE the output will contain only identical sets between

the two lists

analyze2sets 5

Value

A data.frame in which each row contain a comparison between two of the sets included in the
input lists of sets, x and y. The output data.frame has variables: id.x - Numerical identifier
of the set in x to be compared; id.y - Numerical identifier of the set in y to be compared; n.x
- Number of elements in set id.x; n.y - Number of elements in set id.y; n.int - Number of
elements in the intersection of set id.x with set id.x; n.uni - Number of elements in the union of
set id.x with set id.x; comparison - A description of the relation between the set id.x with set
id.y. That comparison can take values: disjoint - when set id.x and set id.y intersection is
empty, or, identical - when set id.x and set id.y are identical, i.e., have the same elements, or,
sx.includes.sy - when set id.x includes all elements in set id.y, i.e., set id.y is a proper subset
of set id.x, or, sy.includes.sx - when set id.y includes all elements in set id.x, i.e., set id.x
is a proper subset of set id.y, or, finally, intersected - when set id.x and set id.y have a non
empty intersection and do not fulfill any of the above classifications. s.x - The explicit set id.x
and s.y - The explicit set id.y.

Author(s)

Octavio Martinez

See Also

test.set, analyze.set

Examples

Make available the default input: a list of 5 sets:
data(test.set)

Define a temporal object from the output of the function
(with defaults)
temp.a2s <- analyze2sets(x = test.set[1:3], y = test.set[2:5])

Given that x has 3 sets while y has 4 sets we must have
3*4=12 rows in the result temp.a2s,
nrow(temp.a2s)

Let's see the first row:
temp.a2s[1,]

Now, let's tabulate the comparisons:
table(temp.a2s$comparison)

And see, in turn, each one of the rows with each comparison:
temp.a2s[temp.a2s$comparison=="identical",]
temp.a2s[temp.a2s$comparison=="disjoint",]
temp.a2s[temp.a2s$comparison=="sx.includes.sy",]
temp.a2s[temp.a2s$comparison=="sy.includes.sx",]
temp.a2s[temp.a2s$comparison=="intersected",]

Also see the output of the function when only
identical comparisons are requested
(note that x & y are let at their default values)
analyze2sets(only.identical=TRUE)

Remove the temporal object

6 comp.dend

rm(temp.a2s)

comp.dend Compares the topologies of two dendrograms

Description

Assume that you have two dendrograms obtained from the function hclust(). Using the function
dend.topo() you can obtain the topologies of each one of the two dendrograms. Then, function
comp.dend() will compare the topologies of the two dendrograms, giving likeness estimates as
well as an explicit description of the clusters shared by the two dendrograms. This function is the
core of the package.

Usage

comp.dend(x = dend.topo(hclust(dist(matrix(c(1:50)/10, nrow = 10, ncol = 5, dimnames = list(LETTERS[1:10], c(1:5)))))), y = dend.topo(hclust(dist(matrix(c(1:50)/9, nrow = 10, ncol = 5, dimnames = list(LETTERS[1:10], c(1:5)))))), compare.groups = FALSE)

Arguments

x A result of function dend.topo() containing the description of the topology of
the first dendrogram, say dendrogram x

y A result of function dend.topo() containing the description of the topology of
the second dendrogram, say dendrogram y

compare.groups A logical variable which by default is FALSE. However, if compare.groups
= TRUE, then the output of comp.dend() will include the description of all pos-
sible comparisons between pairs of clusters in both dendrograms. In that case
function analyze2sets() will be used to obtain those comparisons

Value

basic A numeric vector with values for variables n.comp - The number of compara-
ble clusters in the two dendrograms, n.ident - The number of identical clusters
in the two dendrograms, likeness - Raw likeness between dendrograms, say
n.ident/n.comp and w.likeness - The weighted likeness between dendro-
grams

topo.summary A matrix with 4 rows and columns with the number of clusters of each length
(number of elements) that exist in dendrograms x or y. The names of the rows
are: n.in.x - The number of clusters (of each length) in the first dendrogram,
n.in.y - The number of clusters (of each length) in the second dendrogram,
n.ident - The number of clusters (of each length) which are identical in both
dendrograms, and p.ident - The proportion of identity (for each length), say,
n.ident divided by the maximum of n.in.x and n.in.y in each one of the
columns

identical A data.frame with information about the clusters that are identical in both
dendrograms. The variables in that data.frame are: id - Numeric identifier of
the cluster comparison, class - The length (number of elements) in both clusters
compared, id.x - Numeric identifier of the cluster in the first dendrogram, id.y
- Numeric identifier of the cluster in the second dendrogram, height.x - The
height at which cluster id.x was formed in the first dendrogram, height.y - The
height at which cluster id.y was formed in the second dendrogram cluster -
A description of the common cluster in both dendrograms (in set notation and
using the labels of the entities)

comp.dend 7

height.stats A matrix containing statistics for the heights of the clusters in both dendro-
grams. The rows of the matrix are named as All - Corresponding to statistics
for all heights, and Identical - Corresponding to statistics only for heights in
identical clusters. The columns of the matrix are: n - The number of heights
included, Mean.x - Average of heights in the first dendrogram, Mean.y - Aver-
age of heights in the second dendrogram, S.x - Standard deviation of heights in
the first dendrogram, S.y - Standard deviation of heights in the second dendro-
gram and p.value - The value of p from the t.test for the means of heights
in the first and second dendrograms (not paired test for All and paired test for
Identical)

clusters.comparison

A data.frame which will be present only when the input option compare.groups
= TRUE was used. In that case you need to see the help for function analyze2sets()
for the content of the data.frame

objects A character string with descriptions of the inputs x and y to the function,
extracted from the call of the function

call The call of the function

Author(s)

Octavio Martinez

See Also

dend.topo, analyze2sets

Examples

Let's obtain an object with the defaults of the function
temp.cd <- comp.dend()

NOTE: for fully understand the output it will be useful if
you plot and examine the two dendrograms that are being analyzed.
dendrogram "x" (in the input of the function) can be plot with
plot(hclust(dist(matrix(c(1:50)/10, nrow = 10, ncol = 5,
dimnames = list(LETTERS[1:10], c(1:5))))))
(to plot x, please input the text after the remarks in the 2 lines above)
dendrogram "y" (in the input of the function) can be plot with
plot(hclust(dist(matrix(c(1:50)/9, nrow = 10, ncol = 5,
dimnames = list(LETTERS[1:10], c(1:5))))))
(to plot y, please input the text after the remarks in the 2 lines above)

Now, lets's examine temp.cd
class(temp.cd) # Which class is the object?
names(temp.cd) # Which names has each component?

temp.cd # Examine this object

Now, obtain a second object but with option "compare.groups=TRUE"
temp.cd2 <- comp.dend(compare.groups=TRUE)
Note that this object has components:
names(temp.cd2)

The "clusters.comparison" component is a data.frame with
dim(temp.cd2$clusters.comparison)

8 dend.topo

and variables:
names(temp.cd2$clusters.comparison)
Let's see the first 6 rows:
head(temp.cd2$clusters.comparison)
And also table the comparisons
table(temp.cd2$clusters.comparison$comparison)

Finally remove the temporary objects
rm(temp.cd, temp.cd2)

dend.topo Obtains a description of the topology of a dendrogram

Description

Gives explicit information of all clusters that are present in a dendrogram obtained with the function
hclust() and also a list with an explicit representation of all clusters as sets of labels

Usage

dend.topo(x = hclust(dist(matrix(c(1:50)/10, nrow = 10, ncol = 5, dimnames = list(LETTERS[1:10], c(1:5))))))

Arguments

x The output of the function hclust()

Details

I recommend to enter the raw output of the function hclust() (without modifications). Otherwise
errors could occur

Value

A list with two components

original A data.frame with variables V1 - First numerical identifier of a group in the
original dendrogram, V2 - Second numerical identifier of a group in the original
dendrogram, clu - Number of cluster within the dendrogram, class - Length
(number of elements) of the cluster, height - Height at which the cluster was
formed.

clusters A list in which each element is a character variable with the elements of the
corresponding cluster

Note

The elements of the clusters list are sets of the original labels in the dendrogram

Author(s)

Octavio Martinez

See Also

comp.dend

test.set 9

Examples

Create a temporal object with the output of the function
temp.dt <- dend.topo()

Note that the default of the function is
x = hclust(dist(matrix(c(1:50)/10, nrow = 10, ncol = 5,
dimnames = list(LETTERS[1:10], c(1:5)))))
i.e., a dendrogram obtained from the Euclidean distance of an
arbitrary matrix. Optionally you could plot such dendrogram
for a better understanding:
plot(hclust(dist(matrix(c(1:50)/10, nrow = 10, ncol = 5,
dimnames = list(LETTERS[1:10], c(1:5))))))

Note that
class(temp.dt)

With components
names(temp.dt)

Now, the first component is a data.frame
temp.dt$original

And the second a list with all the clusters
temp.dt$clusters

You could analyze that list of clusters
for example with
analize.set(temp.dt$clusters)
which gives a data.frame with 36 rows.
See the last two rows with
tail(analize.set(temp.dt$clusters), 2)

Finally remove the temporal object
rm(temp.dt)

test.set A list of 5 small sets

Description

The list is formed by five small sets of capital letters

Usage

data("test.set")

Format

The format is: List of 5 $: chr [1:3] "A" "B" "C" $: chr [1:3] "B" "A" "C" $: chr [1:2] "D" "C" $
: chr [1:3] "B" "D" "C" $: chr "D"

10 test.set

Examples

data(test.set)

Obtain the union of the five sets
union(test.set[[1]], union(test.set[[2]],
union(test.set[[3]], union(test.set[[4]],
test.set[[5]]))))

The union of sets 1 and 3 is equivalent to previous command
union(test.set[[1]], test.set[[3]])

A non-empty intersection
intersect(test.set[[3]], test.set[[4]])

The intersection of the five sets (an empty set)
intersect(test.set[[1]], intersect(test.set[[2]],
intersect(test.set[[3]], intersect(test.set[[4]],
test.set[[5]]))))

Index

∗ datasets
test.set, 9

∗ package
DendroLikeness-package, 1

analyze.set, 2, 3, 5
analyze2sets, 2, 4, 4, 7

comp.dend, 2, 6, 8

dend.topo, 2, 7, 8
DendroLikeness

(DendroLikeness-package), 1
DendroLikeness-package, 1

test.set, 2, 4, 5, 9

11

	DendroLikeness-package
	analyze.set
	analyze2sets
	comp.dend
	dend.topo
	test.set
	Index

