
 / Lesson design and development

Lesson design and development

 Objec�ves

• We share our design processes for teaching material and presenta�ons.
• Learn how to design lessons “backwards”, star�ng from learning objec�ves and learner

personas.
• Learn good prac�ces for improving exis�ng material based on feedback.

Instructor note

• Discussion: 20 min
• Exercises: 35 min

Exercise: How do you design your teaching material?

We collect notes using a shared document (5 min)

• When you start preparing a new lesson or training material, where do you start?
• What tricks help you with “writer’s block” or the empty page problem?
• Maybe you haven’t designed training material yet. But how do you start when crea�ng

a new presenta�on?

• If your design process has changed over �me, please describe what you used to do
and what you do now instead.

• What do you know now about preparing lessons/training/presenta�ons that you wish
you knew earlier?

Creating new teaching material

Typical problems

• Someone creates a lesson, but they think about what is interes�ng to them, not what is
important for the learners.

• “I want to show a number of things which I think are cool about tool X - how do I press
these into 90 minutes?”

• Write down material you want to cover and then sprinkle in some exercises.
• Thinking about how I work, not how the learners work.
• Trying to bring learners to their level/setup, not trying to meet the learners where they

are.

Lesson design and development — Train the trainer w... https://coderefinery.github.io/train-the-trainer/lesson-...

1 of 5 9/14/24, 01:12

https://coderefinery.github.io/train-the-trainer/
https://coderefinery.github.io/train-the-trainer/
https://coderefinery.github.io/train-the-trainer/


• Not really knowing the learning objec�ves or the learner personas.

Better approach

Good ques�ons to ask and discuss with a group of colleagues from diverse backgrounds:

• What is the expected educa�onal level of my audience?
• Have they been already exposed to the technologies I am planning to teach?
• What tools do they already use?
• What are the main issues they are currently experiencing?
• What do they need to remember/understand/apply/analyze/evaluate/create (Bloom’s

taxonomy)?
• Define learner personas.
• It may be an advantage to share an imperfect lesson with others early to collect feedback

and sugges�ons before the lesson “solidifies” too much. Dra� it and collect feedback. The
result will probably be be�er than working in isola�on towards a “perfect” lesson.

The process of designing a lesson “backwards”

As described in “A lesson design process” in the book Teaching Tech Together:

1. Understand your learners.
2. Brainstorm rough ideas.
3. Create an summa�ve assessment to know your overall goal.

[Think of the things your learners will be able to do at the end of the lesson]

4. Create forma�ve assessments to go from the star�ng point to this.

[Think of some engaging and ac�ve exercises]

5. Order the forma�ve assessments (exercises) into a reasonable order.
6. Write just enough material to get from one assessment (exercise) to another.
7. Describe the course so the learners know if it is relevant to them.

Improving existing lessons

All CodeRefinery lessons are on GitHub

• Overview: h�ps://coderefinery.org/lessons/
• All are shared under CC-BY license and we encourage reuse and modifica�on.
• Sources are all on GitHub: h�ps://github.com/coderefinery
• Web pages are generated from Markdown using Sphinx (more about that in the

episode Lessons with version control).
• We track ideas and problems in GitHub issues.

Lesson design and development — Train the trainer w... https://coderefinery.github.io/train-the-trainer/lesson-...

2 of 5 9/14/24, 01:12

https://en.wikipedia.org/wiki/Bloom%27s_taxonomy
https://en.wikipedia.org/wiki/Bloom%27s_taxonomy
https://en.wikipedia.org/wiki/Bloom%27s_taxonomy
https://en.wikipedia.org/wiki/Bloom%27s_taxonomy
https://teachtogether.tech/en/index.html#s:process
https://teachtogether.tech/en/index.html#s:process
https://coderefinery.org/lessons/
https://coderefinery.org/lessons/
https://coderefinery.org/lessons/reusing/
https://coderefinery.org/lessons/reusing/
https://github.com/coderefinery
https://github.com/coderefinery
https://www.sphinx-doc.org/
https://www.sphinx-doc.org/
https://coderefinery.github.io/train-the-trainer/lessons-with-git/#lessons-with-git
https://coderefinery.github.io/train-the-trainer/lessons-with-git/#lessons-with-git
https://coderefinery.github.io/train-the-trainer/lessons-with-git/#lessons-with-git


Collect feedback during the workshop:

• Collect feedback from learners and instructors (Example from a past workshop).
• Convert feedback about lessons and sugges�ons for improvements into issues so that

these don’t get lost and stay close to the lesson material.

Collect feedback before you start a big rewrite:

• First open an issue and describe your idea and collect feedback before you start with an
extensive rewrite.

• For things s�ll under construc�on, open a dra� pull/merge request to collect feedback
and to signal to others what you are working on.

Small picture changes vs. big picture changes:

• Lesson changes should be accompanied with instructor guide changes (it’s like a
documenta�on for the lesson material).

• Instructor guide is essen�al for new instructors.
• Before making larger changes, talk with somebody and discuss these changes.

Use case: our lessons

As an example to demonstrate the process of designing and improving lessons, we will have a
look at one of our own lessons: Introduc�on to version control with Git.

• Ini�al 2014-2016 version
◦ h�ps://github.com/sciso�/toolbox-talks and h�ps://toolbox.readthedocs.io/
◦ Amazingly they are s�ll findable!
◦ Format: Slides and live coding.
◦ Exercises were separate, during a�ernoon sessions.

• Some �me in 2014-2015 a�ended Carpentries instructor training.
• 2016: CodeRefinery started.
• 2017: Started a new repository based on the Carpentries lesson template (at the �me

using Jekyll).
◦ Exercises become part of the lesson.
◦ We start in the command line and only later move to GitHub.

• 2019: A lot more thought about learning objec�ves and personas.
◦ Also license change to CC-BY.

• 2022: Convert lesson from Jekyll to Sphinx.
◦ Using the tools that we teach/advocate.
◦ We can have tabs and be�er code highligh�ng/emphasis.
◦ Easier local preview (Python environment instead of Ruby environment which we were

not used to in our daily work).
• 2024: Big redesign. We move the lesson closer to where learners are.

Lesson design and development — Train the trainer w... https://coderefinery.github.io/train-the-trainer/lesson-...

3 of 5 9/14/24, 01:12

https://coderefinery.github.io/2024-03-12-workshop/questions/
https://coderefinery.github.io/2024-03-12-workshop/questions/
https://coderefinery.github.io/git-intro/
https://coderefinery.github.io/git-intro/
https://github.com/scisoft/toolbox-talks
https://github.com/scisoft/toolbox-talks
https://toolbox.readthedocs.io/
https://toolbox.readthedocs.io/


◦ Start from GitHub instead of on the command line.
◦ Start from an exis�ng repository instead of with an empty one.
◦ Offer several tracks to par�cipate in the lesson (GitHub, VS Code, and command line)

and learners can choose which one they want to follow.
◦ Blog post: We have completely changed our Git lessons. Hopefully to the be�er.

• Next steps?
◦ Making the lesson citable following our blog post.
◦ Improvements based on what we learn from this workshop.

The overarching trend was to make the lesson simpler and more accessible - to meet the
learners where they are instead of pulling them to the tool choices of the instructors. Looking
back, we learned a lot and the learning process is not over yet.

Exercise: Discussion about learning objectives and
exercise design

We work in groups but use the shared document as result (20 min)

1. As a group pick a lesson topic. It can be one of the topics listed here but you can also
choose something else that your group is interested in, or a topic that you have taught
before or would like to teach. Some sugges�ons:
• Git: Crea�ng a repository and por�ng your project to Git and GitHub
• Git: Basic commands
• Git: Branching and merging
• Git: Recovering from typical mistakes
• Code documenta�on
• Jupyter Notebooks
• Collabora�on using Git and GitHub/GitLab
• Using GitHub without the command line
• Project organiza�on
• Automated tes�ng
• Data transfer
• Data management and versioning
• Code quality and good prac�ces
• Modular code development
• How to release and publish your code
• How to document and track code dependencies
• Recording environments in containers
• Profiling memory and CPU usage
• Strategies for paralleliza�on
• Conda environments
• Data processing using workflow managers
• Regular expressions
• Making papers in LaTeX

Lesson design and development — Train the trainer w... https://coderefinery.github.io/train-the-trainer/lesson-...

4 of 5 9/14/24, 01:12

https://coderefinery.org/blog/2024/04/19/git-lesson-rewrite/
https://coderefinery.org/blog/2024/04/19/git-lesson-rewrite/
https://coderefinery.org/blog/2024/07/30/lesson-cffs/
https://coderefinery.org/blog/2024/07/30/lesson-cffs/


• Making figures in your favorite programming language
• Linux shell basics
• Something non-technical, such as pain�ng a room
• Introduc�on to high-performance compu�ng
• A lesson you always wanted to teach
• …

2. Try to define 2-3 learning objec�ves for the lesson and write them down. You can
think of these as “three simple enough messages that someone will remember the
next day” - they need to be pre�y simple.

3. Can you come up with one or two engaging exercises that could be used to
demonstrate one of those objec�ves? They should be simple enough people can
actually do them. Crea�ng simple exercises is not easy. Some standard exercise types:
• Mul�ple choice (easy to get feedback via a classroom tool - try to design each

wrong answer so that it iden�fies a specific misconcep�on).
• Code yourself (tradi�onal programming)
• Code yourself + mul�ple choice to see what the answer is (allows you to get

feedback)
• Inverted coding (given code, have to debug)
• Parsons problems (working solu�on but lines in random order, learner must only

put in proper order)
• Fill in the blank
• Discussions, self directed learning exercises

Great resources

• Teaching Tech Together
• Our summary of Teaching Tech Together
• Ten quick �ps for crea�ng an effec�ve lesson
• Carpentries Curriculum Development Handbook
• Our manual on lesson design

Lesson design and development — Train the trainer w... https://coderefinery.github.io/train-the-trainer/lesson-...

5 of 5 9/14/24, 01:12

http://teachtogether.tech/
http://teachtogether.tech/
https://coderefinery.github.io/manuals/teaching-tech-together/
https://coderefinery.github.io/manuals/teaching-tech-together/
https://doi.org/10.1371/journal.pcbi.1006915
https://doi.org/10.1371/journal.pcbi.1006915
https://cdh.carpentries.org/
https://cdh.carpentries.org/
https://coderefinery.github.io/manuals/lesson-design/
https://coderefinery.github.io/manuals/lesson-design/

