
 / CodeRefinery teaching philosophies

CodeRefinery teaching philosophies

 Objec�ves

• Get to know the teaching philosophies of CodeRefinery instructors

Instructor note

• Teaching: 10 min
• Discussion: 20 min

Introduction

During this episode we split into breakoutrooms and discuss own teaching philosophies.
Collect your teaching philosophies in the collabora�ve document. We will be going through
these and the end of the lesson.

Ice-breaker in groups (20 minutes)

• Share your approach to teaching and your teaching philosophy with your group.
• Please share your tricks and solu�ons in the live document for others.

Addi�onal ice-breaker ques�ons:

• What is your mo�va�on for taking this training?
• How structured or informal are your own teaching needs?
• What difference do you no�ce between the teaching what we (also Carpentries) do

and tradi�onal academic teaching?
• What other skills need to be taught, but academic teaching isn’t the right se�ng?

Instructor views

Here CodeRefinery instructors share their training philosophy to show that we all have
different teaching styles and how these differences are beneficial to CodeRefinery
workshops.

It is important to explain how much we value individuals and that there is not one way to
teach but as many ways as individuals. We want to help each other to find the way that is
best for each of us.

CodeRefinery teaching philosophies — Train the train... https://coderefinery.github.io/train-the-trainer/teachin...

1 of 5 9/14/24, 01:14

https://coderefinery.github.io/train-the-trainer/
https://coderefinery.github.io/train-the-trainer/
https://coderefinery.github.io/train-the-trainer/


⚙ Video recordings

We have recorded some of the below as videos: h�ps://www.youtube.com/playlist?
list=PLpLblYHCzJAAHF89P-GCjEXWC8CF-7nhX

Bjørn Lindi

My teaching style has changed a bit since I started with CodeRefinery. In the beginning I
had this “BLOB” (Binary Large OBject) of knowledge and experience that I wanted to to
convey to the par�cipants. With experience and some help from the Carpentries
Instructor training, I have realized I need to serialize the “BLOB”, to be able to share it with
others.

In a similar fashion as you would do with a binary large object which you intend to send
over the wire, you will need stop signals, check-sums and re-transmissions, when you give
a lecture. I have come to appreciate the natural periods/breaks the lessons offers, the
ques�ons raised, the errors that appear during type-along and the re-transmission. Co-
instructors are good to use for re-transmission or broadening a specific topic.

When I started with CodeRefinery my inclina�on was to give a lecture. Today I am trying
to be a guide during a learning experience, a learning experience which includes me as
well. That may sound a bit self-centric, but is in fact the opposite, as I have to be more
sensi�ve to what is going on in the room. The more conscious I am of being a guide, the
be�er lesson.

Tools that I find useful in preparing a lesson is concept maps and Learner Personas
(though I have developed too few of them):

• Concept Maps
• Learner Personas

Radovan Bast

My teaching changed by 180 degrees a�er taking the Carpentries instructor training.
Before that I used slides, 45 minute lecture blocks, and separate exercise sessions. A�er
the Carpentries instructor training I embraced the interac�on, exercises, demos, and
typos.

My goal for a lesson is to spark curiosity to try things a�er the lesson, both for the novices
(“This looks like a useful tool, I want to try using it a�er the workshop.”) and the more
experienced par�cipants (“Aha - I did not know you could do this. I wonder whether I can
make it work with X.”). I like to start lessons with a ques�on because this makes
par�cipants look up from their browsers.

Keeping both the novices and the experts engaged during a lesson can be difficult and

CodeRefinery teaching philosophies — Train the train... https://coderefinery.github.io/train-the-trainer/teachin...

2 of 5 9/14/24, 01:14

https://www.youtube.com/playlist?list=PLpLblYHCzJAAHF89P-GCjEXWC8CF-7nhX
https://www.youtube.com/playlist?list=PLpLblYHCzJAAHF89P-GCjEXWC8CF-7nhX
https://www.youtube.com/playlist?list=PLpLblYHCzJAAHF89P-GCjEXWC8CF-7nhX
https://www.youtube.com/playlist?list=PLpLblYHCzJAAHF89P-GCjEXWC8CF-7nhX
https://teachtogether.tech/#s:memory-concept-maps
https://teachtogether.tech/#s:memory-concept-maps
https://teachtogether.tech/#s:process-personas
https://teachtogether.tech/#s:process-personas


offering addi�onal exercises seems to be a good compromise.

For me it is a good sign if there are many ques�ons. I like to encourage ques�ons by
asking ques�ons to the par�cipants. But I also try not to go into a rabbit hole when I get a
ques�on where only experts will appreciate the answer.

I try to avoid jargon and “war stories” from the professional developers’ perspec�ve or the
business world. Most researchers may not relate to them. For examples I always try to use
the research context. Avoid “customer”, “produc�on”, also a lot of Agile jargon is hard to
relate to.

Less and clear is be�er than more and unclear. Simple examples are be�er than
complicated examples. Almost never I have felt or got the feedback that something was
too simple. I am repea�ng in my head to not use the words “simply”, “just”, “easy”. If
par�cipants take home one or two points from a lesson, that’s for me success.

I prepare for the lesson by reading the instructor guide and all issues and open pull
requests. I might not be able to solve issues, but I don’t want to be surprised by known
issues. I learn the material to a point where I know precisely what comes next and am
never surprised by the next episode or slide. This allows me to skip and dis�ll the essence
and not read bullet point by bullet point.

I try to never deviate from the script and if I do, be very explicit about it.

A great exercise I can recommend is to watch a tutorial on a new programming language/
tool you have never used. It can feel very overwhelming and fast to get all these new
concepts and tools thrown at self. This can prepare me for how a par�cipant might feel
listening to me.

I very much like the co-teaching approach where the other person helps detec�ng when I
go too fast or become too confusing. I like when two instructors complement each other
during a lesson.

Sabry Razick

My approach is to show it is fun to demys�fy concepts. Once a concept is not a mystery
anymore, the learners will understand is what it means, where it is coming from, why it is
in place and what it could it offer for their future. I try to relate concepts to real life with a
twist of humour whenever possible if the outcome is certain not be offensive to any one. I
use diagrams whenever possible, I have spent weeks crea�ng diagrams that is some�me
three or four sentences. That effort I consider worthwhile as my inten�on is not to teach,
but to demys�fy. Once that is achieved, learners will learn the ni�y gri�y on their own
easily and with confidence, when they have the use-case.

CodeRefinery teaching philosophies — Train the train... https://coderefinery.github.io/train-the-trainer/teachin...

3 of 5 9/14/24, 01:14



Richard Darst

Like many people, I’ve o�en been teaching, but rarely a teacher. I tend to teach like I am
doing an informal mentorship. I’ve realized long ago that my most important lessons
weren’t learned in classes, but by a combina�on of seeing things done by friends and
independent study a�er that. I’ve realized that teaching (the things I teach) is trying to
correct these differences in backgrounds.

My main job is suppor�ng compu�ng infrastructure, so my teaching is very grounded in
real-world problems. I’m o�en start at the very basics, because this is what I see missing
most o�en.

When teaching, I like lots of audience ques�ons and don’t mind going off-script a bit
(even though I know it should be minimized). I find that sufficient audience interest allows
any lesson to be a success - you don’t have to know everything perfectly, just show how
you’d approach a problem.

Stepas Toliautas

I aim for my learners to understand things (concepts, techniques…), instead of just
memorizing them. The phrase I use from �me to �me when teaching informa�on
technology topics (be it hardware or so�ware) is “there is no magic”: everything can be
explained if necessary. While CodeRefinery also emphasizes usefulness/ immediate
applicability of the content, o�en having the correct no�ons actually helps to start using
them sooner and with less mistakes.

I try to guide my audience through the presented material with occasional ques�ons
related to previous topics and common knowledge – to help them link the concepts
already during the lesson. I’m also fully aware that wai�ng for someone to answer is quite
uncomfortable in-person and doubly so in an online environment, especially if no one
uses their cameras :)

And if I get the ques�on I don’t have the answer for (or material to show it) at the
moment, in university classes I prepare and come back to it next �me. While with one-off
workshops there might not be a “next �me”, open-source material used by CodeRefinery
allows to have the same outcome: the latest and greatest version stays available for self-
study a�erwards.

Summary

 Keypoints

• People have different viewpoints on teaching.

CodeRefinery teaching philosophies — Train the train... https://coderefinery.github.io/train-the-trainer/teachin...

4 of 5 9/14/24, 01:14



CodeRefinery teaching philosophies — Train the train... https://coderefinery.github.io/train-the-trainer/teachin...

5 of 5 9/14/24, 01:14


