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• An ecosystem is a community of living organisms existing in conjunction 
with the nonliving components of their environment, interacting as a 
system. 

• These biotic and abiotic components are linked together through nutrient 
cycles and energy flows. 

• Then  ecosystems are defined by the network of interactions among 
organisms, or between organisms and their environment. 

• Consequently, ecosystems tend to be very complex and governed by many 
intricate and usually non-linear mechanistic interactions

What is an ecosystem?
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• The network of interactions can be represented graphically. 

• Example. The dynamics of soil organic carbon.

• The carbon balance within the soil is controlled by carbon inputs from 
photosynthesis and carbon losses by respiration. A graphical representation that 
takes into account only the soil organic matter (Cs) and the microbial biomass 
(Cb) and their interaction with the environment is given by 

Graphical representation
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A biome is a large area characterized by its vegetation, soil, climate, and 
wildlife. There 5 main biomes:

• Aquatic

• Grasslands 

• Forests 

• Deserts 

• Tundra

Some of these biomes can be further divided into more specific categories, 
such as freshwater, marine, savanna, tropical rainforest, temperate 
rainforest, and taiga. 

Biomes
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Ecosystems are dynamic entities controlled both by external and internal 
factors.  

• External factors, such as climate and the parent material that forms the soil, 
control the overall structure of an ecosystem and the way things work 
within it, but are not themselves influenced by the ecosystem. 

• Internal factors control the availability of input resources within the 
ecosystem: decomposition, root competition, or shading. Other internal 
factors include disturbance, succession, and the types of species present. 

Internal and external controlling factors
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• Resistance is the ability of an ecosystem to remain at equilibrium despite 
disturbances 

• Resilience is the speed at which an ecosystem recovers to equilibrium after 
being disturbed.

• Reactivity is defined as the maximal initial amplification rate.

Resistence, resilience and reactivity
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• Native species are organisms including a plants or animals whose presence 
in given ecosystem is the result of only natural processes with no human 
intervention. 

• The environmental conditions that a population is exposed influence its 
dynamics and usually sets the limits for its development. Environmental 
conditions can pertain to both biotic and abiotic factors of an ecosystem, 
for example, quantity of light and water, range of temperatures, and soil 
composition, humidity, the number of fellows members, predators or 
competitors around. 

• Lack of resources and adequate environmental conditions, limit the growth 
of native species in specific niches in the ecosystem. 

Native species and ecosystems
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• The population abundance changes over time. Any changes in the number 
of individuals within a population in a given ecosystem comes about by 
reproduction, death or migration of individual organisms.

• Balance equations: changes in population abundance are a balance 
between processes that decrease this abundance (e.g. death and 
emigration) and processes that increase the abundance (e.g. reproduction 
and immigration). 

Population dynamics
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Discrete time models only determine the state of the modelled population at 
specific points in time and do not tell what happens in between.

• 𝑁(𝑡) the population abundances at time t 

• 𝑁(𝑡 +  ∆𝑡) the population abundances at time t + ∆t.

𝑁(𝑡 + ∆𝑡)  −  𝑁(𝑡)  =  𝐵𝑖𝑟𝑡ℎ𝑠 +  𝐼𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 −  𝐷𝑒𝑎𝑡ℎ𝑠 −  𝐸𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛

Discrete models
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ODEs models assume that 𝑁 is uniformly distributed in space so that N depends only on time variable t 

i.e. 𝑁 = 𝑁(𝑡).

• Divide both sides of the discrete model by ∆t:

𝑁 𝑡+𝛥𝑡 −𝑁(𝑡)

𝛥𝑡
= 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝛥𝑡

𝛥𝑡
−

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝛥𝑡

𝛥𝑡

• Take the limit for ∆t tending to 0 to obtain an ordinary differential equation (ODE)

𝑑𝑁

𝑑𝑡
= 𝑓 𝑁 , 𝑓 𝑁 = 𝐵 𝑁 − 𝐷 𝑁

𝐵(𝑁) represents the birth rate, 𝐷 𝑁 represents the death rate

• Specify an initial state (t=0) of population i.e. 𝑁(0) = 𝑁0

Continuous models: ODEs
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• Two pools model: the process is governed by the non linear interaction 
between the soil organic matter represented by  the variable Cs and 
microbial biomass by the variable Cb  and between these pools and the 
environment

𝑑𝐶𝑠

𝑑𝑡
= 𝐼 −

𝛼 𝐶𝑏 𝐶𝑠

𝛽+𝐶𝑠
+ 𝑘𝑏𝐶𝑏

𝑑𝐶𝑏

𝑑𝑡
= Ԑ

𝛼 𝐶𝑏 𝐶𝑠

𝛽+𝐶𝑠
− 𝑘𝑏𝐶𝑏

The graphical representation corresponds to a non-
linear, autonomous,  two-dimensional  ODE system. 

Example: SOC model
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In PDEs models the abundance 𝑁 is defined over a spatial region, whose boundary is 
identified. Then 𝑁 may change according both the space 𝑥 and the time 𝑡 i.e.  𝑁 =
𝑁(𝑥, 𝑡).

Reaction-diffusion-advection equation for species dispersal

𝜕𝑁

𝜕𝑡
− 𝐷 𝛻2𝑁 + 𝝂 ∙ 𝛻𝑁 = 𝑟 𝑁 1 −

𝑁

𝐾
 

• 𝐷 𝛻2𝑁 is a diffusive term, which describes collective motion of randomly moving 
individuals throughout a landscape. The coefficient D is the diffusivity, which governs 
how quickly the species disperses. 

• 𝝂 ∙ 𝛻𝑁 is the advection, which is controlled by the coefficient 𝝂. This allows for 
dispersal to be biased in a certain direction, which is important for modeling dispersal 
that is influenced by external forces, such as currents or winds. 

• 𝑟 𝑁 1 −
𝑁

𝐾
 is the reaction described by is a logistic population growth term, where the 

coefficientris the intrinsic growth rate of the population and K is the carrying capacity. 

Partial differential equations (PDEs)
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• Baker, C. M. (2017). Target the source: optimal spatiotemporal resource allocation for invasive species control. Conservation Letters, 10(1), 41-48.

Example. The spread of invasive Hieracium Aurantiacum in Victorian Alpine 
National Park
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• The population rate 𝑓 𝑁  is given by the difference between the rate with 
which the number of individuals increase and the rate with which the 
number of individuals decreases 

𝑓 𝑁 = 𝑓𝑏 𝑁 − 𝑓𝑑 𝑁  𝑁 

• The per capita birth rate 𝑓𝑏 𝑁  and per capita death rate 𝑓𝑑 𝑁  have formal 
interpretations as the probability per unit time of an individual to born and 
to die, respectively.

Population growth functions
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• Exponential growth assumes that there is unlimited resources available and 
that the population will continue to increase until the end of time 

• 𝑓𝑏 𝑁 = β, 𝑓𝑑 𝑁 = δ, r = β – δ

𝑓 𝑁 = 𝑟 𝑁 

Exponential growth
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• Logistic growth assumes that population growth is limited by several factors 
The point where the line levels out is considered the carrying capacity 𝐾. 

• 𝑓𝑏 𝑁 =  𝛽 1 −
𝑁

𝛶
,  𝑓𝑑 𝑁 =  𝛿, 𝑟 =  β −  δ, 𝐾 =

β – δ

β

𝑓 𝑁 = 𝑟 𝑁 1 −
𝑁

𝐾
 

Logistic growth



Grant Agreement 952111,  H2020 WIDESPREAD-05-2020 (Twinning)

• The carrying capacity is not a set number. Populations do not reach the carrying capacity 
and just stop. In fact, it is natural for populations to fluctuate over time, increasing some 
times and decreasing at other times. The carrying capacity is an estimated number that 
lies somewhere in the middle of these population fluctuations as it  represents a growth 
rate of zero. 

• Over the long term, many populations remain fairly stable in size and hover around their 
carrying capacity based limiting factors, but short term fluctuations may occur due to 
other events.

• The carrying capacity can be kept artificially low or boosted to be artificially high. For 
example, hunting can keep the carrying capacity low. Should hunting be removed as a 
factor, the population may increase until it reaches its true carrying capacity of the 
environment. 

Carrying capacity
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In PDE models we introduce the suitability function

 0 < 𝜌(𝑥) < 1  

to weight the carrying capacity accordingly to the different point in the space.

 

• A reaction-diffusion-advection equation with logistic growth and suitability 
function

𝜕𝑁

𝜕𝑡
− 𝐷 𝛻2𝑁 + 𝝂 ∙ 𝛻𝑁 = 𝑟 𝑁 𝜌(𝑥) −

𝑁

𝐾

Suitability function
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Example. A plant population in a parking area
Baker, C. M., Diele, F., Marangi, C., Martiradonna, A., & Ragni, S. (2018). Optimal spatiotemporal effort allocation for invasive species removal incorporating 
a removal handling time and budget. Natural Resource Modeling, 31(4), e12190.

• The advancement of the front of vegetation spreading along edges and corners, which correspond to the parts that are not easily reachable by cars in the 
parking.

• The spatial area is simplified as a triangular domain and the parking area is represented by an ellipses inside the whole space. 

• A different carrying capacity outside and inside the part reachable by car: a lower value was set at zone occupied by car i.e. inside the ellipses while an  
higher outside where the soil is sealed by gravel. 

• Simulations show that the diffusive dynamics reach the equilibrium at maximum carrying capacity scaled by suitability function
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Spread of Ailanthus Altissima in the Alta Murgia Natural Park 

(Apulia region, south of Italy) 

How estimating the suitability function
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• We started from the species distribution and the land cover map produced in 2012 in the FAO-LCCS taxonomy

• The Habitat Suitability Index (HIS) corresponding to each LandCover class was calculated as proportional to the frequency of occurrence of that LC class 
in the surrounding of each pixel where the presence of A. altissima was detected. 

How estimating the suitability function
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• When there is a critical point 𝑁 = 𝐴 such that if the initial density of the population is 
below this critical point then the population vanishes and if it is above this critical point 
then the population has a positive growth phase then we refer to as Allee effect

 

• The population growth function is given by 

𝑓 𝑁 = 𝑟 𝑁 1 −
𝑁

𝐾

𝑁

𝐴
− 1  

• More generally, the phrase Allee effect is used to indicate a situation in which individuals 
at very low density are actually performing worse than at slightly higher densities.

Allee effect



Grant Agreement 952111,  H2020 WIDESPREAD-05-2020 (Twinning)

• The wild boar colonization of the Alta Murgia Park started with a restocking program and occurred more slowly in the 
initial stages of the reintroduction

• Thereafter, wild boars spread faster and the population growth was fostered by the hunting ban introduction in 2004. 

• Based on the above considerations, an Allee growth for wild boar population with the Allee threshold A was estimated 
taking into account the amount of animals necessary to start the colonization of the Park.

Lacitignola, D., Diele, F., & Marangi, C. (2015). Dynamical scenarios from a two-patch predator–prey system with human control–
Implications for the conservation of the wolf in the Alta Murgia National Park. Ecological modelling, 316, 28-40.

Example. Wild boar colonization of Alta Murgia Park
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• Disease

• Competition

• Predation

Limiting factors to population growth
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Examples. Xylella fastidiosa in olive trees, Covid 19 in human population

EPIDEMIC MODEL 

SEIR model

𝑆 = 𝑆 𝑡 susceptible, 𝐼 = 𝐼 𝑡  infectious, 𝑅 = 𝑅 𝑡  recovered (immune) individuals at time t.

𝑁 = 𝑆 𝑡 + 𝐸 𝑡 + 𝐼 𝑡 + 𝑅(𝑡) is the total number of individuals in the population 

𝐸 = 𝐸 𝑡  is the number of exposed or latent individuals at time t

𝑑𝑆

𝑑𝑡
=  𝛬 −  𝜇 𝑆 −  𝛽 𝐼 𝑆

𝑑𝐸

𝑑𝑡
= 𝛽 𝐼 𝑆 – 𝜎 𝐸 − 𝜇 𝐸

𝑑𝐼

𝑑𝑡
= 𝜎 𝐸 − 𝛼 𝐼 – 𝜇 𝐼 – 𝑘 𝐼

𝑑𝑅

𝑑𝑡
 =  𝑘 𝐼 –  𝜇 𝑅

Λ recruitment rate, 𝜇 natural death rate, β  transmission rate, 1/ 𝜎 incubation period, α the disease-related 
death-rate, 𝑘 is the cure rate.

Disease
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Theory about competition for shared resources between different consumer species  has been 
mainly developed by 

Tilman, David. "Resources: a graphical-mechanistic approach to competition and predation." The 
American Naturalist 116.3 (1980): 362-393.

Competition can occur over resources such as water, food, nesting sites, space, etc. In the case of 
individuals of the same species, it can even be over mates. 

• Intraspecific competition: competition is between individuals of the same species,

• Intraspecific competition: competition is between individuals of different species

• Direct competition: when two individuals fight for the same piece of food that one of them has 
just caught. Also competition for sexual partners is usually a form of interference competition.

• Indirect competition: (or exploitation competition) does not involve direct contact among the 
competitors. An example is when individuals feed on a shared food source: the food eaten by 
one individual is unavailable to the others and hence there is a competitive interaction

Competition
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𝑑𝑁

𝑑𝑡
 =  𝛼 𝑔 (𝑅) 𝑁 −  𝜇 𝑁

𝑑𝑅

𝑑𝑡
 =  𝐹 𝑆 − 𝑅 −  𝑄 𝛼 𝑔 𝑅 𝑁 

• 𝑁 abundance of consumers. 

• 𝑅concentration of a single resource.

• 𝑆 maximum nutrient concentration that is possible in the habitat

• 𝐹 is the flow or supply rate of resource. 

• 𝑄 the amount of resource that is needed to produce a single consumer individual. 1/ 𝑄 is often 
referred to as the yield, since it represents the number of consumer individuals that a single unit 
of resource can yield.

• α maximum population growth rate. 

• μ per capita mortality or death rate of consumers.

One consumer and one resource
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 𝑔 𝑅 =
𝑅

𝛾+𝑅
 

  

γ is the half-saturation constant (𝑔 (𝛾)  =  ½)

Possible outcomes:  

1. The equilibrium value R* for the resource concentration is too large i.e.  R* > S, the 
consumer population cannot persist. 

2. If  R* < S. i.e. if habitat is sufficiently productive the consumers can establish a stable 
population and control the resource concentration in the habitat at the concentration 
equal to R*

Michaelis-Menten functional response
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𝑑𝑁1

𝑑𝑡
 = 𝛼1

𝑅

𝛾1 + 𝑅
𝑁1  −  µ1𝑁1 

𝑑𝑁2

𝑑𝑡
 =  𝛼2

𝑅

𝛾2 + 𝑅
𝑁2  −  µ2𝑁2

𝑑𝑅

𝑑𝑡
 =  𝐹 𝑆 − 𝑅 – 𝑄1 𝛼1

𝑅

𝛾1 + 𝑅
𝑁1 − 𝑄2 𝛼2

𝑅

𝛾2 + 𝑅
𝑁2 

Two consumers and one resource

Outcome:  one species outcompetes the other consumer
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𝑑𝑁1

𝑑𝑡
 =  𝑓1(𝑁1)  −  𝑔1 𝑁1 𝑁2

𝑑𝑁2

𝑑𝑡
 =  𝑓2(𝑁2)  −  𝑔2 𝑁2 𝑁1

• Logistic growth rates 𝑓1, 𝑓2

• Holling I functional responses 𝑔1, 𝑔2

Possible outcomes:  

1. Case I: Species 2 outcompetes species 1, 

2. Case II: Species 1 outcompetes species 2, 

3. Case III: Species 1 can outcompete species 2, but species 2 can also outcompete species 1. The outcome 

depends on the initial condition. 

Lotka-Volterra competition model 
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Case IV: Species 1 and 2 coexist when

ൗ
𝐾2

𝛽21
>  𝐾1 𝑎𝑛𝑑 ൗ

𝐾1
𝛽12

 >  𝐾2

If 𝐾1 = 𝐾2 the condition on the interspecific parameters simplifies to

𝛽21 < 1    and    𝛽12 < 1

• The Lotka-Volterra competition model  allows the description of a coexistence scenario: 
species 1 and species 2 end up sharing a resource, and therefore both species coexist. 

Coexistence scenario
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• Predation can also occur between individuals of the same species and 
individuals of different species. 

• The term applies to animals that eat other animals or animals that eat 
plants. 

• The impact of predation depends on the population number. 

• In areas where predators and prey have coexisted for thousands of years, 
each develop certain strategies to either help it eat well (predator) or to 
avoid being eaten (prey). 

Predation
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• Volterra (1920) developed his model independently from Lotka (1910) and used it to 
explain why the percentage of predatory fish caught in the Adriatic Sea had increased 
during the years of World War I (1914–18) due to the reduced fishing effort during the 
war years. 

• The model was later extended to include density-dependent prey growth and a 
functional response of the form developed by C. S. Holling; a model that has become 
known as the Rosenzweig–MacArthur model (1963). 

• Both the Lotka–Volterra and Rosenzweig–MacArthur models have been used to explain 
the dynamics of natural populations of predators and prey, such as the lynx and 
snowshoe hare data of the Hudson’s Bay Company and the moose and wolf populations 
in Isle Royale National Park.

V. Volterra, Variazioni e fluttuazioni del numero di individui in specie animali conviventi, Mem. Acc. Lincei 2 (1926) 31–
113.

Rosenzweig, M. L., & MacArthur, R. H. (1963). Graphical representation and stability conditions of predator-prey 
interactions. The American Naturalist, 97(895), 209-223.

Modelling predator-prey interaction
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𝑁 = 𝑁(𝑡) the prey population 

𝑃 = 𝑃(𝑡) the predator population

𝑑𝑁

𝑑𝑡
 −  𝐷 𝛻2𝑁 =  𝑓 𝑁 −  𝑔 𝑁  𝑃

𝑑𝑃

𝑑𝑡
− 𝐷 𝛻2𝑃 =  Ԑ 𝑔 𝑁  𝑃 −  µ 𝑃

• 𝑓 𝑁 growth function

• 𝑔 𝑁 functional response

The general diffusive predator-prey model
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• Holling I: functional response assumes a linear increase in intake rate with food density. The 
linear increase assumes that the time needed by the consumer to process a food item is 
negligible, or that consuming food does not interfere with searching for food: 

𝑔 (𝑁) = 𝑎 𝑁

• Holling II:  functional response is characterized by a decelerating intake rate, which follows from 
the assumption that the consumer is limited by its capacity to process food. The equation is

𝑔 (𝑁) =
𝑎 𝑁

1+𝑎 ℎ 𝑁

➢a is the attack rate i.e. the rate at which the consumer encounters food items per unit of food  
density 

➢h is the handling time i.e. the average time spent on processing a food 

The Holling type II functional response is mathematically identical to the Michaelis-Menten 
equation that was used to model the nutrient uptake by bacteria, which was used in Tilman’s 
competition model.

Holling type functional responses
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• Exponential growth for prey 𝑓 (𝑁) = 𝑟 𝑁

• Holling I predator functional response 𝑔 (𝑁) = 𝑎 𝑁 

𝜕𝑁

𝜕𝑡
 −  𝐷 𝛻2𝑁 =  𝑟 𝑁 −  𝑎 𝑁 𝑃

𝜕𝑃

𝜕𝑡
− 𝐷 𝛻2𝑃 =  Ԑ 𝑎 𝑁 𝑃 −  µ 𝑃

Lotka-Volterra diffusive predator-prey model 
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• Logistic growth for prey 𝑓 𝑁 = 𝑟 𝑁 1 −
𝑁

𝐾
 

• Holling II predator functional response 𝑔 (𝑁) =
𝑎 𝑁

1+𝑎 ℎ 𝑁

𝜕𝑁

𝜕𝑡
 −  𝐷 𝛻2𝑁 =  𝑟 𝑁 1 −

𝑁

𝐾
 −

𝑎 𝑁

1 + 𝑎 ℎ 𝑁
 𝑃

𝜕𝑃

𝜕𝑡
− 𝐷 𝛻2𝑃 =  Ԑ

𝑎 𝑁

1 + 𝑎 ℎ 𝑁
 𝑃 −  µ 𝑃

Rosenzweig-MacArthur model
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• The system is affected by spatio-temporal chaos. Spiral patterns appear 
together with irregular patches that spread over the whole domain. 

Medvinsky, A. B., Petrovskii, S. V., Tikhonova, I. A., Malchow, H., & Li, B. L. (2002). Spatiotemporal complexity 
of plankton and fish dynamics. SIAM review, 44(3), 311-370.

Example. Phytoplankton-zooplankton system

Spatial distribution of 
prey (phytoplankton) for 
(a) t = 0, 
(b) t = 120, 
(c) t = 160, 
(d) t = 300, 
(e) t = 400, 
(f) t = 1200. 
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Wild-boar population in Alta Murgia Park

• The Alta Murgia area extension and vegetation type 
appears to be unsuited for hosting a viable and stable 
population of wolves. 

• Instead, the wild boar population exploded because 
hunting activities were banned after the inclusion of 
Alta Murgia Park in the Natura 2000 network. 

• Wolves reach Alta Murgia from a nearby protected 
area, Monti Dauni, through ecological corridors. 
National legal obligations bind the managing Alta 
Murgia authorities to set up conservation policies for 
the protected species of wolves. 

Two patches, two predators, two time scales

Lacitignola, D., Diele, F., & Marangi, C. (2015). Dynamical scenarios from a two-patch predator–prey system with 
human control–Implications for the conservation of the wolf in the Alta Murgia National Park. Ecological modelling, 
316, 28-40.
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• Logistic growth rate with Allee effect for wild-boar 
 

𝑓 𝑁 = 𝑟 𝑁
𝑁

𝐴
− 1 1 −

𝑁

𝐾
 

• Holling I functional response of wolves in patch 1 (Alta Murgia) 

𝑔1 (𝑁) = 𝑎1 𝑁 (plus emigration and immigration)

• Only wolf emigration and immigration in patch 2 (Monti Dauni)

• Two-time scales: the fast part of the model at the fast τ scale (daily scale) only describes 
the migration of wolves between the two patches whereas, the evolution of the wild 
boar and wolf populations holds at slow time scale (yearly scale) t = Ԑ τ scale, with Ԑ << 1

Model assumptions
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The model  

Reduction of the dimension of the two-patch model to one-patch system by defining  𝑃 = 𝑃1 + 𝑃2 as the 

total amount of wolves and 𝑑 =
𝑑2

𝑑1+ 𝑑2
. 

As the  system is structurally stable and the parameter Ԑ is small enough, the dynamics of the aggregated 

model is a good approximation of the dynamics of the global variables in the full system. 

Auger, P., Bravo de la Parra, R., Poggiale, J., Sanchez, E., Nguyen Huu, T., 2007. Aggregation of variables and applications to population 

dynamics. In: Lecture Notes in Mathematics. Mathematical Biosciences Subseries, vol. 1936., pp. 209–264

Aggregation 
method
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