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1. INTRODUCTION 

An exhaustive knowledge of many natural processes and their drivers is still missing. Empirical models are a 

useful tool in the pioneering exploration of processes because they rely on the possibility to obtain information 

directly from the data without, or with just a few, assumptions.  

Data-driven models are based on empirical relationships between measured variables. The aim of data-driven 

models is to represent a variable as a function of other measured variables, called predictors or explanatory 

variables. Thus, the modelled variable (𝑌𝑡̂, i.e. the variable that one wants to predict), at time t can be expressed 

as a function (F) of: time (t), other measured variables at time t (e.g. Xt and Zt), the variables at a past time t-k 

(e.g. Xt-k and Zt-k) and the same modelled variable at a past time t-k (i.e. Yt-k, in that case the model is 

autoregressive). A general formulation of a data-driven model is the following: 

𝑌𝑡̂ = 𝐹(𝑡, 𝑋𝑡 , 𝑋𝑡−𝑘, . . . , 𝑍𝑡 , 𝑍𝑡−𝑘, … , 𝑌𝑡−𝑘, … ).         (1) 

Different model formulations, namely different functional forms, as well as different candidate predictors are 

usually tested when building a model. The selection of the variables is performed by using statistical criterions: 

the predictors should not be cross-correlated (which can be excluded with a partial correlation analysis), the 

regression should be significant and the modelled variable (𝑌𝑡̂) should be as close as possible to the measured 

one (Yt). The ability of the model to reproduce the measured variable is expressed by the explained variance (i.e. 

the ratio of the variances of the modeled and measured variable, 𝜎𝑌𝑖̂

2/𝜎𝑌𝑖

2 ) or by the R2. Hence, the optimal model 

is the one displaying the highest explained variance (or R2). Moreover, when dealing with multi regression models 

(i.e. models including more than one predictor), the inclusion of more predictors may increase the explained 

variance of the model to the detriment of the model parsimony. A further constrain on the model can be 

obtained with the Akaike Information Criterion (AIC). The AIC measures the goodness of a statistical model based 

on a trade-off between the residual variance (that is, the variance of the residuals, 𝑌𝑡̂ − 𝑌𝑡) and model parsimony 

(that is, with a penalty proportional to the number of free parameters). By this criterion, the empirical model 

having the lowest AIC should be preferred. Such criterion is used to compare models that differ in their functional 

form and/or in the accounted predictors.  

As a final remark, predictors are not necessarily drivers of the process, thus the nexus of causality between the 

predictor and the modelled variable need to be tested thereafter. In the following, such general descriptions are 

applied to build models of carbon dioxide (CO2) fluxes in both the high-altitude Alpine and the high-Arctic 

ecosystems. 

QUANTITATIVE MODELS FOR TERRESTRIAL CO 2 FLUXES 

Over lands, the net CO2 flux is made of two components: photosynthetic uptake by plants, and emissions by 

(plant) autotrophic and (microbial) heterotrophic metabolic activity. The plant photosynthetic uptake is called 

the gross primary production (GPP, which assumes negative values by convention) and the total emission is called 

ecosystem respiration (ER, which assumes positive values).  

The air (or soil) temperature and the photosynthetic active radiation are well known drivers of ER and GPP, 

respectively. In detail, an exponential dependence of ER on the environmental temperature and a response of 

GPP to light intensity through a Michaelis-Menten function are commonly assumed: 

𝐸𝑅 = 𝑎 𝑒𝑏𝑇, (2) 
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𝐺𝑃𝑃 =
𝐹𝛼 𝑅

𝐹+𝛼 𝑅
 . (3) 

Here, the temperature T is expressed in Celsius, a is a free parameter, corresponding to the respiration at 0 oC, b 

is the temperature sensitivity of respiration, R is the incoming solar radiation, F is the maximum photosynthetic 

flux for infinite light supply and 𝛼 is the apparent quantum yield, i.e. the photosynthetic response at low light 

level. Reference to the original papers are in the attached slides. 

Field studies suggest that Eq. (2-3) reproduce the flux variations only partially in both the Alpine and the Arctic 

ecosystems. Hence, multi regression models are usually built to identify additional drivers. Since the regression 

parameter in Eq. (2-3), namely a, b, F and 𝛼, were shown to depend on other factors, the regression parameters 

of the classical functions can be thought as functions of additional drivers (e.g. a = a(x1, x2, ...) and b = b(x1, x2, 

...), with x1, x2 being any other measured variable). The function of the additional drivers, which are not known a 

priori, can be approximated with polynomial series. If the additional drivers produce small changes in the 

regression parameters, then Taylor expansions are possible. Then, multi regression models were built by 

retaining the first order of the expansion and testing all the measured variables as candidate additional predictors 

See also Magnani et al (2020). 

CO2 fluxes and basic meteoclimatic variables (including air temperature and moisture, solar irradiance, 

atmospheric pressure, and soil temperature and moisture) were measured at both an Alpine and an Arctic site. 

In the Arctic site, located in the Svalbard Islands (Norway), data-drive models were used to study the factors 

influencing the fluxes at different spatial scales (from about 20 cm to 100 m), as well as the differences between 

the fluxes measured for different vegetation types. This was achieved by comparing regression parameters of 

the models estimated for different classes of vegetation, thus assessing whether, for different vegetation types, 

the fluxes display a different response to the same values of the predictors. In the Alpine study, located in the 

Gran Paradiso National Park (Italy), three sites characterized by different parental material were identified within 

the same watershed to analyze the possible site-to-site differences within the same environment. Measurement 

designs are detailed in the slides.  

In the Arctic site, the temporal variability of the fluxes at a fixed point along 24 hours was well reproduced by 

the classical drivers: the air temperature for ER (Eq. 2), and the solar irradiance for GPP (Eq. 3). However, when 

zooming out to the site scale, only a small part of flux variability was explained by the classical drivers and multi 

regression models were needed. At the site scale, the measured meteoclimatic variables, together with the hour 

and day of sampling were used to build multi regression models.  The spatial and temporal patterns of the fluxes 

were reproduced by the following equations: 

𝐸𝑅 = (𝑎0 + 𝑎1𝑉𝑊𝐶 + 𝑎3 𝐺𝐹𝐶) 𝑒𝑏0𝑇𝑎, (4) 

𝐺𝑃𝑃 =
𝐹0𝛼0 𝑅

𝐹0+𝛼0 𝑅
 (𝐴0 + 𝐴1𝑉𝑊𝐶 + 𝐴2 𝐺𝐹𝐶)  , (5) 

Where VWC is the soil moisture (volumetric water content), GFC the green fractional cover (between 0 and 1), 

Ta is the air temperature and R is the total incident solar irradiance. The models were then parameterized for 

both different classes of vegetation (vascular, non-vascular and mixed vegetation) and different species, 

representing the most abundant vascular species in the site: Carex spp., Dryas octopetala, Salix polaris, Saxifraga 

oppositifolia and Silene acaulis. Significant differences between vegetation classes and between species were 

observed in the flux dependence on the GFC (i.e., significantly different a1 and A1 parameters). The original paper 

is attached. 

In the Alpine case, for each of the three measurement sites, the selected the models where: 
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𝐸𝑅 = (𝑎0 + 𝑎1𝑉𝑊𝐶 + 𝑎2 𝑃𝑟 + 𝑎3 𝐷𝑂𝑌) 𝑒𝑏0𝑇𝑎, (6) 

𝐺𝑃𝑃 =
𝐹0𝛼0 𝑅

𝐹0+𝛼0 𝑅
 (𝐴0 + 𝐴1𝑉𝑊𝐶 + 𝐴2 𝐷𝑂𝑌)  , (7) 

where the same conventions of Eq. (4-5) were used, and Pr is the atmospheric pressure and DOY the day of the 

year (from 1 to 365). Moreover, comparing the regression parameters of Eq. (6-7) estimated for different sites, 

significant differences were observed in the flux dependence on VWC, namely A1 and a1, possibly suggesting an 

additional influence of the parental material, via soli characteristics, on the fluxes. The original paper is attached. 

Hence, in both the Alpine and the Arctic case study the soil moisture (VWC) and a vegetation descriptor, namely 

the GFC in the Arctic and DOY that was interpreted as a proxy of phenology in the Alps, were identified as 

additional predictors of the fluxes beyond the classical drivers. Further comments are present in the slides.  

The slides are complemented by the original papers. 

 

 


