
SPATIAL: Practical AI Trustworthiness with
Human Oversight

Abdul-Rasheed Ottun1, Rasinthe Marasinghe1, Toluwani Elemosho1, Mohan Liyanage1,

Ashfaq Hussain Ahmed1, Michell Boerger3, Chamara Sandeepa4, Thulitha Senevirathna4, Vinh Hoa La5,

Manh-Dung Nguyen5, Claudio Soriente7, Samuel Marchal6, Shen Wang4, David Solans Noguero8,

Nikolay Tcholtchev9, 3, Aaron Yi Ding2 and Huber Flores1

1University of Tartu, Estonia; 2Delft University of Technology, Netherlands; 3Fraunhofer Institute for Open Communication

Systems, Germany; 4University College Dublin, Ireland; 5Montimage, France;
6VTT Technical Research Centre of Finland Ltd, Finland; 7NEC Labs, Germany; 8Telefónica Research, Spain;

9RheinMain University of Applied Sciences, Germany

firstname.lastname@{ut.ee, tudelft.nl, fraunhofer.de, ucd.ie, montimage.com, vtt.fi, neclab.eu, telefonica.com}
Abstract—We demonstrate SPATIAL, a proof-of-concept sys-

tem that augments modern applications with capabilities to
analyze trustworthy properties of AI models. The practical anal-
ysis of trustworthy properties is key to guaranteeing the safety
of users and overall society when interacting with AI-driven
applications. SPATIAL implements AI dashboards to introduce
human-in-the-loop capabilities for the construction of AI models.
SPATIAL allows different stakeholders to obtain quantifiable
insights that characterize the decision making process of AI.
This information can then be used by the stakeholders to
comprehend possible issues that influence the performance of AI
models, such that the issues can be resolved by human operators.
Through rigorous benchmarks and experiments in a real-world
industrial application, we demonstrate that SPATIAL can easily
augment modern applications with metrics to gauge and monitor
trustworthiness. However, this, in turn, increases the complexity
of developing and maintaining the systems implementing AI.
Our work paves the way towards augmenting modern appli-
cations with trustworthy AI mechanisms and human oversight
approaches.

Index Terms—Practical Trustworthiness, Artificial Intelligence,
Fairness, Human oversight, Industrial Use Cases

I. BACKGROUND AND MOTIVATION

All regulatory and economic frameworks worldwide recog-

nize artificial intelligence as a pivotal technology to support

the functionality of emerging modern applications [1]–[4].

However, challenges such as lack of transparency, resilience,

and accountability have led to the imposition of strict regula-

tions on its usage [5], [6]. The primary goal is to ensure best

practices and minimize risks in developing AI-based software.

Consequently, trustworthy AI has evolved from traditional

trustworthy computing to specifically address the safety of AI

software and responsible societal deployment [7]. Traditional

methods, however, are not directly applicable to AI-based

software. As AI continues to integrate into every aspect of

human life, new methods are required to gauge, adjust, and

monitor the trustworthiness of AI inference capabilities.

Modern applications have evolved from basic client-server

architectures to more complex architectures that incorporate

machine learning (ML) [8] and distributed machine learning,

e.g., Federated Learning (FL) [9]. These system architectures

implement AI pipelines to build models that learn and improve

over time from data contributed by end-users. This allows

for AI-based recommendations and guidance to enhance user

experiences. With emerging regulatory guidelines emphasizing

transparency and requiring greater human control and over-

sight, there is a regained focus on methods like Explainable

AI (XAI). These methods aim to make the workings of AI

more understandable and to integrate human feedback directly

into AI systems. Adopting such approaches is crucial not only

for developing new opportunities and markets but also for

safeguarding the fundamental rights and liberties of individuals

who depend on AI.

In this demonstration, we present SPATIAL [9], a proof-

of-concept system architecture that augments AI components

with mechanisms to gauge and monitor the inference capabili-

ties of AI and its performance in practice. SPATIAL does this

by characterizing AI using different trustworthy properties.

Conceptually, SPATIAL uses AI sensors and dashboards to ab-

stract the complexity [10]. An AI sensor is instrumented within

an application to monitor a specific trustworthy property, e.g.,

fairness, and this results is then shown in the AI dashboard.

Simply put, an AI dashboard shows to users quantifiable met-

rics extracted by AI sensors [10]. Based on this, SPATIAL is

designed following a micro-service pattern architecture in the

back-end, and a dashboard showing the computed results in the

front-end. Through a rigorous evaluation, in which SPATIAL

augments a real-world industrial application, we demonstrate

that AI models can be characterized and their quantifiable

characteristics can be shown to users without introducing much

overhead in existing architectures. We also demonstrate how

human oversight can improve the understanding of users over

AI. However, greater engagement methods are required to

foster the active participation of users. Our work paves the way

towards implementing practical AI trustworthiness in modern

applications.

II. SYSTEM DESIGN AND IMPLEMENTATION

We begin by explaining the augmented software architecture

in which SPATIAL builds upon. After this, we describe the

system implementation and deployment of SPATIAL.
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A. Software design

Figure 1 shows the latest design of a modern architecture

implementing distributed machine learning (FL). It is possible

to observe that expected functionality in the architecture is

linked to a design concern, requiring a specific human exper-

tise. From the figure, it is also possible to observe the compo-

nents that SPATIAL uses to augment the architecture [10].

These components implement routines to analyze the AI

algorithm and data used in the construction of machine/deep

learning models (AI models). SPATIAL augments system

architectures with two types of components, one located at

the server side, and other located at the client end.

Fig. 1: SPATIAL software architecture.

AI sensors in SPATIAL: These depict virtual sensors that

monitor and characterize a trustworthy property over time.

Each trustworthy property is linked to an AI sensor. These

sensors are instrumented within the target application whose

trustworthiness is measured. Instrumented as APIs within

applications, these sensors enable the quantification of AI

compliance against available requirements, offering insights

into the model’s compliance with desired specifications. The

key advantage of API instrumentation is that if the function-

ality of an AI sensor requires heavy computation, then the

functionality is outsourced/offloaded to the server.

AI dashboards in SPATIAL: This is a user interface that

enables human oversight in the analysis of AI models, for both

data and AI models after training. The AI dashboards present

all the quantifiable measurements extracted by the AI sensors

to users visually. This allows human experts to collaborate

in overseeing model development and ensuring tuning of the

AI system to address trade-offs in trustworthiness properties

while complying with regulatory requirements.

B. System deployment

Figure 2 shows the deployment of our augmented software

architecture. Next, we provide a detailed description of each

component implementation.

Back-end implementation: SPATIAL follows a micro-service

pattern to estimate AI trustworthiness based on combined

metrics and services. The key idea is that each micro-service

specializes in characterizing a specific, trustworthy property,

e.g., micro-service for fairness, micro-service for privacy.

Micro-service patterns enable easy replacement of metrics for

quantifying trustworthiness. This is beneficial as, currently,

there is a mismatch between legal and technical trustworthi-

ness. Thus, metrics that align better with legal requirements

can be easily updated in SPATIAL. Node.js serves as a foun-

dational runtime environment in our architecture, preceding

the API Gateway. It is employed for building scalable server-

side applications, leveraging its asynchronous, event-driven

programming model to handle concurrent requests efficiently.

We rely on open-source Kong technology for our API gate-

way, which supports easy extensions through OpenAPI and

configurations for continuous integration. The API Gateway

orchestrates communication, ensuring each micro-service re-

ceives the necessary input, processes it, and delivers the correct

response. We used NGINX to define Upstreams and API

addresses in the configuration file to target particular URL

paths to route to the corresponding micro-services. Metrics

and services quantifying trustworthiness as micro-services are

containerized (using Docker) and follow a request/response

scheme. To aggregate metric/service in SPATIAL, a virtual

machine is first created, followed by pushing Docker images

encapsulating all the dependencies and configurations into

the virtual machine. Deployment through Docker containers

simplifies the procedure and provides a standardized, iso-

lated environment, ensuring seamless deployment experiences

across different instances. Our SPATIAL deployment is located

in the High-Performance Computing (HPC) Center [11]. Af-

filiated with the University of Tartu, and part of the LUMI

supercomputer.

Current micro-services include, XAI services (LIME, Oc-

clusssion sensitivity and SHAP), fairness metric over data

using IBM AIF360 that quantifies demographic disparity, net-

work traffic service applying impact and complexity metrics on

AI models, differential privacy service obfuscating data, med-

ical data analysis service implementing visualization methods

for explanations, security diagnosis service implementation

detection methods of model stealing and data poisoning at-

tacks, LLM service implementing Llama LLM for adapting

explanations to specific stakeholder terminology and the ML

component implement traditional training functionality for

different ML algorithms [9], [12].

Front-end implementation: SPATIAL frontend is imple-

mented using React, providing users with an intuitive interface

to seamlessly integrate with SPATIAL features. Node.js serves

as the required runtime environment for React’s develop-

ment tools, including Babel and Webpack. The Bootstrap 5

framework is utilized for responsive design, while Tailwind

CSS is employed for customized styling, resulting in visually

appealing UI components. Additionally, the SPATIAL client

integrates Okta for identity management, ensuring secure and
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robust authentication and authorization capabilities for access

control. For dataset management and responsive chart visual-

ization, we utilize D3.js, Chart.js, and Papaparse for parsing

CSV data.

Fig. 2: SPATIAL system deployment.

III. HUMAN OVERSIGHT: SPATIAL ANALYSIS AND

USAGE

New regulatory requirements to make AI trustworthy and

responsible are transforming the role that humans play when

interacting with AI, and consequently, humans are required

to be involved in the construction process of building, using

and deploying AI models in applications. We next describe

how SPATIAL supports human oversight, its applicability in

a real-word industrial application.

A. SPATIAL usage

Figure 3 shows the overall flow of usage of SPATIAL. First,

a user (aka stakeholder) login into the SPATIAL. Here, the

user can then select the type of stakeholders, such that the

LLM component can adjust the generated explanations from

SPATIAL metrics and services based on the expertise of the

user. In step 1, after the user is logged in, the user can build

AI model using the ML component, see 3.1. To do this, the

user has to upload a dataset or provide a link to retrieve the

dataset. Alternatively, it is possible for the user to upload its

own serialized version of the AI model. Once an AI model is

available, the AI model can be analyzed using SPATIAL back-

end metrics and services. Thus, the AI model is passed to the

AI dashboard. Next is step 2; at this point, both the AI model

and the data will be passed to the respective micro-services

to characterize a specific, trustworthy property (Explainability

and fairness properties are considered in this demo, see 3.2(a)

& 3.2(b)). Each result provided by a micro-service will be

visually presented in the AI dashboard, either as a diagram or

a text explanation. The AI dashboard is used by the user to

understand the quantifiable trustworthy characteristics of the

AI model. After this, the AI dashboard can be used to facilitate

changes on either the AI model or data. In this process, a new

version of the model or data is created, such that changes can

be applied, and SPATIAL can be reapplied in the new versions.

SPATIAL also provides a comparison tool feature, such that

different trustworthy properties from different AI model or

data version can be compared side by side.

B. SPATIAL demonstration in industrial use case

Application: Medical e-calling application: It is a mobile

application, part of an e-calling system, that uses accelerome-

ter data to detect the falling of an elderly person. As the falling

event is detected, the application triggers an emergency call

to request medical assistance.

Dataset: The UniMiB dataset is used to train an AI model that

classifies different types of activities based on accelerometer

data. This dataset serves as a benchmark for human activity

and fall detection, containing 11,771 acceleration samples

from 30 subjects comprising both male and female genders. It

encompasses nine classes representing activities of daily living

(ADL) and eight classes representing falls.

SPATIAL applicability: Since a key trustworthy characteris-

tic is to determine whether the AI model can be used on any

individual, we rely on SPATIAL to perform fairness analysis.

The service performs individual fairness analysis and group

fairness analysis. It then generates results relating to model

consistency in assigning labels to similar instances, class

imbalance, disparate impact, equal opportunity, and equalized

odds. As described previously, to perform this analysis, after

the user has logged into SPATIAL, the user just has to upload

the dataset and then pass it to the AI dashboard and SPATIAL

micro-services are called. Notice that our use case places

emphasis on fairness micro-service for this demonstration, but

other micro-services work in the same manner.

AI dashboard results: Figure 3 also shows the results es-

timated by the fairness component. From the figure, it is

possible to observe that all the results are presented as visually

generated graphs and text explanations. These explanations can

be adjusted based on the type of stakeholder using the latest

advancements in LLM. As a result, it is easy to interpret the

following bias result in figure 3 for the provided datasets. In

one of the fairness analysis results (bottom right), both Age

and Gender features exhibit relatively high consistency metrics

of 0.740 and 0.755, respectively, suggesting consistent treat-

ment across different instances. However, the class imbalance

metric reveals an imbalance in the Age feature (0.505), while

Gender shows a slight imbalance (-0.12), indicating potential

disparities in the Age representation of different groups as

the Age feature favors the majority class while the Gender

favors the minority class. Furthermore, the disparate impact

input metric for Age (-0.368) and Gender (0.022) indicates

unequal treatment of the groups by the model’s predictions.

Suggesting that one group has an advantage over another in the
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Fig. 3: Overall flow of SPATIAL usage and its applicability (fairness only) over a use case application.

model prediction. Disparate prediction input metrics indicate

somewhat similar outcomes, with Age (-0.375) and Gender

(0.03). However, the equal opportunity metric reveals negative

values for Age (-0.075) and positive values for Gender (0.017),

indicating disparities in opportunities for positive outcomes

across different groups as the majority group is more favored.

Finally, fairness score metrics show positive values for Age

(0.375) and Gender (0.030), indicating fair practices with ef-

forts to address bias in disparate impact and equal opportunity.

IV. SUMMARY AND CONCLUSIONS

We demonstrated a working implementation of SPATIAL,

a proof-of-concept system that augments modern applications

with capabilities to analyze and quantify trustworthy aspects

of AI models. SPATIAL uses a micro-service and API gate-

way pattern to combine different methods for analyzing AI

algorithms, its data, and the resulting AI model. SPATIAL also

implements an AI dashboard to show the results of the analysis

to users, introducing human-in-the-loop feedback that can be

used to monitor and tune AI model behavior. Through rigorous

benchmarks and analyses that consider a real-world industrial

application, we demonstrated the performance and scalability

of SPATIAL to perform practical AI trustworthiness.
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