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Agenda

 Motivations for neuro-symbolic Al
® |ogicfor domain constraints
e whatis the hypothesis space?
e what is the distribution space?
e Nesy program induction
* Nesy + RL
e NeSy + LLMs

e Conclusions



Challenges with Neural networks

e Structured Reasoning: struggle with hierarchical reasoning
and causality vs. correlation

e Data Need: require large datasets for robust predictions

e Knowledge Integration: Integrating expert and common
sense knowledge is challenging



e Explainability: raising ethical, security and HCI concerns

e Guarantees: output is based on highest probability, so may
violate constraints in safety-critical applications

Marcus (2018)






Language Uncertainty Training Model
Propositional/ Probabilistic Probabilistic SRL
Prolog
Propositional/ Labelled S — ILP
Prolog examples
Propositional Fuzzy Deep learning NeSy (LTN)
Propositional Probabilistic Deep learning NeSy (ProbLog)




A few exciting and emerging
areas

e Knowledge graphs: knowledge completion, knowledge-
based reasoning

e Neuro-symbolic logic programs: hybrid reasoning with
logical and neural predicates

e differential inductive programming: program and
structure induction using neural techniques



logic-based loss functions: enforce geometric and logical
constraints during predictions

Nesy + RL: human-level logical feedback to train dynamic
systems

LLMs: as a service for constructing knowledge or to
improve answers involving reasoning



Logic for domain
constraints

neural network regularisation
using logical formulas




Density estimation
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Design: py(z)

Train: py (z) = arg meax(logpg (X))

But constraint?? + Lg(X)



Standard Network
Inputs Design MultiplexNet

Optimise

Z'(x,) + log g(k | x)]
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Hoernle et al. 2022; cf. semantic loss, DeepProblLog, DL2



Constraint satisfaction
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Vs Baseline VAE

Generated Data
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Delayed signals = weak
supervision
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Constraint

P=(yy =0ANy2 =0Ays=0Ays =0) V...
(y1=0/\yz=1/\y3:O/\y4:1)\/...

(11 =9Ny2 =9Ay3 =1 Ayy = 8)



Decoded samples
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Super-class with CIFAR100 (e.g.,
maple is also tree)

Model Class Accuracy Super-class Accuracy Constraint Satisfaction
Vanilla ResNet .0 (0:1) 84.0 &+ (0.2) 83.8 + (0.1)
Vanilla ResNet (SC only) NA 83.2 &+ (0.2) NA
Hierarchical Model 71:2 3(0.2) 84.7 + (0.1) 100.0 £ (0.0)
DL2 75.3+(0.1) 84.3 £+ (0.1) 85.8 £+ (0.2)
MultiplexNet 74.4 &+ (0.2) 85.4 + (0.3) 100.0 £ (0.0)

Hierarchical is trained to predict the super class label and class label, conditioned on the value for the super class label; represents the bespoke

engineering solution



Characterising the
learned model

Towards correctness /
verifiability of the hypothesis
space




Setup

Input: (z,,z9,...,2,)
Classifier output: ¢ {y;,vys,..., v}
Signal: o(7)!

E.g.,.o€{+,— x @}

Goal: Attempt an ILP formulation!



Logical predicates

* CP(fiyzi,yi) = fi(x;i) = s
* TP(y,s) =0o(y) =s
* OP(Z,s)=D(Z) =s



ILP formulation

Examples E:
{(Z,s)|OP(%,s) N /\ CP(fi,x;,y;) NTP(y,s) Alabel(o(y)) = s}

Find Hst, BAH = E.

Where B is (say) axioms about numbers



Example with known o (=+)

Given: label(+( U, 1 ))=1 label(+( 2,3 )) =5, etc.

Find H (extension to label) s.t. B A H entails:

label(xg + 1) = 1 Alabel(zy +x3) =5...

Thus, = label(0) =0,. ..

dxg, 21,22, x3,...1abel(0) = g Alabel(1) =z, A ...



Variations

 Permits k-ary functions
e Guessoaswellas H?

e How to deal with (infinitely) many variations of images?



A geometric view on correctness

Baseline trained distribution: g

Constrained distribution: p ... both drawn from a family of
distributions D.

Task: minimize dp(p, q)

p(z)
E.g., Kullback-Leibler dxr, (p||q) = Zp log 22




Classifier viewpoint

Loss: L. (f) = dp(pa, f)-

Constrained distribution: p, (z) = U(z € M(a)).

or some other on M(a),...

So includes WMC-based semantic loss, SAT, etc.



Error minimization (for XOR
propositional constraint)

Init. Dist.(approx) [1000] [0100] [500.5 [.33.33.330][.25.25 .25 .25]

L*-Norm 0.01201 2.74626 1.29408  0.00113 0.00130
FisherD.(ours) 8.821e-06 1.782e-05 2.444e-06 1.889e-05 5.364e-06
KL-Div(ours) 0.00097  0.00046  0.00102  0.00078 0.00082
-WMC 0.82146  4.01373  0.52928  0.02228 0.00114

Sloss 3.48912  4.01371  0.38087  0.02220 0.00111




Neural ILP

e combine deep learning with relational ILP
e vs deep learning: explanatory power

e vs |LP: deal with noisy, continuous, non-linear data

Evans & Grefenstette, 2017; Payani & Fekri, 2019; Bueff & Belle, 2024



E.g., given data that generates ¢ = mc”, can you learn such
a rule/equation?



3 steps

® continuous data discretisation

e operational predicates like addition or multiplication or
square or root

e rulesthat combine these

Remark: classifier based, so rules observed for intervals of
relevant variables



Example

Recal: BAH =~,Vye P,and BAHFE vy,Yy€ N

e B = {Car(ford), Clothing(jacket), On(jacket, bob),

Inside(carol, volvo), -}
e P ={Passenger(bob), Passenger(carol), :*}

e N ={Passenger(volvo), Passenger(jacket), -}



Passenger(X) < Inside(X,Y1) A Car(Y1) AOn(Y2,X) A Clothing(Y?2)

If an object is inside the car with clothing on it, then itis a
passenger



In our setting, we might have ...

Classl(m, C)(O§E§3.O7>< 10°1)

LessThan(m, 0.6) A SquareLessThan(c,0.5) A ProdLessThan(m, c2,0.3)

it m is less than 0.6 and the square of cis less than 0.5 and the
product between m and square of cis less than 0.3, then the
value of E will be greater than or equal to 0 and less than or
equal to 3.07 x 10°*



Cart pole (RL)




CartPole Policy rules for ANLRLnlc

left()
: —([0.60]CartPos < 2.57 A\ PoleAngleSine > 0.00 A PoleAngleVeloc > —0.38)

mean reward:  right(
294.7125.8 : —(PoleAngleSine < 0.04 A\ PoleAngleVeloc < 0.00)

: —(CartPos < 0.74 A [0.55|CartVeloc > —1.64 ACartVeloc < —0.11
APoleAngleSine < 0.65 A [0.66|PoleAngleVeloc > —2.04 A\ PoleAngleVeloc < 0.28)




sing LLMs as "encoder" for
language

Premise

There are four persons. Everyone is visible to others. Each person draws a card, face unrevealed (red or black). Cara's
card is shown 10 Vasiliki. Cara’s card is shown to Conrad. Jennifer's card is shown to Conrad. Vasiliki's card is shown 1o
Cara. It is publicly announced that someone picked a red card. It is publicly announced that Vasiliki knows whether

someone picked a red card

Hypothesis
Cara can now know whether Conrad picked a red card.

Symbolic Formulation

VARS 1,234
LAW Top
OBS Agenta:3 Agentb:3,4 Agentc:1

VALID? [ ! (112I1314) ] [ ! (Agenta knows whether (1121314)) ] (Agentc knows whether 2)

Sileo and Lernould, 2023; Tang and Belle, 2024



{?) ToM Problem e
Fine-tuned LLM

@ Base LLM —_— @ NL2SF Data —> @ Fine-tuned LLM

{ > Symbolic Formulation

l

{3 SMCDEL Model Checker

l

(=] Answer

(Z) In-Context Example



On Mindgames (DEL + public

announcement)
Approach Execution Rate(%) |Accuracy(%) AUC
DP 99.50 58.00 0.598
SFGP 78.00 49.00 0.60
DP g7 100 76.00 0.76
ToM-LM 94.50 91.00 0.94




Symbolic reward shaping

Recall: MDP is tuple
M=(S,A,R,P,7);R: SxA—=R;P:SxAxS—Ryq;7€(0,1]

Suppose R were specified by a logical formula?

Icarte et al. (2022)



Driving world

(a) Driving World Environment

Ciupa and Belle (2024)

start

(b) Single Task ERM



Suppose we were able to label good, bad and neutral actions.

Aplant =ayq...a, is morally permissible according to Act-
Deontology if and only if =Bad(a;), Vi holds.

Looked at driving, trolley dilemma and learning from moral
preferences

Ciupa and Belle (2024), Ciupa and Belle (ongoing)



Algorithm & evaluations

Algorithm 1 Reward Machines with Act Deontology

l: Input: MDPRMs, I1

2: Output: Policy for MDPRMs xI1" (IT" = (IT x Act-Deontology)) or Impermissible
3: episode ended <+ False
4
)

: while —episode ended do
Observe s’ from a’
6: Check moral result of Vs € S, " = {Good(s) V Neutral(s) V Bad(s)}
76 if s’ is Good(s) V Neutral(s) then

8: episode ended < False
9: Policy for MDPRMs x I’
10: else

11 episode ended < True
12: Impermissible

13: end if

14: end while
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Summary

* |ogicforloss functions
 |ogic with program induction + LLMs + RL

Logic for ... constraints, explanations, correctness



Outlook

e Neuro-symbolic Al is a rich landscape covering various
strategies and frameworks for integrating deep learning and

reasoning

e Often referred to as the third wave of Al, combining the best
of both worlds



e Notreliant on a single foundation, allowing for ad-hoc
constructions -- presents challenges from a foundational

standpoint

e The most promising direction for knowledge integration
and correctness/verification



