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ABSTRACT

A new method shows that the Grothendieck constant K > 1.6769... .

The previous best lower bound was Kg > 7/2 ~ 1.57... .
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1 Introduction

One form of Grothendieck’s inequality [G] states that there is a best constant
Kg < oo such that for any bounded linear operator T : L*(X,u) —
LY (X, i) and for any real bounded functions fi, ..., f, € L*,

WE@ny| < waml-|Er

where ||T'|| is the operator norm. The constant K¢ is universal: it does not

Y
oo

depend on 7', or on the functions f;, or even on the underlying measure
space (X, u). For general information about Grothendieck’s inequality, see
[K], [L] and especially [P].

The numerical value of K has been a minor mystery from the beginning.
Grothendieck [G] showed that 7/2 < K < sinh(w/2) = 2.301... . Krivine
[K] showed that Kg < m/2log(l + /2) = 1.782, and stated that K was
probably equal to this last value.

This paper proves that K > 7/2, and by a numerical computation,
that Kg > 1.67. The general method is to construct a particular family
of operators Ty : L*® — L', for A € R and show that for all such A,
Kg > |1 = A|/||T)\||- Optimization with respect to A yields the new bound.

The main idea for constructing 7% comes from [F|, where it was ob-



served (in a matrix case) that subtracting a small multiple of the identity
operator from a projection operator sometimes increases the value of the

“Grothendieck ratio”: r(T\) = r(T'— AI) > r(T'), where

: fiel
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Originally, [F] started with a matrix 7', whose entries are inner products

r(T) = sup

o0
of root vectors [Hu| in Eg, A, and D,,. In the current paper we modify an

operator 1" for which r(T") = m/2 which is (in the notation of [P], section 5.e,
T = ~~v*) essentially Grothendieck’s original example implying K¢g > /2.

The Operators T and T),

Let (€2, P) be a probability space on which Z, Zs,... is a sequence of in-
dependent identically distributed Gaussian random variables, P(Z; < z) =
\/% [ e # /24y = [ #(z)dz. Let Ef denote the expectation or integral
of f with respect to P, that is, Ef = [, fdP. Let T : L>=(Q, P) — L'(Q, P)
be the restriction to L>(Q, P) C L?(2, P) of the orthogonal projection onto
the closed linear span of the Z,. If f is bounded, Bessel’s inequality implies
S us1(EfZn)? < Ef? < oo and so the series
Tf=> Z.EfZ,

n>1
converges in L? and hence in L'. For A\ > 0, define T\ : L®(Q, P) —
LY(Q, P) by Tof = Tf — Af.
Our first result is an estimate on r(7)):

Theorem 1 (7)) > |1 — A|/||TA]|-



Proof

For fixed n, let R = /3.7 Z2, and let X; = Z;/R for 1 < i < n. Then the n-
tuple (X1, ..., X,,) is uniformly distributed over the unit sphere in R”. R?is a
chi-squared random variable with n degrees of freedom and is independent
of (Xi,...,Xp). Since EX;Z; = 0 unless ¢ = j, it is easy to check that
TX; = Z;E(X;Z;) = Z;E(X?R) = Z;(ER)EX? = Z;ER/n. Thus

E
ThX; = Z;ER/n — \X; = X; (R R — A) ,
n
and
RER
Smxy =[5

Thus, taking f; = X; for : = 1,...,n, we see that
. IvEmer],
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since \/Z 2= \/Z X? =1 with probability one.
Now, as n — oo, R/\/n converges almost surely to 1, ER/y/n — 1 and
E‘f ( ) )\‘ converges to |1 — A|. Thus, r(Th) > |1 — A|/||Tx]|- n

Norm of T,

To use the estimate Kg > r(Ty) > |1 — A|/||T>|| we need to calculate ||T} ]|,
which is of course the supremum of E|T) f| over all random variables f for
which P(|f| < 1) = 1. We show that this supremum is attained by random

variables of a very special form:



Theorem 2 There exists a real h > 0 such that |T|| = || Tagnl|1, where
gn=1 if Zy € (=h,0)U (h,o0)
1 Zye(—oo,—h)U(0,h) .

Once we have this result we can write our lower bound for K¢:

K¢

v
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= supinf ——— .
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The task of actually computing this bound is straightforward but tedious.

The rest of this section gives the proof of Theorem 2.

Let G be the extreme points of the unit ball in L, so G = {g : |g| =
lae}. Fora>0let G, ={9g€G: EgZy =, EgZ, =0, for n > 1}.
Since ||Thg||1 is a convex function of g, ||T)\|| = sup{||Zag|1 : g € G}, and a
simple change of basis argument (in G, the L? closed span of the Z;) shows
that [|[T)|| = sup{||Thgll1 : ¢ € Ua>0Ga}. So our strategy is to maximize

| Tagll1 over g € G, for fixed «, and then to maximize over a:

| T>|| = sup sup{||Txgll1: g € Ga} .
[0

For any function g € G, let 64(2) be the conditional expectation of g
given 71, 04(2) = E(g|Z1 = z) (so that for any h, Egh(Z1) = Ef4(Z1)h(Z1)).
Then clearly |0,4(2)| < 1and a = [g ¢(2)204(2)dz. Conversely, if #(z) is such
that |0(2)] < 1a.e. and o = [g ¢(2)20(z)dz, we construct an element g € G,
with 6 = 0, as follows: let U be a random variable independent of all Z;,
uniformly distributed on [0,1]. Let ¢ = 1if U < %(Zl) and let g = —1 if

1+0(Z
U> 72( 1,

It is useful below to write

042)=P(g=1|1Z1=2)—Plg=-1|Z1 =z) .



For any g € G, we can express || Thg||1 in terms of 6, as follows. Since

FgZy =a and EgZ, =0 for n > 1, we have Thg = aZ; — Ag, and

ITagll2 Elazy — gl

= [ 6(2) (Plg =121 = Doz =\l + Plg = —1|Z1 = D]z + A dz

_ /¢(Z)\az—)\\+az+)\]dz+/¢(Z)\az—/\\—\az+)\]99(z)dz
R R

2 2

So the problem of maximizing ||Thg|1 for ¢ € G, is the same as that of

maximizing

/gb(z)]az—)\]—;—]az+)\|dz+/ ¢(z)]az—A];]az+A]0(z)dz 1)
R R

subject to [0(z)] < 1 a.e. and [ ¢(2)20(2) = c.

Let ¥(z) = (Jaz — A| — |az + A])/2. Both the objective functional
Jr ¢(2)¥(2)0(2)dz and the constraint functional [g ¢(2)26(z)dz involve in-
tegrals of 6(z) against odd functions, so the optimizing 6 might as well be
odd. Indeed, if 6(z) solves the optimization problem, so does the odd func-
tion 0(z) = 1/2(6(z) — 0(—=z)). So an equivalent optimization problem is,
find |A(z)| <1 for z > 0, to maximize

/OOO 2¢(2)Y(2)0(z)dz subject to /OOO 20(2)20(z)dz = o .

This optimization problem can be solved by the Neyman-Pearson or “wa-
ter pouring” monotone greedy assignment method. Since ¥(z)/z is mono-
tone increasing in z > 0, larger values of z are more “profitable,” and the
optimizing 6(z) will be of the form 0(z) =1 for all z > h and 6(z) = —1 for

all z < h, for some h > 0. To see this, first let A > 0 solve the equation

a = (/hoo—/oh>2¢(z)zdz
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= \/3(26h2/2 -1).

Suppose 0*(z) is any other function satisfying the equality constraint [ 2¢(z)z6*(z)dz

a and the inequality constraint |0*(z)| < 1. Let 7 = ¢(h)/h. Then for all

z >0,

<w<z> Yo - ’wz) -

z z

SYCORRP

z

and hence the inequality

/0 T 20(2) <¢iz> - T> 0%(2)dz < / "~ 26(2) (‘Z’S) _ T) 26(2)dz

0

holds. Since both 6* and 6 satisfy the equality constraint, this already
implies that for fixed «, the optimum is attained by a 8 of the stated form.

This solves the “inner” optimization problem: given «, find ¢ € G,
maximizing ||Thg|/1. To show that the “outer” supremum over all a > 0 is
attained, note that the condition o > 0 implies 0 < h < 1/2log 2, and that

the map h — ||Thgnl/1 is continuous, and hence attains its supremum on

[0, v/2Tog 2. "
Computation of ||Thgn||1

So far we know that || 73| is the maximum value of ||T)\gp||1 for A > 0, which

we now proceed to compute. We use the formulae
Tgl = [ $E)(Plg =121 = Dlaz =X+ Plg = =112y = 2)jaz + A)dz

where

a= [ 6(:)(Plg =117 = 2) = Plg = ~1|21 = 2))dz
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which we met in the proof of Theorem 2. Specializing to the special form of

gn, we obtain

0o h
[Tagnl =2 [~ 0(2)laz = Adz+2 [ o)z + Az ()

where

= —2/ o(z zdz—2/ 2)zdz = 2(26_}12/2—1).

v

To obtain ||T||, then, we need only find the maximum value of (2), as h > 0

varies in such a way that a > 0, viz, as h ranges over [0, /21og 2].
Equation (2) simplifies differently according to whether ah < X or ah >

A If ah < A, then

Aa

Il = 2 [ 6 —az)dz+2 [ o)z~ Nz
h Aa

+ Q/h d(2)(az + N)dz

_ (/ /A/a+ ;Z)M zdz+A</M /A/a>

_ — 2B(Ma) + 2B(h)) — A(1 — 2A()/a))

and if ah > A, then

Tagnlli = 2/ $(2)(az — A dz+2/ )(az + A)dz
_ a/o 2(2 zdz—i—A(/ />2¢
— aB(co) — A(1 - 24(h
where
A(u) = /Ou 2¢(2)dz = \/z/ou e 2dz
and

B(u) = /Ou 20(2)zdz = \/2(1 _ e—u2/2) ,
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so a = a(h) = B(co) — 2B(h).

In short, if we define
f1(B) = a(R)(B(oo) — 2B(\a(h)) + 2B(h)) — A(1 — 24(\fa(h)))

and

fa(h) = a(h)B(o0) = A(1 = 2A(R)) ,

then

fa(h) if a(h)h > X
We will now show that the h in [0,1/2log 2] which maximizes ||Txgn|1

fi(h) if a(h)h < A
HTAthl:{ (k) i alh)

obeys a(h)h < A. On the one hand, a direct calculation shows that

df1(h)
dh

= —2B'(h)(4B(h) — 2B(\/a)) ,

so at a critical point of fi, B(\/a) = 2B(h) > B(h), so A\/a > h. And on

the other hand, for all h € [0,/2Tog2], fi(h) > fa(h), as follows. Note that
fi(h) = fa(h) = 2a(h)(B(h) — B(A/a(h))) — 2A(A(h) — A(X/a(h))) .

If h > A/a the inequality

Jja9(=)2dz_ B(h) — B(\/a)
[ad(z)dz — A(h) = A(A/a)

holds, which is equivalent to fi(h) — fao(h) > 0. And if A\/a > h we similarly

Na < E(Zi|\a < Zy < h) =

have

Ma > E(Zi|h < Zy < Ma) =

which also implies f1(h) — fa(h) > 0.
Let h maximize f; on [0,v/2log2]. It is easy to check that f1(0) >
fi(v/2log2) for all values of A > 0, so h < /2log2. Direct calculation



shows f1(0) = 0 and f{(0) > 0 so h > 0, and so h is an interior critical
point of f1, and hence ha(h) < A, ||Thgrn|l1 = fi(h), and h solves the interior
critical point equation B(A/a(h)) = 2B(h). If we introduce the variable
n = A/a(h), then the condition for a critical point is just A = \/gne*”Z/Q. If
A€ (0, \/2;’3) there are exactly two positive values, say 11 and s, satisfying
the critical point condition, with 0 < 11 < 1 < 13. The corresponding values
of h, which are the only positive roots of fi(h), are obtained from the 7;
from 2B(h;) = B(n;), which results in

14 e 17/2
hi = \/—2log % .

It is easy to check that f'(h1) < 0 and f{'(h2) > 0, so at last we obtain,

after some manipulation, our formula for || Th\gs||1, valid for A € (0, \/ %)

ITagnlls = fi(h1) = (A/m)* = A1 —2A(m)) -

Substituting A = \/gne_ngﬁ, and regarding 0 < 1 < 1 as the indepen-

dent variable, our bound for K¢ is thus

Ke > sup 3 L2
nefo,1] (A/m)? = A(1 —2A(n))

= sup
nelo) 2e* — | [2ne=r?/2(1 - 2A(n))

— o Y.
776[071]

Elementary calculus shows that the maximizing 7 solves the equation

1-2A(n) = g(3_’72

s

and then Y (n) = genz. Numerical computations show that the maximizing

n is approximately .25573021316621 and the corresponding value of Y is



approximately 1.676956674215576. This corresponds to A = .25573, h =
.18009, and a = .77222.

We may summarize all these calculations as:

Theorem 3 Let n € [0, 1] solve the equation

1—24f = _/77 e %24y = 267772 .
T Jo T
Then Ko > ge"Q.

Related Example

Here is another example, seemingly more concrete than the last. For fixed
n, let S, be the unit sphere in R™. (Surface of sphere, not solid ball.) Let
i be rotationally invariant measure on S,, normalized so u(S,) = 1. Let
L>® = L*®(S,, i) be the bounded functions on S,, and L' = L!(S,,u) be
the integrable functions on S,. Let k: S, X S, — R be the inner product
function k(z,y) = (x,y). Finally, define T, : L>® — L' by

(T f) () = /S k() f(u)du,

and for A € R define T}, \ : L™ — L' by

Tanf =Tuf = AS .

Arguing as in the previous sections, one obtains for each n a similar
lower bound for Kg. When n becomes large, the numerical values seem to
converge to the value obtained above. It is easy to believe that T" and T,
are “essentially the same”.

Now, decompose L?(Sy, i) = @ H, into the spaces of spherical harmonics

[S], H; being the degree j harmonic polynomial functions on R", restricted

10



to Sp. Let P; denote the projection onto H;. Then the operators T, and

T, may be written in the form

T, = abP

aPy =\ P
j=0

Tn/\

It would be interesting to attempt the direct computation of the norm
of some more general operator ) o P;, where the a; are not all of the
same sign, but the methods of this paper probably do not extend beyond
the case where only one of the «; is positive. (We know from [R] that if
all oj > 0 then the Grothendieck ratio (3 o P;) cannot exceed /2, so

improved lower bounds on K¢ require some alternation in sign.)
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