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ABSTRACT

A new method shows that the Grothendieck constant KG ≥ 1.6769... .

The previous best lower bound was KG ≥ π/2 ≈ 1.57... .
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1 Introduction

One form of Grothendieck’s inequality [G] states that there is a best constant

KG < ∞ such that for any bounded linear operator T : L∞(X,µ) →

L1(X,µ) and for any real bounded functions f1, ..., fn ∈ L∞,∥∥∥∥√∑(Tfi)2
∥∥∥∥
1
≤ KG ‖T‖ ·

∥∥∥∥√∑ f2i

∥∥∥∥
∞

,

where ‖T‖ is the operator norm. The constant KG is universal: it does not

depend on T , or on the functions fi, or even on the underlying measure

space (X,µ). For general information about Grothendieck’s inequality, see

[K], [L] and especially [P].

The numerical value ofKG has been a minor mystery from the beginning.

Grothendieck [G] showed that π/2 ≤ KG ≤ sinh(π/2) = 2.301... . Krivine

[K] showed that KG ≤ π/2 log(1 +
√
2) = 1.782, and stated that KG was

probably equal to this last value.

This paper proves that KG > π/2, and by a numerical computation,

that KG ≥ 1.67. The general method is to construct a particular family

of operators Tλ : L∞ → L1, for λ ∈ R and show that for all such λ,

KG ≥ |1− λ|/‖Tλ‖. Optimization with respect to λ yields the new bound.

The main idea for constructing Tλ comes from [F], where it was ob-



served (in a matrix case) that subtracting a small multiple of the identity

operator from a projection operator sometimes increases the value of the

“Grothendieck ratio”: r(Tλ) = r(T − λI) > r(T ), where

r(T ) = sup


∥∥∥√∑(Tfi)2

∥∥∥
1

‖T‖
∥∥∥∥√∑ f2i

∥∥∥∥
∞

: fi ∈ L∞

 .

Originally, [F] started with a matrix T , whose entries are inner products

of root vectors [Hu] in E8, An and Dn. In the current paper we modify an

operator T for which r(T ) = π/2 which is (in the notation of [P], section 5.e,

T = γγ∗) essentially Grothendieck’s original example implying KG ≥ π/2.

The Operators T and Tλ

Let (Ω, P ) be a probability space on which Z1, Z2, ... is a sequence of in-

dependent identically distributed Gaussian random variables, P (Zi ≤ x) =

1√
2π

∫ x
−∞ e−z2/2dz =

∫ x
−∞ ϕ(z)dz. Let Ef denote the expectation or integral

of f with respect to P , that is, Ef =
∫
Ω fdP . Let T : L∞(Ω, P ) → L1(Ω, P )

be the restriction to L∞(Ω, P ) ⊆ L2(Ω, P ) of the orthogonal projection onto

the closed linear span of the Zn. If f is bounded, Bessel’s inequality implies∑
n≥1(EfZn)

2 ≤ Ef2 <∞ and so the series

Tf =
∑
n≥1

ZnEfZn

converges in L2 and hence in L1. For λ ≥ 0, define Tλ : L∞(Ω, P ) →

L1(Ω, P ) by Tλf = Tf − λf .

Our first result is an estimate on r(Tλ):

Theorem 1 r(Tλ) ≥ |1− λ|/‖Tλ‖.
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Proof

For fixed n, let R =
√∑n

1 Z
2
i , and let Xi = Zi/R for 1 ≤ i ≤ n. Then the n-

tuple (X1, ..., Xn) is uniformly distributed over the unit sphere inRn. R2 is a

chi-squared random variable with n degrees of freedom and is independent

of (X1, ..., Xn). Since EXiZj = 0 unless i = j, it is easy to check that

TXi = ZiE(XiZi) = ZiE(X2
i R) = Zi(ER)EX

2
i = ZiER/n. Thus

TλXi = ZiER/n− λXi = Xi

(
RER

n
− λ

)
,

and √∑
(TλXi)2 =

∣∣∣∣RERn − λ

∣∣∣∣ .
Thus, taking fi = Xi for i = 1, ..., n, we see that

r(Tλ) ≥

∥∥∥√∑(Tλfi)2
∥∥∥
1∥∥∥∥√∑ f2i

∥∥∥∥
∞

1

‖Tλ‖

=
E
∣∣∣RER

n − λ
∣∣∣

‖Tλ‖
,

since
√∑

f2i =
√∑

X2
i = 1 with probability one.

Now, as n → ∞, R/
√
n converges almost surely to 1, ER/

√
n → 1 and

E
∣∣∣ R√

n

(
ER√
n

)
− λ

∣∣∣ converges to |1− λ|. Thus, r(Tλ) ≥ |1− λ|/‖Tλ‖. ■

Norm of Tλ

To use the estimate KG ≥ r(Tλ) ≥ |1− λ|/‖Tλ‖ we need to calculate ‖Tλ‖,

which is of course the supremum of E|Tλf | over all random variables f for

which P (|f | ≤ 1) = 1. We show that this supremum is attained by random

variables of a very special form:
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Theorem 2 There exists a real h ≥ 0 such that ‖Tλ‖ = ‖Tλgh‖1, where

gh = 1 if Z1 ∈ (−h, 0) ∪ (h,∞)

−1 Z1 ∈ (−∞,−h) ∪ (0, h) .

Once we have this result we can write our lower bound for KG:

KG ≥ sup
λ

(
|1− λ|/sup

h
‖Tλgh‖1

)
= sup

λ
inf
h

|1− λ|
‖Tλgh‖1

.

The task of actually computing this bound is straightforward but tedious.

The rest of this section gives the proof of Theorem 2.

Let G be the extreme points of the unit ball in L∞, so G = {g : |g| =

1 a.e.}. For α ≥ 0 let Gα = {g ∈ G : EgZ1 = α, EgZn = 0, for n > 1}.

Since ‖Tλg‖1 is a convex function of g, ‖Tλ‖ = sup {‖Tλg‖1 : g ∈ G}, and a

simple change of basis argument (in G, the L2 closed span of the Zi) shows

that ‖Tλ‖ = sup {‖Tλg‖1 : g ∈ ∪α≥0Gα}. So our strategy is to maximize

‖Tλg‖1 over g ∈ Gα for fixed α, and then to maximize over α:

‖Tλ‖ = sup
α

sup{‖Tλg‖1 : g ∈ Gα} .

For any function g ∈ Gα let θg(z) be the conditional expectation of g

given Z1, θg(z) = E(g|Z1 = z) (so that for any h, Egh(Z1) = Eθg(Z1)h(Z1)).

Then clearly |θg(z)| ≤ 1 and α =
∫
R ϕ(z)zθg(z)dz. Conversely, if θ(z) is such

that |θ(z)| ≤ 1 a.e. and α =
∫
R ϕ(z)zθ(z)dz, we construct an element g ∈ Gα

with θ = θg, as follows: let U be a random variable independent of all Zi,

uniformly distributed on [0, 1]. Let g = 1 if U ≤ 1+θ(Z1)
2 and let g = −1 if

U > 1+θ(Z1)
2 .

It is useful below to write

θg(z) = P (g = 1|Z1 = z)− P (g = −1|Z1 = z) .
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For any g ∈ Gα we can express ‖Tλg‖1 in terms of θg, as follows. Since

EgZ1 = α and EgZn = 0 for n > 1, we have Tλg = αZ1 − λg, and

‖Tλg‖1 = E|αZ1 − λg|

=

∫
R
ϕ(z) (P (g = 1|Z1 = z)|αz − λ|+ P (g = −1|Z1 = z)|αz + λ|) dz

=

∫
R
ϕ(z)

|αz − λ|+ |αz + λ|
2

dz +

∫
R
ϕ(z)

|αz − λ| − |αz + λ|
2

θg(z)dz .

So the problem of maximizing ‖Tλg‖1 for g ∈ Gα is the same as that of

maximizing∫
R
ϕ(z)

|αz − λ|+ |αz + λ|
2

dz +

∫
R
ϕ(z)

|αz − λ| − |αz + λ|
2

θ(z)dz (1)

subject to |θ(z)| ≤ 1 a.e. and
∫
R ϕ(z)zθ(z) = α.

Let ψ(z) = (|αz − λ| − |αz + λ|)/2. Both the objective functional∫
R ϕ(z)ψ(z)θ(z)dz and the constraint functional

∫
R ϕ(z)zθ(z)dz involve in-

tegrals of θ(z) against odd functions, so the optimizing θ might as well be

odd. Indeed, if θ(z) solves the optimization problem, so does the odd func-

tion θ̃(z) = 1/2(θ(z) − θ(−z)). So an equivalent optimization problem is,

find |θ(z)| ≤ 1 for z > 0, to maximize∫ ∞

0
2ϕ(z)ψ(z)θ(z)dz subject to

∫ ∞

0
2ϕ(z)zθ(z)dz = α .

This optimization problem can be solved by the Neyman-Pearson or “wa-

ter pouring” monotone greedy assignment method. Since ψ(z)/z is mono-

tone increasing in z ≥ 0, larger values of z are more “profitable,” and the

optimizing θ(z) will be of the form θ(z) = 1 for all z ≥ h and θ(z) = −1 for

all z < h, for some h ≥ 0. To see this, first let h ≥ 0 solve the equation

α =

(∫ ∞

h
−
∫ h

0

)
2ϕ(z)zdz
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=

√
2

π
(2e−h2/2 − 1) .

Suppose θ∗(z) is any other function satisfying the equality constraint
∫∞
0 2ϕ(z)zθ∗(z)dz =

α and the inequality constraint |θ∗(z)| ≤ 1. Let τ = ψ(h)/h. Then for all

z ≥ 0, (
ψ(z)

z
− τ

)
θ(z) =

∣∣∣∣ψ(z)z − τ

∣∣∣∣
≥

(
ψ(z)

z
− τ

)
θ∗(z)

and hence the inequality∫ ∞

0
2ϕ(z)

(
ψ(z)

z
− τ

)
zθ∗(z)dz ≤

∫ ∞

0
2ϕ(z)

(
ψ(z)

z
− τ

)
zθ(z)dz

holds. Since both θ∗ and θ satisfy the equality constraint, this already

implies that for fixed α, the optimum is attained by a θ of the stated form.

This solves the “inner” optimization problem: given α, find g ∈ Gα

maximizing ‖Tλg‖1. To show that the “outer” supremum over all α ≥ 0 is

attained, note that the condition α ≥ 0 implies 0 ≤ h ≤
√
2 log 2, and that

the map h 7→ ‖Tλgh‖1 is continuous, and hence attains its supremum on

[0,
√
2 log 2]. ■

Computation of ∥Tλgh∥1

So far we know that ‖Tλ‖ is the maximum value of ‖Tλgh‖1 for h ≥ 0, which

we now proceed to compute. We use the formulae

‖Tλg‖1 =
∫
R
ϕ(z)((P (g = 1|Z1 = z)|az − λ|+ P (g = −1|Z1 = z)|az + λ|)dz

where

a =

∫
R
ϕ(z)(P (g = 1|Z1 = z)− P (g = −1|Z1 = z))dz
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which we met in the proof of Theorem 2. Specializing to the special form of

gh we obtain

‖Tλgh‖1 = 2

∫ ∞

h
ϕ(z)|az − λ|dz + 2

∫ h

0
ϕ(z)|az + λ|dz (2)

where

a = a(h) = 2

∫ ∞

h
ϕ(z)zdz − 2

∫ h

0
ϕ(z)zdz =

√
2

π
(2e−h2/2 − 1) .

To obtain ‖Tλ‖, then, we need only find the maximum value of (2), as h ≥ 0

varies in such a way that a ≥ 0, viz, as h ranges over [0,
√
2 log 2].

Equation (2) simplifies differently according to whether ah ≤ λ or ah ≥

λ. If ah ≤ λ, then

‖Tλgh‖1 = 2

∫ λ/a

h
ϕ(z)(λ− az)dz + 2

∫ ∞

λ/a
ϕ(z)(az − λ)dz

+ 2

∫ h

0
ϕ(z)(az + λ)dz

= a

(∫ h

0
−
∫ λ/a

h
+

∫ ∞

λ/a

)
2ϕ(z)zdz + λ

(∫ λ/a

0
−
∫ ∞

λ/a

)
2ϕ(z)dz

= a(B(∞)− 2B(λ/a) + 2B(h))− λ(1− 2A(λ/a))

and if ah ≥ λ, then

‖Tλgh‖1 = 2

∫ ∞

h
ϕ(z)(az − λ)dz + 2

∫ h

0
ϕ(z)(az + λ)dz

= a

∫ ∞

0
2ϕ(z)zdz + λ

(∫ h

0
−
∫ ∞

h

)
2ϕ(z)dz

= aB(∞)− λ(1− 2A(h)) ,

where

A(u) =

∫ u

0
2ϕ(z)dz =

√
2

π

∫ u

0
e−z2/2dz

and

B(u) =

∫ u

0
2ϕ(z)zdz =

√
2

π
(1− e−u2/2) ,
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so a = a(h) = B(∞)− 2B(h).

In short, if we define

f1(h) = a(h)(B(∞)− 2B(λ/a(h)) + 2B(h))− λ(1− 2A(λ/a(h)))

and

f2(h) = a(h)B(∞)− λ(1− 2A(h)) ,

then

‖Tλgh‖1 =

 f1(h) if a(h)h ≤ λ

f2(h) if a(h)h ≥ λ .

We will now show that the h in [0,
√
2 log 2] which maximizes ‖Tλgh‖1

obeys a(h)h ≤ λ. On the one hand, a direct calculation shows that

df1(h)

dh
= −2B′(h)(4B(h)− 2B(λ/a)) ,

so at a critical point of f1, B(λ/a) = 2B(h) ≥ B(h), so λ/a ≥ h. And on

the other hand, for all h ∈ [0,
√
2 log 2], f1(h) ≥ f2(h), as follows. Note that

f1(h)− f2(h) = 2a(h)(B(h)−B(λ/a(h)))− 2λ(A(h)−A(λ/a(h))) .

If h > λ/a the inequality

λ/a ≤ E(Z1|λ/a ≤ Z1 ≤ h) =

∫ h
λ/a ϕ(z)zdz∫ h
λ/a ϕ(z)dz

=
B(h)−B(λ/a)

A(h)−A(λ/a)

holds, which is equivalent to f1(h)−f2(h) ≥ 0. And if λ/α > h we similarly

have

λ/a ≥ E(Z1|h ≤ Z1 ≤ λ/a) =
B(λ/a)−B(h)

A(λ/a)−A(h)
,

which also implies f1(h)− f2(h) ≥ 0.

Let h maximize f1 on [0,
√
2 log 2]. It is easy to check that f1(0) >

f1(
√
2 log 2) for all values of λ > 0, so h <

√
2 log 2. Direct calculation

8



shows f ′1(0) = 0 and f ′′1 (0) > 0 so h > 0, and so h is an interior critical

point of f1, and hence ha(h) ≤ λ, ‖Tλgh‖1 = f1(h), and h solves the interior

critical point equation B(λ/a(h)) = 2B(h). If we introduce the variable

η = λ/a(h), then the condition for a critical point is just λ =
√

2
πηe

−η2/2. If

λ ∈
(
0,
√

2e
π

)
there are exactly two positive values, say η1 and η2, satisfying

the critical point condition, with 0 < η1 < 1 < η2. The corresponding values

of h, which are the only positive roots of f ′1(h), are obtained from the ηi

from 2B(hi) = B(ηi), which results in

hi =

√
−2 log

1 + e−η2i /2

2
.

It is easy to check that f ′′1 (h1) < 0 and f ′′1 (h2) > 0, so at last we obtain,

after some manipulation, our formula for ‖Tλgh‖1, valid for λ ∈
(
0,
√

πe
2

)
:

‖Tλgh‖1 = f1(h1) = (λ/η1)
2 − λ(1− 2A(η1)) .

Substituting λ =
√

2
πηe

−η2/2, and regarding 0 < η < 1 as the indepen-

dent variable, our bound for KG is thus

KG ≥ sup
η∈[0,1]

1− λ

(λ/η)2 − λ(1− 2A(η))

= sup
η∈[0,1]

1−
√

2
πηe

−η2/2

2
πe

−η2 −
√

2
πηe

−η2/2(1− 2A(η))

= sup
η∈[0,1]

Y (η) .

Elementary calculus shows that the maximizing η solves the equation

1− 2A(η) =
2

π
e−η2

and then Y (η) = π
2 e

η2 . Numerical computations show that the maximizing

η is approximately .25573021316621 and the corresponding value of Y is
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approximately 1.676956674215576. This corresponds to λ = .25573, h =

.18009, and a = .77222.

We may summarize all these calculations as:

Theorem 3 Let η ∈ [0, 1] solve the equation

1− 2

√
2

π

∫ η

0
e−z2/2dz =

2

π
e−η2 .

Then KG ≥ π
2 e

η2.

Related Example

Here is another example, seemingly more concrete than the last. For fixed

n, let Sn be the unit sphere in Rn. (Surface of sphere, not solid ball.) Let

µ be rotationally invariant measure on Sn, normalized so µ(Sn) = 1. Let

L∞ = L∞(Sn, µ) be the bounded functions on Sn and L1 = L1(Sn, µ) be

the integrable functions on Sn. Let k : Sn × Sn → R be the inner product

function k(x, y) = (x, y). Finally, define Tn : L∞ → L1 by

(Tnf)(x) =

∫
Sn

k(x, u)f(u)du,

and for λ ∈ R define Tn,λ : L∞ → L1 by

Tn,λf = Tnf − λf .

Arguing as in the previous sections, one obtains for each n a similar

lower bound for KG. When n becomes large, the numerical values seem to

converge to the value obtained above. It is easy to believe that T and Tn

are “essentially the same”.

Now, decompose L2(Sn, µ) = ⊕Hj into the spaces of spherical harmonics

[S], Hj being the degree j harmonic polynomial functions on Rn, restricted
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to Sn. Let Pj denote the projection onto Hj . Then the operators Tn and

Tnλ may be written in the form

Tn = αP1

Tnλ = αP1 − λ
∞∑
j=0

Pj .

It would be interesting to attempt the direct computation of the norm

of some more general operator
∑
αjPj , where the αj are not all of the

same sign, but the methods of this paper probably do not extend beyond

the case where only one of the αj is positive. (We know from [R] that if

all αj ≥ 0 then the Grothendieck ratio r(
∑
αjPj) cannot exceed π/2, so

improved lower bounds on KG require some alternation in sign.)
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