A New Lower Bound on the Real Grothendieck Constant

James A. Reeds

AT&T Bell Laboratories Murray Hill, New Jersey 07974

ABSTRACT

A new method shows that the Grothendieck constant $K_G \ge 1.6769...$. The previous best lower bound was $K_G \ge \pi/2 \approx 1.57...$.

A New Lower Bound on the Real Grothendieck Constant

James A. Reeds

AT&T Bell Laboratories Murray Hill, New Jersey 07974

1 Introduction

One form of Grothendieck's inequality [G] states that there is a best constant $K_G < \infty$ such that for any bounded linear operator $T : L^{\infty}(X,\mu) \rightarrow L^1(X,\mu)$ and for any real bounded functions $f_1, ..., f_n \in L^{\infty}$,

$$\left\|\sqrt{\sum (Tf_i)^2}\right\|_1 \le K_G \|T\| \cdot \left\|\sqrt{\sum f_i^2}\right\|_{\infty} ,$$

where ||T|| is the operator norm. The constant K_G is universal: it does not depend on T, or on the functions f_i , or even on the underlying measure space (X, μ) . For general information about Grothendieck's inequality, see [K], [L] and especially [P].

The numerical value of K_G has been a minor mystery from the beginning. Grothendieck [G] showed that $\pi/2 \leq K_G \leq \sinh(\pi/2) = 2.301...$. Krivine [K] showed that $K_G \leq \pi/2\log(1 + \sqrt{2}) = 1.782$, and stated that K_G was probably equal to this last value.

This paper proves that $K_G > \pi/2$, and by a numerical computation, that $K_G \ge 1.67$. The general method is to construct a particular family of operators $T_{\lambda} : L^{\infty} \to L^1$, for $\lambda \in \mathbf{R}$ and show that for all such λ , $K_G \ge |1 - \lambda| / ||T_{\lambda}||$. Optimization with respect to λ yields the new bound.

The main idea for constructing T_{λ} comes from [F], where it was ob-

served (in a matrix case) that subtracting a small multiple of the identity operator from a projection operator sometimes increases the value of the "Grothendieck ratio": $r(T_{\lambda}) = r(T - \lambda I) > r(T)$, where

$$r(T) = \sup \left\{ \frac{\left\| \sqrt{\sum (Tf_i)^2} \right\|_1}{\|T\| \left\| \sqrt{\sum f_i^2} \right\|_{\infty}} : f_i \in L^{\infty} \right\} .$$

Originally, [F] started with a matrix T, whose entries are inner products of root vectors [Hu] in E_8 , A_n and D_n . In the current paper we modify an operator T for which $r(T) = \pi/2$ which is (in the notation of [P], section 5.e, $T = \gamma \gamma^*$) essentially Grothendieck's original example implying $K_G \ge \pi/2$.

The Operators T and T_{λ}

Let (Ω, P) be a probability space on which $Z_1, Z_2, ...$ is a sequence of independent identically distributed Gaussian random variables, $P(Z_i \leq x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-z^2/2} dz = \int_{-\infty}^x \phi(z) dz$. Let Ef denote the expectation or integral of f with respect to P, that is, $Ef = \int_{\Omega} f dP$. Let $T : L^{\infty}(\Omega, P) \to L^1(\Omega, P)$ be the restriction to $L^{\infty}(\Omega, P) \subseteq L^2(\Omega, P)$ of the orthogonal projection onto the closed linear span of the Z_n . If f is bounded, Bessel's inequality implies $\sum_{n\geq 1} (EfZ_n)^2 \leq Ef^2 < \infty$ and so the series

$$Tf = \sum_{n \ge 1} Z_n Ef Z_n$$

converges in L^2 and hence in L^1 . For $\lambda \ge 0$, define $T_{\lambda} : L^{\infty}(\Omega, P) \to L^1(\Omega, P)$ by $T_{\lambda}f = Tf - \lambda f$.

Our first result is an estimate on $r(T_{\lambda})$:

Theorem 1 $r(T_{\lambda}) \geq |1 - \lambda| / ||T_{\lambda}||.$

Proof

For fixed n, let $R = \sqrt{\sum_{1}^{n} Z_{i}^{2}}$, and let $X_{i} = Z_{i}/R$ for $1 \leq i \leq n$. Then the *n*-tuple $(X_{1}, ..., X_{n})$ is uniformly distributed over the unit sphere in \mathbb{R}^{n} . R^{2} is a chi-squared random variable with n degrees of freedom and is independent of $(X_{1}, ..., X_{n})$. Since $EX_{i}Z_{j} = 0$ unless i = j, it is easy to check that $TX_{i} = Z_{i}E(X_{i}Z_{i}) = Z_{i}E(X_{i}^{2}R) = Z_{i}(ER)EX_{i}^{2} = Z_{i}ER/n$. Thus

$$T_{\lambda}X_i = Z_i ER/n - \lambda X_i = X_i \left(\frac{RER}{n} - \lambda\right) ,$$

and

$$\sqrt{\sum (T_{\lambda}X_i)^2} = \left|\frac{R\,ER}{n} - \lambda\right|$$

Thus, taking $f_i = X_i$ for i = 1, ..., n, we see that

$$r(T_{\lambda}) \geq \frac{\left\|\sqrt{\sum(T_{\lambda}f_{i})^{2}}\right\|_{1}}{\left\|\sqrt{\sum f_{i}^{2}}\right\|_{\infty}} \frac{1}{\|T_{\lambda}\|}$$
$$= \frac{E\left|\frac{R E R}{n} - \lambda\right|}{\|T_{\lambda}\|},$$

since $\sqrt{\sum f_i^2} = \sqrt{\sum X_i^2} = 1$ with probability one.

Now, as
$$n \to \infty$$
, R/\sqrt{n} converges almost surely to 1, $ER/\sqrt{n} \to 1$ and $E\left|\frac{R}{\sqrt{n}}\left(\frac{ER}{\sqrt{n}}\right) - \lambda\right|$ converges to $|1 - \lambda|$. Thus, $r(T_{\lambda}) \ge |1 - \lambda|/||T_{\lambda}||$.

Norm of T_{λ}

To use the estimate $K_G \ge r(T_\lambda) \ge |1 - \lambda|/||T_\lambda||$ we need to calculate $||T_\lambda||$, which is of course the supremum of $E|T_\lambda f|$ over all random variables f for which $P(|f| \le 1) = 1$. We show that this supremum is attained by random variables of a very special form: **Theorem 2** There exists a real $h \ge 0$ such that $||T_{\lambda}|| = ||T_{\lambda}g_h||_1$, where

$$g_h = 1$$
 if $Z_1 \in (-h, 0) \cup (h, \infty)$
-1 $Z_1 \in (-\infty, -h) \cup (0, h)$

Once we have this result we can write our lower bound for K_G :

$$K_G \geq \sup_{\lambda} \left(|1 - \lambda| / \sup_{h} ||T_{\lambda}g_{h}||_{1} \right)$$
$$= \sup_{\lambda} \inf_{h} \frac{|1 - \lambda|}{||T_{\lambda}g_{h}||_{1}}.$$

The task of actually computing this bound is straightforward but tedious.

The rest of this section gives the proof of Theorem 2.

Let \mathcal{G} be the extreme points of the unit ball in L^{∞} , so $\mathcal{G} = \{g : |g| = 1 \text{ a.e.}\}$. For $\alpha \geq 0$ let $\mathcal{G}_{\alpha} = \{g \in \mathcal{G} : EgZ_1 = \alpha, EgZ_n = 0, \text{ for } n > 1\}$. Since $||T_{\lambda}g||_1$ is a convex function of g, $||T_{\lambda}|| = \sup\{||T_{\lambda}g||_1 : g \in \mathcal{G}\}$, and a simple change of basis argument (in G, the L^2 closed span of the Z_i) shows that $||T_{\lambda}|| = \sup\{||T_{\lambda}g||_1 : g \in \cup_{\alpha \geq 0} \mathcal{G}_{\alpha}\}$. So our strategy is to maximize $||T_{\lambda}g||_1$ over $g \in \mathcal{G}_{\alpha}$ for fixed α , and then to maximize over α :

$$||T_{\lambda}|| = \sup_{\alpha} \sup\{||T_{\lambda}g||_1 : g \in \mathcal{G}_{\alpha}\}.$$

For any function $g \in \mathcal{G}_{\alpha}$ let $\theta_g(z)$ be the conditional expectation of ggiven $Z_1, \theta_g(z) = E(g|Z_1 = z)$ (so that for any $h, Egh(Z_1) = E\theta_g(Z_1)h(Z_1)$). Then clearly $|\theta_g(z)| \leq 1$ and $\alpha = \int_{\mathbf{R}} \phi(z) z \theta_g(z) dz$. Conversely, if $\theta(z)$ is such that $|\theta(z)| \leq 1$ a.e. and $\alpha = \int_{\mathbf{R}} \phi(z) z \theta(z) dz$, we construct an element $g \in \mathcal{G}_{\alpha}$ with $\theta = \theta_g$, as follows: let U be a random variable independent of all Z_i , uniformly distributed on [0, 1]. Let g = 1 if $U \leq \frac{1+\theta(Z_1)}{2}$ and let g = -1 if $U > \frac{1+\theta(Z_1)}{2}$.

It is useful below to write

$$\theta_g(z) = P(g = 1 | Z_1 = z) - P(g = -1 | Z_1 = z)$$
.

For any $g \in \mathcal{G}_{\alpha}$ we can express $||T_{\lambda}g||_1$ in terms of θ_g , as follows. Since $EgZ_1 = \alpha$ and $EgZ_n = 0$ for n > 1, we have $T_{\lambda}g = \alpha Z_1 - \lambda g$, and

$$\begin{split} \|T_{\lambda}g\|_{1} &= E|\alpha Z_{1} - \lambda g| \\ &= \int_{\mathbf{R}} \phi(z) \left(P(g=1|Z_{1}=z)|\alpha z - \lambda| + P(g=-1|Z_{1}=z)|\alpha z + \lambda| \right) dz \\ &= \int_{\mathbf{R}} \phi(z) \frac{|\alpha z - \lambda| + |\alpha z + \lambda|}{2} dz + \int_{\mathbf{R}} \phi(z) \frac{|\alpha z - \lambda| - |\alpha z + \lambda|}{2} \theta_{g}(z) dz \end{split}$$

So the problem of maximizing $||T_{\lambda}g||_1$ for $g \in \mathcal{G}_{\alpha}$ is the same as that of maximizing

$$\int_{\mathbf{R}} \phi(z) \frac{|\alpha z - \lambda| + |\alpha z + \lambda|}{2} dz + \int_{\mathbf{R}} \phi(z) \frac{|\alpha z - \lambda| - |\alpha z + \lambda|}{2} \theta(z) dz \quad (1)$$

subject to $|\theta(z)| \leq 1$ a.e. and $\int_{\mathbf{R}} \phi(z) z \theta(z) = \alpha$.

Let $\psi(z) = (|\alpha z - \lambda| - |\alpha z + \lambda|)/2$. Both the objective functional $\int_{\mathbf{R}} \phi(z)\psi(z)\theta(z)dz$ and the constraint functional $\int_{\mathbf{R}} \phi(z)z\theta(z)dz$ involve integrals of $\theta(z)$ against odd functions, so the optimizing θ might as well be odd. Indeed, if $\theta(z)$ solves the optimization problem, so does the odd function $\tilde{\theta}(z) = 1/2(\theta(z) - \theta(-z))$. So an equivalent optimization problem is, find $|\theta(z)| \leq 1$ for z > 0, to maximize

$$\int_0^\infty 2\phi(z)\psi(z)\theta(z)dz \text{ subject to } \int_0^\infty 2\phi(z)z\theta(z)dz = \alpha \ .$$

This optimization problem can be solved by the Neyman-Pearson or "water pouring" monotone greedy assignment method. Since $\psi(z)/z$ is monotone increasing in $z \ge 0$, larger values of z are more "profitable," and the optimizing $\theta(z)$ will be of the form $\theta(z) = 1$ for all $z \ge h$ and $\theta(z) = -1$ for all z < h, for some $h \ge 0$. To see this, first let $h \ge 0$ solve the equation

$$\alpha = \left(\int_{h}^{\infty} - \int_{0}^{h}\right) 2\phi(z)zdz$$

$$= \sqrt{\frac{2}{\pi}} (2e^{-h^2/2} - 1) \, .$$

Suppose $\theta^*(z)$ is any other function satisfying the equality constraint $\int_0^\infty 2\phi(z)z\theta^*(z)dz = \alpha$ and the inequality constraint $|\theta^*(z)| \leq 1$. Let $\tau = \psi(h)/h$. Then for all $z \geq 0$,

$$\left(\frac{\psi(z)}{z} - \tau\right)\theta(z) = \left|\frac{\psi(z)}{z} - \tau\right|$$
$$\geq \left(\frac{\psi(z)}{z} - \tau\right)\theta^*(z)$$

and hence the inequality

$$\int_0^\infty 2\phi(z) \left(\frac{\psi(z)}{z} - \tau\right) z\theta^*(z) dz \le \int_0^\infty 2\phi(z) \left(\frac{\psi(z)}{z} - \tau\right) z\theta(z) dz$$

holds. Since both θ^* and θ satisfy the equality constraint, this already implies that for fixed α , the optimum is attained by a θ of the stated form.

This solves the "inner" optimization problem: given α , find $g \in \mathcal{G}_{\alpha}$ maximizing $||T_{\lambda}g||_1$. To show that the "outer" supremum over all $\alpha \geq 0$ is attained, note that the condition $\alpha \geq 0$ implies $0 \leq h \leq \sqrt{2 \log 2}$, and that the map $h \mapsto ||T_{\lambda}g_h||_1$ is continuous, and hence attains its supremum on $[0, \sqrt{2 \log 2}]$.

Computation of $||T_{\lambda}g_h||_1$

So far we know that $||T_{\lambda}||$ is the maximum value of $||T_{\lambda}g_h||_1$ for $h \ge 0$, which we now proceed to compute. We use the formulae

$$\|T_{\lambda}g\|_{1} = \int_{\mathbf{R}} \phi(z)((P(g=1|Z_{1}=z)|az-\lambda|+P(g=-1|Z_{1}=z)|az+\lambda|)dz$$

where

$$a = \int_{\mathbf{R}} \phi(z) (P(g=1|Z_1=z) - P(g=-1|Z_1=z)) dz$$

which we met in the proof of Theorem 2. Specializing to the special form of g_h we obtain

$$||T_{\lambda}g_h||_1 = 2\int_h^\infty \phi(z)|az - \lambda|dz + 2\int_0^h \phi(z)|az + \lambda|dz$$
(2)

where

$$a = a(h) = 2 \int_{h}^{\infty} \phi(z) z dz - 2 \int_{0}^{h} \phi(z) z dz = \sqrt{\frac{2}{\pi}} (2e^{-h^{2}/2} - 1) .$$

To obtain $||T_{\lambda}||$, then, we need only find the maximum value of (2), as $h \ge 0$ varies in such a way that $a \ge 0$, viz, as h ranges over $[0, \sqrt{2\log 2}]$.

Equation (2) simplifies differently according to whether $ah \le \lambda$ or $ah \ge \lambda$. If $ah \le \lambda$, then

$$\|T_{\lambda}g_{h}\|_{1} = 2\int_{h}^{\lambda/a} \phi(z)(\lambda - az)dz + 2\int_{\lambda/a}^{\infty} \phi(z)(az - \lambda)dz + 2\int_{0}^{h} \phi(z)(az + \lambda)dz = a\left(\int_{0}^{h} -\int_{h}^{\lambda/a} +\int_{\lambda/a}^{\infty}\right) 2\phi(z)zdz + \lambda\left(\int_{0}^{\lambda/a} -\int_{\lambda/a}^{\infty}\right) 2\phi(z)dz = a(B(\infty) - 2B(\lambda/a) + 2B(h)) - \lambda(1 - 2A(\lambda/a))$$

and if $ah \geq \lambda$, then

$$\begin{split} \|T_{\lambda}g_{h}\|_{1} &= 2\int_{h}^{\infty}\phi(z)(az-\lambda)dz + 2\int_{0}^{h}\phi(z)(az+\lambda)dz \\ &= a\int_{0}^{\infty}2\phi(z)zdz + \lambda\left(\int_{0}^{h}-\int_{h}^{\infty}\right)2\phi(z)dz \\ &= aB(\infty) - \lambda(1-2A(h)) \;, \end{split}$$

where

$$A(u) = \int_0^u 2\phi(z)dz = \sqrt{\frac{2}{\pi}} \int_0^u e^{-z^2/2}dz$$

and

$$B(u) = \int_0^u 2\phi(z)zdz = \sqrt{\frac{2}{\pi}}(1 - e^{-u^2/2}) ,$$

so $a = a(h) = B(\infty) - 2B(h)$.

In short, if we define

$$f_1(h) = a(h)(B(\infty) - 2B(\lambda/a(h)) + 2B(h)) - \lambda(1 - 2A(\lambda/a(h)))$$

and

$$f_2(h) = a(h)B(\infty) - \lambda(1 - 2A(h))$$
,

then

$$\|T_{\lambda}g_{h}\|_{1} = \begin{cases} f_{1}(h) & \text{if } a(h)h \leq \lambda \\ f_{2}(h) & \text{if } a(h)h \geq \lambda \end{cases}$$

We will now show that the h in $[0, \sqrt{2 \log 2}]$ which maximizes $||T_{\lambda}g_h||_1$ obeys $a(h)h \leq \lambda$. On the one hand, a direct calculation shows that

$$\frac{df_1(h)}{dh} = -2B'(h)(4B(h) - 2B(\lambda/a)) ,$$

so at a critical point of f_1 , $B(\lambda/a) = 2B(h) \ge B(h)$, so $\lambda/a \ge h$. And on the other hand, for all $h \in [0, \sqrt{2\log 2}]$, $f_1(h) \ge f_2(h)$, as follows. Note that

$$f_1(h) - f_2(h) = 2a(h)(B(h) - B(\lambda/a(h))) - 2\lambda(A(h) - A(\lambda/a(h)))$$
.

If $h > \lambda/a$ the inequality

$$\lambda/a \le E(Z_1|\lambda/a \le Z_1 \le h) = \frac{\int_{\lambda/a}^h \phi(z)zdz}{\int_{\lambda/a}^h \phi(z)dz} = \frac{B(h) - B(\lambda/a)}{A(h) - A(\lambda/a)}$$

holds, which is equivalent to $f_1(h) - f_2(h) \ge 0$. And if $\lambda/\alpha > h$ we similarly have

$$\lambda/a \ge E(Z_1|h \le Z_1 \le \lambda/a) = \frac{B(\lambda/a) - B(h)}{A(\lambda/a) - A(h)}$$
,

which also implies $f_1(h) - f_2(h) \ge 0$.

Let *h* maximize f_1 on $[0, \sqrt{2 \log 2}]$. It is easy to check that $f_1(0) > f_1(\sqrt{2 \log 2})$ for all values of $\lambda > 0$, so $h < \sqrt{2 \log 2}$. Direct calculation

shows $f'_1(0) = 0$ and $f''_1(0) > 0$ so h > 0, and so h is an interior critical point of f_1 , and hence $ha(h) \leq \lambda$, $||T_{\lambda}g_h||_1 = f_1(h)$, and h solves the interior critical point equation $B(\lambda/a(h)) = 2B(h)$. If we introduce the variable $\eta = \lambda/a(h)$, then the condition for a critical point is just $\lambda = \sqrt{\frac{2}{\pi}} \eta e^{-\eta^2/2}$. If $\lambda \in \left(0, \sqrt{\frac{2e}{\pi}}\right)$ there are exactly two positive values, say η_1 and η_2 , satisfying the critical point condition, with $0 < \eta_1 < 1 < \eta_2$. The corresponding values of h, which are the only positive roots of $f'_1(h)$, are obtained from the η_i from $2B(h_i) = B(\eta_i)$, which results in

$$h_i = \sqrt{-2\log\frac{1 + e^{-\eta_i^2/2}}{2}}$$

It is easy to check that $f_1''(h_1) < 0$ and $f_1''(h_2) > 0$, so at last we obtain, after some manipulation, our formula for $||T_{\lambda}g_h||_1$, valid for $\lambda \in (0, \sqrt{\frac{\pi e}{2}})$:

$$||T_{\lambda}g_h||_1 = f_1(h_1) = (\lambda/\eta_1)^2 - \lambda(1 - 2A(\eta_1))$$
.

Substituting $\lambda = \sqrt{\frac{2}{\pi}} \eta e^{-\eta^2/2}$, and regarding $0 < \eta < 1$ as the independent variable, our bound for K_G is thus

$$K_G \geq \sup_{\eta \in [0,1]} \frac{1-\lambda}{(\lambda/\eta)^2 - \lambda(1-2A(\eta))}$$

=
$$\sup_{\eta \in [0,1]} \frac{1-\sqrt{\frac{2}{\pi}}\eta e^{-\eta^2/2}}{\frac{2}{\pi}e^{-\eta^2} - \sqrt{\frac{2}{\pi}}\eta e^{-\eta^2/2}(1-2A(\eta))}$$

=
$$\sup_{\eta \in [0,1]} Y(\eta) .$$

Elementary calculus shows that the maximizing η solves the equation

$$1-2A(\eta)=\frac{2}{\pi}e^{-\eta^2}$$

and then $Y(\eta) = \frac{\pi}{2}e^{\eta^2}$. Numerical computations show that the maximizing η is approximately .25573021316621 and the corresponding value of Y is

approximately 1.676956674215576. This corresponds to $\lambda = .25573$, h = .18009, and a = .77222.

We may summarize all these calculations as:

Theorem 3 Let $\eta \in [0,1]$ solve the equation

$$1 - 2\sqrt{\frac{2}{\pi}} \int_0^{\eta} e^{-z^2/2} dz = \frac{2}{\pi} e^{-\eta^2} .$$

Then $K_G \geq \frac{\pi}{2}e^{\eta^2}$.

Related Example

Here is another example, seemingly more concrete than the last. For fixed n, let S_n be the unit sphere in \mathbf{R}^n . (Surface of sphere, not solid ball.) Let μ be rotationally invariant measure on S_n , normalized so $\mu(S_n) = 1$. Let $L^{\infty} = L^{\infty}(S_n, \mu)$ be the bounded functions on S_n and $L^1 = L^1(S_n, \mu)$ be the integrable functions on S_n . Let $k: S_n \times S_n \to \mathbf{R}$ be the inner product function k(x, y) = (x, y). Finally, define $T_n: L^{\infty} \to L^1$ by

$$(T_n f)(x) = \int_{S_n} k(x, u) f(u) du,$$

and for $\lambda \in \mathbf{R}$ define $T_{n,\lambda}: L^{\infty} \to L^1$ by

$$T_{n,\lambda}f = T_nf - \lambda f$$
.

Arguing as in the previous sections, one obtains for each n a similar lower bound for K_G . When n becomes large, the numerical values seem to converge to the value obtained above. It is easy to believe that T and T_n are "essentially the same".

Now, decompose $L^2(S_n, \mu) = \bigoplus \mathcal{H}_j$ into the spaces of spherical harmonics [S], \mathcal{H}_j being the degree j harmonic polynomial functions on \mathbb{R}^n , restricted to S_n . Let P_j denote the projection onto \mathcal{H}_j . Then the operators T_n and $T_{n\lambda}$ may be written in the form

$$T_n = \alpha P_1$$

$$T_{n\lambda} = \alpha P_1 - \lambda \sum_{j=0}^{\infty} P_j .$$

It would be interesting to attempt the direct computation of the norm of some more general operator $\sum \alpha_j P_j$, where the α_j are not all of the same sign, but the methods of this paper probably do not extend beyond the case where only one of the α_j is positive. (We know from [R] that if all $\alpha_j \geq 0$ then the Grothendieck ratio $r(\sum \alpha_j P_j)$ cannot exceed $\pi/2$, so improved lower bounds on K_G require some alternation in sign.)

Acknowledgements

I am grateful to H. J. Landau for helpful discussions, and to L. A. Shepp for the idea of using odd functions in proving Theorem 2.

References

- [F] Fishburn, P. C. and J. A. Reeds, "Bell Inequalities, Grothendieck's Constant, and Root Two." Unpublished MS, 1990.
- [G] Grothendieck, A. "Résumé de la théorie métrique des produits tensoriels topologiques," Bol. Soc. Math. São Paulo 8, 1–79 (1956).
- [Ha] Halmos, P. R. "The range of a vector measure," Bull. A.M.S. 54, 416–421 (1948).
- [Hu] Humphreys, J. Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972.
- [K] Krivine, J. L. "Constantes de Grothendieck et fonctions de type positif sur les sphères," Adv. Math. 31, 16–30 (1979).
- [L] Lindenstrauss, J. and Tzafriri, L. Classical Banach Spaces I, Springer, New York, 1977.
- [P] Pisier, G. Factorization of linear operators and geometry of Banach spaces, Providence, RI: American Mathematical Society, 1986.
- [R] Rietz, R. E., "A proof of the Grothendieck inequality," Israel J. Math. 19, 271–276 (1974).
- [S] Stein, E. M. and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971.